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Abstract Linear parabolic diffusion theories based on Fourier’s or Fick’s laws predict

that disturbances can propagate at infinite speed. Although in some applications, the

infinite speed paradox may be ignored, there are many other applications in which

a theory that predicts propagation at finite speed is mandatory. As a consequence,

several alternatives to the linear parabolic diffusion theory, that aim at avoiding the

infinite speed paradox, have been proposed over the years. This paper is devoted to

the mathematical, physical and numerical analysis of a hyperbolic convection-diffusion

theory.
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1 Introduction

There is overwhelming experimental evidence showing that diffusive processes take

place with finite velocity inside matter [25,69,71]. From a theoretical standpoint, it is

even clearer that mass and energy cannot propagate at infinite speed. However, linear

parabolic diffusion theories based on Fick’s law [33] or Fourier’s laws [35] (in the case

of mass transport or heat conduction, respectively) predict an infinite speed of prop-

agation. It is true that although the linear parabolic theory propagates disturbances

at an infinite speed, their amplitudes decay exponentially. For this reason, in some

applications, this issue can be ignored and the use of linear parabolic models may be

accurate enough for practical purposes in spite of predicting an infinite speed of prop-

agation [16]. However, in many other applications it is necessary to take into account

the wave nature of diffusive processes to perform accurate predictions [25,76,82]. As

a consequence, several alternatives to the linear parabolic diffusion theory, that aim

at avoiding the infinite speed paradox, have been proposed over the years. Although
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there are other possibilities most of the proposed models pertain either to the hyper-

bolic diffusion theory or the nonlinear parabolic theory. In this paper we analyze in

detail a hyperbolic convection-diffusion theory that has been recently proposed by the

authors [42–44].

The hyperbolic diffusion theory was initiated in 1958 by Cattaneo who proposed

a generalization of Fourier’s and Fick’s law that overcomes the infinite speed para-

dox. Cattaneo’s work had an enormous impact and his theory is still the most widely

accepted generalization of the linear parabolic theory. However, there is also some crit-

icism to Cattaneo’s law [1,32,47,55,56]. Over the years, Cattaneo’s equation has been

derived using different arguments. Maxwell [67], Cattaneo [15] and Grad [46] obtained

the equation using the kinetic theory. Goldstein [37] derived Cattaneo’s equation from

a correlated random walk using a limiting process. Tavernier [78], on the other hand,

departed from Boltzmann’s equation. Finally, Kaliski [62] derived the hyperbolic dif-

fusion equation assuming finite propagation velocity as an axiom.

The study of hyperbolic diffusion has been mainly limited to pure-diffusive problems

heretofore [57,58,74,89]. The authors have recently proposed a generalization of the

hyperbolic diffusion equation that can also be used in convective cases [38–40]. From

a numerical point of view, the simulation of the hyperbolic diffusion equation has

been mostly limited to 1D problems [3,12]. The numerical discretization of 2D pure-

diffusion problems was probably pioneered by Yang [88]. Later, Manzari et al [66]

proposed a different algorithm and solved some practical pure-diffusive examples. In

[48] the authors proposed a hybrid technique based on the Laplace transform and finite

volume methods. Hoashi et al developed in [50] a numerical method based on the cubic

interpolated method [87]. More recently, several techniques based on the discontinuous

Galerkin method have been proposed [43,86].

In this paper we present two numerical formulations for the hyperbolic convection-

diffusion theory. We solve several numerical examples that illustrate the main charac-

teristics of the hyperbolic theory and the robustness of our numerical formulation.

The outline of this paper is as follows: In section 2 we review three theories for

pure diffusion. Section 3 presents and analyzes our hyperbolic theory for convection-

diffusion. In section 4 we develop a numerical analysis of the one-dimensional stationary

hyperbolic convection-diffusion theory. In section 5 we present a finite element formula-

tion for the hyperbolic convection-diffusion theory and solve some numerical examples

that illustrate the main characteristics of our theory. In section 6 we introduce a dis-

continuous Galerkin method for the hyperbolic theory. We test out this formulation

with several examples focusing on the accuracy of the formulation for smooth solutions

and its robustness for convection-dominated problems.

2 Mathematical models for pure-diffusive problems

In this section we present and analyze three theories for pure diffusion: the linear

parabolic model, the nonlinear parabolic theory and the hyperbolic model. Although

most of what we present in this paper is valid for heat and mass diffusion we use

the terminology of mass transfer. Therefore, when we say pure diffusion (or simply

diffusion) we mean the diffusion of a pollutant within a static fluid. We call convection-

diffusion to the diffusion of a pollutant within an incompressible flow which may move

with respect to our reference.
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2.1 Classical linear parabolic diffusion theory

The classical theory for pure-diffusive processes is defined by the equations:

∂u

∂t
+ ∇ · q = f (1.1)

q = −K∇u (1.2)

In the context of mass diffusion, u represents the pollutant concentration, q is the

pollutant flux, f is a source term and K is the diffusivity tensor which is assumed

positive definite and independent of u. Equation (1.1) is the mass conservation equation

and (1.2) the constitutive equation that defines the pollutant flux. We observe that

system (1) is equivalent to the scalar equation

∂u

∂t
−∇ · (K∇u) = f. (2)

Let us consider the Cauchy problem given by equation (2) and suitable initial condi-

tions, namely: find u : R
3 × [0, T ] 7→ R such that,

∂u

∂t
−∇ · (K∇u) = f in R

3 × (0, T ) (3.1)

u(x, 0) = u0(x) in R
3 (3.2)

It is a known fact that the Cauchy problem (3) describes a process were disturbances

propagate at infinite speed. We say that disturbances move at an infinite speed if for

a compactly supported initial condition u0(x), the solution to the Cauchy problem (3)

at a given time t is not compactly supported as a function of x. We illustrate this

fact with a one-dimensional example. Let us consider an homogeneous and isotropic

medium (hence, if I is the identity tensor, K = kI for a certain k > 0). We do not

consider source terms. We analyze the following Cauchy problem: find u : R×R
+ 7→ R

such that

∂u

∂t
− k

∂2u

∂x2
= 0 ∀x ∈ R t > 0. (4.1)

u(x, 0) = δ(x) ∀x ∈ R. (4.2)

where δ is the Dirac distribution. The exact solution of (4) is

u(x, t) =
1√

4πkt
e−

x
2

4kt , ∀x ∈ R, t > 0. (5)

Therefore, for any time t > 0, the pollutant concentration is given by the Gauss

distribution function, which is not a compactly supported function of x, as we had

anticipated. Figure 1 shows (in dashed line) the solution of (4) for k = 1 at t = 4 and

t = 10.

Remark 1 It may be argued that in practical applications the infinite speed paradox is

not very relevant because, although disturbances propagate at an infinite speed, their

amplitudes decay exponentially with distance. We believe that in some applications the

infinite speed paradox can be ignored and the use of parabolic models may be accurate

enough for practical purposes in spite of predicting non-physical velocities of propa-

gation. However, in many other applications it is necessary to take into account the

wave nature of diffusive processes to perform accurate predictions [25,82]. Therefore,

an alternative to the linear parabolic model is desirable.
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Fig. 1 Comparison at t = 4 (left) and at t = 10 (right) between the solution of (4) (dashed
line) and the solution of (13) (solid line). The vertical arrows represent Dirac’s distributions.
Parameters k and τ have a value of one.

2.2 Nonlinear parabolic diffusion theory

Although the main objective of this paper is the study of the linear hyperbolic diffu-

sion theory, we would like at least to mention the nonlinear parabolic diffusion theory,

which in some instances leads to finite velocity of propagation. The distinctive feature

of the nonlinear parabolic diffusion theory is that the diffusivity depends on the con-

centration or its spatial derivatives. Mathematically, we represent this fact using the

notation K(u,∇u). For simplicity, we will restrict ourselves to isotropic media and so,

K(u,∇u) = k(u,∇u)I , where k(u,∇u) ≥ 0.

The first nonlinear parabolic diffusion theory was introduced in 1950 by Zel’dovich

and Kompaneets [90]. In this paper, the authors focus on plasma radiation at high

temperatures and they argue that the diffusivity depends on the temperature through

a power law. After this publication, the interest on the topic grew enormously, especially

in the mathematics community.

Zel’dovich and Kompaneets solved in [90] the following Cauchy problem: find u :

R
3 × [0, T ] 7→ R such that

∂u

∂t
−∇ ·

(

k(u,∇u)∇u
)

= 0 in R
3 × (0, T ) (6.1)

u(x, 0) = u0(x) on R
3 (6.2)

where

k(u,∇u) = um, m > 0. (7)

Under the assumption of spherical symmetry, they obtained the solution to (6) and

proved that it is a compactly supported function of x for all t [7,68]. Thus, we say

that this equation leads to finite velocity of propagation. The solution to (6) was also

obtained by Barenblatt [5] in the context of ground water filtration and by Pattle [70].

For a review of this type of equations we refer the reader to the fundamental review

by Kalashnikov [60] or the books by Vázquez [81] and Antontsev et al. [2] that cover

in great detail the mathematics of this equation. We also recommend the read of the

books by Landau and Lifshitz [64] (see Chapter 16) and Kalatnikov [61].
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Remark 2 Equation (6.1) with k(u,∇u) = um, m > 0 pertains to the so-called degen-

erate parabolic equations. Wherever u = 0, the equation becomes hyperbolic. This fact

gives rise to the finite velocity of propagation. From a physical standpoint, it may be

argued that this is not very relevant in a heat conduction problem because temperature

will never vanish.

Remark 3 Although the finite velocity of propagation for parabolic problems is an

intrinsically nonlinear phenomenon, not every function k leads to finite velocity of

propagation. Another typical example of nonlinear parabolic equation with finite speed

of propagation is given by the diffusivity

k (u,∇u) = |∇u|p; p > 0 (8)

which defines the so-called p-Laplacian equation.

2.3 Hyperbolic diffusion theory

The hyperbolic diffusion theory is derived substituting in system (1) Fick’s law by a

more general equation due to Cattaneo [16], namely

q + τ
∂q

∂t
= −K∇u (9)

In equation (9), τ is the so-called relaxation tensor which has dimensions of time.

Then, the hyperbolic diffusion theory is defined by the following set of equations:

∂u

∂t
+ ∇ · q = f (10.1)

q + τ
∂q

∂t
= −K∇u (10.2)

We observe that when τ = 0 we retrieve the parabolic theory. Also, at the steady

state, both theories are equivalent even for τ 6= 0. Under certain assumptions, the pol-

lutant flux can be eliminated in system (10). Let us assume isotropic and homogeneous

medium. Then, K = kI , τ = τI for certain k > 0, τ > 0. We do not consider source

terms. After eliminating the pollutant flux in system (10), we obtain the so-called

hyperbolic diffusion equation,

τ
∂2u

∂t2
+

∂u

∂t
− k∆u = 0. (11)

Equation (11) is hyperbolic and, as a consequence, we can define a finite velocity for

the pollutant transport, namely

c =
√

k/τ. (12)

To compare the solution of the classic formulation with the solution of the hy-

perbolic theory we solve the hyperbolic counterpart of (4). Now, we need two initial

conditions because equation (11) involves second-order derivatives with respect to time.
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We consider a homogeneous, isotropic and one-dimensional medium. With the above

hypotheses we can state the problem as: find u : R × R
+ 7→ R such that

τ
∂2u

∂t2
+

∂u

∂t
− k

∂2u

∂x2
= 0 ∀x ∈ R t > 0 (13.1)

u(x, 0) = δ(x) ∀x ∈ R (13.2)

∂u

∂t
(x, 0) = 0 ∀x ∈ R (13.3)

We may solve (13) using Fourier and Laplace transforms in space and time, respectively

(see reference [38] for a detailed resolution). The solution to (13) may be written as,

u(x, t) =















1
2e−

c
2

2k
t

[

δ(|x| − ct) + c
2k I0

(

c
2k

√
c2t2 − x2

)

+ c2

2k t
I1( c

2k

√
c2t2−x2)√

c2t2−x2

]

, |x| ≤ ct

0, |x| > ct
(14)

where I0 and I1 are the modified Bessel functions of the first kind of order 0 and

1. Equation (14) clearly illustrates that the hyperbolic diffusion theory predicts the

existence of a wave front that advances with velocity c. In Figure 1 we compare the

solutions to (4) and (13) at t = 4 and t = 10, respectively.

Remark 4 There are several experiments showing the existence of heat waves in liq-

uid helium and dielectric crystals. Apparently, Peshkov [71] was the first to measure

experimentally the velocity of heat waves.

Remark 5 Although Cattaneo’s law was proposed as a generalization of Fourier’s law,

the scientific community agrees that it may be also thought of as a generalization of

Fick’s law. Actually, Cattaneo’s law is considered to have potential in representing

anomalous mass transport phenomena [25], which has become extremely important in

the last decade [63].

Remark 6 A common criticism to Cattaneo’s law is that in most applications the re-

laxation time is very small. Given that Cattaneo’s and Fick’s laws are equivalent at the

steady state, we would only see differences at the shortest time scales. We believe that

this may be true in some applications, but we also remark that in the realm of heat

conduction there are systems characterized by long relaxation times. Prime examples

are polymeric fluids, heat and electric conductors at high temperatures or supercon-

ductors. Moreover, for the case of mass transfer, the relaxation time is believed to be

several orders of magnitude larger than in heat propagation problems.

Remark 7 Cattaneo’s law may be derived as a particular case of the theory proposed

by Gurtin and Pipkin [45]. According to this theory, the pollutant flux at a given

time may be expressed as an integral over the history of the concentration gradient. In

particular,

q(x, t) = −
∫ t

−∞
ψ(t − s)∇u(x, s)ds (15)

where ψ(z) is a positive, decreasing kernel that tends to zero as z tends to infinity.

Cattaneo’s law for isotropic media is retrieved for ψ(z) = k
τ e−z/τ .

Remark 8 Wilhelm and Choi [85] proposed an interesting generalization of the theories

presented in sections 2.2 and 2.3. The authors used Cattaneo’s law with a concentration-

dependent diffusivity and relaxation time. Reverberi et al [73] have recently presented

numerical results using Cattaneo’s law with concentration-dependent diffusivity.



7

2.3.1 Dispersion relation

In this section we show that the hyperbolic diffusion theory exhibits a dispersive be-

havior [3]. For the sake of simplicity, we restrict ourselves to the one-dimensional,

homogeneous and isotropic setting. Let us consider a solution of the type
(

u

q

)

=

(

U
Q

)

ei(ωt−ξx) (16)

where i2 = −1. The previous ansatz leads to the dispersion relation

ωi = τω2 − kξ2. (17)

For an initial value problem, ξ is a real wave number and ω a complex frequency. Let

us rewrite ω as

ω = ωR + iωC (18)

where ωR is a real frequency and ωC is a damping coefficient. Introducing (18) in the

dispersion relation (17), we obtain

ωR

ξ
=















0, ξ ≤ 1
2τc

±
√

c2 − 1
4τ2ξ2 , ξ > 1

2τc

(19.1)

ωC =











1
2τ

(

1 ±
√

1 − 4τ2c2ξ2
)

, ξ < 1
2τc

1
2τ , ξ ≥ 1

2τc

(19.2)

where ωR/ξ is the wave velocity and ωC is the damping coefficient. Equations (19) show

that a Fourier mode defined by the wave number ξ travels with velocity ωR(ξ)/ξ and

is damped at a rate e−ωC(ξ)t. In Figures 2 and 3 we represent, respectively, the wave

velocity and the damping rate e−ωCt versus the wave number ξ, assuming k = τ =

t = 1. We observe that there is a bifurcation point at the wave number ξ = 1
2τc . The

asymptotic wave velocity as the wave number tends to infinity is
√

k/τ . The damping

ratio is e−1/(2τ) for all modes with wave numbers within the interval [1/(2τc),∞).

Remark 9 From a physical standpoint, the dispersive character of the equations ad-

equately represents the physics of the problem. For example, in the context of heat

conduction the wave velocity depends on the amount of energy transported by the

heat wave [57,58].

2.3.2 Thermodynamics

While the parabolic diffusion theory fits nicely within the framework of Classical Ir-

reversible Thermodynamics, the hyperbolic theory is incompatible with it. The reason

for that is the hyperbolic diffusion theory leads to negative entropy production in some

circumstances. Let us call σ the entropy production. According to Classical Irreversible

Thermodynamics,

σ = q · ∇
(

1

u

)

(20)
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Fig. 2 Wave velocity ωR(ξ)/ξ for a Fourier mode defined by the wave number ξ.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wave number

D
a

m
p

in
g

 r
a

te

Fig. 3 Damping rate e−ωC(ξ)t for a Fourier mode defined by the wave number ξ.

Applying this expression to the hyperbolic diffusion theory, we get

σ =
k

u2
||∇u||2 +

τ

u2

∂q

∂t
· ∇u (21)

where || · || denotes the Euclidean norm of a given vector. The entropy production in

equation (21) is not always positive when τ 6= 0. It is commonly accepted [59] that this

fact is due to the hypothesis of local equilibrium that underlies Classical Irreversible

Thermodynamics. This is one of the reasons why the physics community is trying to

extend the thermodynamics theory to non-equilibrium systems. The so-called Extended
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Irreversible Thermodynamics seems to be a promising candidate. The central quantity

of this theory is a generalized non-equilibrium entropy that depends not only on the

classical variables, but also on the dissipative fluxes. The hyperbolic diffusion theory

is compatible with Extended Irreversible Thermodynamics.

3 Hyperbolic convection-diffusion theory

In the context of many engineering applications of mass transport, such as the evolution

of a pollutant spilled in a port, it is important to consider not only the diffusion mecha-

nism but also the transport due to convection. For this reason, it is of prime importance

to extend the diffusion theories to convective situations. We suppose that convection

is driven by the movement of a fluid that we assume incompressible throughout the

paper.

The parabolic model can be easily extended to convective problems, just by adding

the standard convective term to the equations. The extension of the hyperbolic model

to moving domains is not straightforward and has been improperly used in the litera-

ture several times. Unlike Fick’s law, Cattaneo’s law has to be modified in the presence

of convection. Otherwise, the resulting model is not invariant under Galilean trans-

formations. The authors proposed [38,40,42] (see also [17]) a generalized version of

Cattaneo’s law that may be used in convective problems, namely

q + τ

(

∂q

∂t
+ ∇ q a

)

= −K∇u (22)

Thus, the governing equations for our hyperbolic convection-diffusion theory are given

by:

∂u

∂t
+ a · ∇u + ∇ · q = 0 (23.1)

q + τ

(

∂q

∂t
+ ∇ q a

)

= −K∇u (23.2)

A remarkable fact is that the hyperbolic convection-diffusion theory is not equivalent

to the parabolic convection-diffusion theory at the steady state. This entails that for

a non-zero relaxation time, both theories would predict different results at all time

scales.

3.1 The effect of convection on the hyperbolic diffusion theory

Simple arguments from dimensional analysis show that the effect of convection is much

stronger on the hyperbolic theory than on the linear parabolic model. We will illustrate

this fact with a one-dimensional example in which we assume that there are no sources

and the medium is homogeneous and isotropic. Under these conditions, in the parabolic

model, space and time can always be rescaled to keep the solution invariant with respect

to changes in the parameters (here velocity is considered a parameter) both in pure-

diffusive and in convective-diffusive problems. In the hyperbolic theory that is true
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only in absence of convection. To show this, we consider equations (23) under the

above mentioned hypotheses, that is,

∂u

∂t
+ a

∂u

∂x
+

∂q

∂x
= 0 (24.1)

q + τ
∂q

∂t
+ τa

∂q

∂x
= −k

∂u

∂x
(24.2)

All the physical quantities involved in equations (24) can be measured using units of

measurement that belong to the LT class, in which units of length and time are chosen

as fundamental units. Due to the fundamental principle which states that physical laws

do not depend on arbitrarily chosen units of measurement [6], we can rescale length

and time by arbitrary positive numbers. Let us rescale the units of measurement of

time by τ and length by aτ . Let us denote by φ̂ the value of the physical quantity φ in

the new system of units. Thus, the equations in the new system of units read as:

∂û

∂t̂
+

∂û

∂x̂
+

∂q̂

∂x̂
= 0 (25.1)

q̂ +
∂q̂

∂t̂
+

∂q̂

∂x̂
= −H−2 ∂û

∂x̂
(25.2)

where

H = a/c. (26)

Equations (25)–(26) clearly show that space and time no longer can be rescaled to

keep the solution invariant with respect to changes in the parameters. The solution of

the hyperbolic convection-diffusion theory intrinsically depends on H, a dimensionless

number which plays a similar role to Mach number in compressible flow. This will be

studied in detail in the next section.

3.2 Conservation form of the hyperbolic convection-diffusion theory

The authors proposed in [42] a conservation form for system (23). Under the assump-

tions of homogeneity, isotropy and incompressibility of the fluid, the governing equa-

tions of the hyperbolic convection-diffusion theory may be written as

∂u

∂t
+ ∇ · (ua + q) = 0 (27.1)

∂(τq)

∂t
+ ∇ · (τq ⊗ a + kuI) + q = 0 (27.2)

System (27) can also be written in compact form as:

∂U

∂t
+ ∇ · F = S (28)

where

U =









u

τq1

τq2

τq3









; F =









ua1 + q1 ua2 + q2 ua3 + q3

τq1a1 + ku τq1a2 τq1a3

τq2a1 τq2a2 + ku τq2a3

τq3a1 τq3a2 τq3a3 + ku









; S =









0

−q1

−q2

−q3









(29)
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and qi, ai denote, respectively, the cartesian components of q and a. To study the basic

properties of equation (28) it is convenient to rewrite it in non-conservative form. If

we define F i as the i-th column of matrix F , the following relation holds:

∇ · F =
∂F i

∂xi
= Ai

∂U

∂xi
, i = 1, 2, 3. (30)

where repeated indices indicate summation (we will use this convention throughout

this section) and

Ai =
∂F i

∂U
(31)

are the Jacobian matrices whose component-wise representation is

A1 =









a1 1/τ 0 0

k a1 0 0

0 0 a1 0

0 0 0 a1









; A2 =









a2 0 1/τ 0

0 a2 0 0

k 0 a2 0

0 0 0 a2









; A3 =









a3 0 0 1/τ

0 a3 0 0

0 0 a3 0

k 0 0 a3









(32)

Let us define κ ∈ R
3, ||κ|| = 1, otherwise arbitrary. System (28) is totally hyperbolic

if the equation

det(ωκI − Aiκi) = 0 (33)

yields four different real solutions ωκ for arbitrarily prescribed values of κ [26]. It is

easy to prove that the solutions to (33) are

ω1
κ = a · κ (34.1)

ω2
κ = a · κ (34.2)

ω3
κ = a · κ − c (34.3)

ω4
κ = a · κ + c (34.4)

which are all real numbers. Therefore, system (28) is hyperbolic. The ωi
κ’s in (34)

are the eigenvalues of Aiκi which is usually referred to as projection matrix. Now, by

making some basic algebraic work we can compute the eigenvectors of Aiκi. Then, we

can define the square matrix Cκ as the matrix whose columns are the eigenvectors of

the projection matrix, that is,

Cκ =









0 0 c c

−κ3 −κ2 −kκ1 kκ1

0 κ1 −kκ2 kκ2

κ1 0 −kκ3 kκ3









(35)

Let Λκ be the diagonal matrix such that the elements placed in the main diagonal are

the eigenvalues ωi
κ, i = 1, . . . , 4. Then, the following relation holds

Λκ = C
−1
κ AiκiCκ. (36)

At this point, we define the following dimensionless number

H =
||a||

c
(37)

which plays a similar role to Mach number in compressible flow problems [27] or to the

Froude number in shallow water problems [84]. By using this dimensionless number we

can define three types of flow



12

– H < 1 ⇔ Subcritical flow

– H > 1 ⇔ Supercritical flow

– H = 1 ⇔ Critical flow

Observe that upstream pollutant transport is not possible in supercritical flow condi-

tions, since the velocity of the diffusive mode of propagation is smaller than the velocity

of the convective mode.

3.3 Boundary conditions

In [41] we proved that, for one-dimensional problems, it is possible to diagonalize the

hyperbolic system (28) and define the Riemann variables (see [51] for an introduction

to hyperbolic systems). Unfortunately, in three-dimensional problems, matrices Ai are

not diagonalizable in the same basis, which makes impossible to diagonalize system

(28). However, given a direction κ, it is possible to define the characteristic variables,

which are the analogue of Riemann variables for the direction κ. To impose boundary

conditions, we need to define the characteristic variables in the outward normal direc-

tion to the boundary of the computational domain. Let us call n a vector pointing in

that direction and verifying ||n|| = 1. For our hyperbolic convection-diffusion theory

the characteristic variables are defined as,

Y
n = C

−1
n U (38)

where matrix C−1
n may be obtained from equation (35). If we call Y n

i , i = 1, . . . , 4 the

components of Y n, then

Y n

1 = τ

(

−n3q1 − n2n3

n1
q2 +

n2
1 + n2

2

n1
q3

)

(39.1)

Y n

2 = τ

(

−n2q1 +
n2

1 + n2
3

n1
q2 − n2n3

n1
q3

)

(39.2)

Y n

3 =
1

2c

(

u − 1

c
q · n

)

(39.3)

Y n

4 =
1

2c

(

u +
1

c
q · n

)

(39.4)

At a given point of the boundary we need to impose Y n

i if and only if ωi
n is negative,

where the ωi
n are the eigenvalues in the direction n which may be obtained from (34).

Let us define Hn as

Hn =
a · n

c
(40)

which is the analogue of the H number for a given direction n. We call inflow boundary

the subset of the boundary where a · n < 0 and outflow boundary the subset where

a · n > 0. We say that the flow is subcritical at a given point of the boundary if and

only if Hn < 1. Wherever Hn > 1 the flow is supercritical. Taking into account all

of this, we are ready to define boundary conditions for our theory in any situation.

In Table 1 we present a summary of quantities to be imposed on the boundary for a

three-dimensional problem.

Assuming homogeneous and isotropic medium, and incompressibility of the fluid,

the initial/boundary-value problem for our hyperbolic convection-diffusion theory can
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Inflow Outflow

Subcritical Y n

1 , Y n

2 , Y n

3 Y n

3

Supercritical Y n

1 , Y n

2 , Y n

3 , Y n

4 None

Table 1 Summary of quantities to be imposed on the boundary for the three-dimensional
hyperbolic convection-diffusion theory.

be stated as: Given k, τ > 0, given a divergence-free velocity field a and given adequate

initial and boundary conditions, find U : Ω × [0, T ] 7→ R
4 such that

∂U

∂t
+ ∇ · F = S in Ω × (0, T ) (41.1)

U (x, 0) = U 0(x) in Ω (41.2)

[Y n] = [Y n]D on Γ × [0, T ] (41.3)

where [Y n] represents the subset of Y n to be imposed at a given point of the boundary

and [Y n]D denotes the imposed values.

Remark 10 In one-dimensional problems the Riemann variables are given by

R =







1

2c
(u +

1

c
q)

1

2c
(u − 1

c
q)






(42)

In supercritical flows we need to impose both Riemann variables at the inflow boundary

and none at the outflow. In subcritical flow, we need to impose one Riemann variable

at the inflow boundary and the other at the outflow. Due to the simple structure of

the equations in one-dimensional problems, there are other legitimate possibilities. For

example, in supercritical flow we may impose u and q at the inlet and leave free all

variables at the outlet. In subcritical flow, we may impose concentration on both the

inflow and outflow boundaries. We will make use of these boundary conditions in the

next section.

4 Numerical analysis of the one-dimensional stationary hyperbolic

convection-diffusion theory

4.1 The antidiffusion introduced by Cattaneo’s law

In this section we show that, under adequate assumptions, Cattaneo’s law introduces a

negative diffusion with respect to Fick’s law. We make use of the governing equations

for the steady-state, namely

∇ · F = S (43)

For a one-dimensional problem, the previous equation can be rewritten as

dq

dx
= −a

du

dx
(44.1)

k
du

dx
+ τa

dq

dx
= −q (44.2)
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Using (44.1) and the derivative of (44.2), we derive the following second-order equation:

a
du

dx
− (k − τa2)

d2u

dx2
= 0 (45)

Equation (45) clearly shows that Cattaneo’s law introduces a negative diffusion with

respect to Fick’s law. It may be argued that this fact represents an important drawback

of the hyperbolic model because it complicates the numerical resolution of the equation.

This is not true. A discussion on this point will be presented in section 4.4.

Remark 11 Note that the coefficient of the second-order term in equation (45) verifies

k − τa2 = k(1 − H2). (46)

Therefore, equation (45) can be only thought of as the standard parabolic model with

a negative diffusion in subcritical flow. In this case the term k − τa2 remains positive.

In supercritical flow, equation (45) still makes sense, but the term k − τa2 cannot be

thought of as a diffusivity, because it takes a negative value.

Remark 12 Equation (45) is not equivalent to system (43). The hyperbolic theory for

convection-diffusion is defined by system (43) and not by equation (45). However, in

the case of subcritical flow and Dirichlet boundary conditions both formulations are

equivalent if the solutions are sufficiently smooth.

4.2 The effect of the standard Galerkin discretization on the classic parabolic

convection-diffusion equation

We analyze the classic parabolic convection-diffusion equation subject to Dirichlet

boundary conditions (similar studies may be found in [24]). We use the following model

problem: find u : [0, L] 7→ R such that

a
du

dx
− k

d2u

dx2
= 0; x ∈ (0, L) (47.1)

u(0) = u0 (47.2)

u(L) = uL (47.3)

Let P be a uniform partition of [0, L] defined by the points {xi}i=0,N such that xi =

(i − 1)h, with h = L/(N − 1). Let us call

Pe =
ah

2k
(48)

the mesh Péclet number which expresses the ratio of convective to diffusive transport.

If we solve (47) using the standard Galerkin method and linear finite elements (this

is equivalent to second-order centered finite differences in this case) we obtain the

following discrete equation at an interior node j:

(1 − Pe)uj+1 − 2uj + (1 + Pe)uj−1 = 0 (49)

In equation (49) uj is the finite element approximation of u(xj) and u0, uN are the

values given by boundary conditions (47.2)–(47.3). Difference equations (49) can be
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solved exactly (see, for instance, reference [54]). The exact solution of (49), subject to

boundary conditions (47.2)–(47.3), is

uj =
1

1 −
(

1+Pe

1−Pe

)N

{

u0

[

(

1 + Pe

1 − Pe

)j

−
(

1 + Pe

1 − Pe

)N
]

+ uL

[

1 −
(

1 + Pe

1 − Pe

)j
]}

(50)

From equation (50) it is apparent that the numerical solution will present an oscillatory

behavior when |Pe| > 1, even though equations (49) were solved exactly. On the other

hand, the exact solution of (47) is

u(xj) =
1

1 − e
ah

k
N

[

u0

(

e
ah

k
j − e

ah

k
N

)

+ uL

(

1 − e
ah

k
j
)]

(51)

A comparison between (50) and (51) shows that the approximate solution equals the

exact solution if the following relation holds

e2Pej =

(

1 + Pe

1 − Pe

)j

∀j = 0, . . . , N (52)

Relation (52) is only satisfied for Pe = 0 (pure-diffusive problem). However, using (52)

we find that when the mesh is fine enough (|Pe| ≤ 1) the approximate solution (50) is,

actually, the exact solution of the problem

a
du

dx
− k⋆ d2u

dx2
= 0; x ∈ (0, L) (53.1)

u(0) = u0 (53.2)

u(L) = uL (53.3)

where

k⋆ = k
2Pe

ln
(

1+Pe

1−Pe

) (54)

In Figure 4 we represent k⋆/k as a function of Pe ∈ (−1, 1). We observe that k⋆ → k

as |Pe| → 0 and k⋆ → 0 as |Pe| → 1.

Remark 13 If the mesh is fine enough (|Pe| < 1), then k⋆ ∈ (0, k], which means that

the standard Galerkin method solves exactly an underdiffusive equation. If the mesh

is not fine enough (|Pe| > 1), then k⋆ becomes complex and it is not correct anymore

to say that the standard Galerkin method solves an underdiffusive equation

4.3 The connection between the hyperbolic theory and the discrete parabolic model

We prove that (under the necessary assumptions) when we apply a standard Galerkin

discretization to the linear parabolic convection-diffusion equation, the velocity of prop-

agation is not infinite anymore at the discrete level. On the contrary, a finite velocity

of propagation can be defined in the discrete equations. We conclude that the standard

Galerkin formulation introduces an “artificial” relaxation time. The proof requires k⋆

to be rearranged as

k⋆ = k − k



1 − 2Pe

ln
(

1+Pe

1−Pe

)



 < k (55)
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Fig. 4 Dimensionless diffusivity (k⋆/k) as a function of Pe ∈ (−1, 1).

If we compare the diffusive coefficient k⋆ with the coefficient that results from using

Cattaneo’s law (this may be found in equation (45)) we conclude that when we solve

(47) using the standard Galerkin method we obtain the solution of a Cattaneo-type

transport problem defined by the relaxation time

τG =
h

a





1

2Pe

− 1

ln
(

1+Pe

1−Pe

)



 (56)

As a result, a finite velocity of propagation can be defined in the discrete equation (49),

namely

cG =
a

(

1 − 2Pe

ln
(

1+Pe

1−Pe

)

)1/2
(57)

Using relation (57) we can compute the value of “artificial” H (see equation (37) for a

definition of H) introduced by the Galerkin method for a certain Pe. In Figure 5 we plot

the “artificial” H as a function of Pe. We conclude that when we solve problem (47) for

|Pe| < 1 using the standard Galerkin method we are actually solving a Cattaneo-type

transport problem in subcritical flow conditions.

Remark 14 The Cattaneo-type problem that we actually solve when using the Galerkin

formulation to discretize the linear parabolic model is defined by

a
du

dx
− (k − τGa2)

d2u

dx2
= 0; x ∈ (0, L) (58.1)

u(0) = u0 (58.2)

u(L) = uL (58.3)
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Fig. 5 Dimensionless H number as a function of Pe ∈ (−1, 1).

where τG is defined in equation (56). Problem (58) is a well-posed boundary-value prob-

lem for every value of the parameters k and τG. However, it only represents a Cattaneo-

type convection-diffusion problem in subcritical flow. As we said before, equation (58.1)

can be (under the assumption of sufficient regularity) used to describe the steady-state

hyperbolic model, but boundary conditions have to be set in such a way that the one-

dimensional counterpart of (28) is well-posed. Since the one-dimensional counterpart

of (28) is not well-posed subject to boundary conditions (58.2)–(58.3) in supercritical

flow, problem (58) does not represent anymore a Cattaneo-type convection-diffusion

problem in supercritical flow.

4.4 Stability analysis of the hyperbolic model

Let us consider again the partition P that defines the mesh size h. We introduce the

dimensionless number

He =
ah

2(k − τa2)
(59)

which is the counterpart of Pe for the hyperbolic convection-diffusion theory [39,40]. If

we solve (58) by using the standard Galerkin method and linear finite elements (this is

equivalent to second-order centered finite differences for this case), we find the following

difference equations [38]:

(1 − He)uj+1 − 2uj + (1 + He)uj−1 = 0; ∀j = 1, . . . , N − 1 (60)

In the same way as (49), difference equations (60) can be solved exactly and the stability

condition

|He| ≤ 1 (61)
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can be found. Relation (61) illustrates that in the hyperbolic model numerical insta-

bilities do not arise for large values of the fluid velocity a, but for values of |a| close to

the pollutant velocity c. Indeed, the size of the velocities interval that leads to unstable

solutions is

I = h/τ. (62)

We prove the above assertion by finding the a values that make

|He| = 1 (63)

which are given by

a1 = − h

4τ
−

√

(

h

4τ

)2

+ c2 (64.1)

a2 = − h

4τ
+

√

(

h

4τ

)2

+ c2 (64.2)

a3 = −a2 (64.3)

a4 = −a1 (64.4)

It is straightforward that a1 < 0, a1 < −c, a2 > 0, a2 < c. Taking into account all

of this, the size of the velocities interval that makes the numerical solution unstable is

given by

I = a4 − a2 + a3 − a1 = −2(a1 + a2) = h/τ (65)

which concludes the proof.

Remark 15 The size of the interval I decreases as τ increases which suggests that the

numerical solution of the hyperbolic convection-diffusion theory becomes more stable

as τ increases.

Remark 16 All the theoretical results presented in section 4 have been confirmed by

numerical experiments in [41].

5 Finite element formulation of the hyperbolic convection-diffusion theory

The scientific literature on numerical methods for hyperbolic systems is vast [65,36,79,

51,29,83,91]. Our numerical formulation for the hyperbolic convection-diffusion theory

is based on the finite element method [53]. One of the most successful finite element

formulations for hyperbolic problems is the Taylor-Galerkin method that was first

proposed in [28] (see also [30,31,29]). Our numerical formulation is based on the Taylor-

Galerkin method.

5.1 Continuous problem in the weak form

We begin by considering a weak form of the hyperbolic convection-diffusion model. Let

V and W denote the trial solution and weighting functions spaces, respectively. We

assume that U ∈ V implies strong satisfaction of boundary conditions and W ∈ W
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entails homogeneity of the corresponding components of W . Therefore, the variational

formulation is stated as follows: find U ∈ V such that ∀W ∈ V,

BC(W , U ) = 0 (66)

where

BC(W , U ) =

(

W ,
∂U

∂t

)

Ω

− (∇W , F )Ω + (W , F n)Γ − (W , S)Ω (67)

In equation (67), (·, ·)Ω denotes the L2-inner product with respect to the domain

Ω. The intergation by parts of equation of (67), under the assumption of sufficient

regularity, leads to the Euler-Lagrange form of (67)

(

W ,
∂U

∂t

)

Ω

+ (W ,∇ · F )Ω − (W , S)Ω = 0 (68)

which implies the weak satisfaction of equation (28).

5.2 Time integration

For the time integration we replace the time derivative in (67) by its second order

Taylor expansion, namely

∂U

∂t
(·, tn) =

U (·, tn+1) − U (·, tn)

∆t
− ∆t

2

∂2U

∂t2
(·, tn) + θ(∆t2) (69)

where ∆t = tn+1 − tn and θ(∆t2) is an error of the order of ∆t2. Using the notation

∆t∆U (·) = U (·, tn+1)−U (·, tn) and rewritting the second-order time derivative in (69)

in terms of spatial derivatives using the original equation (28), the following variational

equation is found (the details may be found in [41]): find U ∈ V such that ∀W ∈ V

BSD(W , U ) = 0 (70)

with

BSD(W , U ) = (W , ∆U )Ω −
(

W , ∆tB(I +
∆t

2
B)U

)

Ω

−
(

∂W

∂xi
, ∆t(I + ∆tB)AiU − ∆t2

2
AiAj

∂U

∂xj

)

Ω

+

(

W , ∆t(I + ∆tB)AiniU − ∆t2

2
niAiAj

∂U

∂xj

)

Γ

(71)

where the Ai’s are the Jacobian matrices of the flux F , the ni’s are the components

of n, and repeated indices indicate summation. Finally, B is the Jacobian matrix of

the source term S, that is,

B =
∂S

∂U
=









0 0 0 0

0 −1/τ 0 0

0 0 −1/τ 0

0 0 0 −1/τ









. (72)
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Fig. 6 Subcritical Poiseuille flow. Problem setup.

5.3 Space discretization

For the space discretization of (71) we make use of the Galerkin method. We approxi-

mate (70)–(71) by the following variational problem over the finite element spaces: find

U ∈ Vh such that ∀W ∈ Wh

BSD(W h, Uh) = 0. (73)

5.4 Numerical examples

In this section we present some numerical examples to illustrate the main features of

the hyperbolic convection-diffusion theory. For the sake of simplicity we limit ourselves

to two-dimensional domains.

5.4.1 Subcritical Poiseuille flow

This example shows the evolution of a pollutant spillage between two parallel plates.

Our computational domain is Ω = [0, 10] × [0, 2] (see Figure 6). There is no pollutant

in the domain at the initial time. The evolution of the pollutant is driven by a nor-

mal flux prescribed on the bottom boundary as indicated in Figure 6. The prescribed

normal flux takes the dimensionless value q · n = −2 · 10−2. On the rest of the top

and bottom boundaries we prescribe solid wall conditions. On the inflow boundary

we impose vanishing concentration and tangential flux. On the outflow boundary we

impose vanishing normal flux. The fluid velocity is given by a parabolic profile defined

as a(x1, x2) = (x2(2 − x2), 0)T and represented in Figure 6. We select the physical pa-

rameters in such a way that the flow is subcritical everywhere and the maximum value

of the H number is Hmax = 1/
√

2. The computational mesh is comprised of 50 × 10

bilinear elements. The time step size is ∆t = 0.02. In Figure 7 we represent (from top

to bottom) the concentration solutions at dimensionless times t = 0, t = 4.82, t = 9.62,

t = 14.42, t = 19.22 and the steady state solution. We observe that in subcritical flow

the pollutant may propagate downstream and upstream.
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Fig. 7 Subcritical Poiseuille flow. We represent from top to bottom, concentration initial
condition and solutions at dimensionless times t = 4.82, t = 9.62, t = 14.42, t = 19.22 and
steady state.

5.5 Supercritical Poiseuille flow

This example is the supercritical counterpart of the previous one. The computational

domain and the velocity field are the same as in the previous example, but we changed

the physical parameters to make the flow supercritical almost everywhere. The flow is

defined by the maximum H number which in this case takes the value Hmax = 10.

Given that the flow is supercritical, we need to prescribe all variables on the inflow

boundary and none on the outflow boundary. The prescribed normal flux is on the

bottom boundary is q · n = −10−2. The computational mesh is comprised of 70 × 10

bilinear elements. The time step size is ∆t = 0.02.
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Fig. 8 Supercritical Poiseuille flow. We represent from top to bottom, concentration initial
conditions and solutions at dimensionless times t = 3, t = 6, t = 9, t = 12, t = 15 and steady
state.

In Figure 8 we represent (from top to bottom) the concentration solutions at dimen-

sionless times t = 0, t = 3, t = 6, t = 9, t = 12, t = 15 and the steady state solution.

We observe that in supercritical flow the pollutant may not propagate upstream.
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Fig. 9 Simulation of an accidental spillage in the port of A Coruña. Layout of the port.

5.6 Practical case in environmental engineering

In this section we simulate the evolution of an accidental spillage in the port of A

Coruña (Spain). The domain of the problem comprises the whole area of the port. We

represent the layout of the port in Figure 9. To bound the domain of the problem we

define an open-sea boundary from the end of Barrie’s dike to the extreme of Oza’s

dock. The resulting computational domain has been depicted in Figure 10 (left). As

shown in this figure some elements of the real domain have been removed in order to

simplify mesh generation. However, the omission of these elements is not important

for the solution of the problem [34]. For instance, the oil tanker pier allows both water

and pollutant to flow through it, so it does not modify the solution.

Three kinds of boundaries are differentiated in Figure 10 (left): the solid wall bound-

ary has been plotted as a green line; the boundary where the spillage takes place is

plotted as a red line; the open-sea boundary is been plotted as a blue line.

The objective of this example is to show that the hyperbolic convection-diffusion

theory has potential in representing mass transfer phenomena in engineering applica-

tions. For this reason we have not considered necessary to perform an accurate esti-

mation of the parameters which would entail significant experimental work. A typical

value for engineering calculations has been selected for the diffusivity k [52]. The esti-

mation of the relaxation time τ is not so trivial since only the order of magnitude of the

parameter can be estimated without making experiments. However, what really deter-

mines the solution is the ration between the fluid velocity a and the pollutant velocity
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Fig. 10 Simulation of an accidental spillage in the port of A Coruña. Velocity field and types
of boundaries (left) and computational mesh of the problem (right). On the left hand side
the solid wall boundary is been plotted as a green line; the boundary where the spillage takes
place has been plotted as a red line; the open sea boundary is plotted as a blue line. The
finite element mesh consists of 2023 bilinear elements and it was generated by using the code
GEN4U [75].

c =
√

k/τ . This quotient defines the dimensionless number introduced in equation

(37).

In order to reduce the computations, the velocity field has not been calculated,

but it was generated with two constraints: a) it verifies the continuity equation for

incompressible flow and b) it satisfies standard boundary conditions for a viscous flow.

We plot the velocity field in Figure 10 (left). On the right hand side of Figure 10 we

have depicted the computational mesh.

On the solid wall boundary we impose q · n = 0. On the boundary where the

spillage takes place we set the condition q · n = −10−2. On the open-sea boundary

we impose q · n = cu where c =
√

k/τ is the pollutant wave velocity. The flow is

given by H numbers (see equation (37)) verifying H ≤ Hmax ≈ 0.3237 what makes the

flow subcritical everywhere. The computation was performed taking a maximum CFL

number Cmax ≈ 0.5531.

In Figure 11 we show the initial concentration and concentration solutions at di-

mensionless times t = 30, t = 60 and t = 90. In Figure 12 we plot concentration

solutions at dimensionless times t = 120, t = 150, t = 300 and t = 1000.

Remark 17 This computation was repeated on finer meshes in space and time. Also,

the calculations were repeated using a Runge-Kutta discontinuous Galerkin method

[43]. We did not find significant differences in any case.

6 Discontinuous Galerkin formulation of the hyperbolic

convection-diffusion theory

The numerical formulation presented in the previous section and the numerical exam-

ples previously analyzed illustrate the main characteristics of the hyperbolic convection-

diffusion theory. However, the Galerkin formulation employed for the spatial discretiza-
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Fig. 11 Simulation of an accidental spillage in the port of A Coruña. We show (left to right and
top to bottom) the concentration initial condition and concentration solutions at dimensionless
times t = 30, t = 60 and t = 90.

tion does not exhibit good stability properties when applied to hyperbolic partial-

differential equations. We feel that the discontinuos Galerkin (DG) method represents

a better choice for our hyperbolic convection-diffusion theory. For this reason, we in-

troduce a DG formulation.

The DG method is usually attributed to Reed and Hill [72]. Since its introduction

in the framework of transport of neutrons in 1973, DG methods have evolved in a

manner that made them suitable for computational fluid dynamics [18]. One of the

most significant achievements using this methodology is due to Cockburn and Shu who

introduced the Runge-Kutta Discontinuous Galerkin Method [19–22].

Whereas the continuous finite element methods were initially developed for ellip-

tic equations, the DG method was primarily applied to hyperbolic problems. However,

there has been extensive research lately on DG methods for parabolic and elliptic equa-

tions [4,8–10,13,14,23]. Probably, the first successful study is due to Bassi and Rebay

[8] who treated the viscous term in the Navier-Stokes equations within the DG frame-

work. This method was followed by a paper by Cockburn and Shu [23] introducing the

Local Discontinuous Galerkin method. To use any of these two methods it is necessary

to split the second order Navier-Stokes (or convection-diffusion) equations in a sys-
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Fig. 12 Simulation of an accidental spillage in the port of A Coruña. We show (left to right
and top to bottom) concentration solutions at dimensionless times t = 120, t = 150, t = 300
and t = 1000.

tem of first order equations. Then, a DG-type discretization is used for both resulting

equations. However, the application of the DG method to our hyperbolic convection-

diffusion theory is natural due to the wave-like structure of its solution. We define our

DG method in the next section.

6.1 Space discretization

The system to be solved is (28) with adequate initial and boundary conditions. Let E

be the closure of an open subset of Ω with smooth boundary. We obtain the continuos

problem in the weak form by multiplying by test functions and integration by parts:
(

W ,
∂U

∂t

)

E

− (∇W , F )E − (W , S)E + (W , F n)∂E = 0 (74)

To define the DG method, let us denote by Ωh a partition of the computational domain

Ω into a mesh of elements E. We call Pm(E) the space of polynomials of degree at

most m. We define our discrete space as,

Wh = {W h ∈ (L2(E))3 : W
h|E ∈ Pm(E), ∀E ∈ Ωh} (75)
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Note that the discrete space does not enforce C0-continuity across the element bound-

aries. The variational problem over the finite-dimensional spaces is stated as: find

Uh ∈ Wh such that for all E ∈ Ωh.

B(W h, Uh) = 0 ∀W
h ∈ Wh (76)

where

B(W h, Uh) =

(

W
h,

∂Uh

∂t

)

E

−
(

∇W
h, F (Uh)

)

E
−

(

W
h, S(Uh)

)

E
+

∑

e⊂∂E

(

W
h, He(Uh)

)

∂E

(77)

In equation (77), He(Uh) is an upwind numerical flux. To derive our numerical flux

we follow the ideas of van Leer [80] and Hänel [49] who derived a numerical flux for

the Euler equations (for an introduction to the concept of numerical flux the reader is

referred to the books by Leveque [65] or Toro [79]). Let us suppose that e is the edge

shared by elements E1 and E2 with E1 ≡ E. Then, the numerical flux may be written

as

H
e(Uh) = A

e
+U

e
1 + A

e
−U

e
2 (78)

where U e
i is the solution on the edge e as seen by the element Ei, i = 1, 2. Matrices

Ae
+ y Ae

− are defined by

A
e
±C

e
n = C

e
nΛ

e
n± (79)

where

Λ
e
n± =











a·n±|a·n|
2 0 0 0

0
a·n±|a·n|

2 0 0

0 0
a·n−c±|a·n−c|

2 0

0 0 0
a·n+c±|a·n+c|

2











(80)

and Ce
n is the matrix defined in (35).

6.2 Time discretization

Assembling together all the elemental contributions, the system of ordinary differential

equations that governs the evolution of the discrete solution can be written as

M
dU

dt
= R(U ) (81)

where M denotes the mass matrix, U is the global vector of degrees of freedom and

R(U ) is the residual vector. Due to the block diagonal structure of matrix M , the time

integration of this system can be effectively accomplished using a explicit method for

initial value problems. In this work we use the third-order TVD-Runge-Kutta method

proposed by Shu and Osher [77]. Given the solution at the n-th step U
n, the solution

at the next time level U
n+1 is computed in three steps as follows:

U
(1) = U

n + ∆tL(Un) (82.1)

U
(2) =

3

4
U

n +
1

4
U

(1) +
1

4
∆tL(U (1)) (82.2)

U
n+1 =

1

3
U

n +
2

3
U

(2) +
2

3
∆tL(U (2)) (82.3)
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Elements ||Error||∞ Order || · ||∞ ||Error||2 Order || · ||2

5 7.0149·10−3 ——— 2.9403·10−3 ———
10 1.9811·10−3 1.83 7.9018·10−4 1.90
20 5.2591·10−4 1.92 2.1538·10−4 1.88
40 1.3885·10−4 1.93 5.6566·10−5 1.93
80 3.5664·10−5 1.96 1.4493·10−5 1.97

Table 2 ||·||∞ and ||·||2 concentration errors and numerical order of accuracy. Linear elements.
k = 1, τ = 1, a = 0.5.

Elements ||Error||∞ Order || · ||∞ ||Error||2 Order || · ||2

5 1.5607·10−2 ——— 9.1734·10−3 ———
10 3.8745·10−3 2.01 2.3406·10−3 1.97
20 1.0109·10−3 1.94 5.9517·10−4 1.98
40 2.6091·10−4 1.96 1.5010·10−4 1.99
80 6.6288·10−5 1.98 3.7693·10−5 2.00

Table 3 ||·||∞ and ||·||2 pollutant flux errors and numerical order of accuracy. Linear elements.
k = 1, τ = 1, a = 0.5.

where L(U ) = M−1R(U ). To compute L(U ) at each time step we do not need to cal-

culate M−1. Instead of that, we compute the Cholesky factorization of the mass matrix

at the first time step and we perform the necessary back and forward substitutions at

each time iteration.

6.3 Numerical examples

In this section we present some numerical examples to test out our DG formulation.

We focus on the accuracy of the formulation for smooth solutions and its robustness

for convection-dominated flows.

6.3.1 One-dimensional problems

This example shows that our DG formulation achieves optimal rates of convergence for

concentration and flux when the solution is smooth. The model problem is the hyper-

bolic convection-diffusion equation defined on the domain Ω = [0, 1]. The parameters

are k = 1, τ = 1 and a = 0.5 which leads to subcritical flow. We consider the boundary

conditions u(0) = 0, u(1) = 1 which are a legitimate choice in subcritical flow. We

will use the presented DG method to compute the steady state solution. Then, we will

compare the numerical solution with the exact solution of the steady problem to obtain

the error. The time step is taken small enough so that the error can be assumed to

arise from the spatial discretization. Within each element we interpolate the solution

using polynomials of degree m. We present the results for m = 1 and m = 2. The

optimal order of accuracy (m+1) is achieved in both, concentration and pollutant flux

as shown in tables 2–5.

In some cases the optimal order of accuracy is not exactly achieved, but we believe

that it is due to the roundoff errors and the tolerance in considering the solution steady.
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Elements ||Error||∞ Order || · ||∞ ||Error||2 Order || · ||2

5 1.2313·10−4 ——— 6.5825·10−5 ———
10 1.5790·10−5 2.96 8.6646·10−6 2.93
20 2.0916·10−6 2.92 1.1112·10−6 2.96
40 2.6937·10−7 2.96 1.4100·10−7 2.98
80 3.4207·10−8 2.98 1.7967·10−8 2.98

Table 4 || · ||∞ and || · ||2 concentration errors and numerical order of accuracy. Quadratic
elements. k = 1, τ = 1, a = 0.5.

Elements ||Error||∞ Order || · ||∞ ||Error||2 Order || · ||2

5 1.4723·10−4 ——— 5.0684·10−5 ———
10 1.8043·10−5 3.03 5.7567·10−6 3.14
20 2.3157·10−6 2.97 6.3246·10−7 3.19
40 2.9365·10−7 2.98 7.2585·10−8 3.13
80 3.7256·10−8 2.98 8.5612·10−9 3.08

Table 5 || · ||∞ and || · ||2 pollutant flux errors and numerical order of accuracy. Quadratic
elements. k = 1, τ = 1, a = 0.5.

Fig. 13 Advection skew to the mesh. Problem setup. k = 10−7, τ = 1, a = (cos α, sin α).

6.3.2 Advection skew to the mesh

The problem setup is described in Figure 13. The parameters are given by k = 10−7,

τ = 1, a = (cos(α), sin(α)). The computational domain is Ω = [0, 1]×[0, 1]. Within this

domain we define a computational mesh of 20 × 20 square biquadratic elements. The

flow is supercritical everywhere. Therefore, we must prescribe all the unknowns on the

inflow boundary while no boundary conditions must be imposed on the outflow border.

On the inflow boundary we enforce q = 0 and the discontinuous concentration profile

depicted in Figure 13. We plot the steady state solutions for α = arctan(1) = 45 ◦

and α = arctan(2) ≈ 63.43 ◦ in Figure 14. The internal layer is captured within two

elements. We remark that using our theory for convection-diffusion there is no boundary

layer at the outlet when convection dominates diffusion.
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Fig. 14 Advection skew to the mesh. Steady state solution. k = 10−7, τ = 1, a =
(cos α, sin α), α = arctan(1) (left) and α = arctan(2) (right).

Fig. 15 Rotating flow. Problem setup. k = 10−7, τ = 1, a = (−x2, x1).

6.3.3 Rotating flow

This is an accuracy test. Classical upwind procedures exhibit excessive crosswind dif-

fusion on this problem (see for instance [11]). The problem setup is described in Figure

15. The flow is circular about the center of the square domain Ω = [−1, 1] × [−1, 1]

with a velocity field a = (−x2, x1). The parameters are given by k = 10−7 and τ = 1

which leads to supercritical flow everywhere except in a small circle centered in the ori-

gin of coordinates. We impose homogeneous boundary conditions (concentration and

pollutant flux) on the inflow boundary whereas no boundary conditions are imposed

on the outflow border. In addition, we enforce the condition u(x1, 0) = sin(πx1) on

the slit x2 = 0, x1 ∈ [0, 1]. We use a uniform mesh comprised of 30 × 30 biquadratic

elements. We plot the steady state solution in Figure 16. The solution is very accurate

and there is no appearance of crosswind diffusion.
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Fig. 16 Rotating flow. Steady state solutions. k = 10−7, τ = 1, a = (−x2, x1).

7 Conclusions

Linear parabolic diffusion theories based on Fourier’s or Fick’s laws predict that dis-

turbances can propagate at infinite speed. Although in some applications, the infinite

speed paradox may be ignored, there are many other applications in which a theory

that predicts propagation at finite speed is mandatory. As a consequence, several al-

ternatives to the linear parabolic diffusion theory, with the objective of avoiding the

infinite speed paradox, have been proposed over the years. This paper is devoted to

the mathematical, physical and numerical analysis of a hyperbolic convection-diffusion

theory. From our analysis and numerical results we conclude that our theory may have

potential as a predictive tool in engineering analysis.

From the numerical point of view, we present two finite element formulations. The

numerical examples illustrate the main characteristics of our model and the effective-

ness and robustness of the numerical formulation. We also emphasize the differences

of the parabolic and hyperbolic theories from the numerical point of view.
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