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ABSTRACT: We obtain a hypergraph generalisation of the graph blow-up lemma proved by Komlós,
Sarközy and Szemerédi, showing that hypergraphs with sufficient regularity and no atypical vertices
behave as if they were complete for the purpose of embedding bounded degree hypergraphs. © 2011
Wiley Periodicals, Inc. Random Struct. Alg., 39, 275–376, 2011
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1. INTRODUCTION

Szemerédi’s regularity lemma [44] has impressive applications in many areas of modern
graph theory, including extremal graph theory, Ramsey theory and property testing. Roughly
speaking, it says that any graph can be approximated by an average with respect to a partition
of its vertex set into a bounded number of classes, the number of classes depending only on
the accuracy of the desired approximation, and not on the number of vertices in the graph. A
key property of this approximation is that it leads to a ‘counting lemma’, allowing an accurate
prediction of the number of copies of any small fixed graph spanned by some specified
classes of the partition. We refer the reader to [28] for a survey of the regularity lemma and
its applications. An analogous theory for hypergraphs has only been developed very recently,
with independent and rather different approaches given by Rödl et al. (e.g. [37,41,43]) and
Gowers [13], subsequently reformulated and developed in [1,7,16,38,45,46]. In a very short
space of time the power of this hypergraph theory has already been amply demonstrated, e.g.
by a multidimensional generalisation of Szemerédi’s theorem on arithmetic progressions
[13] and a linear bound for the Ramsey number of hypergraphs with bounded maximum
degree [4, 35].

The blow-up lemma is a powerful tool developed by Komlós, Sarközy and Szemerédi
[24] for using the regularity lemma to embed spanning subgraphs of bounded degree. An
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informal statement is that graphs with sufficient regularity and no atypical vertices behave
as if they were complete for the purpose of embedding bounded degree graphs. In [25, 26]
they used it to prove Seymour’s conjecture on the minimum degree needed to embed the kth
power of a Hamilton cycle, and the Alon-Yuster conjecture on the minimum degree needed
for a graph to have an H-factor, for some fixed graph H (a question finally resolved in
[32]). There are many other applications to embedding spanning subgraphs, see the survey
[33]. There are also several results on embedding spanning subhypergraphs, such as perfect
matchings or (various definitions of) Hamilton cycles, see the survey [39]. For the most part,
the proofs of the known hypergraph results have not needed any analogue of the blow-up
lemma. An exception is an embedding lemma for some special spanning subhypergraphs
proved in [30] for loose Hamilton cycles in 3-graphs, although the ‘absorbing’ method
of Rödl, Ruciński and Szemerédi was subsequently shown to be a simpler method for
Hamilton cycles [15, 21, 40]. Another partial hypergraph blow-up lemma is to embedding
bounded degree subgraphs of linear size, obtained independently in [4] and in [35] (for
3-graphs). The application to linear Ramsey numbers of bounded degree hypergraphs was
also subsequently proved by simpler means in [3]. However, one would not necessarily
expect that embedding lemmas can always be avoided by using alternative methods, so a
hypergraph blowup lemma would be a valuable tool.

In this paper we prove such a result that gives conditions for embedding any spanning
hypergraph of bounded degree. We will not attempt a formal statement of our result in
this introduction, as it will take us a considerable amount of work to set up the neces-
sary notation and terminology, particularly for the key notion of super-regularity, which
has some additional subtleties that do not appear in the graph case. The proof will be by
means of a randomised greedy embedding algorithm, which is very similar that used in
[24]. However the analysis is more involved, due both to the additional complications of
hypergraph regularity theory, and the need to work with an approximating hypergraph rather
than the true hypergraph (see Section 3 for further explanation). There are many potential
applications of our theorem to hypergraph generalisations of results for graphs that were
obtained with the graph blow-up lemma. We will illustrate the method by proving a hyper-
graph generalisation of a result of Kühn and Osthus [31, Theorem 2] on packing bipartite
graphs.

The rest of this paper is organised as follows. In the next section we prove the blow-up
lemma of Komlós, Sarközy and Szemerédi [24]. This is mostly for expository purposes,
although there are some small differences in our proof, and it will be useful to refer back
to the basic argument when discussing additional complications that arise for hypergraphs.
We will prove our main result at first in the special case of 3-graphs (with some additional
simplifications); this case is already sufficiently complex to illustrate the main ideas of
our proofs. In section 3 we discuss hypergraph regularity theory (following the approach
of Rödl et al.) and motivate and define super-regularity for 3-graphs. We prove the 3-
graph blow-up lemma in section 4. In section 5 we develop some additional theory that is
needed for applications of the 3-graph blow-up lemma, based on the Regular Approximation
Lemma of Rödl and Schacht [41]. We also give a ‘black box’ reformulation of the blow-
up lemma that will be more easily accessible for future applications. We illustrate this by
generalising a result in [31] to packing tripartite 3-graphs. The final section concerns the
general hypergraph blow-up lemma. As well as generalising from 3-graphs to k-graphs,
we allow additional generalisations that will be needed in future applications, including
restricted positions and complex-indexed complexes (defined in that section). The proof is
mostly similar to that for 3-graphs, so we only give full details for those aspects that are
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different. We conclude with some remarks on potential developments and applications of
the blow-up lemma.

Notation. We will introduce a substantial amount of terminology and notation throughout
the paper, which is summarised in the index. Before starting our discussion we establish
the following basic notation. We write [n] = {1, . . . , n}. If X is a set and k is a number
then

(X
k

) = {Y ⊆ X : |Y | = k}, ( X
≤k

) = ∪i≤k

(X
i

)
and

( X
<k

) = ∪i<k

(X
i

)
. a ± b denotes an

unspecified real number in the interval [a − b, a + b]. It is convenient to regard a finite
set X as being equipped with the uniform probability measure P({x}) = 1/|X|, so that we
can express the average of a function f defined on X as Ex∈Xf (x). A k-graph H consists
of a vertex set V(H) and an edge set E(H), each edge being some k-tuple of vertices.
We often identify H with E(H), so that |H| is the number of edges in H. A k-complex H
consists of a vertex set V(H) and an edge set E(H), where each edge is a subset of the
vertex set of size at most k, that is a simplicial complex, i.e. if S ∈ E(H) and T ⊂ S then
T ∈ E(H). For S ⊂ V(H) the neighbourhood (k − |S|)-graph or (k − |S|)-complex is
H(S) = {A ⊂ V(H) \ S : A ∪ S ∈ E(H)}, and |H(S)| is the degree of S. We also write
HS = {A ⊆ V(H) : S ⊆ A ∈ E(H)}. A walk in H is a sequence of vertices for which each
consecutive pair are contained in some edge of H, and the distance between two vertices
is the length of the shortest walk connecting them. The vertex neighbourhood VNH(x) is
the set of vertices at distance exactly 1 from x (so x itself is not included). We will often
have to consider hierarchies involving many real parameters, and it will be useful to use the
notation 0 < α � β to mean that there is an increasing function f (x) so that the following
argument is valid for 0 < α < f (β). The parameter n will always be sufficiently large
compared to all other parameters, and we use the phrase with high probability to refer to an
event that has probability 1 − on(1), i.e. the probability tends to 1 as n tends to infinity.

2. THE GRAPH BLOW-UP LEMMA

This section is mostly expository. We introduce the basic notions of regularity and super-
regularity for graphs and prove the blow-up lemma of Komlós, Sarközy and Szemerédi.
This will serve as a warm-up to the hypergraph blow-up lemma, as our proof even in the
graph case differs slightly from the original in a few details (although the general approach
is the same). It will also be helpful to establish our notation in this simplified setting, and to
refer back to the basic argument when explaining why certain extra complications arise for
hypergraphs. To streamline the proof we focus on a slightly simplified setting, which still
contains all the ideas needed for the general case. We hope that the general reader will find
this section to be an accessible account of a proof that has a reputation for difficulty!

We start with a brief summary of the key notions in graph regularity, referring the
reader to [28] for more details. Consider an r-partite graph G with vertex set V partitioned
as V = V1 ∪ · · · ∪ Vr . Let Gij be the bipartite subgraph of G with parts Vi and Vj, for

1 ≤ i �= j ≤ r. The density of Gij is d(Gij) = |Gij |
|Vi ||Vj | . Given ε > 0, we say that Gij is

ε-regular if for all subsets V ′
i ⊆ Vi and V ′

j ⊆ Vj with |V ′
i | > ε|Vi| and |V ′

j | > ε|Vj|, writing
G′

ij for the bipartite subgraph of G with parts V ′
i and V ′

j , we have |d(G′
ij) − d(Gij)| < ε.

Then we say that G is ε-regular if each Gij is ε-regular. Informally, we may say that each Gij

behaves like a random bipartite graph, up to accuracy ε. This statement is justified by the
counting lemma, which allows one to estimate the number of copies of any fixed graph F,
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up to accuracy O(ε), using a suitable product of densities. For now we just give an example:
if we write T123(G) for the set of triangles formed by the graphs G12, G13, G23, then

d(T123(G)) := |T123(G)|
|V1||V2||V3| = d(G12)d(G13)d(G23) ± 8ε. (1)

Remarkably, this powerful property can be applied in any graph G, via Szemerédi’s Regu-
larity Lemma, which can be informally stated as saying that we can decompose the vertex
set of any graph on n vertices into m(ε) parts, such that all but at most εn2 edges belong to
bipartite subgraphs that are ε-regular.

The blow-up lemma arises from the desire to embed spanning graphs in G, meaning
that they use every vertex in V . Suppose that |Vi| = n for 1 ≤ i ≤ r. The argument used
to prove the counting lemma can be generalised to embed any bounded degree graph H
provided that all components of H have size o(n), and �(n) vertices of G are allowed to
remain uncovered. However, one cannot guarantee an embedding of a spanning graph: the
definition of ε-regularity does not prevent the existence of isolated vertices, so we may not
even be able to find a perfect matching. This observation naturally leads us to the stronger
notion of super-regularity. We say that Gij is (ε, dij)-super-regular if it is ε-regular and every
vertex has degree at least (dij − ε)n. It is well-known that one can delete a small number
of vertices from a regular pair to make it super-regular (see Lemma 5.3). We say that G is
(ε, d)-super-regular if each Gij is either empty or (ε, dij)-super-regular for some dij ≥ d.
Now we can state the graph blow-up lemma.

Theorem 2.1 (Graph blow-up lemma). Suppose H is an r-partite graph on X = X1 ∪
· · · ∪ Xr and G is an r-partite graph on V = V1 ∪ · · · ∪ Vr, where |Vi| = |Xi| = n for
1 ≤ i ≤ r and Hij is only non-empty when Gij is non-empty. If H has maximum degree at
most D and G is (ε, d)-super-regular, where 0 � 1/n � ε � d, 1/r, 1/D, then G contains
a copy of H, in which for each 1 ≤ i ≤ r the vertices of Vi correspond to the vertices of Xi.

Informally speaking, Theorem 2.1 embeds any bounded degree graph into any super-
regular graph. Note that arbitrary part sizes are allowed in [24], but for simplicity we start
by considering the case when they are all equal. The proof is via a random greedy algorithm
for embedding H in G, which considers the vertices of X in some order and embeds them
to V one at a time. We start by giving an informal description of the algorithm.

Initialisation. List the vertices of H in a certain order, as follows. Some vertices at mutual
distance at least 4 are identified as buffer vertices and put at the end of the list. The
neighbours of the buffer vertices are put at the start of the list. (The rationale for this
order is that we hope to embed these neighbours in a nice manner while there is still
plenty of room in the early stages of the algorithm, and then the buffer vertices still
have many suitable places at the conclusion.) During the algorithm a queue of priority
vertices may arise: it is initially empty.

Iteration. Choose the next vertex x to be embedded, either from the queue if this is non-
empty, or otherwise from the list. The image φ(x) of x is chosen randomly in V(G)

among those free spots that do not unduly restrict the free spots for those unembedded
neighbours of x. If some unembedded vertex has too few free spots it is added to
the queue. Stop when all non-buffer vertices have been embedded. If the number of
vertices that have ever been in the queue becomes too large before this point then abort
the algorithm as a failure (this is an unlikely event).
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Conclusion. Choose a system of distinct representatives among the free slots for the
unembedded vertices to complete the embedding. (This will be possible with high
probability.)

Now we will formally describe the random greedy algorithm to construct an embedding
φ : V(H) → V(G) such that φ(e) ∈ E(G) for every e ∈ E(H). First we introduce more
parameters with the hierarchy

0 � 1/n � ε � ε ′ � ε∗ � p0 � γ � δQ � p � du � δ′
Q � δB � d, 1/r, 1/D.

To assist the reader we list here the role of each parameter for easy reference. Parameters
ε, ε ′ and ε∗ are used to measure graph regularity. Parameter γ plays the role of κ in [24]:
it is used to distinguish various cases at the conclusion of the algorithm when selecting the
system of distinct representatives. Parameter du plays the role of γ in [24]: it is a universal
lower bound on the proportion of vertices in a class of G free to embed any given vertex of
H . The queue threshold parameter δQ corresponds to δ′′′ in [24]: the maximum proportional
size for the queue before we will abort with failure. The buffer parameter δB corresponds to
δ′ in [24]: the proportional size of the buffer. We also introduce two probability parameters
that are not explicitly named in [24], although they are key to the proof. Parameter p0 appears
in Lemma 2.6 in the upper bound for the probability that any given set A will be significantly
under-represented in the free images for a vertex. Parameter p appears in Lemma 2.5 as
a lower bound for the probability that a given unused vertex will be free as an image for
a given buffer vertex at the conclusion of the algorithm. Note that the queue admission
parameter δ′

Q is similar to but slightly different from the corresponding parameter δ′′ in
[24]: for any vertex z and time t we will compare Fz(t) to an earlier free set Fz(tz), where
tz is the most recent time at which we embedded a neighbour of z.

Initialisation and notation. We choose a buffer set B ⊂ X of vertices at mutual distance at
least 4 in H so that |B ∩ Xi| = δBn for 1 ≤ i ≤ r. The maximum degree property of H
implies that we can construct B simply by selecting vertices one-by-one greedily. For
any given vertex in H there are fewer than D4 vertices within distance 4, so at any point
in the construction of B we have excluded at most D4rδBn vertices from any given Xi.
Thus we can construct B if we choose δB < 1/(rD4).

Let N = ∪x∈BNH(x) be the vertices with a neighbour in the buffer. Since H has
maximum degree D we have |N ∩ Xi| ≤ DrδBn <

√
δBn for 1 ≤ i ≤ r, if we choose

δB < 1/(Dr)2.
We use t to denote time during the algorithm, by which we mean the number of

vertices of H that have been embedded. At time t we denote the queue by q(t) and write
Q(t) = ∪u≤t q(u) for the vertices that have ever been in the queue by time t. Initially
we set q(0) = Q(0) = ∅.

We order the vertices in a list L = L(0) that starts with N and ends with B. Within
N , we arrange that NH(x) is consecutive for each x ∈ B. This is possible by the
mutual distance property in B, which implies that the neighbourhoods NH(x), x ∈ B
are mutually disjoint. We denote the vertex of H selected for embedding at time t by
s(t). This will be the first vertex of L(t − 1), unless the queue is non-empty, when this
takes priority.

We write Fx(t) for the vertices that are free to embed a given vertex x of H. Initially
we set Fx(0) = Vx, where we write Vx for that part Vi of G corresponding to the part
Xi of H that contains x. We also write Xi(t) = Xi \ {s(u) : u ≤ t} for the unembedded
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vertices of Xi and Vi(t) = Vi \ {φ(s(u)) : u ≤ t} for the available positions in Vi. We
let X(t) = ∪r

i=1Xi(t) and V(t) = ∪r
i=1Vi(t). Initially we set Xi(0) = Xi and Vi(0) = Vi.

Iteration. At time t, while there are still some unembedded non-buffer vertices, we select
a vertex to embed x = s(t) according to the following selection rule. If the queue q(t)
is non-empty then we let x be any member of the queue; otherwise we let x be the first
vertex of the list L(t − 1). (A First In First Out rule for the queue is used in [24], but
this is not essential to the proof.) We choose the image φ(x) of x uniformly at random
among all elements y ∈ Fx(t − 1) that are ‘good’, a property that can be informally
stated as saying that if we set φ(x) = y then the free sets at time t for the unembedded
neighbours of x will have roughly their ‘expected’ size.

To define this formally, we first need to describe the update rule for the free sets when
we embed x to some vertex y. First we set Fx(t) = {y}. We will have Fx(t′) = {y} at all
subsequent times t′ ≥ t. Then for any unembedded z that is not a neighbour of x we set
Fz(t) = Fz(t − 1) \ {y}. Thus the size of Fz(t) decreases by 1 if z belongs to the same
part of X as x, but otherwise is unchanged. Finally, for any unembedded z ∈ NH(x) we
set Fz(t) = Fz(t − 1) ∩ NG(y). Now we say that y ∈ Fx(t − 1) belongs to the good set
OKx(t−1) if for every unembedded z ∈ NH(x) we have |Fz(t)| = (1±2ε ′)dxz|Fz(t−1)|.
Here dxz denotes that density d(Gij) for which x ∈ Vi and z ∈ Vj.

Having chosen the image φ(x) of x as a random good element y, we conclude the
iteration by updating the list L(t − 1) and the queue q(t − 1). First we remove x from
whichever of these sets it was taken. Then we add to the queue any unembedded vertex z
for which Fz(t) has become ‘too small’. To make this precise, suppose z ∈ L(t−1)\{x},
and let tz be the most recent time at which we embedded a vertex in NH(z), or 0 if there is
no such time. (Note that if z ∈ NH(x) then tz = t.) We add z to q(t) if |Fz(t)| < δ′

Q|Fz(tz)|.
This defines L(t) and q(t).

Repeat this iteration until the only unembedded vertices are buffer vertices, but abort
with failure if at any time we have |Q(t)∩Xi| > δQ|Xi| for some 1 ≤ i ≤ r. Let T denote
the time at which the iterative phase terminates (whether with success or failure).

Conclusion. When all non-buffer vertices have been embedded, we choose a system of
distinct representatives among the free slots Fx(T) for the unembedded vertices x ∈
X(T) to complete the embedding, ending with success if this is possible, otherwise
aborting with failure.

Now we analyse the algorithm described above and show that it is successful with high
probability. We start by recording two standard facts concerning graph regularity. The first
fact states that most vertices in a regular pair have ‘typical’ degree, and the second that
regularity is preserved by restriction to induced subgraphs. We maintain our notation that
G is an r-partite graph on V = V1 ∪ · · · ∪ Vr . We fix any pair (i, j), write Gij for the bipartite
subgraph spanned by Vi and Vj and denote its density by dij. We give the short proofs of
these facts here, both for completeness and as preparation for similar hypergraph arguments
later.

Lemma 2.2 (Typical degrees). Suppose Gij is ε-regular. Then all but at most 2ε|Vi|
vertices in Vi have degree (dij ± ε)|Vj| in Vj.

Proof. We claim that there is no set X ⊆ Vi of size |X| > ε|Vi| such that every x ∈ X has
degree less than (dij − ε)|Vj| in Vj. For the pair (X, Vj) would then induce a subgraph of
density less than dij − ε, contradicting the definition of ε-regularity. Similarly, there is no
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set X ⊆ Vi of size |X| > ε|Vi| such that every x ∈ X has degree greater than (dij + ε)|Vj|
in Vj.

Lemma 2.3 (Regular restriction). Suppose Gij is ε-regular, and we have sets V ′
i ⊆ Vi

and V ′
j ⊆ Vj with |V ′

i | ≥ √
ε|Vi| and |V ′

j | ≥ √
ε|Vj|. Then the bipartite subgraph G′

ij of Gij

induced by V ′
i and V ′

j is
√

ε-regular of density d ′
ij = dij ± ε.

Proof. Since Gij is ε-regular we have d ′
ij = dij ± ε. Now consider any sets V ′′

i ⊆ V ′
i and

V ′′
j ⊆ V ′

j with |V ′′
i | ≥ √

ε|V ′
i | and |V ′′

j | ≥ √
ε|V ′

j |. Then |V ′′
i | ≥ ε|Vi| and |V ′′

j | ≥ ε|Vj|, so
V ′′

i and V ′′
j induce a bipartite subgraph of Gij with density dij ± ε ⊂ d ′

ij ±
√

ε. Therefore G′
ij

is
√

ε-regular.

Our next lemma shows that the definition of good vertices for the algorithm is sensible,
in that most free vertices are good. Before giving the lemma, we observe that the number of
free vertices in any given class does not become too small at any point during the algorithm.
We can quantify this as |Vi(t)| ≥ |B ∩ Vi| − |Q(t) ∩ Vi| ≥ (δB − δQ)n ≥ δBn/2, for any
1 ≤ i ≤ r and time t. To see this, note that we stop the iterative procedure when the only
unembedded vertices are buffer vertices, and during the procedure a buffer vertex is only
embedded if it joins the queue.

Lemma 2.4 (Good vertices). Suppose we embed a vertex x = s(t) of H at time t.
Then |OKx(t − 1)| ≥ (1 − ε∗)|Fx(t − 1)|, and for every unembedded vertex z we have

|Fz(t)| ≥ dun.

Proof. We argue by induction on t. At time t = 0 the first statement is vacuous, as we
do not embed any vertex at time 0, and the second statement follows from the fact that
Fz(0) = Vz has size n for all z. Now suppose t ≥ 1. By induction we have |Fz(t − 1)| ≥ dun
for every unembedded vertex z. Then by Lemma 2.3, for any unembedded z ∈ NH(x), the
bipartite subgraph of G induced by Fx(t −1) and Fz(t −1) is ε ′-regular of density (1±ε)dxz.
Applying Lemma 2.2, we see that there are at most 2ε ′|Fx(t − 1)| vertices y ∈ Fx(t − 1)

that do not satisfy |NG(y) ∩ Fz(t − 1)| = (1 ± 2ε ′)dxz|Fz(t − 1)|. Summing over at most D
neighbours of x and applying the definition of good vertices in the algorithm we obtain the
first statement that |OKx(t − 1)| ≥ (1 − 2Dε ′)|Fx(t − 1)| ≥ (1 − ε∗)|Fx(t − 1)|.

Next we prove the second statement. Consider any unembedded vertex z. Let tz be the
most recent time at which we embedded a neighbour of z, or 0 if there is no such time. If
tz > 0 then we embedded some neighbour w = s(tz) of z at time tz. Since we chose the image
φ(w) of w to be a good vertex, by definition we have |Fz(tz)| = (1 ± 2ε ′)dwz|Fz(tz − 1)| >
1
2 d|Fz(tz − 1)|. If z is not in the queue then the rule for updating the queue in the algorithm
gives |Fz(t)| ≥ δ′

Q|Fz(tz)|. On the other hand, suppose z is in the queue, and that it joined
the queue at some time t′ < t. Since z did not join the queue at time t′ − 1 we have
|Fz(t′ −1)| ≥ δ′

Q|Fz(tz)|. Also, between times t′ and t we only embed vertices that are in the
queue: the queue cannot become empty during this time, as then we would have embedded
z before x. During this time we embed at most δQn vertices in Vz, as we abort the algorithm
if the number of vertices in Xz that have ever been queued exceeds this.

Thus we have catalogued all possible ways in which the number of vertices free for
z can decrease. It may decrease by a factor no worse than d/2 when a neighbour of z is
embedded, and by a factor no worse than δ′

Q before the next neighbour of z is embedded,
unless z joins the queue. Also, if z joins the queue we may subtract at most δQn from
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the number of vertices free for z. Define i to be the number of neighbours of z that are
embedded before z joins the queue if it does, or let i = d(z) be the degree of z if z
does not join the queue. Now z has at most D neighbours, and |Fz(0)| = |Vz| = n, so
|Fz(t)| ≥ (δ′

Qd/2)D−i((δ′
Qd/2)iδ′

Qn − δQn) ≥ (δ′
Qd/2)Dδ′

Qn − δQn > dun.

Next we turn our attention to the time period during which we are embedding N , which
we will refer to as the initial phase of the algorithm. We start by observing that the queue
remains empty during the initial phase, and so N is embedded consecutively in the order
given by the list L. To see this, we use a similar argument to that used for the second statement
in Lemma 2.4. Consider any unembedded vertex z and suppose that the queue has remained
empty up to the current time t. Then we have embedded at most |N ∩ Xz| <

√
δBn vertices

in Vz. Also, if we embed a neighbour w of z the algorithm chooses a good image for it,
so by definition of good, the number of free images for z decreases by a factor no worse
than (1 − 2ε ′)dwz > d/2 when we embed w. Since z has at most D neighbours we get
|Fz(t)| ≥ (d/2)Dn − √

δBn > δ′
Qn. This shows that no unembedded vertex z is added to the

queue during the initial phase.
Now we want to show that for any buffer vertex x ∈ B there will be many free positions

for x at the end of the algorithm. This is the point in the argument where super-regularity
is essential. A vertex v ∈ Vx will be free for x if it is not used for another vertex and we
embed NH(x) in NG(v) during the initial phase. Our next lemma gives a lower bound on
this probability, conditional on any embedding of the previous vertices not using v. We fix
some x ∈ B and write NH(x) = {z1, . . . , zg}, with vertices listed in the order that they are
embedded. We let Tj be the time at which zj is embedded. Since N is embedded consecutively
we have Tj+1 = Tj + 1 for 1 ≤ j ≤ g − 1. We also define T0 = T1 − 1. Since vertices in
B are at mutual distance at least 4 in H, at time T0, when we have only embedded vertices
from N , no vertices within distance 2 of x have been embedded. (This is the only place at
which mutual distance 4 is important.)

Lemma 2.5 (Initial phase). For any v ∈ Vx, conditional on any embedding of the vertices
{s(u) : u < T1} that does not use v, with probability at least p we have φ(NH(x)) ⊆ NG(v).

Proof. We estimate the probability that φ(NH(x)) ⊆ NG(v) using arguments similar to
those we are using to embed H in G. We want to track the free positions within NG(v) for
each unembedded vertex in NH(x), so we hope to not only embed each vertex of NH(x) in
NG(v) but also to do so in a ‘good’ way, a property that can be informally stated as saying
that the free positions within NG(v) will have roughly their expected size. To define this
formally, suppose 1 ≤ j ≤ g and we are considering the embedding of zj. We interpret
quantities at time Tj with the embedding φ(zj) = y, for some unspecified y ∈ Fzj (Tj − 1).
We say that y ∈ Fzj (Tj − 1) ∩ NG(v) is good for v, and write y ∈ OKv

zj
(Tj − 1), if for every

unembedded z ∈ NH(x) we have |Fz(Tj) ∩ NG(v)| = (1 ± 2ε ′)dzzj |Fz(Tj − 1) ∩ NG(v)|. We
let Aj denote the event that y = φ(zj) is chosen in OKv

zj
(Tj − 1).

We claim that conditional on the events Aj′ for j′ < j and the embedding up to time
Tj − 1, the probability that Aj holds is at least du/2. To see this we argue as in Lemma 2.4.
First we show that |Fz(Tj − 1) ∩ NG(v)| ≥ dun for every unembedded neighbour z of
x. Note that initially Fz(0) ∩ NG(v) = Vz ∩ NG(v) has size at least (d − ε)n by super-
regularity of G. Up to time T0 we embed at most |N ∩ Xz| ≤ √

δBn vertices in Xz, and do
not embed any neighbours of z by the distance property mentioned before the lemma. At
time Tj′ with j′ < j, we are conditioning on the event that the algorithm chooses an image

Random Structures and Algorithms DOI 10.1002/rsa



A HYPERGRAPH BLOW-UP LEMMA 283

for zj′ that is good for v, so the number of free images for z within NG(v) decreases by a
factor no worse than (1 − 2ε ′)dzzj′ > d/2. Thus we indeed have |Fz(Tj − 1) ∩ NG(v)| ≥
(d/2)D|Vz ∩ NG(v)| − |N ∩ Xz| ≥ (d/2)D(d − ε)n − √

δBn ≥ dun.
Next, by Lemma 2.3, for any unembedded z ∈ NH(x), the bipartite subgraph of G

induced by Fzj (Tj − 1) ∩ NG(v) and Fz(Tj − 1) ∩ NG(v) is ε ′-regular of density (1 ± ε)dzzj .
Applying Lemma 2.2, we see that there are at most 2ε ′|Fzj (Tj − 1) ∩ NG(v)| vertices y ∈
Fzj (Tj − 1) ∩ NG(v) that do not satisfy |Fz(Tj) ∩ NG(v)| = |NG(y) ∩ Fz(Tj − 1) ∩ NG(v)| =
(1 ± 2ε ′)dzzj |Fz(Tj − 1) ∩ NG(v)|. Summing over at most D neighbours of zj we see that
|OKv

zj
(Tj − 1)| ≥ (1 − 2Dε ′)|Fzj (Tj − 1)∩ NG(v)|. Also, by Lemma 2.4 we have |OKzj (Tj −

1)| ≥ (1 − ε∗)|Fzj (Tj − 1)|, so∣∣OKv
zj
(Tj − 1) ∩ OKzj (Tj − 1)

∣∣ ≥ |Fzj (Tj − 1) ∩ NG(v)| − 2ε∗n ≥ dun/2.

Since φ(zj) = y is chosen uniformly at random from OKzj (Tj − 1), we see that Aj holds
with probability at least du/2, as claimed.

To finish the proof, note that if all the events Aj hold then we have φ(NH(x)) ⊆ NG(v).
Multiplying the conditional probabilities, this holds with probability at least (du/2)D > p.

Our next lemma is similar to the ‘main lemma’ of [24]. An informal statement is as
follows. Consider any subset Y of a given class Xi, and any ‘not too small’ subset A of
vertices of Vi that could potentially be used for Y . Then it is very unlikely that no vertices
in A will be used and yet only a small fraction of the free positions for every vertex in Y
will belong to A.

Lemma 2.6 (Main lemma). Suppose 1 ≤ i ≤ r, Y ⊆ Xi and A ⊆ Vi with |A| > ε∗n. Let
EA,Y be the event that (i) no vertices are embedded in A before the conclusion of the algorithm,
and (ii) for every z ∈ Y there is some time tz such that |A ∩ Fz(tz)|/|Fz(tz)| < 2−D|A|/n.
Then P(EA,Y ) < p|Y |

0 .

Proof. We start by choosing Y ′ ⊆ Y with |Y ′| > |Y |/D2 so that vertices in Y ′ are mutually
at distance at least 3 (this can be done greedily, using the fact that H has maximum degree D).
It suffices to bound the probability of EA,Y ′ . Note that initially we have |A∩Fz(0)|/|Fz(0)| =
|A|/n for any z ∈ Xi. Also, if no vertices are embedded in A, then |A ∩ Fz(t)|/|Fz(t)| can
only be less than |A ∩ Fz(t − 1)|/|Fz(t − 1)| for some z and t if we embed a neighbour of z
at time t. It follows that if EA,Y ′ occurs, then for every z ∈ Y ′ there is a first time tz when we
embed a neighbour w of z and have |A ∩ Fz(tz)|/|Fz(tz)| < |A ∩ Fz(tz − 1)|/2|Fz(tz − 1)|.

By Lemma 2.4 we have |Fw(tz − 1)| ≥ dun, and by choice of tz we have |A ∩ Fz(tz −
1)|/|Fz(tz − 1)| ≥ 2−D|A|/n, so |A ∩ Fz(tz − 1)| ≥ 2−Dε∗dun ≥ ε2

∗n. Then by Lemma 2.3,
the bipartite subgraph of G induced by A ∩ Fz(tz − 1) and Fw(tz − 1) is ε ′-regular of density
(1± ε)dzw. Applying Lemma 2.2, we see that there are at most 2ε ′|Fw(tz −1)| ‘exceptional’
vertices y ∈ Fw(tz − 1) that do not satisfy |A ∩ Fz(tz)| = |NG(y) ∩ A ∩ Fz(tz − 1)| =
(1 ± 2ε ′)dzw|A ∩ Fz(tz − 1)|. On the other hand, the algorithm chooses φ(w) = y to be
good, in that |Fz(tz)| = (1 ± 2ε ′)dzw|Fz(tz − 1)|, so we can only have |A ∩ Fz(tz)|/|Fz(tz)| <

|A∩Fz(tz −1)|/2|Fz(tz −1)| by choosing an exceptional vertex y. But y is chosen uniformly
at random from |OKw(tz −1)| ≥ (1−ε∗)|Fw(tz −1)| possibilities (by Lemma 2.4). It follows
that, conditional on the prior embedding, the probability of choosing an exceptional vertex
for y is at most 2ε ′|Fw(tz − 1)|/|OKw(tz − 1)| < 3ε ′.

Since vertices of Y ′ have disjoint neighbourhoods, we can multiply the conditional
probabilities over z ∈ Y ′ to obtain an upper bound of (3ε ′)|Y ′|. Recall that this bound
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is for a subset of EA,Y ′ in which we have specified a certain neighbour w for every ver-
tex z ∈ Y ′. Taking a union bound over at most D|Y ′| choices for these neighbours gives
P(EA,Y ) ≤ P(EA,Y ′) ≤ (3ε ′D)|Y ′| < p|Y |

0 .

Now we can prove the following theorem, which implies Theorem 2.1.

Theorem 2.7. With high probability the algorithm embeds H in G.

Proof. First we estimate the probability of the iteration phase aborting with failure, which
happens when the number of vertices that have ever been queued is too large. We can take
a union bound over all 1 ≤ i ≤ r and Y ⊆ Xi with |Y | = δQ|Xi| of P(Y ⊆ Q(T)). Suppose
that the event Y ⊆ Q(T) occurs. Then A = Vi(T) is a large set of unused vertices, yet
it makes up very little of what is free to any vertex in Y . To formalise this, note that by
definition, for every z ∈ Y there is some time t such that |Fz(t)| < δ′

Q|Fz(tz)|, where tz < t
is the most recent time at which we embedded a neighbour of z. Since A is unused we have
A ∩ Fz(t) = A ∩ Fz(tz), so |A ∩ Fz(tz)|/|Fz(tz)| = |A ∩ Fz(t)|/|Fz(tz)| ≤ |Fz(t)|/|Fz(tz)| <

δ′
Q. However, we noted before Lemma 2.4 that |A| ≥ δBn/2, so since δ′

Q � δB we have
|A ∩ Fz(tz)|/|Fz(tz)| < 2−D|A|/n. Taking a union bound over all possibilities for i, Y and
A, Lemma 2.6 implies that the failure probability is at most r · 4n · p

δQn

0 < o(1), since
p0 � δQ.

Now we estimate the probability of the conclusion of the algorithm aborting with failure.
Recall that buffer vertices have disjoint neighbourhoods, the iterative phase finishes at time
T , and |Xi(T)| ≥ δBn/2. By Hall’s criterion for finding a system of distinct representatives,
the conclusion fails if and only if there is some 1 ≤ i ≤ r and S ⊆ Xi(T) such that
| ∪z∈S Fz(T)| < |S|. We divide into cases according to the size of S.

0 ≤ |S|/|Xi(T)| ≤ γ . By Lemma 2.4 we have |Fz(T)| ≥ dun > γ n for every unembedded
z, so this case cannot occur.

γ ≤ |S|/|Xi(T)| ≤ 1 − γ . In this case we use the fact that A := Vi(T) \ ∪z∈SFz(T) is a
large set of unused vertices which is completely unavailable to any vertex z in S:
we have |A| ≥ |Vi(T)| − |S| ≥ γ |Xi(T)| ≥ γ δBn/2 ≥ γ 2n, yet A ∩ Fz(T) = ∅,
so |A ∩ Fz(T)|/|Fz(T)| = 0 < 2−D|A|/n. As above, taking a union bound over all
possibilities for i, S and A, Lemma 2.6 implies that the failure probability is at most

r · 4n · pγ 2n
0 < o(1), since p0 � γ .

1 − γ ≤ |S|/|Xi(T)| ≤ 1. In this case we claim that with high probability ∪z∈SFz(T) =
Vi(T), so in fact Hall’s criterion holds. It suffices to consider sets S ⊆ Xi(T) of
size exactly (1 − γ )|Xi(T)|. The claim fails if there is some v ∈ Vi(T) such that
v /∈ Fz(T) for every z ∈ S. Since v is unused, it must be that we failed to embed
NH(z) in NG(v) for each z ∈ S. By Lemma 2.5, these events have probability at
most 1 − p conditional on the prior embedding. Multiplying the conditional proba-
bilities and taking a union bound over all 1 ≤ i ≤ r, v ∈ Vi and S ⊆ Xi(T) of size
(1 − γ )|Xi(T)|, the failure probability is at most rn

( n
(1−γ )n

)
(1 − p)(1−γ )|Xi(T)| < o(1).

This estimate uses the bounds
( n
(1−γ )n

) ≤ 2
√

γ n, (1 − p)(1−γ )|Xi(T)| < e−pδBn/4 < 2−p2n

and γ � p.

In all cases we see that the failure probability is o(1).
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3. REGULARITY AND SUPER-REGULARITY OF 3-GRAPHS

When considering how to generalise regularity to 3-graphs, a natural first attempt is to
mirror the definitions used for graphs. Consider an r-partite 3-graph H with vertex set V
partitioned as V = V1 ∪ · · · ∪ Vr . Let Hijk be the tripartite sub-3-graph of H with parts Vi,

Vj and Vk , for any i, j, k. The density of Hijk is d(Hijk) = |Hijk |
|Vi ||Vj ||Vk | . Given ε > 0, we say that

Hijk is ε-vertex-regular if for all subsets V ′
i ⊆ Vi, V ′

j ⊆ Vj and V ′
k ⊆ Vk with |V ′

i | > ε|Vi|,
|V ′

j | > ε|Vj| and |V ′
k| > ε|Vk|, writing H ′

ijk for the tripartite sub-3-graph of H with parts
V ′

i , V ′
j and V ′

k , we have |d(H ′
ijk) − d(Hijk)| < ε. There is a decomposition theorem for this

definition analogous to the Szemerédi Regularity Lemma. This is often known as the ‘weak
hypergraph regularity lemma’, as although it does have some applications, the property of
vertex-regularity is not strong enough to prove a counting lemma (see e.g. [12] for further
discussion).

To obtain a counting lemma one needs to take account of densities of triples of H
with respect to sets of pairs of vertices, as well as densities of pairs with respect to sets
of vertices. Thus we are led to define regularity for simplicial complexes. We make the
following definitions.

Definition 3.1. Suppose X is a set partitioned as X = X1 ∪ · · · ∪ Xr. We say S ⊆ X is
r-partite if |S∩Xi| ≤ 1 for 1 ≤ i ≤ r. Write K(X) for the complete collection of all r-partite
subsets of X. We say that H is an r-partite 3-complex on X = X1 ∪ · · · ∪ Xr if H consists of
r-partite sets of size at most 3 and is a simplicial complex, i.e. if T ⊆ S ∈ H then T ∈ H.
The index of an r-partite set S is i(S) = {1 ≤ i ≤ r : S ∩ Xi �= ∅}. For I ⊆ [r] we write
HI for the set of S ∈ H with index i(S) = I, when this set is non-empty. If there are no sets
S ∈ H with i(S) = I we can choose to either set HI = ∅ or let HI be undefined, provided
that if HI is defined then HJ is defined for all J ⊆ I. When not explicitly stated, the default
is that HI is undefined when there are no sets of index I. For any S ∈ H we write HS = Hi(S)

for the naturally defined |S|-partite |S|-graph in H containing S.

To put this definition in concrete terms, whenever the following sets are defined, H{i}
is a subset of Xi, H{i,j} is a bipartite graph with parts H{i} and H{j}, and H{i,j,k} is a 3-graph
contained in the set of triangles spanned by H{i,j}, H{i,k} and H{j,k}. Of course, the interesting
part of this structure is the 3-graph together with its underlying graphs. We also have H∅,
which is usually equal to {∅}, i.e. the set of size 1 whose element is the empty set, although it
could be empty if all other parts are empty. It is most natural to take H{i} = Xi for 1 ≤ i ≤ r.
We often allow H{i} to be a strict subset of Xi, but note that if desired we can make such a
complex ‘spanning’ by changing the ground set to X ′ = X ′

1 ∪ · · · ∪ X ′
r , where X ′

i = H{i},
1 ≤ i ≤ r. When unspecified, our default notation is that H is an r-partite 3-complex on
X = X1 ∪ · · · ∪ Xr . We will see later in Definitions 3.5 and 4.4 why we have been so careful
to distinguish the cases HI empty and HI undefined in Definition 3.1.

Definition 3.2. To avoid clumsy notation we will henceforth frequently identify a set with a
sequence of its vertices, e.g. writing Hi = H{i} and Hijk = H{i,j,k}. We also use concatenation
for set union, e.g. if S = ij = {i, j} then Sk = ijk = {i, j, k}. For any I ⊆ [r] we write
HI≤ = ∪I ′⊆IHI ′ for the subcomplex of H consisting of all defined HI ′ with I ′ ⊆ I. We also
write HI< = HI≤ \ HI = ∪I ′�IHI ′ . Similarly, for any S ⊆ X we write HS≤ = ∪S′⊆SHS′ and
HS< = ∪S′�SHS′ . For any set system A we let A≤ be the complex generated by A, which
consists of all subsets of all sets in A.
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It is clear that intersections and unions of complexes are complexes. We clarify exactly
what these constructions are with the following definition.

Definition 3.3. Suppose H and H ′ are r-partite 3-complexes on X = X1 ∪ · · · ∪ Xr. The
union H∪H ′ is the r-partite 3-complex where (H∪H ′)S = HS∪H ′

S is defined whenever HS or
H ′

S is defined. The intersection H ∩H ′ is the r-partite 3-complex where (H ∩H ′)S = HS ∩H ′
S

is defined whenever HS and H ′
S are defined.

We often specify complexes as a sequence of sets, e.g. (G12, (Gi : 1 ≤ i ≤ 4), {∅})
has parts G12, Gi for 1 ≤ i ≤ 4, {∅} and is otherwise undefined. Now we come to a key
definition.

Definition 3.4. We let Tijk(H) be the set of triangles formed by Hij, Hjk and Hik. We say
that a defined triple Hijk is ε-regular if for every subgraph G of H with |Tijk(G)| > ε|Tijk(H)|
we have

|H ∩ Tijk(G)|
|Tijk(G)| = |Hijk|

|Tijk(H)| ± ε.

We also say that the entire 3-complex H is ε-regular if every defined triple Hijk is ε-regular
and every defined graph Hij is ε-regular.

Thus Hijk is ε-regular if for any subgraph G with ‘not too few’ triangles of index ijk, the
proportion of these triangles in G of index ijk that are triples in Hijk is approximately equal
to the proportion of triangles in H of index ijk that are triples in Hijk . Note that we never
divide by zero in Definition 3.4, as ∅ �= Tijk(G) ⊆ Tijk(H). The definition applies even if
every Hijk is undefined, in which case we can think of H as a 2-complex with every graph
Hij being ε-regular. It also applies even if every Hij is undefined, in which case we can think
of H as a 1-complex (with no regularity restriction).1

This concept of regularity in 3-complexes is more powerful than vertex regularity, in
that it does admit a counting lemma. In order to apply it we also need an analogue of the
Szemerédi Regularity Lemma, stating that a general 3-complex can be decomposed into a
bounded number of pieces, most of which are regular. Such a result does hold, but there is an
important technical proviso that one cannot use the same parameter ε to measure regularity
for both graphs and triples in the complex. In general, one needs to allow the densities of the
graphs Hij to be much smaller than the parameter used to measure the regularity of triples.
This is known as a sparse setting, as contrasted with a situation when all densities are much
larger than ε, which is known as a dense setting.

In the sparse setting, a counting lemma does hold, but we couldn’t find any way to
generalise the proof of the blow-up lemma. To circumvent this difficulty we will instead
apply the Regular Approximation Lemma of Rödl and Schacht. Informally stated, this allows
us to closely approximate any 3-graph G0 by another 3-graph G, so that the 3-complex G≤

generated by G can be decomposed (in a certain sense) into ε-regular complexes. We will

1Technically one should say that Hijk is ε-regular in the complex H , as the definition depends on the graphs Hij ,
Hjk and Hik . For the sake of brevity we will omit this qualification, as it is not hard to see that when sufficiently
regular these graphs are ‘almost’ determined by Hijk : if say Hij had many pairs not contained in triples of Hijk then
Tijk would have many triangles none of which are triples of Hijk , contradicting the definition of ε-regularity.
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come to the formal statement later in the paper, but we mention it here to motivate the form
of the blow-up lemma that we will prove. We will allow ourselves to work in the dense
setting of ε-regular complexes, but we have to take account of the approximation of G0 by
G by ‘marking’ the edges M = G \ G0 as forbidden. If we succeed in embedding a given
3-graph H in G without using M then we have succeeded in embedding H in G0. (A similar
set-up is used for the embedding lemma in [35].) We will refer to the pair (G≤, M) as a
marked complex.

In the remainder of this section we first motivate and then explain the definition of super-
regularity for 3-graphs. It turns out that this needs to be significantly more complicated than
for ordinary graphs. It is not sufficient to just forbid vertices of small degree. To see this,
consider as an example a 4-partite 3-complex G on X = X1 ∪ X2 ∪ X3 ∪ X4, with |Xi| = n,
1 ≤ i ≤ 4 that is almost complete: say there are complete bipartite graphs on every pair of
classes and complete 3-graphs on every triple of classes, except for one vertex x in X4 for
which the neighbourhood G(x) is triangle-free. We can easily choose each G(x)ij to have
size n2/4 by dividing each class Xi, 1 ≤ i ≤ 3 into two parts. Then H is O(1/n)-regular
with densities 1 − O(1/n) and has minimum degrees at least n2/4 in each triple, but x is not
contained in any tetrahedron K3

4 , so we cannot embed a perfect K3
4 -packing.

Another complication is that the definition of super-regularity for 3-graphs is not ‘local’,
in the sense that super-regularity of a graph G was defined by a condition for each of its
bipartite subgraphs Gij. Instead, we need to define super-regularity for the entire structure
(G, M), where G is an r-partite 3-complex and M is a set of marked edges. To explain
this point we need to look ahead to the analysis of the algorithm that we will use to prove
the blow-up lemma. First we need an important definition that generalises the process of
restricting a graph to a subset of its vertex set: we may also consider restricting a complex
to a subcomplex in the following manner.

Definition 3.5. Suppose H and G are r-partite 3-complexes on X = X1 ∪ · · · ∪ Xr and G
is a subcomplex of H. The restriction H[G] is the r-partite 3-complex on X = X1 ∪ · · · ∪ Xr,
where H[G]I is defined if and only if HI is defined, and H[G]I consists of all S ∈ HI such
that A ∈ G for every A ⊆ S such that GA is defined.

To put this in words, a given set S in H belongs to the restriction H[G] if every subset
A of S belongs to G, provided that the part of G corresponding to A is defined. At this
point we will give some examples to illustrate Definition 3.5 and clarify the distinction
between parts being empty or undefined in Definition 3.1. Consider a 3-partite 2-complex
H on X = X1 ∪ X2 ∪ X3 such that H12, H13 and H23 are non-empty graphs. Suppose G is a
3-partite 1-complex on X = X1 ∪ X2 ∪ X3. If G1, G2 and G3 are defined then H[G] is the
3-partite 2-complex on X = X1 ∪ X2 ∪ X3 with H[G]i = Gi and H[G]ij equal to the bipartite
subgraph of Hij spanned by Gi and Gj. This corresponds to the usual notion of restriction
for graphs. Note that all of the sets H[G]i and graphs H[G]ij are defined and some may be
empty. However, if any of the Gi is undefined then it behaves as if it were equal to Hi. For
example, if G1 is undefined and G2 is defined then H[G]1 = H1 and H[G]12 is the bipartite
subgraph of H12 spanned by H1 and G2. This highlights the importance of distinguishing
between G1 being empty or G1 being undefined. Note that Definition 3.5 is monotone, in
the sense that adding sets to any given defined part GI of G does not remove any sets from
any given part H[G]J of the restriction H[G]. We record the following obvious property for
future reference:

H[G]I = GI when GI is defined. (2)
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Another obvious property used later concerns the empty complex ({∅}), which satisfies
H[({∅})] = H for any complex H. Next we will reformulate the definition of regularity for
3-complexes using the restriction notation. First we make the following definitions.

Definition 3.6. Suppose H is an r-partite 3-complex on X = X1 ∪ · · · ∪ Xr. For any
I ⊆ [r] we let H∗

I denote the set of S ∈ K(X)I such that any strict subset T � S belongs
to HT when defined. When HI is defined and H∗

I �= ∅, we define the relative density (at I)
of H as dI(H) = |HI |/|H∗

I |. We also call dI(H) the I-density of H. We define the absolute
density of HI as d(HI) = |HI |/∏

i∈I |Xi|.

To illustrate Definition 3.6, note that H∗
i = Xi and di(H) = d(Hi) = |Hi|/|Xi| when

defined. If Hij is defined then H∗
ij = Hi × Hj and dij(H) = |Hij|/|H∗

ij | is the density of the
bipartite graph Hij with parts Hi and Hj. We have d(Hij) = dij(H)di(H)dj(H), so d(Hij) =
dij(H) in the case when Hi = Xi and Hj = Xj. Also, if Hij, Hik and Hjk are defined then
H∗

ijk = Tijk(H) is the set of triangles in H of index ijk. We also note that if any of the Hij is
undefined it behaves as if it were equal to H∗

ij , e.g. if Hij is undefined and Hik and Hjk are
defined then H∗

ijk is the set of triangles in (H∗
ij , Hik , Hjk). As an illustration of Definition 3.5,

we note that H∗
I = K(X)[HI< ]I , recalling that K(X) is the complex of r-partite sets and

HI< = ∪I ′�IHI ′ .
Now suppose H is a 3-partite 3-complex on X = X1 ∪ X2 ∪ X3 such that H123 is defined

and H∗
123 �= ∅. Suppose G ⊆ H is a 2-complex such that G12, G13 and G23 are defined. Then

G∗
123 = T123(G) and H∗

123 = T123(H). By Definition 3.5 we have H[G]123 = H123 ∩ G∗
123 and

H[G]∗123 = G∗
123, so by Definition 3.6 d123(H[G]) = |H ∩ G∗

123|/|G∗
123|. Therefore H123 is

ε-regular if whenever |G∗
123| > ε|H∗

123| we have d123(H[G]) = d123(H) ± ε.
For the remainder of this section we let H be an r-partite 3-complex on X = X1 ∪· · ·∪Xr ,

and G be an r-partite 3-complex on V = V1 ∪ · · · ∪ Vr , with |Vi| = |Xi| for 1 ≤ i ≤ r. We
want to find an embedding φ of H in G. Our algorithm will consider the vertices of X in
some order and embed them one at a time. At some time t in the algorithm, for each S ∈ H
there will be some |S|-graph FS(t) ⊆ GS consisting of those sets P ∈ GS that are free for S,
in that mapping S to P is locally consistent with the embedding so far. These free sets will
be mutually consistent, in that

FS≤(t) = ∪S′⊆SFS′(t) (3)

is a complex for every S ∈ H. We use the convention that FS(t) is undefined for any S /∈ H.
Note that (3) applies even for S /∈ H.

Initially we define FS(0) = GS for all S ∈ H. Now suppose we have defined FS(t − 1)

for all S ∈ H and then at time t we embed some vertex x ∈ X to some vertex y ∈ Fx(t − 1).
We will use this notation consistently throughout the paper. Then for any S ∈ H containing
x we can only allow sets in FS(t) that correspond to mapping x to y, i.e. FS(t) = FS(t − 1)y,
which is our notation for {P ∈ FS(t − 1) : y ∈ P}. Also, for any S in the neighbourhood
complex H(x), i.e. a set S not containing x such that Sx = S ∪ {x} ∈ H, in order for FS(t)
to be mutually consistent with FSx(t) = {P ∈ FSx(t − 1) : y ∈ P}, we can only allow sets in
FS(t) that are in the neighbourhood of y, i.e. FS(t) = FSx(t −1)(y), which is our notation for
{P : P ∪ {y} ∈ FS∪{x}(t − 1)}. Finally, we need to consider the effect that embedding x has
for sets S that do not contain x and are not even in the neighbourhood complex H(x). Such
a set S may contain a set S′ in H(x), so that FS′(t) is affected by the embedding of x. Then
mutual consistency requires for that any set P ∈ FS(t), the subset of P corresponding to S′
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must belong to FS′(t). We need to include these restrictions for all subsets S′ of S. Also, as
we are using the vertex y to embed x we have to remove it from any future free sets. Thus
we are led to the following definition. (Lemma 3.10 will show that it is well-defined.)

Definition 3.7 (Update rule). Suppose x is embedded to y at time t and S ∈ H.
If x ∈ S we define FS(t) = FS(t − 1)y = {P ∈ FS(t − 1) : y ∈ P}. If x /∈ S we define

S.x = (S \ Xx) ∪ {x}, CS≤(t) = FS.x≤(t − 1)(y) and FS(t) = FS≤(t − 1)[CS≤(t)]S \ y.

Note that S.x is either Sx = S ∪ {x} if i(x) /∈ i(S) or obtained from Sx by deleting the
element in S of index i(x) if i(x) ∈ i(S). Thus S.x ⊆ X is r-partite. Also, the notation ‘\y’
means that we delete all sets containing y; this can have an effect only when i(x) ∈ i(S).
We will show below in Lemma 3.10 that Definition 3.7 makes sense, but first we will give
an example to illustrate how it works.

Example 3.8. Suppose that H and G are 4-partite 3-complexes, and that we have 4
vertices xi ∈ Xi, 1 ≤ i ≤ 4 that span a tetrahedron K3

4 in H, i.e. H contains every subset of
{x1, x2, x3, x4}. Suppose also that we have the edges x′

1x′
2x3 and x′

1x′
3x′

4 and all their subsets for
some other 4 vertices x′

i ∈ Xi, 1 ≤ i ≤ 4, and that there are no other edges of H containing
any xi or x′

i , 1 ≤ i ≤ 4. Initially we have FS(0) = GS for every S ∈ H. Suppose we start
the embedding by mapping x1 to some v1 ∈ V1 at time 1. Applying Definition 3.7 to sets
S containing x1 gives Fx1(1) = {v1}, Fx1xi(1) = {P ∈ G1i : v1 ∈ P} for 2 ≤ i ≤ 4, and
Fx1xixj (1) = {P ∈ G1ij : v1 ∈ P} for 2 ≤ i < j ≤ 4.

Next we consider some examples of Definition 3.7 for sets not containing x1. We
have Cx≤

i
(1) = (Fx1xi(0)(v1), {∅}) = (G(v1)i, {∅}) for 2 ≤ i ≤ 4. Then Fxi(1) =

Fx≤
i
(0)[Cx≤

i
(1)]i \ v1 = G(v1)i. Similarly, we have Fxixj (1) = G(v1)ij for 2 ≤ i < j ≤ 4. For

x2x3x4 we have

Cx2x3x≤
4
(1) =

⋃
S⊆x2x3x4

FSx1(0)(v1) = G(v1)23≤ ∪ G(v1)24≤ ∪ G(v1)34≤ .

Therefore Fx2x3x4(1) = Fx2x3x≤
4
(0)[Cx2x3x≤

4
(1)]234 \ v1 consists of all triples in G234 that also

form a triangle in the neighbourhood of v1, and so complete v1 to a tetrahedron in G.
For x′

2x3, we have Cx′
2x3

(1) = G(v1)3≤ , so Fx′
2x3

(1) = Fx′
2x≤

3
(0)[Cx′

2x≤
3
(1)]23 \ v1 consists

of all pairs in G23 that contain a G13-neighbour of v1. For x′
2, Cx′

2
≤(1) = ({∅}) is the

empty complex, so Fx′
2
(1) = Fx′

2
≤(0)[Cx′

2
≤(1)]2 \ v1 = Fx′

2
(0) is unaffected. (Recall that

J[({∅})] = J for any complex J .) Finally we give two examples in which the deletion
of v1 has some effect. For x′

1x′
2x3, we have x′

1x′
2x3.x1 = x1x′

2x3, Fx1x′
2x≤

3
(0) = Fx1x≤

3
(0) ∪

Fx′
2x≤

3
(0) = G13≤ ∪ G23≤ , and Cx′

1x′
2x≤

3
(1) = Fx1x′

2x≤
3
(0)(v1) = (G(v1)3, {∅}) = G(v1)3≤ .

Then Fx′
1x′

2x≤
3
(1) = G123≤[G(v1)3≤] \ v1, so Fx′

1x′
2x3

(1) consists of all triples T in G123 not
containing v1 such that T ∩V3 is a neighbour of v1. For x′

1x′
3, Cx′

1x′
3
≤(1) is the empty complex,

so Fx′
1x′

3
(1) = Fx′

1x′
3
(0) \ v1 consists of all pairs in G13 that do not contain v1.

Now we prove a lemma which justifies Definition 3.7 and establishes the ‘mutual
consistency’ mentioned above, i.e. that FS≤(t) is a complex. First we need a definition.

Definition 3.9. Suppose S ⊆ X is r-partite and I ⊆ i(S). We write SI = S ∩ ∪i∈IXi. We
also write ST = Si(T) for any r-partite set T with i(T) ⊆ i(S).
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Lemma 3.10. Suppose S ⊆ X is r-partite and t ≥ 1. If x /∈ S then CS≤(t) is a subcomplex of
FS≤(t−1) and FS≤(t) = FS≤(t−1)[CS≤(t)]\y is a complex. If x ∈ S then FS(t) = FS(t−1)y,
FS\x(t) = FS(t − 1)(y) and FS≤(t) = FS≤(t − 1)y ∪ FS≤(t − 1)(y) is a complex.

Proof. Note that FS≤(0) = GS≤ is a complex. We prove the statement of the lemma by
induction on t. The argument uses the simple observation that if J is any complex and v is
a vertex of J then J(v) and Jv ∪ J(v) are subcomplexes of J .

First suppose that x /∈ S. Since FS≤(t−1) is a complex by induction hypothesis, CS≤(t) =
FS.x≤(t − 1)(y) is a subcomplex of FS.x≤(t − 1), and so of FS≤(t − 1). For any S′ ⊆ S write
J(S′) = FS′≤(t−1)[CS′≤(t)]\y. Then J(S′) is a complex, since restriction to a complex gives
a complex, and removing all sets containing y preserves the property of being a complex.
Furthermore, J(S′)S′ = FS′(t) by Definition 3.7. We also have J(S)S′ = J(S′)S′ , since a
set A′ of index S′ belongs to FS′≤(t − 1) if and only if it belongs to FS≤(t − 1), and any
B ⊆ A′ belongs to CS′≤(t) if and only if it belongs to CS≤(t). Therefore FS≤(t) = J(S) =
FS≤(t − 1)[CS≤(t)] \ y is a complex.

Now suppose that x ∈ S. Then FS(t) = FS(t−1)y by definition. Next, note that CS\x≤(t) =
FS≤(t − 1)(y) is a complex, and FS\x≤(t − 1)[CS\x≤(t)]S\x = FS(t − 1)(y) by equation (2).
Since S is r-partite, deleting y has no effect, and we also have FS\x(t) = FS(t − 1)(y).
Therefore FS≤(t) = ∪x∈S′⊆S(FS′(t − 1)y ∪ FS′(t − 1)(y)) = FS≤(t − 1)y ∪ FS≤(t − 1)(y) is
a complex.

We will also use the following lemma to construct FS(t) iteratively from {FS′(t) : S′ � S}.

Lemma 3.11. Suppose that S ∈ H, |S| ≥ 2, x /∈ S and S /∈ H(x). Write FS<(t) =
∪S′�SFS′(t). Then FS≤(t) = FS≤(t − 1)[FS<(t)].

Proof. First note that for any A with |A| < |S| we have A ∈ FS≤(t) ⇔ A ∈ FS<(t) ⇔ A ∈
FS≤(t −1)[FS<(t)]. Now suppose A ∈ FS(t). Then A ∈ FS≤(t −1) and A′ ∈ FS<(t) for every
A′ � A, so A ∈ FS≤(t − 1)[FS<(t)]. Conversely, suppose that A ∈ FS≤(t − 1)[FS<(t)]S. For
any S′ � S with S′ ∈ H(x) we have FS′(t) = FS′x(t−1)(y), so AS′ ∈ FS′x(t−1)(y) ⊆ CS≤(t).
Also CS≤(t)S′ is undefined for S′ /∈ H(x); in particular, our assumption that S /∈ H(x) means
that CS≤(t)S is undefined. Therefore AS′ ∈ CS≤(t) for every S′ ⊆ S such that CS≤(t)S′ is
defined, i.e. A ∈ FS≤(t−1)[CS≤(t)]S. Also, if i(x) ∈ i(S), then writing z = Sx = S∩Xx ∈ S<,
we have A ∩ Vx ∈ Fz(t) = Fz(t − 1) \ y, so y /∈ A. Therefore A ∈ FS≤(t − 1)[CS≤(t)]S \ y =
FS(t).

We referred to ‘local consistency’ when describing the update rule because it only incor-
porates the effect that embedding x has on sets containing at least one neighbour of x. To
illustrate this, recall that in Example 3.8 above we have Fx′

2
(1) = Fx′

2
(0) = G2. Now H

contains x1x3 and x1 is embedded to v1, so x3 must be embedded to a vertex in G(v1)3. Also,
H contains x′

2x3, so any image of x′
2 must have a neighbour in G(v1)3. This may not be the

case for every vertex in G2, so there is some non-local information regarding the embedding
that has not yet been incorporated into the free sets at time 1. In light of this, we should admit
that our description of sets in FS(t) as ‘free’ is a slight misnomer, as there may be a small
number of sets in FS(t) that cannot be images of S under the embedding. This was the case
even for the graph blow-up lemma, in which we described vertices in Fx(t) as ‘free’ images
for x but then only allowed the use of OKx(t) ⊆ Fx(t). On the other hand, our definition of
free sets is relatively simple, and does contain enough information for the embedding. To
see this, note that by definition of restriction FS≤(t) is a subcomplex of GS≤ at every time
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t, and when all vertices of S are embedded by φ we have FS(t) = {φ(S)} with φ(S) ∈ GS.
Furthermore, by removing all sets that contain y in the definition of FS(t) we ensure that
no vertex is used more than once by φ. Therefore it does suffice to only consider local
consistency in constructing the embedding, provided that the sets FS(t) remain non-empty
throughout. The advantage is that we have the following simple update rule for sets S that
are not local to x.

Lemma 3.12. If S does not contain any vertex in {x}∪VNH(x) then FS(t) = FS(t −1)\y.

Proof. Note that CS≤(t) = FS.x≤(t − 1)(y) = ({∅}) is the empty complex.

We will also need to keep track of the marked triples M during the embedding algorithm.
Initially, we just have some triples in G that are marked as forbidden for any triple of H.
Then, as the algorithm proceeds, each pair of H is forbidden certain pairs of G, and each
vertex of H is forbidden certain vertices of G. We adopt the following notation.

Definition 3.13. For any triple E ∈ H we write Et for the subset of E that is unembedded
at time t. We define the marked subset of FEt (t) corresponding to E as

MEt ,E(t) = {P ∈ FEt (t) : P ∪ φ(E \ Et) ∈ ME}.

In words, MEt ,E(t) consists of all sets P in FEt (t) that cannot be used as images for Et in
the embedding, because when we add the images of the embedded part E\Et of E we obtain
a marked triple. To illustrate this, suppose that in Example 3.8 we have some marked triples
M. At time t = 1 we map x1 to v1, and then the free set for x2x3 is Fx2x3(1) = G(v1)23. Since
the edges M123 are marked as forbidden, we will mark M(v1)23 ⊆ G(v1)23 as forbidden by
defining Mx2x3,x1x2x3(1) = M(v1)23. As another illustration, recall that Fx2x3x4(1) consists of
all triples in G234 that also form a triangle in the neighbourhood of v1. Then Mx2x3x4,x2x3x4(1) =
M ∩ Fx2x3x4(1) consists of all triples in M234 that also form a triangle in the neighbourhood
of v1.

For any triple E containing x such that Et−1 = x we will choose y = φ(x) /∈ Mx,E(t − 1).
This will ensure that φ(E) /∈ M. The following lemma will enable us to track marked
subsets. The proof is obvious, so we omit it.

Lemma 3.14.

(i) If x ∈ E then Et = Et−1 \ x and MEt ,E(t) = MEt−1,E(t − 1)(y).
(ii) If x /∈ E then Et = Et−1 and MEt ,E(t) = MEt−1,E(t − 1) ∩ FEt (t).

We need one more definition before we can define super-regularity. It provides some
alternative notation for describing the update rule, but it has the advantage of not referring
explicitly to any embedding or to another complex H.

Definition 3.15. Suppose G is an r-partite 3-complex on V = V1 ∪ · · · ∪ Vr, 1 ≤ i ≤ r,
v ∈ Gi and I is a subcomplex of

([r]
≤3

)
. We define GIv = G[∪S∈IG(v)S].

We will now explain the meaning of Definition 3.15 and illustrate it using our running
Example 3.8. To put it in words, GIv is the restriction of G obtained by only taking those sets
A ∈ G such that any subset of A indexed by a set S in I belongs to the neighbourhood G(v),
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provided that the corresponding part G(v)S is defined. In Example 3.8 we have Cx≤
2
(1) =

(G(v1)2, {∅}) and Fx2(1) = G2≤[Cx≤
2
(1)]2 = G(v1)2. Choosing I = 2≤ = ({2}, {∅}) we

have Cx≤
2
(1) = ∪S∈IG(v1)S and so Fx2(1) = G

Iv1
2 . Similarly, choosing I = 23≤ we have

Cx2x≤
3
(1) = ∪S∈IG(v1)S and Fx2x3(1) = G23≤[Cx≤

2
(1)]23 = G(v1)23 = G

Iv1
23 . Also, choosing

I = 23≤∪24≤∪34≤ we see that Fx2x3x4(1) = G
Iv1
234 consists of all triples in G234 that also form

a triangle in the neighbourhood of v1. In general, we can use this notation to describe the
update rule for any complex H if we embed some vertex x of H to some vertex v of G at time
1. If x ∈ S ∈ H we have FS(1) = Gv as before. If x /∈ S we let I = {i(S′) : S′ ⊆ S, S′x ∈ H}
and then FS(1) = GIv

S \ v.
Finally, we can give the definition of super-regularity.

Definition 3.16 (Super-regularity). Suppose G is an r-partite 3-complex on V = V1 ∪
· · · ∪ Vr and M ⊆ G= := {S ∈ G : |S| = 3}. We say that the marked complex (G, M) is
(ε, ε ′, d2, θ , d3)-super-regular if

(i) G is ε-regular, and dS(G) ≥ d|S| if |S| = 2, 3 and GS is defined,
(ii) for every 1 ≤ i ≤ r, v ∈ Gi and S such that GSi is defined, |M(v)S| ≤ θ |G(v)S| if

|S| = 2 and G(v) is an ε ′-regular 2-complex with dS(G(v)) = (1 ± ε ′)dS(G)dSi(G)

for S �= ∅,
(iii) for every vertex v and subcomplex I of

([r]
≤3

)
, |(M ∩ GIv)S| ≤ θ |GIv

S | if |S| = 3, and GIv

is an ε ′-regular 3-complex with densities (when defined)

dS(G
Iv) =

{
(1 ± ε ′)dS(G) if S /∈ I ,
(1 ± ε ′)dS(G)dSi(G) if ∅ �= S ∈ I and GSi is defined.

Just as one can delete a small number of vertices from an ε-regular graph to make it
super-regular, we will see later (Lemma 5.9) that one can delete a small number of vertices
from an ε-regular marked 3-complex to make it super-regular. For now we will just explain
the meaning of Definition 3.16 with reference to our running example. First we remark
that the parameters in the definition are listed according to their order in the hierarchy, in
that ε � ε ′ � d2 � θ � d3. Thus we consider a dense setting, in which the regularity
parameters ε and ε ′ are much smaller than the density parameters d2 and d3. However,
one should note that the marking parameter θ has to be larger than the density parameter
d2, which is the source of some technical difficulties in our arguments. We will bound
the marked sets by a increasing sequence of parameters that remain small throughout the
embedding. For now we just see what the definition of super-regularity tells us about the
first step.

Condition (i) just says that G is a regular complex and gives lower bounds for the relative
densities of its parts. Condition (ii) is analogous to the minimum degree condition in the
definition of super-regularity for graphs. The second part of the condition says that the
neighbourhood is a regular complex, and that its relative densities are approximately what
one would expect (we will explain the formulae later). The first part says that the proportion
of marked edges through any vertex is not too great. We need this to control the proportion
of free sets that we have to mark as forbidden during the embedding algorithm. To illustrate
this, suppose that in Example 3.8 we have some marked triples M. At time t = 1 we
map x1 to v1, and then the free set for x2x3 is Fx2x3(1) = G(v1)23. Since the edges M123

are marked as forbidden, we will mark Mx2x3,x1x2x3(1) = M(v1)23 ⊆ G(v1)23 as forbidden.
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Condition (ii) ensures that not too great a proportion is forbidden. Note that the density of
the neighbourhood complex G(v1) will be much smaller than the marking parameter θ , so
this does not follow if we only make the global assumption that M is a small proportion
of G.

Condition (iii) is the analogue to condition (ii) for the restrictions that embedding some
vertex can place on the embeddings of sets not containing that vertex. A very simple
illustration is the case I = ({∅}), which gives |MS| ≤ θ |GS| when defined. (This could
also be obtained from condition (ii) by summing over vertices v.) For a more substan-
tial illustration, consider Example 3.8 and the subcomplex I = 23≤ ∪ 24≤ ∪ 34≤. We

noted before the definition that Fx2x3x4(1) = G
Iv1
234 consists of all triples in G234 that also

form a triangle in the neighbourhood of v1. The second part of condition (iii) ensures that

Fx2x3x≤
4
(1) = G

Iv1
234≤ is a regular complex, and that its relative densities are approximately

what one would expect (again, we will explain the formulae later). The first part of con-
dition (iii) again is needed to control the proportion of free sets that are marked. We will
mark Mx2x3x4,x2x3x4(1) = M ∩ Fx2x3x4(1) = (M ∩ GIv1 )234 as forbidden in Fx2x3x4(1), and
the condition says that this is a small proportion. Again, since the neighbourhood of v1 is
sparse relative to G, this does not follow only from a global assumption that M is a small
proportion of G.

As another illustration of condition (iii), suppose that we modify Example 3.8 by delet-
ing the edge x1x2x3 from H. Then Cx2x3x≤

4
(1) = G(v1)24≤ ∪ G(v1)34≤ and Fx2x3x4(1) =

Fx2x3x≤
4
(0)[Cx2x3x≤

4
(1)]234 \ v1 consists of all triples S ∈ G234 such that S24 and S34 are edges

in the neighbourhood of v1. Taking I = 24≤ ∪ 34≤ we have Fx2x3x4(1) = G
Iv1
234. So condition

(iii) tells us that also with this modified H, after embedding x1 to v1 the complex Fx2x3x≤
4
(1)

is regular and we do not mark too much of Fx2x3x4(1) as forbidden.

4. THE 3-GRAPH BLOW-UP LEMMA

In this section we prove the following blow-up lemma for 3-graphs.

Theorem 4.1 (3-graph blow-up lemma). Suppose H is an r-partite 3-complex on X =
X1 ∪ · · · ∪ Xr of maximum degree at most D, (G, M) is an (ε, ε ′, d2, θ , d3)-super-regular
r-partite marked 3-complex on V = V1 ∪ · · · ∪ Vr, where n ≤ |Xi| = |Vi| = |Gi| ≤ Cn
for 1 ≤ i ≤ r, GS is defined whenever HS is defined, and 0 � 1/n � ε � ε ′ � d2 �
θ � d3, 1/r, 1/D, 1/C. Then G \ M contains a copy of H, in which for each 1 ≤ i ≤ r the
vertices of Vi correspond to the vertices of Xi.

Theorem 4.1 is similar in spirit to Theorem 2.1: informally speaking, we can embed
any bounded degree 3-graph in any super-regular marked 3-complex. (The parallel would
perhaps be stronger if we had also introduced marked edges in the graph statement; this
can be done, but there is no need for it, so we preferred the simpler form.) We remark that
we used the assumption |Vi| = |Xi| = n in Theorem 2.1 for simplicity, but the assumption
n ≤ |Vi| = |Xi| ≤ Cn works with essentially the same proof, and is more useful in
applications. (Arbitrary part sizes are permitted in [24], but this adds complications to the
proof, and it is not clear why one would need them, so we will not pursue this option here.)
There are various other generalisations that are useful in applications, but we will postpone
discussion of them until we give the general hypergraph blow-up lemma. Theorem 4.1 is

Random Structures and Algorithms DOI 10.1002/rsa



294 KEEVASH

already sufficiently complex to illustrate the main ideas of our approach, so we prove it first
so as not to distract the reader with additional complications.

The section contains six subsections, organised as follows. In the first subsection we
present the algorithm that we will use to prove Theorem 4.1, and also establish some basic
properties of the algorithm. Over the next two subsections we develop some theory: the
second subsection contains some useful properties of restriction (Definition 3.5); the third
contains some properties of regularity for 3-graphs, which are similar to but subtly different
from known results in the literature. Then we start on the analysis of the algorithm, following
the template established in the proof of Theorem 2.1. The fourth subsection concerns good
vertices, and is analogous to Lemma 2.4. The fifth subsection concerning the initial phase
is the most technical, containing three lemmas that play the role of Lemma 2.5 for 3-
graphs. The final subsection concerns the conclusion of the algorithm, and is analogous to
Lemma 2.6 and Theorem 2.7.

4.1. The Embedding Algorithm

As for the graph blow-up lemma, we will prove Theorem 4.1 via a random greedy algorithm
to construct an embedding φ : V(H) → V(G) such that φ(e) ∈ G \ M for every edge e
of H . In outline, it is quite similar to the algorithm used for graphs, but when it comes to
details the marked edges create significant complications. We introduce more parameters
with the hierarchy

0 ≤ 1/n � ε � ε ′ � ε0,0 � · · · � ε12D,3 � ε∗ � p0 � γ � δQ � p � du � d2

� θ � θ0 � θ ′
0 � · · · � θ12D � θ ′

12D � θ∗ � δ′
Q � δB � d3, 1/r, 1/D.

Most of these parameters do not require any further comment, as we explained their role
in the graph blow-up lemma, and they will play the same role here. We need many more
‘annotated ε’ parameters to measure regularity here, but this is merely a technical incon-
venience. The parameters εi,j with 0 ≤ i ≤ 12D and 0 ≤ j ≤ 3 satisfy εi,j � εi′ ,j′ when
i < i′ or i = i′ and j < j′. Because of the marked edges, we also have new ‘annotated
θ ’ parameters, which are used to bound the proportion of free sets that are marked. It is
important to note that the buffer parameter δB and queue admission parameter δ′

Q are larger
than the marking parameter θ , which in turn is larger than the density parameter d2. The
result is that the queue may become non-empty during the initial phase, and then the set N
of neighbours of the buffer B will not be embedded consecutively in the order given by the
original list L. To cope with this, we need a modified selection rule that allows vertices in
N to jump the queue.

Initialisation and notation. We choose a buffer set B ⊂ X of vertices at mutual distance at
least 9 in H so that |B ∩ Xi| = δB|Xi| for 1 ≤ i ≤ r. Since n ≤ |Xi| ≤ Cn for 1 ≤ i ≤ r
and H has maximum degree D we can construct B simply by selecting vertices one-by-
one greedily. For any given vertex there are at most (2D)8 vertices at distance less than
9, so at any point in the construction we have excluded at most (2D)8rδBCn vertices
from any given Xi. Thus we can construct B provided that (2D)8rδBC < 1.

Let N = ∪x∈BVNH(x) be the set of vertices with a neighbour in the buffer. Then
|N ∩ Xi| ≤ 2DrδBCn <

√
δBn for 1 ≤ i ≤ r.

We order the vertices in a list L = L(0) that starts with N and ends with B. Within
N , we arrange that VNH(x) is consecutive for each x ∈ B. We denote the vertex of H
selected for embedding at time t by s(t). This will usually be the first vertex of L(t −1),
but we will describe some exceptions to this principle in the selection rule below.
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We denote the queue by q(t) and write Q(t) = ∪u≤t q(u). We denote the vertices
jumping the queue by j(t) and write J(t) = ∪u≤t j(u). Initially we set q(0) = Q(0) =
j(0) = J(0) = ∅.

We write FS(t) for the sets of GS that are free to embed a given set S of H. We also
use the convention that FS(t) is undefined if S /∈ H. Initially we set FS(0) = GS for
S ∈ H . We also write Xi(t) = Xi \ {s(u) : u ≤ t} for the unembedded vertices of Xi and
Vi(t) = Vi \ {φ(s(u)) : u ≤ t} for the free positions in Vi. We let X(t) = ∪r

i=1Xi(t) and
V(t) = ∪r

i=1Vi(t).
Iteration. At time t, while there are still some unembedded non-buffer vertices, we select

a vertex to embed x = s(t) according to the following selection rule. Informally, the
rule is that our top priority is to embed any vertex neighbourhood VNH(x) with x ∈ B
as a consecutive sequence before embedding x itself or any other vertex with distance
at most 4 from x, and our second priority is to embed vertices in the queue. Formally,
the rule is:

• If j(t − 1) �= ∅ we select x = s(t) to be any element of j(t − 1),
• If j(t − 1) = ∅ and q(t − 1) �= ∅ we consider any element x′ of q(t − 1).

– If the distance from x′ to all vertices in the buffer B is at least 5 then we select
x = x′ = s(t).

– Otherwise, there is a vertex x′′ ∈ B at distance at most 4 from x′, and x′′ is
unique by the mutual distance property of B. If there are any unembedded
elements of VNH(x′′), we choose one of them to be x = s(t), choosing x′ itself
if x′ ∈ VNH(x′′), and put all other unembedded vertices of VNH(x′′) in j(t). If
all of VNH(x′′) has been embedded we choose x = x′ = s(t).

• If j(t − 1) = q(t − 1) = ∅ we let x = s(t) be the first vertex of L(t − 1).
We choose the image φ(x) of x uniformly at random among all elements y ∈ Fx(t−1)

that are ‘good’, a property that can be informally stated as saying that if we set φ(x) = y
then the free sets FS(t) will be regular, have the correct density, and not create too
much danger of using an edge marked as forbidden. Now we will describe the formal
definition. Note that all expressions at time t are to be understood with the embedding
φ(x) = y, for some unspecified vertex y.

Definitions.
1. For a vertex x we write νx(t) for the number of elements in VNH(x) that have

been embedded at time t. For a set S we write νS(t) = ∑
y∈S νy(t). We also define

ν ′
S(t) as follows. When |S| = 3 we let ν ′

S(t) = νS(t). When |S| = 1, 2 we let
ν ′

S(t) = νS(t) + K , where K is the maximum value of ν ′
Sx′(t′) over vertices x′

embedded at time t′ ≤ t with S ∈ H(x′); if there is no such vertex x′ we let
ν ′

S(t) = νS(t).
2. As in Definition 3.7, for any r-partite set S we define FS(t) = FS(t − 1)y if x ∈ S

or FS(t) = FS≤(t − 1)[FS.x≤(t − 1)(y)]S \ y if x /∈ S. For any sets S′ ⊆ S we write
dS′(F(t)) = dS′(FS≤(t)); there is no ambiguity, as the density is the same for any
S containing S′.

3. We say that S is unembedded if every vertex of S is unembedded, i.e. s(u) /∈ S
for u ≤ t. We define an exceptional set Ex(t − 1) ⊆ Fx(t − 1) by saying y is in
Fx(t − 1) \ Ex(t − 1) if and only if for every unembedded ∅ �= S ∈ H(x),

dS(F(t)) = (1 ± εν′
S (t),0)dS(F(t − 1))dSx(F(t − 1))

and FS(t) is εν′
S (t),0-regular when |S| = 2.

}
(∗4.1)

Lemma 4.13 will imply that Ex(t − 1) is small compared to Fx(t − 1).
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4. As in Definition 3.13, for any triple E ∈ H we write Et for the subset of E that
is unembedded at time t and MEt ,E(t) = {P ∈ FEt (t) : P ∪ φ(E \ Et) ∈ ME}. We
define

Dx,E(t − 1) = {y ∈ Fx(t − 1) : |MEt ,E(t)| > θν′
Et (t)

|FEt (t)|}.

Intuitively, these sets consist of vertices y to which it is dangerous to embed x.
Lemma 4.15 will show that only a small proportion of free vertices are dangerous.

5. Let U(x) be the set of all triples E ∈ H with Et−1 ∩ (VNH(x)∪x) �= ∅. We obtain
the set of good elements OKx(t − 1) from Fx(t − 1) by deleting Ex(t − 1) and
Dx,E(t − 1) for every E ∈ U(x).

We embed x as φ(x) = y where y is chosen uniformly at random from the good
elements of Fx(t − 1). We conclude the iteration by updating L(t − 1), q(t − 1) and
j(t − 1). First we remove x from whichever of these sets it was taken. Then we add to
the queue any unembedded vertex z for which Fz(t) has become ‘too small’. To make
this precise, suppose z ∈ L(t − 1) \ {x}, and let tz be the most recent time at which we
embedded a vertex in VNH(z), or 0 if there is no such time. (Note that if z ∈ VNH(x)
then tz = t.) We add z to q(t) if |Fz(t)| < δ′

Q|Fz(tz)|. This defines L(t), q(t) and j(t).
Repeat this iteration until the only unembedded vertices are buffer vertices, but abort

with failure if at any time we have |Q(t)∩Xi| > δQ|Xi| for some 1 ≤ i ≤ r. Let T denote
the time at which the iterative phase terminates (whether with success or failure).

Conclusion. Suppose x ∈ X(T) is unembedded at time T and we embed the last vertex
of VNH(x) at time tN

x . We define the following available sets for x. We let Ax be
obtained from Fx(tN

x ) by removing all sets Mx,E(tN
x ) for triples E containing x. We let

A′
x = Ax ∩ Vx(T). We choose a system of distinct representatives for {A′

x : x ∈ X(T)}
to complete the embedding, either ending with success if this is possible, or aborting
with failure if it is not possible.

To justify this algorithm, we need to show that if it does not abort with failure then it
does embed H in G \ M. We explained in the previous section why the ‘local consistency’
of the update rule implies that it embeds H in G, so we just need to show that no marked
edge is used. This follows from the following lemma.

Lemma 4.2. Suppose x is the last unembedded vertex of some triple E at time t − 1.
Then Dx,E(t − 1) = Mx,E(t − 1). If φ(x) /∈ Mx,E(t − 1) then φ(E) ∈ G \ M.

Proof. Note that Et−1 = x, Et = ∅ and F∅(t) = {∅} is a set of size 1. If we were to
choose y ∈ Mx,E(t − 1) then we would get M∅,E(t) = {∅} and so |M∅,E(t)| = 1 > θν′

Et (t)
=

θν′
Et (t)

|F∅(t)|. On the other hand, if we choose y /∈ Mx,E(t − 1) then we get M∅,E(t) = ∅ and
so |M∅,E(t)| = 0 < θν′

Et (t)
= θν′

Et (t)
|F∅(t)|. Therefore Dx,E(t − 1) = Mx,E(t − 1). The second

statement is now clear.

It will often be helpful to use the following terminology pertaining to increments of νx(t).
We think of time as being divided into x-regimes, defined by the property that vertices of
VNH(x) are embedded at the beginning and end of x-regimes, but not during x-regimes.
Thus the condition for adding a vertex z to the queue is that the free set for z has shrunk by
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a factor of δ′
Q during the current z-regime. Note that each vertex x defines its own regimes,

and regimes for different vertices can intersect in a complicated manner.
Note that any vertex neighbourhood contains at most 2D vertices. Thus in the selection

rule, any element of the queue can cause at most 2D vertices to jump the queue. Note also
that when a vertex neighbourhood jumps the queue, its vertices are immediately embedded
at consecutive times before any other vertices are embedded.

We collect here a few more simple observations on the algorithm.

Lemma 4.3.

(i) For any 1 ≤ i ≤ r and time t we have |Vi(t)| ≥ δBn/2.
(ii) For any t we have |J(t)| ≤ 2D|Q(t)| ≤ √

δQn.
(iii) We have νx(t) ≤ 2D for any vertex, ν ′

S(t) ≤ 6D when |S| = 3, ν ′
S(t) ≤ 10D when

|S| = 2, and ν ′
S(t) ≤ 12D when |S| = 1. Thus the ε-subscripts are always defined in

(∗4.1).
(iv) For any z ∈ VNH(x) we have νz(t) = νz(t − 1) + 1, so for any S ∈ H that intersects

VNH(x) we have νS(t) > νS(t − 1).
(v) If νS(t) > νS(t − 1) then ν ′

S(t) > ν ′
S(t − 1).

(vi) If z is embedded at time t′ ≤ t and S ∈ H(z) then ν ′
S(t) ≥ ν ′

Sz(t) > ν ′
Sz(t

′ − 1).

Proof. As in the graph blow-up lemma, we stop the iterative procedure when the only
unembedded vertices are buffer vertices, and during the procedure a buffer vertex is only
embedded if it joins the queue. Therefore |Vi(t)| ≥ |B ∩ Vi| − |Q(t) ∩ Vi| ≥ δBn − δQCn ≥
δBn/2, so (i) holds. The fact that an element of the queue can cause at most 2D vertices to
jump the queue gives (ii). Statements (iii) and (iv) are clear from the definitions. Statement
(v) follows because ν ′

S(t) and ν ′
S(t − 1) are obtained from νS(t) and νS(t − 1) by adding

constants that are maxima of certain sets, and the set at time t includes the set at time t − 1.
For (vi) note that ν ′

S(t) = νS(t) + K , with K ≥ ν ′
Sz(t) and ν ′

Sz(t) > ν ′
Sz(t

′ − 1) by (iv)
and (v).

4.2. Restrictions of Complexes

Before analysing the algorithm in the previous subsection, we need to develop some more
theory. In this subsection we prove a lemma that justifies various manipulations involv-
ing restrictions (Definition 3.5). We often consider situations when several restrictions are
placed on a complex, and then it is useful to rearrange them. We define composition of
complexes as follows.

Definition 4.4. We write x ∈∗ S to mean that x ∈ S or S is undefined. Suppose G and G′

are r-partite 3-complexes on X = X1 ∪ · · · ∪ Xr. We define (G ∗ G′)S if GS or G′
S is defined

and say that S ∈ (G ∗ G′)S if A ∈∗ GA and A ∈∗ G′
A for any A ⊆ S. We say that G, G′ are

separate if there is no S �= ∅ with GS and G′
S both defined. Given complexes G1, . . . , Gt we

write
⊙t

i=1 Ji = J1 ∗ · · · ∗ Jt. Similarly we write
⊙

i∈I Ji for the composition of a collection
of complexes {Ji : i ∈ I}.

Note that G ∩ G′ ⊆ G ∗ G′ ⊆ G ∪ G′. To illustrate the relation ∈∗, we note that if G is a
subcomplex of H then H[G] is the set of all S ∈ H such that A ∈∗ GA for all A ⊆ S. It follows
that H ∗G = H[G], see (vi) in the following lemma. More generally, the composition G∗G′
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describes ‘mutual restrictions’, i.e. restrictions that G places on G′ and restrictions that G′

places on G. We record some basic properties of Definition 4.4 in the following lemma.
Since the statement and proof are heavy in notation, we first make a few remarks to indicate
that the properties are intuitive. Property (i) says that mutual restrictions can be calculated
in any order. Property (ii) says that a neighbourhood in a mutual restriction is given by the
mutual restriction of the neighbourhoods and the original complexes. Property (iii) says that
separate restrictions act independently. The remaining properties give rules for rearranging
repeated restrictions. The most useful cases are (v) and the second statement in (vi), which
convert a repeated restriction into a single restriction (the other cases are also used, but their
statements are perhaps less intuitive). One should note that the distinction made earlier
between ‘empty’ and ‘undefined’ is important here; e.g. (G ∗ G′)S undefined implies that
GS and G′

S are undefined, but this is not true with ‘undefined’ replaced by ‘empty’.

Lemma 4.5. Suppose H is an r-partite 3-complex and G, G′, G′′ are subcomplexes of H.

(i) * is a commutative and associative operation on complexes,
(ii) (G ∗ G′)S≤(v) = GS\v≤ ∗ G′

S\v≤ ∗ GS≤(v) ∗ G′
S≤(v) for any v ∈ S ∈ G ∪ G′,

(iii) If G, G′ are separate then G ∗ G′ = G ∪ G′ and H[G][G′] = H[G′][G] = H[G ∪ G′],
(iv) H[G][G ∗ G′] = H[G′][G ∗ G′],
(v) If G′ is a subcomplex of H[G] then H[G][G′] = H[G ∗ G′].

(vi) If G′ is a subcomplex of G then G ∗ G′ = G[G′] and H[G][G[G′]] = H[G′][G[G′]] =
H[G][G′]. If also G′

S is defined whenever GS is defined then H[G][G′] = H[G′].

Proof. (i) By symmetry of the definition we have commutativity G∗G′ = G′ ∗G. Next we
show that G∗G′ is a complex. Suppose A ⊆ S′ ⊆ S ∈ G∗G′. Since S′ ⊆ S ∈ G∪G′ we have
S′ ∈ G∪G′. Since A ⊆ S ∈ G∗G′ we have A ∈∗ GA and A ∈∗ G′

A. Therefore S′ ∈ G∗G′, so
G∗G′ is a complex. Now we show associativity, i.e. (G∗G′)∗G′′ = G∗ (G′ ∗G′′). Suppose
S ∈ (G ∗ G′) ∗ G′′. We claim that for any A ⊆ S we have A ∈∗ GA, A ∈∗ G′

A and A ∈∗ G′′
A.

To see this, we apply the definition of (G ∗ G′) ∗ G′′ to get A ∈∗ (G ∗ G′)A and A ∈∗ G′′
A. If

A ∈ (G ∗ G′)A we have A ∈∗ GA and A ∈∗ G′
A. Otherwise, (G ∗ G′)A is undefined, so GA and

G′
A are undefined. This proves the claim. Now S ∈ (G∗G′)∗G′′ implies that S ∈ G∪G′∪G′′,

so S ∈ G or S ∈ G′ ∪G′′. If S ∈ G′ ∪G′′ then by the claim we have A ∈∗ G′
A and A ∈∗ G′′

A for
A ⊆ S, so S ∈ G′ ∗ G′′. Therefore S ∈ G ∪ (G′ ∗ G′′). Also, if A ⊆ S with (G′ ∗ G′′)A defined
then, for any A′ ⊆ A, since A′ ⊆ S, the claim gives A′ ∈∗ G′

A′ and A′ ∈∗ G′′
A′ . Therefore

A ∈ (G′ ∗ G′′)A. This shows that S ∈ G ∗ (G′ ∗ G′′), so (G ∗ G′) ∗ G′′ ⊆ G ∗ (G′ ∗ G′′). Also,
G∗(G′ ∗G′′) = (G′′ ∗G′)∗G ⊆ G′′ ∗(G′ ∗G) = (G∗G′)∗G′′, so (G∗G′)∗G′′ = G∗(G′ ∗G′′).

(ii) Suppose v ∈ S ∈ G ∗ G′. Then A ∈∗ GA and A ∈∗ G′
A for any A ⊆ S. Applying

this to A = A′v for any A′ ⊆ S \ v gives A′ ∈∗ GA(v) and A′ ∈∗ G′
A(v). Thus S \ v ∈

GS\v≤ ∗ G′
S\v≤ ∗ GS≤(v) ∗ G′

S≤(v). Conversely, suppose that v ∈ S ∈ G ∪ G′ and S \ v ∈
GS\v≤ ∗ G′

S\v≤ ∗ GS≤(v) ∗ G′
S≤(v). Then A ∈∗ GA, A ∈∗ G′

A, Av ∈∗ GAv and Av ∈∗ G′
Av for any

A ⊆ S \ v, so S ∈ G ∗ G′.
(iii) Suppose ∅ �= A ⊆ S ∈ G. Then A ∈ GA and G′

A is undefined, since G, G′ are separate.
Therefore S ∈ G∗G′, so G ⊆ G∗G′. Similarly G′ ⊆ G∗G′, so G∗G′ = G∪G′. Next we note
that G′ ⊆ H[G]: if S ∈ G′ then S ∈ H and GA is undefined for any ∅ �= A ⊆ S. Similarly
G ⊆ H[G′], so H[G][G′] and H[G′][G] are well-defined. Now suppose S ∈ H[G][G′]. Since
S ∈ H[G], for any A ⊆ S we have A ∈∗ GA. Since S ∈ H[G][G′], for any A ⊆ S we have
A ∈∗ G′

A. This shows that S ∈ H[G′][G] and S ∈ H[G′ ∪ G]. Applying the same argument
to any S ∈ H[G′][G] we deduce that H[G][G′] = H[G′][G] ⊆ H[G ∪ G′]. Conversely,
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if S ∈ H[G ∪ G′] then for any A ⊆ S we have A ∈∗ GA ∪ G′
A. Since G, G′ are separate,

we have A ∈∗ GA and A ∈∗ G′
A. Therefore S ∈ H[G][G′] = H[G′][G]. It follows that

H[G][G′] = H[G′][G] = H[G ∪ G′].
(iv) We first show that H[G][G ∗ G′] ⊆ H[G′][G ∗ G′]. Suppose S ∈ H[G][G ∗ G′]. Then

S ∈ H[G] ⊆ H. Since S ∈ H[G][G ∗ G′], for any A ⊆ S we have A ∈∗ (G ∗ G′)A. Consider
any A ⊆ S such that G′

A is defined. Then (G ∗ G′)A is defined, so A ∈ (G ∗ G′)A ⊆ G′
A.

Therefore S ∈ H[G′]. Now consider any A ⊆ S such that (G ∗ G′)A is defined. Since
S ∈ H[G][G ∗ G′] we have A ∈ (G ∗ G′)A. Therefore S ∈ H[G′][G ∗ G′]. Similarly,
H[G′][G ∗ G′] ⊆ H[G][G ∗ G′], so equality holds.

(v) First we show that H[G ∗ G′] ⊆ H[G][G′]. Suppose S ∈ H[G ∗ G′]. Then S ∈ H.
Also, for any A ⊆ S we have A ∈∗ (G ∗ G′)A, and so A ∈∗ GA and A ∈∗ G′

A. This implies
that S ∈ H[G], and then that S ∈ H[G][G′]. Now we show that H[G][G′] ⊆ H[G ∗ G′].
Suppose S ∈ H[G][G′]. Then S ∈ H[G] ⊆ H. Since S ∈ H[G], for any A ⊆ S we have
A ∈∗ GA. Since S ∈ H[G][G′], for any A ⊆ S we have A ∈∗ G′

A. Thus for any A′ ⊆ A ⊆ S
we have A′ ∈∗ GA′ and A′ ∈∗ G′

A′ , so A ∈∗ (G ∗ G′)A. Therefore S ∈ H[G ∗ G′].
(vi) We first note that G ∗ G′ = G[G′] is immediate from Definitions 4.4 and 3.5.

Then H[G][G[G′]] = H[G′][G[G′]] follows from (iv). Now we show that H[G][G[G′]] =
H[G][G′]. Suppose that S ∈ H[G][G[G′]]. Then S ∈ H[G]. Consider any A ⊆ S such that
G′

A is defined. Since S ∈ H[G][G[G′]] we have A ∈ G[G′]A, and so A ∈ G′
A. Therefore

S ∈ H[G][G′]. Conversely, suppose that S ∈ H[G][G′]. Consider any A ⊆ S such that
G[G′]A is defined. Then GA is defined, so A ∈ GA, since S ∈ H[G]. Also, for any A′ ⊆ A
with G′

A′ defined we have A′ ∈ G′
A′ , since S ∈ H[G][G′]. Therefore A ∈ G[G′]A. This shows

that S ∈ H[G][G[G′]]. The second statement is immediate.

4.3. Hypergraph Regularity Properties

In this subsection we record some useful properties of hypergraph regularity, analogous to
the standard facts we mentioned earlier for graph regularity. Similar results can be found e.g.
in [6, 9, 18], but with stronger assumptions on the hierarchy of parameters. However, with
the same proof, we obtain Lemma 4.6 under weaker assumptions on the parameters, which
will be crucial to the proof of Lemma 4.13. We start with two analogues to Lemma 2.2,
the first concerning graphs that are neighbourhoods of a vertex, and the second sets that are
neighbourhood of a pair of vertices.

Lemma 4.6 (Vertex neighbourhoods). Suppose 0 < ε � d and 0 < η � η′ � d and G
is a 3-partite 3-complex on V = V1 ∪V2 ∪V3 with all densities dS(G) > d. Suppose also that
G13, G12 are ε-regular, and G23, G123 are η-regular. Then for all but at most (4ε + 2η′)|G1|
vertices v ∈ G1 we have |G(v)j| = (1±ε)d1j(G)|Gi| for j = 2, 3 and G(v)23 is an η′-regular
graph of relative density d23(G(v)) = (1 ± η′)d123(G)d23(G).

Proof. First we apply Lemma 2.2 to see that all but at most 4ε|G1| vertices in G1 have
degree (d1j(G) ± ε)|Gj| in G1j, for j = 2, 3. Let G′

1 be the set of such vertices. It suffices
to show the claim that all but at most 2η′|G1| vertices v ∈ G′

1 have the following property:
if Av

2 ⊆ G(v)2 and Av
3 ⊆ G(v)3 are sets with |Av

2| > η′|G(v)2| and |Av
3| > η′|G(v)3|, then

the bipartite subgraph Av
23 ⊆ G23 spanned by Av

2 and Av
3 has |Av

23| = (d23(G) ± η)|Av
2||Av

3|
edges, and the bipartite subgraph A(v)23 ⊆ G(v)23 spanned by Av

2 and Av
3 has |A(v)23| =

(1 ± η′/2)d123(G)|Av
23| edges.
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Suppose for a contradiction that this claim is false. Note that for any v ∈ G′
1 and sets

Av
2 ⊆ G(v)2, Av

3 ⊆ G(v)3 with |Av
2| > η′|G(v)2|, |Av

3| > η′|G(v)3| we have |Av
j | > η′(d1j(G)−

ε)|Gj| > η|Gj| for j = 2, 3 so |Av
23| = (d23(G) ± η)|Av

2||Av
3| since G23 is η-regular. Then

without loss of generality, we can assume that we have vertices v1, . . . , vt ∈ G′
1 with t >

η′|G1|, and sets Avi
2 ⊆ G(vi)2, Avi

3 ⊆ G(vi)3 with |Avi
2 | > η′|G(vi)2| and |Avi

3 | > η′|G(vi)3|,
such that |A(vi)23| < (1 − η′/2)d123(G)|Avi

23| for 1 ≤ i ≤ t. Define tripartite graphs Ai =
Avi

23 ∪ {via : a ∈ Avi
2 ∪ Avi

3 } and A = ∪t
i=1Ai.

We can count the number of triangles in these graphs as T123(A) = ∑t
i=1 T123(Ai) =∑t

i=1 |Avi
23|. Now t > η′|G1|, |Avi

23| > (d23(G) − η)|Avi
2 ||Avi

3 |, d23(G) > d, |Avi
j | > η′|G(vi)j|

and |G(vi)j| > (d − ε)|Gj| for 1 ≤ i ≤ t, j = 2, 3, so

T123(A) > η′|G1| · (d − η) · η′(d − ε)|G2| · η′(d − ε)|G3| > η|G1||G2||G3| ≥ ηT123(G).

Since G123 is η-regular we have |G∩T123(A)|
|T123(A)| = d123(G) ± η. Therefore

|G ∩ T123(A)| > (d123(G) − η)|T123(A)| = (d123(G) − η)

t∑
i=1

|Avi
23|.

But we also have

|G ∩ T123(A)| =
t∑

i=1

|A(vi)23| <

t∑
i=1

(1 − η′/2)d123(G)
∣∣Avi

23

∣∣ < (d123(G) − η)

t∑
i=1

∣∣Avi
23

∣∣,
contradiction. This proves the required claim.

Lemma 4.7 (Pair neighbourhoods). Suppose 0 < ε � ε ′ � d and G is an ε-regular
3-partite 3-complex on V = V1 ∪ V2 ∪ V3 with all densities dS(G) > d. Then for all but at
most ε ′|G12| pairs uv ∈ G12 we have |G(uv)3| = (1 ± ε ′)d123(G)d13(G)d23(G)|G3|.

Proof. Introduce another parameter η with ε � η � ε ′. By Lemma 4.6, for all but at
most 6ε|G1| vertices v ∈ G1 we have |G(v)i| = (1 ± ε)d1i(G)|Gi| for i = 2, 3 and G(v)23

is an η-regular graph of relative density d23(G(v)) = (1 ± η)d123(G)d23(G). Let G′
1 be the

set of such vertices v ∈ G1. Then for any v ∈ G′
1, applying Lemma 2.2 to G(v)23, we see

that for all but at most 2η|G(v)2| ≤ 2η|G2| vertices in u ∈ G(v)2, the degree of u in G(v)23

satisfies

|G(uv)3| = (d23(G(v)) ± η)|G(v)3| = ((1 ± η)d123(G)d23(G) ± η)(d13(G) ± ε)|G3|
= (1 ± ε ′)d123(G)d13(G)d23(G)|G3|.

Since |G12| = d12(G)|G1||G2| > d|G1||G2|, this estimate holds for all pairs uv ∈ G12 except
for at most 6ε|G1| · |G2| + |G1| · 2η|G2| < ε ′|G12|.

Next we give an analogue of Lemma 2.3, showing that regularity is preserved by
restriction.

Lemma 4.8 (Regular restriction). Suppose 0 < ε � d, G is a 3-partite 3-complex on
V = V1 ∪ V2 ∪ V3 with all densities dS(G) > d, G123 is ε-regular, and J ⊆ G is a 2-complex
with |J∗

123| >
√

ε|G∗
123|. Then G[J]123 is

√
ε-regular and d123(G[J]) = (1 ± √

ε)d123(G).
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Proof. Since G123 is ε-regular, |G[J]123| = |G ∩ J∗
123| = (d123(G) ± ε)|J∗

123| and
d123(G[J]) = |G[J]123|/|G[J]∗123| = |G[J]123|/|J∗

123| = d123(G) ± ε. Now consider any
subcomplex A of J with |A∗

123| >
√

ε|J∗
123|. Then |A∗

123| > ε|G∗
123|, so since G123 is ε-regular,

|G[J] ∩ A∗
123| = |G ∩ A∗

123| = (d123(G) ± ε)|A∗
123| = (d123(J[G]) ± √

ε)|A∗
123|, i.e. G[J]123

is
√

ε-regular.

It is worth noting the special case of Lemma 4.8 when J is a 1-complex. Then G[J] is
obtained from G by discarding some vertices, i.e. a restriction according to the traditional
definition. In particular, we see that regularity implies vertex regularity (the weak property
mentioned at the beginning of Section 3). We also record the following consequence of
Lemma 4.8.

Corollary 4.9. Suppose 0 < ε � d, G is a 3-partite 3-complex on V = V1 ∪ V2 ∪ V3

with all densities dS(G) > d and G123 is ε-regular. Suppose also 0 < η � d, J ⊆ G is a
2-complex with all densities dS(J) > d and J12, J13, J23 are η-regular.

Then G[J]123 is
√

ε-regular and d123(G[J]) = (1 ± √
ε)d123(G).

Proof. We have |J∗
123| = |T123(J)| = (1 ± 8η)d12(J)d13(J)d23(J)|J1||J2||J3| >

1
2 d6|V1||V2||V3| >

√
ε|G∗

123| by the triangle counting lemma (1). The result now follows
from Lemma 4.8.

Next we note a simple relationship between relative and absolute densities.

Lemma 4.10. Suppose 0 < ε � d, G is a 3-partite 3-complex on V = V1 ∪ V2 ∪ V3 with
all densities dS(G) > d and G is ε-regular. Then d(G123) = (1 ± 8ε)

∏
S⊆123 dS(G).

Proof. d(G123) = |G123|
|V1||V2||V3| = |G123|

|T123(G)| · |T123(G)|
|V1||V2||V3| = d123(G) · (1 ± 8ε)

∏
S�123 dS(G) by

(1).

The following more technical lemma will be useful in the proof of Lemma 4.15. Later
we will give a more general proof that is slicker, but conceptually more difficult, as it uses
the ‘plus complex’ of Definition 6.8. For the convenience of the reader, in the 3-graph case
we will use a proof that is somewhat pedestrian, but perhaps easier to follow.

Lemma 4.11. Suppose 0 < ε � ε ′ � d, G is a 4-partite 3-complex on V = V1 ∪ V2 ∪
V3 ∪ V4 with all densities dS(G) > d and G is ε-regular.

(i) For any P ∈ G123 and subcomplex I of 123<, let GP,I be the set of vertices v ∈ G4

such that PS ∪ v ∈ GS∪4 for all S ∈ I. Let BI be the set of P ∈ G123 such that we do
not have |GP,I | = (1 ± ε ′)|V4|∏∅�=S∈I dS∪4(G). Then |BI | < ε ′|G123|.

(ii) For any P′ ∈ G12 and subcomplex I ′ of 12< let G′
P′ ,I ′ be the set of vertices v ∈ G4 such

that P′
S′ ∪ v ∈ GS′∪4 for all S′ ∈ I ′. Let B′

I ′ be the set of P′ ∈ G12 such that we do not
have |G′

P′ ,I ′ | = (1 ± ε ′)|V4|∏∅�=S′∈I ′ dS∪4(G). Then |B′
I ′ | < ε ′|G12|.

Proof. Introduce auxiliary constants with a hierarchy ε � ε1 � ε2 � ε3 � ε ′. We
consider selecting the vertices P1, P2, P3 of P in turn, at each step identifying some
exceptional sets P for which the stated estimate on GP,I might fail. First we choose
P1 so that |G(P1)i| = (1 ± ε)d1i(G)|Gi| and G(P1)ij is an ε1-regular graph of rela-
tive density dij(G(P1)) = (1 ± ε1)d1ij(G)dij(G) for distinct i, j in {2, 3, 4}. Applying
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Lemma 4.6 with η = ε and η′ = ε1/4, we see that this holds for all but at most
ε1|G1| vertices P1 ∈ G1. Then the number of exceptional sets P at this stage is at most
ε1|G1||V2||V3| = ε1d1(G)d(G123)

−1|G123| <
√

ε1|G123|.
Now let J1 ⊆ G234< be the 2-complex defined as follows. We define the singleton parts

by J1
4 equals G(P1)4 if 1 ∈ I or G4 if 1 /∈ I , J1

2 equals G(P1)2 if 12 ∈ I or G2 if 12 /∈ I ,
and J1

3 equals G(P1)3 if 13 ∈ I or G3 if 13 /∈ I . We define the graphs by restriction to the
singleton parts of the following: G(P1)24 if 12 ∈ I or G24 if 12 /∈ I , G(P1)34 if 13 ∈ I or
G34 if 13 /∈ I , G(P1)23 if 123 ∈ I or G23 if 123 /∈ I . Then J1 is

√
ε1-regular by Lemma 2.3.

The graph densities dij(J1) are either (1 ± ε1)d1ij(G)dij(G) or (1 ± ε1)dij(G), according as
we restrict G(P1)ij or Gij.

Let G1 = G234≤[J1]. Then G1
234 is ε1-regular with d234(G1) = (1 ± ε1)d234(G) by Corol-

lary 4.9. Next we choose P2 so that |G1(P2)i| = (1 ± ε2)d2i(G1)|G1
i | for i = 3, 4 and

G1(P2)34 is an ε2-regular graph of relative density d34(G1(P2)) = (1 ± ε2)d234(G1)d34(G1).
By Lemma 4.6 this holds for all but at most ε2|G1

2| vertices P2 ∈ G1
2, so similarly to above,

the number of exceptional sets P at this stage is at most
√

ε2|G123|. Let J2 ⊆ G1
34≤ be the

2-complex in which J2
4 is G1(P2)4 if 2 ∈ I or G1

4 if 2 /∈ I , J2
3 is G1(P2)3 if 23 ∈ I or

G1
3 if 23 /∈ I , and J2

34 is G1(P2)34 if 23 ∈ I or G1
34 if 23 /∈ I . Then J2

34 is
√

ε2-regular by
Lemma 2.3, with d34(J2) either (1 ± ε2)d234(G1)d34(G1) or (1 ± ε2)d34(G1), according as
we restrict G1(P2)34 or G1

34.
Now we choose P3 so that |J2(P3)4| = (1 ± ε3)d34(J2)|J2

4 |. By Lemma 2.2 this holds for
all but at most ε3|J2

3 | vertices P3 ∈ J2
3 , giving at most

√
ε3|G123| exceptional sets P here. In

total, the number of exceptional sets at any stage is fewer than ε ′|G123|. By construction,
GP,I equals J2(P3)4 if 3 ∈ I or J2

4 if 3 /∈ I . If P is not exceptional then we can estimate |GP,I |
by tracing back through the stages. At stage 3 we multiply |J2

4 | by (1 ± ε3)d34(J2) if 3 ∈ I ,
where d34(J2) is (1 ± ε2)d234(G1)d34(G1) if 23 ∈ I or (1 ± ε2)d34(G1) if 23 /∈ I , where
d234(G1) = (1±ε1)d234(G) and d34(G1) is (1±ε1)d134(G)d34(G) if 13 ∈ I or (1±ε1)d34(G)

if 13 /∈ I . Thus we obtain a factor of dS4(G) whenever 3 ∈ S ∈ I . At stage 2, we obtain |J2
4 |

from |G1
4| by multiplying by (1±ε2)d24(G1) if 2 ∈ I , where d24(G1) is (1±ε1)d124(G)d24(G)

if 12 ∈ I or (1±ε1)d24(G) if 12 /∈ I . Thus we obtain a factor of dS4(G) whenever 2 ∈ S ∈ I ,
3 /∈ S. Finally, at stage 1, we obtain |G1

4| from |G4| by multiplying by (1 ± ε1)d14(G1) if
1 ∈ I . Combining all factors we obtain |GP,I | = (1 ± ε ′)|V4|∏∅�=S∈I dS4(G).

This proves (i). The proof of (ii) is similar and much simpler (alternatively it could be
deduced from (i)). We consider selecting the vertices P′

1 and P′
2 of P′ in turn. We choose P′

1

so that |G(P′
1)4| = (1 ± ε)d14(G)|G4|. We let G′

4 be G4 if 1 /∈ I or G(P′
1)4 if 1 ∈ I , and G′

24

be the restriction of G24 to G2 and G′
4. Then G′

24 is ε1-regular with d24(G′) = (1 ± ε)d24(G).
We choose P′

2 so that |G′
24(P

′
2)| = (1 ± ε1)d24(G′)|G′

4|. Then G′
P′ ,I ′ is G′

24(P
′
2) if 2 ∈ I or G′

4

if 2 /∈ I . Now |G′
P′ ,I ′ | is obtained from |G4| by multiplying by (1 ± ε)d14(G) if 1 ∈ I and

(1 ± ε1)(1 ± ε)d24(G) if 2 ∈ I , so |G′
P′ ,I ′ | = (1 ± ε ′)|V4|∏∅�=S′∈I ′ dS∪4(G). It is clear that

there are at most ε ′|G12| exceptional sets P′.

Finally we give another formulation of the neighbourhood Lemmas 4.6 and 4.7, showing
that most vertices and pairs are close to ‘average’.

Lemma 4.12 (Averaging). Suppose 0 < ε � ε ′ � d, G is a 3-partite 3-complex on
V = V1 ∪ V2 ∪ V3 with all densities dS(G) > d and G is ε-regular. Then

(i) for all but at most ε ′|G1| vertices v ∈ G1 we have |G(v)23| = (1 ± ε ′)|G123|/|G1|,
(ii) for all but at most ε ′|G12| pairs uv ∈ G12 we have |G(uv)3| = (1 ± ε ′)|G123|/|G12|.
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Proof. By Lemma 4.6 with η = ε and η′ = ε ′/4, for all but at most ε ′|G1| vertices v ∈ G1,
|G(v)i| = (1 ± ε)d1i(G)|Gi| = (1 ± ε)d1i(G)di(G)|Vi| for i = 2, 3 and d23(G(v)) =
(1 ± ε ′/4)d123(G)d23(G). For such v we have |G(v)23| = d23(G(v))|G(v)2||G(v)3| =
(1 ± ε ′/3)|V2||V3|∏S⊆123,S �=1 dS(G). Also, |G123| = (1 ± 8ε)|V1||V2||V3|∏S⊆123 dS(G) by
Lemma 4.10, so |G(v)23| = (1 ± ε ′)|G123|/|G1|, giving (i). For (ii), Lemma 4.10 gives
|G123|/|G12| = (1 ± 8ε)|V3|∏3∈S⊆123 dS(G). Then by Lemma 4.7, replacing ε ′ with ε ′/2,
for all but at most ε ′|G12| pairs uv ∈ G12, |G(uv)3| = (1± ε ′/2)d123(G)d13(G)d23(G)|G3| =
(1 ± ε ′/2)|V3|∏3∈S⊆123 dS(G) = (1 ± ε ′)|G123|/|G12|.

4.4. Good Vertices

We start the analysis of the algorithm by showing that most free vertices are good. Our first
lemma handles the definitions for regularity and density in the algorithm.

Lemma 4.13. The exceptional set Ex(t − 1) defined by (∗4.1) satisfies |Ex(t − 1)| <

ε∗|Fx(t − 1)|, and FS(t) is εν′
S (t),1-regular with dS(F(t)) ≥ du for every S ∈ H.

Proof. We argue by induction on t. At time t = 0 the first statement is vacuous. The second
statement at time 0 follows from the fact that FS(0) = GS and our assumption that (G, M)

is (ε, ε ′, d2, θ , d3)-super-regular: condition (i) in Definition 3.16 tells us that GS is ε-regular,
with dS(G) ≥ d|S| if |S| = 2, 3. Also dS(G) = 1 if |S| = 0, 1, as we assumed that Gi = Vi

in the hypotheses of Theorem 4.1. Now suppose t ≥ 1 and ∅ �= S ∈ H is unembedded, so
x /∈ S. We consider various cases for S to establish the bound on the exceptional set and the
regularity property, postponing the density bound until later in the proof.

We start with the case when S ∈ H(x). Suppose first that S = vw with xvw ∈ H. By
induction FS′(t−1) is εν′

S′ (t−1),1-regular and dS′(F(t−1)) ≥ du for every S′ ⊆ xvw. Write ν =
max{ν ′

xv(t−1), ν ′
xw(t−1)} and ν∗ = max{ν ′

vw(t−1), ν ′
xvw(t−1)}. We claim that ν ′

vw(t) > ν∗.
This holds by Lemma 4.3: (iv) gives νvw(t) > νvw(t−1), (v) gives ν ′

vw(t) > ν ′
vw(t−1), and (vi)

gives ν ′
vw(t) > ν ′

xvw(t−1). Now applying Lemma 4.6, for all but at most (4εν,1+2εν∗ ,2)|Fx(t−
1)|vertices y ∈ Fx(t−1)we have |Fv(t)| = |Fxv(t−1)(y)| = (1±εν,1)dxv(F(t−1))|Fv(t−1)|,
|Fw(t)| = |Fxw(t − 1)(y)| = (1 ± εν,1)dxw(F(t − 1))|Fw(t − 1)|, and Fvw(t) = Fxvw(t − 1)(y)
is an εν∗ ,2-regular graph with dvw(F(t)) = (1 ± εν∗ ,2)dxvw(F(t − 1))dvw(F(t − 1)). Since
ν ′

vw(t) > ν∗ we have (∗4.1) when S = vw for such y. Note that it is important for this argument
that Lemma 4.6 makes no assumption of any relationship between ν and ν∗. For future
reference we also note that the density bounds at time t − 1 imply that dvw(F(t)) > d2

u/2;
we will show a lower bound of du later, but this interim bound will be useful before then.

The argument when S = {v} ∈ H(x) has size 1 is similar and more straightforward. By
Lemma 2.2, for all but at most 2εν′

xv(t−1),1|Fx(t −1)| vertices y ∈ Fx(t −1) we have |Fv(t)| =
|Fxv(t −1)(y)| = (1±εν′

xv(t−1),1)dxv(F(t −1))|Fv(t −1)|. Also, we have ν ′
v(t) > ν ′

xv(t −1) by
Lemma 4.3(vi), so (∗4.1) holds when S = {v} for such y. We also note for future reference
that dv(F(t)) > d2

u/2. In the argument so far we have excluded at most 6ε12D,2|Fx(t − 1)|
vertices y ∈ Fx(t − 1) for each of at most 3D sets S ∈ H(x) with |S| = 1 or |S| = 2; this
gives the required bound on Ex(t − 1). We also have the required regularity property of
FS(t), but for now we postpone showing the density bounds.

Next we consider the case when S ∈ H and S /∈ H(x). If S = {v} has size 1 then
|Fv(t)| = |Fv(t−1)\y| ≥ |Fv(t−1)|−1, so dv(F(t)) ≥ dv(F(t−1))−1/n > du/2, say. Next
suppose that S = vw has size 2. Recall that Lemma 3.11 gives FS(t) = FS≤(t −1)[FS<(t)]S.
Then Fvw(t) is the bipartite subgraph of Fvw(t − 1) induced by Fv(t) and Fw(t). We have
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Fv(t) = Fxv(t − 1)(y) if xv ∈ H or Fv(t − 1) \ y if xv /∈ H. Similarly, Fw(t) = Fxw(t − 1)(y)
if xw ∈ H or Fw(t − 1) \ y if xw /∈ H. Since we choose y /∈ Ex(t − 1), if xv ∈ H then
|Fv(t)| = (1 ± εν′

v(t),1)dv(F(t − 1))dxv(F(t − 1)) > 1
2 du|Fv(t − 1)|, and if xv /∈ H then

|Fv(t)| = |Fv(t − 1) \ y| ≥ |Fv(t)| − 1. Similarly, if xw ∈ H then |Fw(t)| > 1
2 du|Fw(t − 1)|,

and if xw /∈ H then |Fw(t)| ≥ |Fw(t)| − 1. Now Fvw(t − 1) is εν′
vw(t−1),1-regular, so by

Lemma 2.3, Fvw(t) is εν′
vw(t−1),2-regular and dvw(F(t)) = (1 ± εν′

vw(t−1),2)dvw(F(t − 1)). This
gives the required regularity property for Fvw(t) in the case that vw intersects VNH(x), when
we have ν ′

vw(t) > ν ′
vw(t − 1) by Lemma 4.3(v). In fact, we are only required to show that

Fvw(t) is εν′
vw(t),1-regular, but this stronger regularity property will be useful for the case when

vw and VNH(x) are disjoint. Now consider the case that vw and VNH(x) are disjoint. Let t′

be the most recent time at which we embedded a vertex x′ with a neighbour in vw. Then
by Lemma 3.12, Fvw≤(t) is obtained from Fvw≤(t′) just by deleting all sets containing any
vertices that are embedded between time t′ + 1 and t. Thus Fvw(t) is the bipartite subgraph
of Fvw(t′) spanned by Fv(t) and Fw(t). Now Fvw(t′) is εν′

vw(t′−1),2-regular, by the stronger
regularity property just mentioned above. Since ν ′

vw(t) ≥ ν ′
vw(t′) > ν ′

vw(t′ − 1), Lemma 2.3
gives the required regularity property for Fvw(t). For future reference, we note that in either
case the bound dvw(F(t − 1)) > du implies that dvw(F(t)) > du/2.

Continuing with the case when S ∈ H and S /∈ H(x), we now suppose that |S| = 3.
Again we use FS(t) = FS≤(t − 1)[FS<(t)]S. If S′ � S, whether S′ ∈ H(x) or S′ /∈ H(x),
we have shown above that dS′(F(t)) > d2

u/2, and if |S′| = 2 that FS′(t) is εν′
S′ (t),1-regular.

Since FS(t − 1) is εν′
S (t−1),1-regular, Corollary 4.9 implies that FS(t) is εν′

S (t−1),2-regular and
dS(F(t)) = (1± εν′

S (t−1),2)dS(F(t −1)). This gives the required regularity property for FS(t)
in the case that S intersects VNH(x), when we have ν ′

S(t) > ν ′
S(t−1). As above, although we

are only required to show that FS(t) is εν′
S (t),1-regular, this stronger regularity property will be

useful for the case when S and VNH(x) are disjoint. Suppose S and VNH(x) are disjoint. Let
t′ be the most recent time at which we embedded a vertex x′ with a neighbour in S. Then by
Lemma 3.12, FS≤(t) is obtained from FS≤(t′) just by deleting all sets containing any vertices
that are embedded between time t′ + 1 and t. Equivalently, FS(t) = FS(t′)[((Fv(t) : v ∈
S), {∅})]. Now FS(t′) is εν′

S (t′−1),2-regular, by the stronger regularity property just mentioned
above. Since ν ′

S(t) ≥ ν ′
S(t

′) > ν ′
S(t

′−1), Corollary 4.9 gives the required regularity property
for FS(t).

Now we have established the bound on Ex(t−1) and the regularity properties, so it remains
to show the density bounds. First we consider any unembedded S ∈ H with |S| = 3. We
claim that

FS(t) = GS≤[FS<(t)]S. (4)

To see this we use induction. In the base case t = 0 we have FS(0) = GS and GS≤[FS<(0)] =
GS≤[GS< ] = GS≤ , so GS≤[FS<(0)] = GS. For t > 0, Lemma 3.11 gives FS(t) = FS≤(t −
1)[FS<(t)]S, i.e. FS(t) consists of all triples in FS(t − 1) that form triangles in FS<(t). The
induction hypothesis gives FS(t − 1) = GS≤[FS<(t − 1)]S, and so we can write FS(t) =
GS≤[FS<(t − 1)][FS<(t)]S. Now FS<(t) ⊆ FS<(t − 1), so Lemma 4.5(vi) gives GS≤[FS<(t −
1)][FS<(t)] = GS≤[FS<(t − 1)[FS<(t)]] = GS≤[FS<(t)]. This proves (4). Also, we showed
above that for every S′ � S, we have dS′(F(t)) > d2

u/2, and if |S′| = 2 then FS′(t) is
εν′

S′ (t),1-regular. Since GS is ε-regular, Corollary 4.9 shows that FS(t) is
√

ε-regular and

dS(F(t)) = (1 ±√
ε)dS(G) > d3/2. This gives the required bound dS(F(t)) > du, although

we will also use the stronger bound of d3/2 below.
Next consider any unembedded pair vw ∈ H. Let t′ ≤ t be the most recent time

at which we embedded a vertex x′ with x′vw ∈ H, or let t′ = 0 if there is no such
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vertex x′. Note that we have t′ = t if xvw ∈ H. For t∗ ≤ t, let J(t∗) be the 1-complex
(Fv(t∗), Fw(t∗), {∅}). We claim that Fvw(t∗) = Fvw≤(t′)[J(t∗)]vw for t′ ≤ t∗ ≤ t. This fol-
lows by induction, similarly to the argument when |S| = 3. When t = t′ the claim follows
from Fvw≤(t′)[J(t′)] = Fvw≤(t′). For t∗ > t′, we have vw /∈ H(x), so Lemma 3.11 gives
Fvw(t∗) = Fvw≤(t∗ − 1)[J(t∗)]vw. Since Fvw(t∗ − 1) = Fvw≤(t′)[J(t∗ − 1)]vw by induction,
Lemma 4.5(vi) gives Fvw(t∗) = Fvw≤(t′)[J(t∗−1)][J(t∗)]vw = Fvw≤(t′)[J(t∗)]vw, as claimed.
Now we claim that dvw(F(t)) > (d3/4)it d2/2, where we temporarily use it to denote the
number of embedded vertices x′ at time t with x′vw ∈ H. To see this, we argue by induction,
noting that initially dvw(F(0)) = dvw(G) > d2. Also, if it = 0 then Fvw(t) = Gvw≤[J(t)]vw,
so dvw(F(t)) > d2/2 by Lemma 2.3. Now suppose that it > 0, so that t′ and x′ are defined
above. By induction we have dvw(F(t′ − 1)) > (d3/4)it−1d2/2. Also dx′vw(F(t′ − 1)) >

d3/2 by the lower bound just proved for relative densities of triples, so (∗4.1) gives
dvw(F(t′)) = (1 ± εν′

vw(t′),0)dvw(F(t′ − 1))dx′vw(F(t′ − 1)) > (d3/4)it−1d2/2 · d3/2. Since
Fvw(t) = Fvw≤(t′)[J(t)]vw, Lemma 2.3 gives dvw(F(t)) > dvw(F(t′))/2 > (d3/4)it d2/2, as
claimed. Since it ≤ D we have dvw(F(t)) > 2d2D

3 d2, say. In particular we have the required
bound of dvw(F(t)) > du.

Finally we consider any unembedded vertex z. Let tz ≤ t be the most recent time at
which we embedded a neighbour w = s(tz) of z, or tz = 0 if there is no such time. If
tz > 0 then by (∗4.1) and the above bound for pair densities we have dz(F(tz)) > dwz(F(tz −
1))dz(F(tz − 1))/2 > d2D

3 d2dz(F(tz − 1)). Now we consider cases according to whether z
is in the list L(t − 1), the queue q(t − 1) or the queue jumpers j(t − 1). Suppose first that
z ∈ L(t−1). Then the rule for updating the queue in the algorithm gives |Fz(t)| ≥ δ′

Q|Fz(tz)|.
Next suppose that z ∈ j(t − 1) ∪ q(t − 1), and z first joined j(t′) ∪ q(t′) at some time t′ < t.
Since z did not join the queue at time t′ − 1 we have |Fz(t′ − 1)| ≥ δ′

Q|Fz(tz)|. Also,
between times t′ and t we only embed vertices that are in the queue or jumping the queue,
or otherwise we would have embedded z before x. Now |Q(t) ∩ Xz| ≤ δQCn, otherwise
we abort the algorithm, and |J(t) ∩ Xz| ≤ √

δQn by Lemma 4.3(ii), so we embed at most
2
√

δQn vertices in Vz between times t′ and t. Thus we have catalogued all possible ways
in which the number of vertices free for z can decrease. It may decrease by a factor of
d2D

3 d2 when a new z-regime starts, and by a factor δ′
Q during a z-regime before z joins the

queue. Also, if z joins the queue or jumps the queue it may decrease by at most 2
√

δQn
in absolute size. Since z has at most 2D neighbours, and |Fz(0)| = |Vz| > n, we have
|Fz(t)| ≥ (δ′

Qd2D
3 d2)

2Dδ′
Q|Vz| − 2

√
δQn > du|Vz|.

In the preceding proof we needed to track the ε-subscripts in great detail to be sure that
they always fall in the range allowed by our hierarchy. From now on it will often suffice
and be more convenient to use a crude upper bound of ε∗ for any epsilon parameter. We
summarise some useful estimates in the following lemma.

Lemma 4.14.

(i) If ∅ �= S ∈ H(x) then dS(F(t)) = (1 ± ε∗)dS(F(t − 1))dSx(F(t − 1)) and |FS(t)| =
(1 ± ε∗)|FSx(t − 1)|/|Fx(t − 1)|.

(ii) If S /∈ H(x) then dS(F(t)) = (1 ± ε∗)dS(F(t − 1)).
(iii) If S ∈ H then d(FS(t)) = (1 ± ε∗)

∏
T⊆S dT (F(t)).

(iv) If S′ ⊆ S ∈ H then

|FS(t)|
|FS′(t)||FS\S′(t)| = d(FS(t))

d(FS′(t))d(FS\S′(t))
= (1 ± 4ε∗)

∏
T :T⊆S,T�S′ ,T�S\S′

dT (F(t)).
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(v) If S′ ⊆ S ∈ H then |FS(t)(P)| = (1 ± ε∗)|FS(t)|/|FS′(t)| for all but at most ε∗|FS′(t)|
sets P ∈ FS′(t).

(vi) Statements (iii-v) hold replacing FS≤(t) by FS≤(t)[�] for any ε12D,3-regular subcom-
plex � of FS≤(t), such that dT (�) ≥ ε2

∗ when defined.

Proof. The first formula in (i) is a weaker form of (∗4.1). For the second formula, suppose
first that S = v has size 1. Then |Fv(t)| = dv(F(t))|Vv| = (1 ± ε∗)dxv(F(t − 1))dv(F(t −
1))|Vv| = (1 ± ε∗)dxv(F(t − 1))|Fv(t − 1)| = (1 ± ε∗)|Fxv(t − 1)|/|Fx(t − 1)|. In the case
when S = uv has size 2 we have dS′(F(t)) = (1 ± ε12D,1)dS′(F(t − 1))dS′x(F(t − 1)) for S′

equal to u, v or uv. Since ε12D,1 � ε∗, the formula follows from the same calculations as in
Lemma 4.12(i). This proves (i). For (ii), note that if |S| = 1 then FS(t) = FS(t) \ y has size
|FS(t − 1)| or |FS(t − 1)| − 1. Also, if |S| = 2, 3 we have FS(t) = FS≤(t − 1)[FS<(t)]S by
Lemma 3.11. Statement (ii) then follows from Lemma 2.3 if |S| = 2 or Lemma 4.8 if |S| = 3.
For (iii) we apply Lemma 4.10 when |S| = 3 or the identity d(FS(t)) = ∏

T⊆S dT (F(t))
when |S| ≤ 2. Statement (iv) follows by definition of absolute density and (iii). For (v) we
apply Lemma 4.12. For (vi) we apply regular restriction to see that FS≤(t)[�] is ε12D,3-regular
and then the same proofs.

Our next lemma concerns the definitions for marked edges in the algorithm.

Lemma 4.15.

(i) For every triple E ∈ H we have |MEt ,E(t)| < θ ′
ν′

Et (t)
|FEt (t)|, and in fact |MEt ,E(t)| ≤

θν′
Et (t)

|FEt (t)| for E ∈ U(x).
(ii) For every x and triple E ∈ U(x) we have |Dx,E(t − 1)| < θν′

Et (t)
|Fx(t − 1)|.

Proof. Throughout we use the notation E = Et−1, ν = ν ′
E
(t − 1), ν∗ = ν ′

Et (t).
(i) To verify the bound for t = 0 we use our assumption that (G, M) is (ε, ε ′, d2, θ , d3)-

super-regular. We take I = ({∅}), when for any v we have GIv = G by Definition 3.15. Then
condition (iii) in Definition 3.16 gives |ME| ≤ θ |GE|. Since E0 = E, ME,E(0) = ME and
FE(0) = GE we have the required bound. Now suppose t > 0. When E ∈ U(x) we have
|MEt ,E(t)| ≤ θν∗ |FEt (t)| by definition, since the algorithm chooses y = φ(x) /∈ Dx,E(t − 1).
Now suppose E /∈ U(x), and let t′ < t be the most recent time at which we embedded a vertex
x′ with E ∈ U(x′). Then Et′ = Et , ν ′

Et (t′) = ν∗, and |MEt ,E(t′)| ≤ θν′
Et (t

′)|FEt (t′)| by the

previous case. For any z ∈ Et , we can bound |Fz(t)| using the same argument as that used at
the end of the proof of Lemma 4.13. We do not embed any neighbour of z between time t′+1
and t, so the size of the free set for z can only decrease by a factor of δ′

Q and an absolute term
of 2

√
δQn. Since dz(F(t′)) ≥ du � δQ we have |Fz(t)| ≥ δ′

Q|Fz(t′)|− 2
√

δQn ≥ 1
2δ

′
Q|Fz(t′)|.

By Lemma 3.11, for every ∅ �= S ⊆ Et , FS(t) is obtained from FS(t′) by restricting to the
1-complex ((Fz(t) : z ∈ S), {∅}). If |S| = 2, 3 then regular restriction (Lemmas 2.3 and
4.8) gives dS(F(t)) = (1 ± ε∗)dS(F(t′)). Now d(FEt (t)) = (1 ± ε∗)

∏
S⊆Et dS(F(t)), by

Lemma 4.14(iii), and similarly d(FEt (t′)) = (1 ± ε∗)
∏

S⊆Et dS(F(t′)). This gives

|FEt (t)|
|FEt (t′)| = (1 ± 3ε∗)

∏
S⊆Et

dS(F(t))

dS(F(t′))
= (1 ± 10ε∗)

∏
z∈Et

dz(F(t))

dz(F(t′))
> (δ′

Q/2)3/2.

Therefore |MEt ,E(t)| ≤ |MEt ,E(t′)| ≤ θν∗ |FEt (t′)| < 2(δ′
Q/2)−3θν∗ |FEt (t)| < θ ′

ν∗ |FEt (t)|.
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(ii) First we consider the case x ∈ E. Then Et = E \ x and ν < ν∗ by Lemma 4.3(vi).
Also FEt (t) = FE(t − 1)(y) and MEt ,E(t) = ME,E(t − 1)(y) (see Lemma 3.14), so

Dx,E(t − 1) = {y ∈ Fx(t − 1) : |ME,E(t − 1)(y)| > θν∗ |FE(t − 1)(y)|}.
If E = {x} has size 1 then Dx,E(t − 1) = Mx,E(t − 1) by Lemma 4.2, so |Dx,E(t − 1)| <

θ ′
ν |Fx(t − 1)| < θν∗ |Fx(t − 1)| by (i). If |E| ≥ 2 then |FEt (t)| = |FE(t − 1)(y)| = (1 ±

ε∗)|FE(t − 1)|/|Fx(t − 1)| by Lemma 4.14 when y /∈ Ex(t − 1). Now∑
y∈Dx,E (t−1)

|ME,E(t − 1)(y)| > θν∗
∑

y∈Dx,E (t−1)\Ex(t−1)

|FE(t − 1)(y)|

> (1 − ε∗)θν∗(|Dx,E(t − 1)| − ε∗|Fx(t − 1)|)|FE(t − 1)|/|Fx(t − 1)|.
We also have an upper bound∑

y∈Dx,E (t−1)

|ME,E(t − 1)(y)| ≤
∑

y∈Fx(t−1)

|ME,E(t − 1)(y)| = |ME,E(t − 1)| < θ ′
ν |FE(t − 1)|,

where the last inequality holds by (i). Therefore

|Dx,E(t − 1)|
|Fx(t − 1)| <

θ ′
ν

(1 − ε∗)θν∗
+ ε∗ < θν∗ .

Now we consider the case when x /∈ E. Then Et = Et−1 = E. Note that when E ∈ U(x)
we have E∩VNH(x) �= ∅, soν∗ > ν. Suppose first that E ∈ H(x). Then FE(t) = FEx(t−1)(y)
and ME,E(t) = ME,E(t − 1) ∩ FE(t) (see Lemma 3.14), so

Dx,E(t − 1) = {y ∈ Fx(t − 1) : |ME,E(t − 1) ∩ FEx(t − 1)(y)| > θν∗ |FEx(t − 1)(y)|}.
Similarly to the previous case, by Lemma 4.14 we have

 :=
∑

y∈Dx,E (t−1)

|ME,E(t − 1) ∩ FEx(t − 1)(y)| > θν∗
∑

y∈Dx,E (t−1)\Ex(t−1)

|FEx(t − 1)(y)|

> (1 − ε∗)θν∗(|Dx,E(t − 1)| − ε∗|Fx(t − 1)|)|FEx(t − 1)|/|Fx(t − 1)|.
We also have  ≤ ∑

y∈Fx(t−1) |ME,E(t − 1)∩ FEx(t − 1)(y)|. This sum counts all pairs (y, P)

with P ∈ ME,E(t − 1), y ∈ Fx(t − 1) and Py ∈ FEx(t − 1), so we can rewrite it as

 ≤
∑

P∈ME,E (t−1)

|FEx(t − 1)(P)|.

By Lemma 4.14(v) we have |FEx(t−1)(P)| = (1±ε∗)
|FEx(t−1)|
|FE (t−1)| for all but at most ε∗|FE(t−1)|

sets P ∈ FE(t − 1). Therefore

 ≤ |ME,E(t − 1)|(1 + ε∗)
|FEx(t − 1)|
|FE(t − 1)| + ε∗|FE(t − 1)||Fx(t − 1)|.

Combining this with the lower bound on  we obtain

(1 − ε∗)θν∗
( |Dx,E(t − 1)|

|Fx(t − 1)| − ε∗

)
< (1 + ε∗)

|ME,E(t − 1)|
|FE(t − 1)| + ε∗

|FE(t − 1)||Fx(t − 1)|
|FEx(t − 1)| .
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Now |ME,E(t − 1)| < θ ′
ν |FE(t − 1)| by (i), and

|FE (t−1)||Fx(t−1)|
|FEx(t−1)| ≤ 2d−1

u � ε−1
∗ by

Lemma 4.14(iv), so

|Dx,E(t − 1)|
|Fx(t − 1)| <

(1 + ε∗)θ ′
ν + √

ε∗
(1 − ε∗)θν∗

+ ε∗ < θν∗ .

It remains to consider the case when x /∈ E and E = Et /∈ H(x). Since E ∩ VNH(x) �= ∅
we have |E| ≥ 2. Then FE≤(t) = FE≤(t − 1)[FE<(t)] by Lemma 3.11 and ME,E(t) =
ME,E(t − 1) ∩ FE(t), so

Dx,E(t − 1) =
{

y ∈ Fx(t − 1) :
|ME,E(t − 1) ∩ FE≤(t − 1)[FE<(t)]|

|FE≤(t − 1)[FE<(t)]| > θν∗
}

.

Let I be the subcomplex of E
<

consisting of all S ⊆ E with S ∈ H(x). Then P ∈ FE≤(t −
1)[FE<(t)] if and only if P ∈ FE≤(t − 1) and PSy ∈ FSx(t − 1) for all S ∈ I . When we
choose y /∈ Ex(t − 1), Lemma 4.14 gives dS(F(t)) = (1 ± ε∗)dS(F(t − 1))dSx(F(t − 1)) for
∅ �= S ∈ I by (i), dS(F(t)) = (1 ± ε∗)dS(F(t − 1)) for S ⊆ E with S /∈ I by (ii), and

d(FE≤(t − 1)[FE<(t)]) = (1 ± ε∗)
∏
S⊆E

dS(F(t − 1))
∏

∅�=S∈I

dSx(F(t − 1))

by (vi), so

|FE≤(t − 1)[FE<(t)]| = (1 ± 20ε∗)|FE≤(t − 1)|
∏

∅�=S∈I

dSx(F(t − 1)).

As in the previous cases we have

 :=
∑

y∈Dx,E (t−1)

|ME,E(t − 1) ∩ FE≤(t − 1)[FE<(t)]|

> θν∗
∑

y∈Dx,E (t−1)\Ex(t−1)

|FE≤(t − 1)[FE<(t)]|

> (1 − 20ε∗)θν∗(|Dx,E(t − 1)| − ε∗|Fx(t − 1)|) |FE≤(t − 1)|
∏

∅�=S∈I

dSx(F(t − 1)).

For any P ∈ FE(t − 1), let FP,I be the set of y ∈ Fx(t − 1) such that PSy ∈ FSx(t − 1) for
all S ∈ I . Let BI be the set of P ∈ FE(t − 1) such that we do not have

|FP,I | = (1 ± ε∗)|Fx(t − 1)|
∏

∅�=S∈I

dSx(F(t − 1)).

Then |BI | ≤ ε∗|FE(t − 1)| by Lemma 4.11. Now  ≤ ∑
y∈Fx(t−1) |ME,E(t − 1) ∩ FE≤(t −

1)[FE<(t)]|, which counts all pairs (y, P) with P ∈ ME,E(t − 1) and y ∈ FP,I , so

 ≤ |ME,E(t − 1)|(1 ± ε∗)|Fx(t − 1)|
∏

∅�=S∈I

dSx(F(t − 1)) + ε∗|FE(t − 1)||Fx(t − 1)|.

Combining this with the lower bound on  we obtain

(1 − 20ε∗)θν∗
( |Dx,E(t − 1)|

|Fx(t − 1)| − ε∗

)
< (1 + ε∗)

|ME,E(t − 1)|
|FE(t − 1)| + ε∗

∏
∅�=S∈I

dSx(F(t − 1))−1.
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Now |ME,E(t − 1)| < θ ′
ν |FE(t − 1)| by (i) and all densities are at least du � ε∗, so again we

have

|Dx,E(t − 1)|
|Fx(t − 1)| <

(1 + ε∗)θ ′
ν + √

ε∗
(1 − 20ε∗)θν∗

+ ε∗ < θν∗ .

The following corollary is now immediate from Lemmas 4.13 and 4.15. Recall that
OKx(t − 1) is obtained from Fx(t − 1) by deleting Ex(t − 1) and Dx,E(t − 1) for E ∈ U(x),
and note that since H has maximum degree at most D we have |U(x)| ≤ 2D2.

Corollary 4.16. |OKx(t − 1)| > (1 − θ∗)|Fx(t − 1)|.

4.5. The Initial Phase

This subsection concerns the initial phase of the algorithm, during which we embed the
neighbourhood N of the buffer B. There are several issues that make the analysis of this
phase significantly more complicated than that of the graph blow-up lemma (which was
given in Lemma 2.5). As we mentioned earlier, the buffer B is larger than before, so we
embed many more vertices during the initial phase, and the queue may open. One potential
problem is that there may be some vertex v and class Vi so that G(v)∩Vi is used excessively
by the embedding – this is a concern, since du � δB. The first lemma in this subsection
shows that with high probability this does not happen.

Our goal is to show that for any vertex x ∈ B there will be many available vertices v ∈ Vx

such that we embed H(x) in (G\M)(v) during the initial phase. Then if v is not used before
the conclusion of the algorithm we will be able to embed x as φ(x) = v. We need to ensure
that for every neighbour z of x and for every triple E of H containing a neighbour of z, the
choice of image for z is good, in that the subcomplex of the free sets for E≤ that is consistent
with mapping x to v is suitably regular and does not have too many marked edges. As in
Lemma 2.5, we aim to give a lower bound on the probability of this event, conditional on
the previous embedding. The third lemma in this subsection achieves this.

The marked edges also add a complication to the conclusion of the algorithm, in which
we need to verify Hall’s condition for a system of distinct representatives of the available
images for the unembedded buffer vertices. We need to show that for that any W ⊆ Vx that
is not too small, the probability that W does not contain a vertex available for x is quite
small. This is achieved by the second lemma in this subsection. We present it before the
lemma on mapping x to v because its proof is similar in spirit and somewhat simpler.

First we recall the key properties of the selection rule during the initial phase. Although
the queue may become non-empty, jumping ensures that we embed all vertex neighbour-
hoods VNH(x), x ∈ B at consecutive times, and before x or any other vertices at distance at
most 4 from x. Then Lemma 3.12 implies that if we start embedding VNH(x) just after some
time T0 then Fz(T0) = Vz(T0) consists of all vertices in Vz that have not yet been used by the
embedding, for every z at distance at most 3 from x. We also recall that |B ∩ Vz| = δB|Vz|,
|N ∩ Vz| <

√
δB|Vz|, |Q(T0) ∩ Vz| ≤ δQ|Vz| and |J(T0) ∩ Vz| ≤ √

δQ|Vz| by Lemma 4.3(ii).
Thus for any z at distance at most 3 from x we have

|Fz(T0)| = |Vz(T0)| > (1 − 2
√

δB)|Vz|. (5)

Random Structures and Algorithms DOI 10.1002/rsa



310 KEEVASH

We need the following supermartingale formulation of the Azuma-Hoeffding inequality,
which can be easily derived from the martingale formulation quoted later as Theorem 5.16.

Theorem 4.17. Suppose Z0, . . . , Zn is a supermartingale, i.e. a sequence of random
variables satisfying E(Zi+1|Z0, . . . , Zi) ≤ Zi, and that |Zi − Zi−1| ≤ ci, 1 ≤ i ≤ n, for some
constants ci. Then for any t ≥ 0,

P(Zn − Z0 ≥ t) ≤ 2 exp

(
− t2

2
∑n

i=1 c2
i

)
.

Let TI be the time at which we embed the last vertex of N , ending the initial phase. Then
TI ≤ ∑r

i=1 2
√

δB|Vi| < δ
1/3
B n by (5). Our first lemma shows that there are many available

vertices in all neighbourhoods at time TI . Note that by super-regularity the assumption
|G(v)j| ≥ du|Vj| in the lemma holds for every j such that Gi(v)j is defined.

Lemma 4.18. With high probability, for every vertex v ∈ G and 1 ≤ j ≤ r with |G(v)j| ≥
du|Vj| we have

|G(v)j ∩ Vj(TI)| >
(
1 − δ

1/3
B

)|G(v)j|.

Proof. Suppose |G(v)j| ≥ du|Vj|. The ratio |G(v)j ∩ Vj(t)|/|G(v)j| only decreases when
we embed a vertex in G(v)j. We separate the analysis according to two effects. One effect is
that we embed a vertex z ∈ N ∩ Xj to an image φ(z) ∈ G(v)j, where G(v)j is not too large a
fraction of the free images for z. The other effect is that we we embed a vertex z ∈ N ∩Xj to
an image φ(z) ∈ G(v)j, and the embedding of some neighbour w of z previously caused the
fraction of G(v)j in the free images for z to increase significantly. To analyse these effects
we write Tz for the time at which a vertex z is embedded and define the following sets:

• Let �j(t) be the set of embedded vertices z ∈ N ∩ Xj such that φ(z) ∈ G(v)j and

|G(v)j ∩ Fz(Tz − 1)|/|Fz(Tz − 1)| < 22D|G(v)j|/|Vj|.

• Let ��,j(t) be the set of embedded vertices w ∈ N ∩ X� such that

|G(v)j ∩ Fz(Tw)|/|Fz(Tw)| ≥ 2|G(v)j ∩ Fz(Tw − 1)|/|Fz(Tw − 1)| ≥ d2
u

for some z ∈ VNH(w) ∩ N ∩ Xj.

We claim that any vertex embedded in G(v)j up to time TI is either in the queue, or
in �j(TI), or an H-neighbour of some w ∈ ��,j(TI) for some �. To see this, suppose z
is embedded in G(v)j and is neither in the queue nor in �j(TI). Since z ∈ N we have
z ∈ VNH(x) for some x ∈ B. Suppose we start embedding VNH(x) just after time T0. Then
Fz(T0) = Vj(T0) has size at least (1 − 2

√
δB)|Vj| by (5), so |G(v)j ∩ Fz(T0)|/|Fz(T0)| ≤

|G(v)j|/(1 − 2
√

δB)|Vj|. We also have |G(v)j ∩ Fz(Tz − 1)|/|Fz(Tz − 1)| ≥ 22D|G(v)j|/|Vj|,
since z /∈ �j(TI). Since |VNH(x) \ z| ≤ 2D − 1, there must be some g, 1 ≤ g ≤ Tz − T0

so that at time T0 + g we embed some w ∈ VNH(z) and get |G(v)j ∩ Fz(Tw)|/|Fz(Tw)| ≥
2|G(v)j ∩ Fz(Tw − 1)|/|Fz(Tw − 1)|. Here we recall that we embed VNH(x) consecutively
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and so w ∈ VNH(x) ⊆ N . Now for any g′, 1 ≤ g′ < Tz − T0, since |Fz(Tz − 1)| ≥ du|Vj| ≥
du|Fz(T0 + g′)| we have

|G(v)j ∩ Fz(T0 + g′)|
|Fz(T0 + g′)| ≥ |G(v)j ∩ Fz(Tz − 1)|

d−1
u |Fz(Tz − 1)| ≥ 22Ddu|G(v)j|/|Vj| > 22Dd2

u > d2
u .

Therefore w ∈ ��,j(TI), where � = i(w), which proves the claim. Since any w has at most
2D neighbours we deduce that

|G(v)j ∩ Vj(TI)| ≥ |G(v)j| − |Q(TI) ∩ Vj| − |�j(TI)| − 2D
r∑

�=1

|��,j(TI)|. (6)

Consider Zj(t) = |�j(t)| − 22D+1dj(G(v))|Vj \ Vj(t)|. We claim that Zj(0), . . . , Zj(TI)

is a supermartingale. To see this, suppose we embed some vertex z ∈ Xj at time Tz. We
can assume that z ∈ N and |G(v)j ∩ Fz(Tz − 1)|/|Fz(Tz − 1)| < 22Ddj(G(v)), or otherwise
z /∈ �j(Tz) by definition, so |�j(Tz)| = |�j(Tz − 1)| and Zj(Tz) < Zj(Tz − 1). Since
φ(z) is chosen randomly in OKz(Tz − 1) ⊆ Fz(Tz − 1) of size at least |Fz(Tz − 1)|/2 (by
Corollary 4.16), we have

E[|�j(Tz)| − |�j(Tz − 1)|] = P(φ(z) ∈ G(v)j) = |G(v)j ∩ OKz(Tz − 1)|
|OKz(Tz − 1)|

<
2|G(v)j ∩ Fz(Tz − 1)|

|Fz(Tz − 1)| < 22D+1dj(G(v)).

We also have |Vj \ Vj(Tz)| = |Vj \ Vj(Tz − 1)| + 1, so the decrease in the second term of
Zj(t) more than compensates for the increase in the first, i.e. E[Zj(Tz) − Zj(Tz − 1)] < 0.
Thus we have a supermartingale. Since |Zj(t) − Zj(t − 1)| ≤ 1, |Vj \ Vj(TI)| ≤ 2

√
δB|Vj| by

(5), and TI < δ
1/3
B n, Theorem 4.17 gives

P[|�j(TI)| > 22D+3dj(G(v))
√

δB|Vj|] ≤ P[Zj(m) > 22D+2dj(G(v))
√

δB|Vj|]
< 2 exp[−(22Ddj(G(v))

√
δB|Vj|)2/2TI ] < e−√

n, (say, for sufficiently large n).

Next consider Y�,j(t) = |��,j(t)| − ε∗|�′
�,j(t)|, where �′

�,j(t) consists of all vertices
in X� with at least one H-neighbour in Xj that have been embedded at time t. We claim
that Y�,j(0), . . . , Y�,j(TI) is a supermartingale. To see this, suppose we embed some vertex
w ∈ X� at time Tw. Consider z ∈ VNH(w) ∩ N ∩ Xj: we can assume this set is non-empty,
otherwise w /∈ ��,j(Tw) ∪ �′

�,j(t), so Y�,j(Tw) = Y�,j(Tw − 1). We can also assume that
w ∈ N and |G(v)j ∩ Fz(Tw)|/|Fz(Tw)| ≥ 2|G(v)j ∩ Fz(Tw − 1)|/|Fz(Tw − 1)| ≥ d2

u for some
z ∈ VNH(w) ∩ N ∩ Xj, otherwise w /∈ ��,j(Tw) by definition, so |��,j(Tw)| = |��,j(Tw − 1)|
and Y�,j(Tw) < Y�,j(Tw − 1).

By Lemmas 4.13 and Lemma 2.3, Fwz(Tw − 1)[G(v)j ∩ Fz(Tw − 1)] is ε12D,2-regular.
Applying Lemma 2.2, we see that there are at most 2ε12D,2|Fw(Tw−1)| ‘exceptional’ vertices
y ∈ Fw(Tw − 1) such that embedding φ(w) = y will not satisfy

|G(v)j ∩ Fz(Tw)| = |Fzw(Tw − 1)(y) ∩ G(v)j ∩ Fz(Tw − 1)|
= (1 ± ε∗)dzw(F(Tw − 1))|G(v)j ∩ Fz(Tw − 1)|.

On the other hand, the algorithm chooses φ(w) = y to satisfy (∗4.1), so |Fz(Tw)| = (1 ±
ε∗)dzw(F(Tw−1))|Fz(Tw−1)|. Thus we have |G(v)j ∩Fz(Tw)|/|Fz(Tw)| < 2|G(v)z∩Fz(Tw−
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1)|/|Fz(Tw − 1)|, unless we choose an exceptional vertex y. But y is chosen uniformly at
random from |OKw(Tw − 1)| ≥ (1 − θ∗)|Fw(Tw − 1)| possibilities (by Corollary 4.16), so y
is exceptional with probability at most 3ε12D,2. Therefore E[|��,j(Tw)| − |��,j(Tw − 1)|] <

3ε12D,2.
We also have |�′

�,j(Tw)| = |�′
�,j(Tw − 1)| + 1, so the decrease in the second term

of Y�,j(t) more than compensates for the increase in the first, i.e. E[Y�,j(Tw) − Y�,j(Tw −
1)] < 0. Thus we have a supermartingale. We also have |Y�,j(t) − Y�,j(t − 1)| ≤ 1. Also,
|Vj \ Vj(TI)| ≤ 2

√
δB|Vj| by (5), so |�′

�,j(Ti)| ≤ 2D
√

δB|Vj|, since H has maximum degree
D. Then Theorem 4.17 gives

P[|��,j(TI)| > 2du

√
δB|Vj|] < P[Y�,j(t) > du

√
δB|Vj|]

< 2 exp[−(du

√
δB|V�|)2/2TI ] < e−√

n, (say, for sufficiently large n).

Taking a union bound over v ∈ V and 1 ≤ j, � ≤ r, with high probability we have
|�j(TI)| ≤ 22D+3dj(G(v))

√
δB|Vj| = 22D+3

√
δB|G(v)j| and |��,j(TI)| ≤ 2du

√
δB|Vj| ≤

2
√

δB|G(v)j|. Therefore (6) gives

|G(v)j ∩ Vj(TI)| ≥ |G(v)j| − |Q(TI) ∩ Vj| − |�j(TI)| − 2D
r∑

�=1

|��,j(TI)|.

≥ |G(v)j| − δQ|Vj| − 22D+3
√

δB|G(v)j| − 4Dr
√

δB|G(v)j| > (1 − δ
1/3
B )|G(v)j|,

since |G(v)j| ≥ du|Vj| and ε∗ � δQ � du � δB � 1/r, 1/D.

For the remainder of this subsection we fix a vertex x ∈ B and write VNH(x) =
{z1, . . . , zg}, with vertices listed in the order that they are embedded. Since H has maxi-
mum degree D we have g ≤ 2D. We let Tj be the time at which zj is embedded. By the
selection rule, VNH(x) jumps the queue and is embedded at consecutive times: Tj+1 = Tj +1
for 1 ≤ j ≤ g − 1. For convenience we also define T0 = T1 − 1. Note that since H is an
r-partite complex, no vertex of VNH(x) lies in Xx. The selection rule also ensures that at time
T0 no vertices at distance at most 4 from x have been embedded, so for any z with distance
at most 3 from x we have Fz(T0) = Vz(T0). (The need for this property in Lemma 4.21
explains why we needed to choose the buffer vertices at mutual distance at least 9.)

Remark 4.19. Note that the argument of the Lemma 4.18 can be applied replacing the
sets G(v)j by any sufficiently large subsets of Gj, provided that they are sufficiently few in
number to use a union bound. For example, we can define a complex G〈S〉 = ∩v∈SG(v)
for any S ⊆ V , and show that with high probability, for every S ⊆ V with |S| ≤ 2D and
1 ≤ j ≤ r with |G〈S〉j| ≥ du|Vj| we have |G〈S〉j ∩ Vj(TI)| > (1 − δ

1/3
B )|G〈S〉j|. It follows

that with high probability every z ∈ VNH(x) would have many available vertices in G(v)z

throughout the initial phase, even if we did not use queue jumping in the selection rule.
However, the analysis is simpler if we do use queue jumping, and then we only need the
version of Lemma 4.18 stated above.

Recall that the available set Ax is obtained from Fx(tN
x ) by removing all sets Mx,E(tN

x ) for
triples E containing x. Here tN

x = Tg. If x is unembedded at the conclusion of the algorithm
at time T we will embed x in A′

x = Ax ∩ Vx(T). Our second lemma shows that for that any
W ⊆ Vx that is not too small, the probability that W does not contain a vertex available for
x is quite small.
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Lemma 4.20. For any W ⊆ Vx with |W | > ε∗|Vx|, conditional on any embedding of the
vertices {s(u) : u < T1} that does not use any vertex of W, we have P[Ax ∩ W = ∅] < θ∗.

Proof. We apply similar arguments to those we are using for the entire embedding, defining
variants of various structures that incorporate restriction to W . Suppose 1 ≤ j ≤ g and that
we are considering the embedding of zj. We interpret quantities at time Tj with the embedding
φ(zj) = y, for some as yet unspecified y ∈ Fzj (Tj − 1). Write Wj = W ∩ Fx(Tj). At time
T0 we have W ⊆ Fx(T0) = Vx(T0), so W0 = Fx(T0) ∩ W = W . Since zj ∈ H(x) we have
Fx(Tj) = Fxzj (Tj − 1)(y), so

Wj = Wj−1 ∩ Fxzj (Tj − 1)(y).

For convenient notation we will use [Wj] to denote restriction of hypergraphs and complexes
to Wj, in that for x ∈ S ∈ H we write FS≤(Tj)[Wj] for FS≤(Tj)[(Wj, {∅})] and FS(Tj)[Wj] for
FS≤(Tj)[(Wj, {∅})]S.

We define exceptional sets EW
zj

(Tj − 1) ⊆ Fzj (Tj − 1) by the property that y is in Fzj (Tj −
1) \ EW

zj
(Tj − 1) if and only if

|Wj| = (1 ± εν′
x(Tj),1)|W ||Fx(Tj)|/|Fx(T0)|. (∗4.20)

Thus if we embed zj to y /∈ EW
zj

(Tj − 1), then the intersection of the free set for x with W
is roughly what would be ‘expected’. Next, to control marked edges, we define dangerous
vertices similarly to before, except that here we incorporate the restriction to Wj. For any
triple E containing x we define

DW
zj ,E

(Tj − 1) = {y ∈ Fzj (Tj − 1) : |M
E

Tj ,E
(Tj)[Wj]| > θν′

E
Tj

(Tj)
|F

E
Tj (Tj)[Wj]|}.

Now we define events as follows:

• A1,j, j ≥ 0 is the event that property (∗4.20) above holds.
• A2,j, j ≥ 0 is the event that for every triple E containing x we have

|M
E

Tj ,E
(Tj)[Wj]| ≤ θν′

E
Tj

(Tj)
|F

E
Tj (Tj)[Wj]|.

• A3,j, j ≥ 1 is the event that y = φ(zj) is chosen in OKW
zj

(Tj − 1), defined to be the

subset of Fzj (Tj − 1) obtained by deleting the sets EW
zj

(Tj − 1) and DW
zj ,E

(Tj − 1) for
E containing x. For convenient notation we also define A3,0 to be the event that holds
with probability 1.

We divide the remainder of the proof into a series of claims.

Claim A. The events A1,0, A2,0 and A3,0 hold.

Proof. As noted above, we have W0 = W , so A1,0 holds. Also, A3,0 holds by definition, so
it remains to show A2,0. Consider any triple E = xzz′ containing x. Recall that all vertices
at distance at most 4 from x are unembedded. Then ET0 = E, and by Lemma 3.12, FE≤(T0)

is the restriction of GE≤ to the 1-complex ((Fu(T0) : u ∈ E), {∅}), so FE≤(T0)[W ] is the
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restriction of GE≤ to (W , Fz(T0), Fz′(T0), {∅}). Since G is ε-regular, FE≤(T0)[W ] is ε ′-regular
by regular restriction and dS(FE≤(T0)[W ]) = (1 ± ε ′)dS(G) for S ⊆ E, |S| ≥ 2. Then

|FE(T0)[W ]| = (1 ± 20ε ′)|W ||Fz(T0)||Fz′(T0)|
∏

S⊆E,|S|≥2

dS(G)

by Lemma 4.10. Now

|ME,E(T0)[W ]| =
∑
v∈W

|ME,E(T0)(v)| ≤
∑
v∈W

|ME(v)| ≤ θ
∑
v∈W

|GE(v)|

by condition (ii) of super-regularity (Definition 3.16). This condition also says for any
v ∈ Gx that GE(v) is ε ′-regular and dS(G(v)) = (1 ± ε ′)dS(G)dSx(G) for ∅ �= S ⊆ E \ x, so

|GE(v)| = dzz′(G(v))|G(v)z||G(v)z′ | = (1 ± 5ε ′)|Vz||Vz′ |
∏

∅�=S⊆zz′
dS(G)dSx(G).

Here we note that dz(G) = dz′(G) = 1, as our hypotheses for Theorem 4.1 include the
assumption Gi = Vi for 1 ≤ i ≤ r. Equation (5) gives |Fz(T0)| > (1 − 2

√
δB)|Vz(T0)| and

|Fz′(T0)| > (1 − 2
√

δB)|Vz′(T0)|, so

|ME,E(T0)[W ]|
|FE(T0)[W ]| <

(1 + 5ε ′)θ |Vz||Vz′ |
(1 − 20ε ′)|Fz(T0)||Fz′(T0)| < (1 + 30ε ′)(1 − 2

√
δB)

−2θ < θ0.

Claim B. If A3,j holds then A1,j and A2,j hold.

Proof. This follows directly from the definitions: if y /∈ EW
zj

(Tj −1) then (∗4.20) holds, and

if y /∈ DW
zj ,E

(Tj − 1) then |M
E

Tj ,E
(Tj)[Wj]| ≤ θν′

E
Tj

(Tj)
|F

E
Tj (Tj)[Wj]|.

Claim C. If A1,j−1 holds then |EW
zj

(Tj − 1) \ Ezj (Tj − 1)| < ε∗|Fzj (Tj − 1)|.

Proof. By Lemma 4.13, Fxzj (Tj − 1) is εν′
xzj (Tj−1),1-regular, so by Lemma 2.3, Fxzj (Tj −

1)[Wj−1] is εν′
xzj (Tj−1),2-regular. Then by Lemma 2.2, for all but at most εν′

xzj (Tj−1),2|Fzj (Tj −1)|
vertices y ∈ Fzj (Tj−1) we have |Wj| = |Wj−1∩Fxzj (Tj−1)(y)| = (1±εν′

xzj (Tj−1),2)dxzj (F(Tj−
1))|Wj−1|. Since A1,j−1 holds, |Wj−1| = (1 ± εν′

x(Tj−1),1)|W ||Fx(Tj − 1)|/|Fx(T0)|. Also, by
(∗4.1), for y /∈ Ezj (Tj − 1) we have |Fx(Tj)| = (1 ± εν′

x(Tj−1),0)dxzj (F(Tj − 1))|Fx(Tj − 1)|.
Now zj ∈ VNH(x), so νx(Tj) = νx(Tj − 1) + 1, and ν ′

x(Tj) > max{ν ′
x(Tj − 1), ν ′

xz(Tj − 1)}.
Combining all estimates, for all but at most ε∗|Fzj (Tj−1)| vertices y ∈ Fzj (Tj−1)\Ezj (Tj−1)

we have

|Wj| = (1 ± εν′
xzj (Tj−1),2)dxzj (F(Tj − 1))|Wj−1|

= (1 ± εν′
xzj (Tj−1),2)(1 ± εν′

x(Tj−1),1)dxzj (F(Tj − 1))|W ||Fx(Tj − 1)|/|Fx(T0)|
= (1 ± εν′

x(Tj),1)|W ||Fx(Tj)|/|Fx(T0)|, i.e. (∗4.20).
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Claim D. If A1,j−1 and A2,j−1 hold then for any E containing x we have∣∣DW
zj ,E

(Tj − 1)
∣∣ < θν′

E
Tj

(Tj)
|Fzj (Tj − 1)|.

Proof. Denote E = ETj−1, ν = ν ′
E
(Tj − 1) and ν∗ = ν ′

E
Tj

(Tj). Suppose A1,j−1 and A2,j−1

hold. By A1,j−1 we have |Wj−1| > 1
2 du|W | > ε2

∗ |Vx|. Consider any triple E containing x. We
bound DW

zj ,E
(Tj − 1) with a similar argument to that used in Lemma 4.15.

Case D.1. First consider the case zj ∈ E. Then ETj = E \ zj andν∗ > ν. Since Wj = Wj−1∩
Fxzj (Tj−1)(y), Lemma 3.10 gives F

E
Tj (Tj)[Wj] = FE(Tj−1)(y)[Wj] = FE(Tj−1)[Wj−1](y).

Similarly, M
E

Tj ,E
(Tj)[Wj] = ME,E(Tj − 1)(y)[Wj] = ME,E(Tj − 1)[Wj−1](y), so

DW
zj ,E

(Tj − 1) = {y ∈ Fzj (Tj − 1) : |ME,E(Tj − 1)[Wj−1](y)| > θν∗ |FE(Tj − 1)[Wj−1](y)|}.

Let B′
zj

be the set of y ∈ Fzj (Tj − 1) \ Ezj (Tj − 1) such that we do not have

|FE(Tj − 1)[Wj−1](y)| = (1 ± ε∗)|FE(Tj − 1)[Wj−1]|/|Fzj (Tj − 1)|.
Applying Lemma 4.14(vi) with � = (Wj−1, {∅}) gives |B′

zj
| < ε∗|Fzj (Tj − 1)|. (Note that

we need y /∈ Ezj (Tj − 1) as this is implicitly assumed to apply Lemma 4.14.) Let Bzj =
B′

zj
∪ Ezj (Tj − 1). Then |Bzj | < 2ε∗|Fzj (Tj − 1)| by Lemma 4.13. Now

∑
y∈DW

zj ,E (Tj−1)

|ME,E(Tj − 1)[Wj−1](y)| > θν∗
∑

y∈DW
zj ,E (Tj−1)\Bzj

|FE(Tj − 1)[Wj−1](y)|

> (1 − ε∗)θν∗
(∣∣DW

zj ,E
(Tj − 1)

∣∣ − 2ε∗|Fzj (Tj − 1)|)|FE(Tj − 1)[Wj−1]|/|Fzj (Tj − 1)|.

We also have an upper bound

∑
y∈DW

zj ,E (Tj−1)

|ME,E(Tj − 1)[Wj−1](y)| ≤
∑

y∈Fzj (Tj−1)

|ME,E(Tj − 1)[Wj−1](y)|

= |ME,E(Tj − 1)[Wj−1]| < θν |FE(Tj − 1)[Wj−1]|
where the last inequality holds by A2,j−1. Therefore

∣∣DW
zj ,E

(Tj − 1)
∣∣

|Fzj (Tj − 1)| <
θν

(1 − ε∗)θν∗
+ 2ε∗ < θν∗ .

Case D.2. Next consider the case zj /∈ E. Then ETj = ETj−1 = E. Also x ∈ E ∩ VNH(zj),
so ν∗ > ν. Suppose first that E ∈ H(zj). Then FE(Tj)[Wj] = FEzj

(Tj − 1)[Wj−1](y) and
ME,E(Tj)[Wj] = ME,E(Tj − 1) ∩ FE(Tj)[Wj], so

DW
zj ,E

(Tj − 1) =
{

y ∈ Fzj (Tj − 1) :
|ME,E(Tj − 1) ∩ FEzj

(Tj − 1)[Wj−1](y)|
|FEzj

(Tj − 1)[Wj−1](y)| > θν∗

}
.
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Similarly to the previous case, letting B′
zj

be the set of y ∈ Fzj (Tj − 1) \ Ezj (Tj − 1) such
that we do not have

|FEzj
(Tj − 1)[Wj−1](y)| = (1 ± ε∗)|FEzj

(Tj − 1)[Wj−1]|/|Fzj (Tj − 1)|,

we have |B′
zj
| < ε∗|Fzj (Tj − 1)|. With Bzj = B′

zj
∪ Ezj (Tj − 1) we have

 :=
∑

y∈DW
zj ,E (Tj−1)

|ME,E(Tj − 1) ∩ FEzj
(Tj − 1)[Wj−1](y)|

> θν∗
∑

y∈DW
zj ,E (Tj−1)\Bzj

|FEzj
(Tj − 1)[Wj−1](y)|

> (1 − ε∗)θν∗
(∣∣DW

zj ,E
(Tj − 1)

∣∣ − 2ε∗|Fzj (Tj − 1)|) |FEzj
(Tj − 1)[Wj−1]|

|Fzj (Tj − 1)| .

We also have  ≤ ∑
y∈Fzj (Tj−1) |ME,E(Tj − 1)∩ FEzj

(Tj − 1)[Wj−1](y)|. This last sum counts

all pairs (y, P) with P ∈ ME,E(Tj − 1)[Wj−1], y ∈ Fzj (Tj − 1) and Py ∈ FEzj
[Wj−1](Tj − 1),

so we can rewrite it as  ≤ ∑
P∈ME,E (Tj−1)[Wj−1] |FEzj

(Tj − 1)[Wj−1](P)|. Then Lemma 4.14

gives

|FEzj
(Tj − 1)[Wj−1](P)| = (1 ± ε∗)

|FEzj
(Tj − 1)[Wj−1]|

|FE(Tj − 1)[Wj−1]|
for all but at most ε∗|FE(Tj − 1)[Wj−1]| sets P ∈ FE(Tj − 1)[Wj−1]. Therefore

 ≤ |ME,E(Tj − 1)[Wj−1]|(1 + ε∗)
|FEzj

(Tj − 1)[Wj−1]|
|FE(Tj − 1)[Wj−1]| + ε∗|FE(Tj − 1)[Wj−1]||Fzj (Tj − 1)|.

Combining this with the lower bound on  we obtain

(1 − ε∗)θν∗
(∣∣DW

zj ,E
(Tj − 1)

∣∣/|Fzj (Tj − 1)| − 2ε∗
)

< (1 + ε∗)
|ME,E(Tj − 1)[Wj−1]|
|FE(Tj − 1)[Wj−1]| + ε∗

|FE(Tj − 1)[Wj−1]||Fzj (Tj − 1)|
|FEzj

(Tj − 1)[Wj−1]| .

Now |ME,E(Tj − 1)[Wj−1]| < θν |FE(Tj − 1)[Wj−1]| by A2,j−1. Also, since x ∈ E, and since
Fzj (Tj − 1)[Wj−1] = Fzj (Tj − 1), we can apply Lemma 4.14(vi) with � = (Wj−1, {∅}) to get
|FE (Tj−1)[Wj−1]||Fzj (Tj−1)|

|FEzj
(Tj−1)[Wj−1]| ≤ 2d−1

u � ε−1
∗ , so

∣∣DW
zj ,E

(Tj − 1)
∣∣

|Fzj (Tj − 1)| <
(1 + ε∗)θν + √

ε∗
(1 − ε∗)θν∗

+ 2ε∗ < θν∗ .

Case D.3. It remains to consider the case when zj /∈ E and E /∈ H(zj). Since x ∈
E ∩ VNH(zj) we have |E| ≥ 2 (otherwise we are in Case D.2). Now FE≤(Tj) = FE≤(Tj −
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1)[FE<(Tj)] by Lemma 3.11, so FE≤(Tj)[Wj] = FE≤(Tj − 1)[FE<(Tj)[Wj]] by Lemma 4.5.
Also, ME,E(Tj)[Wj] = ME,E(Tj − 1) ∩ FE(Tj)[Wj] by Lemma 3.14, so

DW
zj ,E

(Tj − 1) =
{

y ∈ Fzj (Tj − 1) :
|ME,E(Tj − 1) ∩ FE≤(Tj − 1)[FE<(Tj)[Wj]]E|

|FE≤(Tj − 1)[FE<(Tj)[Wj]]E| > θν∗
}

.

Let I = {S � E : S ∈ H(zj)}. Then P ∈ FE≤(Tj − 1)[FE<(Tj)[Wj]] if and only if P ∈
FE≤(Tj − 1), for x /∈ S ∈ I we have PS ∈ FS(Tj), i.e. PSy ∈ FSzj (Tj − 1), and for x ∈
S ∈ I we have PS ∈ FS(Tj)[Wj], i.e. PSy ∈ FSzj (Tj − 1)[Wj]. When we choose y /∈
Ezj (Tj − 1), Lemma 4.14 gives dS(F(Tj)) = (1 ± ε∗)dS(F(Tj − 1)) for S ⊆ E with S /∈ I
and dS(F(Tj)) = (1 ± ε∗)dS(F(Tj − 1))dSzj (F(Tj − 1)) for ∅ �= S ∈ I . Let d ′

S denote
dS(F(Tj)[Wj]) := dS(FE≤(Tj)[Wj]) if x ∈ S or dS(F(Tj)) if x /∈ S. If y /∈ EW

zj
(Tj − 1) then

|Wj| > 1
2 du|W | > ε2

∗ |Vx|, so regular restriction gives d ′
S = (1 ± ε∗)dS(F(Tj)) for S ⊆ E,

S �= x and d ′
x = d(Wj) = |Wj|/|Vx|. Applying Lemma 4.14 we have

d(FE≤(Tj − 1)[FE<(Tj)[Wj]]E) = (1 ± ε∗)
∏
S⊆E

d ′
S

= (1 ± 30ε∗)
|Wj|

|Fx(Tj − 1)|
∏
S⊆E

dS(F(Tj − 1))
∏

∅�=S∈I

dSzj (F(Tj − 1)).

Also, |FE(Tj −1)[Wj−1]| = (1± ε∗)
|Wj−1|

|Fx(Tj−1)| |FE(Tj −1)| by Lemma 4.14. If y /∈ EW
zj

(Tj −1)

then
|Wj |

|Fx(Tj)| = (1 ± ε∗)
|Wj−1|

|Fx(Tj−1)| , so

|FE≤(Tj − 1)[FE<(Tj)[Wj]]E| = (1 ± 40ε∗)|FE(Tj − 1)[Wj−1]|
∏

∅�=S∈I

dSzj (F(Tj − 1)).

Similarly to the previous cases, now with Bzj = EW
zj

(Tj − 1) ∪ Ezj (Tj − 1), we have

 :=
∑

y∈DW
zj ,E (Tj−1)

|ME,E(Tj − 1) ∩ FE≤(Tj − 1)[FE<(Tj)[Wj]]E|

> θν∗
∑

y∈DW
zj ,E (Tj−1)\Bzj

|FE≤(Tj − 1)[FE<(Tj)[Wj]]E|

> (1 − 40ε∗)θν∗(|DW
zj ,E

(Tj − 1)| − 2ε∗|Fzj (Tj − 1)|)
× |FE(Tj − 1)[Wj−1]|

∏
∅�=S∈I

dSzj (F(Tj − 1)).

For any P ∈ FE(Tj − 1), let FP,I be the set of y ∈ Fzj (Tj − 1) such that PSy ∈ FSzj (Tj − 1)

for all S ∈ I . Let BI be the set of P ∈ FE(Tj − 1) such that we do not have

|FP,I | = (1 ± ε∗)|Fzj (Tj − 1)|
∏

∅�=S∈I

dSzj (F(Tj − 1)).

Then Lemma 4.11 gives |BI | ≤ ε∗|FE(Tj − 1)|. Also, since FE<(Tj)[Wj] ∗ Wj−1 =
FE<(Tj)[Wj], Lemma 4.5(iv) gives

FE≤(Tj − 1)[FE<(Tj)[Wj]] = FE≤(Tj − 1)[Wj−1][FE<(Tj)[Wj]].
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Now  ≤ ∑
y∈Fzj (Tj−1) |ME,E(Tj − 1)∩ FE≤(Tj − 1)[Wj−1][FE<(Tj)[Wj]]E|, which counts all

pairs (y, P) with P ∈ ME,E(Tj − 1)[Wj−1] and y ∈ FP,I , so

 ≤ |ME,E(Tj − 1)[Wj−1]|(1 ± ε∗)|Fzj (Tj − 1)|
∏

∅�=S∈I

dSzj (F(Tj − 1))

+ ε∗|FE(Tj − 1)[Wj−1]||Fzj (Tj − 1)|.
Combining this with the lower bound on  we obtain

(1 − 40ε∗)θν∗

(∣∣DW
zj ,E

(Tj − 1)
∣∣

|Fzj (Tj − 1)| − 2ε∗

)

< (1 + ε∗)
|ME,E(Tj − 1)[Wj−1]|
|FE(Tj − 1)[Wj−1]| + ε∗

∏
∅�=S∈I

dSzj (F(Tj − 1))−1.

Now |ME,E(Tj − 1)[Wj−1]| < θν |FE(Tj − 1)[Wj−1]| by A2,j−1, and all densities are at least
du � ε∗, so again we have∣∣DW

zj ,E
(Tj − 1)

∣∣
|Fzj (Tj − 1)| <

(1 + ε∗)θν + √
ε∗

(1 − 40ε∗)θν∗
+ 2ε∗ < θν∗ .

This proves Claim D.

Claim E. Conditional on the events Ai,j′ , 1 ≤ i ≤ 3, 0 ≤ j′ < j and the embedding up to
time Tj − 1, the probability that A3,j does not hold is at most θ ′

12D.

Proof. Since A1,j−1 and A2,j−1 hold, Claim C gives |EW
zj

(Tj−1)\Ezj (Tj−1)| < ε∗|Fzj (Tj−1)|
and Claim D gives |DW

zj ,E
(Tj − 1)| < θ12D|Fzj (Tj − 1)| for any E containing x. We also have

|OKzj (Tj−1)| > (1−θ∗)|Fzj (Tj−1)| by Corollary 4.16. Since y = φ(zj) is chosen uniformly
at random in OKzj (Tj − 1), the probability that y ∈ EW

zj
(Tj − 1) or y ∈ DW

zj ,E
(Tj − 1) for any

E containing x is at most (ε∗ + Dθ12D)/(1 − θ∗) < θ ′
12D. This proves Claim E.

To finish the proof of the lemma, suppose that all the events Ai,j, 1 ≤ i ≤ 3, 1 ≤ j ≤ g
hold. Then A1,g gives |Fx(Tg) ∩ W | = |Wg| = (1 ± ε∗)|W ||Fx(Tg)|/|Fx(T0)| > 1

2 du|W | >

ε2
∗ |Vx|. Also, since all of VNH(x) = {z1, . . . , zg} has been embedded at time Tg, for every

triple E containing x we have ETg = x, and |Mx,E(Tg)∩W | < θ ′
12D|Fx(Tg)∩W | by A2,g. Now

Ax ∩W is obtained from Fx(Tg)∩W by deleting all Mx,E(Tg)∩W for triples E containing x,
so |Ax ∩ W | > (1 − Dθ ′

12D)|Fx(Tg)∩ W |. In particular, Ax ∩ W is nonempty. If any event Ai,j

fails then A3,j fails (by Claim B) and so by Claim E and a union bound over 1 ≤ j ≤ g ≤ 2D
we can bound the failure probability by θ∗.

Our final lemma in this subsection is similar to the previous one, but instead of asking
for a set W of vertices to contain an available vertex for x, we ask for some particular vertex
v to be available for x. Recall that x ∈ B and we start embedding VNH(x) at time T1.

Lemma 4.21. For any v ∈ Vx, conditional on any embedding of the vertices {s(u) : u <

T1} that does not use v, with probability at least p we have φ(H(x)) ⊆ (G \ M)(v), so
v ∈ Ax.
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Proof. We estimate the probability that φ(H(x)) ⊆ (G \ M)(v) using arguments similar
to those we are using to embed H in G \ M. The structure of the proof is very similar to that
of Lemma 4.20. Here we will see the purpose of properties (ii) and (iii) in the definition of
super-regularity, which ensure that every v ∈ Vx is a potential image of x. For z ∈ VNH(x)
we write

αz = |Fxz(T0)(v)|
dxz(F(T0))|Fz(T0)| = dz(F(T0)(v))

dxz(F(T0))dz(F(T0))
.

We consider a vertex z to be allocated if z is embedded or z = x. For ∅ �= S ∈ H unembedded
we define ν ′′

S (t) as follows. When |S| = 3 we let ν ′′
S (t) = νS(t). When |S| = 1, 2 we let

ν ′′
S (t) = νS(t)+ K , where K is the maximum value of ν ′′

Sx′(t′) over allocated vertices x′ with
S ∈ H(x′); if there is no such vertex x′ we let ν ′′

S (t) = νS(t). Thus ν ′′
S (t) is defined similarly to

ν ′
S(t), replacing ‘embedded’ with ‘allocated’. We have ν ′′

S (t) ≥ ν ′
S(t) and Lemma 4.3(iii–vi)

hold replacing ν ′ with ν ′′.
Suppose 1 ≤ j ≤ g and that we are considering the embedding of zj. We interpret

quantities at time Tj with the embedding φ(zj) = y, for some as yet unspecified y ∈
Fzj (Tj − 1).

We define exceptional sets Ev
zj
(Tj − 1) ⊆ Fxzj (Tj − 1)(v) by y ∈ Fzj (Tj − 1) \ Ev

zj
(Tj − 1)

if and only if for every unembedded ∅ �= S ∈ H(x) ∩ H(zj),

FSx(Tj)(v) is εν′′
S (Tj),1-regular if |S| = 2,

dS(F(Tj)(v)) = (1 ± εν′′
S (Tj),1)dS(F(Tj))dSx(F(Tj)) if |S| = 2,

dS(F(Tj)(v)) = (1 ± εν′′
S (Tj),1)dS(F(Tj))dSx(F(Tj))αS if |S| = 1.


 (∗4.22)

Here we use the notation dS(F(Tj)(v)) = dS(FSx≤(Tj)(v)). Let Y be the set of vertices
at distance at most 3 from x in H and let H ′ = {S ∈ H : S ⊆ Y}. For any Z ⊆ Y and
unembedded S ∈ H we define

F(Tj)
Z∗v
S≤ = FS≤(Tj)


 ⋃

S′⊆Z∩S,S′∈H(x)

FS′x(Tj)(v)


 .

Thus F(Tj)
Z∗v
S consists of all sets P ∈ FS(Tj) such that PS′v ∈ FS′x(Tj) for all S′ ⊆ Z ∩S with

S′ ∈ H(x). For any triple E, we use the notation E = ETj−1, ν = ν ′′
E
(Tj−1) and ν∗ = ν ′′

E
Tj

(Tj)

similarly to the previous lemma, replacing ν ′ with ν ′′. For Z ⊆ Y and E ∈ U(zj) we define
sets of dangerous vertices by

DZ∗v
zj ,E

(Tj − 1) =
{

y ∈ F(Tj − 1)Z∗v
zj

:
∣∣M

E
Tj ,E

(Tj) ∩ F(Tj)
Z∗v

E
Tj

∣∣ > θν∗
∣∣F(Tj)

Z∗v

E
Tj

∣∣} .

The strategy of the proof is to analyse the event that all the complexes F(Tj)
Z∗v

E
Tj≤ are

well-behaved, meaning informally that they are regular, have roughly expected densities
and do not have too many marked edges. The regularity and density properties will hold if
we choose y = φ(zj) /∈ Ev

zj
(Tj − 1), and the marked edges will be controlled if we choose

y = φ(zj) /∈ DZ∗v
zj ,E

(Tj − 1).
We think of Z as the sphere of influence, as it defines the sets which we restrict to be

in the neighbourhood of v. Our eventual goal is that all sets in H(x) should be embedded in
G(v), but to achieve this we need to consider arbitrary choices of Z ⊆ Y . For later use in
the proof we record here some properties of Z that follow directly from the definitions.
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(i) F(Tj)
Z∗v
S = F(Tj)

(Z∩S)∗v
S .

(ii) F(Tj − 1)Z∗v
zj

is Fzj (Tj − 1) if zj /∈ Z or Fxzj (Tj − 1)(v) if zj ∈ Z .

(iii) F(Tj)
∅∗v
S = F(Tj)S, so D∅∗v

zj ,E
(Tj−1) = Dzj ,E(Tj−1) = {y ∈ Fzj (Tj−1) : |M

E
Tj ,E

(Tj)| >

θν∗ |F(Tj)E
Tj |}, as defined in the description of the algorithm.

(iv) If Z ′ = Z ∪ zj then F(Tj)
Z ′∗v

E
Tj

= F(Tj)
Z∗v

E
Tj

by (i), since zj /∈ ETj , so

DZ ′∗v
zj ,E

(Tj − 1) = DZ∗v
zj ,E

(Tj − 1) ∩ Fxzj (Tj − 1)(v).

(v) If S ⊆ Z and S ∈ H(x) then F(Tj)
Z∗v
S = FSx(Tj)(v).

Write Bzj = Ev
zj
(Tj − 1) ∪ Ezj (Tj − 1). Recall that U(zj) is the set of triples E with

E ∩ VNH(zj)zj �= ∅. We consider the following events:

• A1,j, j ≥ 1 is the event that property (∗4.21) above holds. We also define A1,0 to be the
event that |G(v)z ∩ Vz(T0)| > (1 − δ

1/3
B )|G(v)z| for every z ∈ VNH(x).

• A2,j, j ≥ 0 is the event that for every triple E ∈ H ′ and Z ⊆ E we have∣∣M
E

Tj ,E
(Tj) ∩ F(Tj)

Z∗v

E
Tj

∣∣ ≤ θ ′
ν∗
∣∣F(Tj)

Z∗v

E
Tj

∣∣.
• A3,j, j ≥ 0 is the event that for every triple E ∈ H ′, Z ⊆ E and ∅ �= S ⊆ ETj ,

F(Tj)
Z∗v
S is εν′′

S (Tj),2-regular for |S| ≥ 2, with

dS(F(Tj)
Z∗v) =




(1 ± εν′′
S (Tj),2)dS(F(Tj))dSx(F(Tj)) if S ⊆ Z , S ∈ H(x), |S| = 2

(1 ± εν′′
S (Tj),2)dS(F(Tj))dSx(F(Tj))αS if S ⊆ Z , S ∈ H(x), |S| = 1

(1 ± εν′′
S (Tj),2)dS(F(Tj)) otherwise.

• A4,j, j ≥ 1 is the event that y = φ(zj) is chosen in OKv
zj
(Tj −1), defined to be the subset

of Fxzj (Tj − 1)(v) obtained by deleting the sets Bzj and DZ ′∗v
zj ,E

(Tj − 1) for all E ∈ U(zj),
Z ⊆ E, Z ′ = Z ∪ zj. We also define A4,0 to be the event that holds with probability 1.

By property (iv) above, an equivalent definition of OKv
zj
(Tj −1) is the subset of Fxzj (Tj −

1)(v) obtained by deleting the sets Bzj and DZ ′∗v
zj ,E

(Tj − 1) for all E ∈ U(zj) and Z ′ ⊆
E ∪ zj. Also, since OKzj (Tj − 1) is obtained from Fzj (Tj − 1) by deleting Ezj (Tj − 1) and
Dzj ,E(Tj − 1) = D∅∗v

zj ,E
(Tj − 1) for E ∈ U(zj) we have OKv

zj
(Tj − 1) ⊆ OKzj (Tj − 1).

We will use the following notation throughout: Z is a subset of Y , Z ′ = Z ∪ zj, I = {S ⊆
Z : S ∈ H(x)}, I ′ = {S ⊆ Z ′ : S ∈ H(x)}. We divide the remainder of the proof into a series
of claims.

Claim A. The events A1,0, A2,0, A3,0 and A4,0 hold with high probability.

Proof. A4,0 holds by definition. For any z ∈ VNH(x), dz(G(v)) = (1±ε ′)dxz(G)dz(G) > du

by condition (ii) of super-regularity, so A1,0 holds with high probability by Lemma 4.18.
Next recall that no vertex at distance within 4 of x has been embedded at time T0, so
Fz(T0) = Vz(T0) for any z within distance 3 of x. (This is why we choose the buffer
vertices to be at mutual distance at least 9.) We have |Fz(T0)| > (1 − 2

√
δB)|Vz| by (5) and
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|Fz(T0) ∩ G(v)z| > (1 − δ
1/3
B )|G(v)z| by A1,0. For any S ∈ H ′ with |S| ≥ 2, FS(T0) is the

restriction of GS to ((Fz(T0) : z ∈ S), {∅}). Since GS is ε-regular, FS(T0) is ε ′-regular with
dS(F(T0)) = (1 ± ε ′)dS(G). It also follows that αz > 1 − 2δ

1/3
B .

Now we show that A3,0 holds. Consider any triple E ∈ H ′ and Z ⊆ E. Suppose ∅ �=
S ⊆ E. There are two cases according to whether S ∈ I . Suppose first that S ∈ I . By
property (v) above, F(T0)

Z∗v
S≤ = FSx≤(T0)(v) is the restriction of GSx≤(v) to ((Fz(T0)∩G(v)z :

z ∈ S), {∅}). If |S| = 2 then GSx≤(v) is ε ′-regular and dS(G(v)) = (1 ± ε ′)dS(G)dSx(G)

by condition (ii) of super-regularity. Then by regular restriction FSx(T0)(v) is ε0,0-regular
and dS(F(T0)(v)) = (1 ± ε0,0)dS(G)dSx(G) = (1 ± 2ε0,0)dS(F(T0))dSx(F(T0)). Also, if
|S| = 1 then dS(F(T0))dSx(F(T0))αS = dS(F(T0)(v)) by definition. This gives the properties
required by A3,0 when S ∈ I . In fact, we have the stronger statements in which εν′′

S (T0),2 is

replaced by ε0,1, say. On the other hand, if S /∈ I then F(T0)
Z∗v
S≤ is the restriction of FS≤(T0)

to ∪S′⊆S∩Z ,S′∈H(x)FS′x(T0)(v). Since FS≤(T0) is ε ′-regular and FS′x(T0)(v) is ε0,1-regular for
S′ ∈ I , by regular restriction F(T0)

Z∗v
S is ε0,0-regular with dS(F(T0)

Z∗v) = (1±ε ′)dS(F(T0)).
Thus A3,0 holds.

It remains to show that A2,0 holds. We will abuse notation and let I also denote the
subcomplex {i(S) : S ∈ I} of

([r]
≤3

)
. Then F(0)Z∗v

E = GIv
E as defined in Definition 3.15. By

property (iii) of super-regularity |ME ∩ GIv
E | ≤ θ |GIv

E | and GIv
E≤ is ε ′-regular with S-density

(for S ⊆ E) equal to (1±ε ′)dS(G)dSx(G) if S ∈ I or (1±ε ′)dS(G) otherwise. Now F(T0)
Z∗v
z is

Fz(T0)∩G(v)z if z ∈ Z ∩H(x) or Fz(T0) otherwise, and similarly GIv
z is G(v)z if z ∈ Z ∩H(x)

or Gz otherwise. Either way we have |F(T0)
Z∗v
z | > (1 − δ

1/3
B )|GIv

z | by the estimates recalled
above. For |S| ≥ 2 we showed above that dS(F(T0)

Z∗v) is (1 ± 2ε0,0)dS(F(T0))dSx(F(T0)) if
S ∈ I or dS(F(T0)

Z∗v) = (1±ε ′)dS(F(T0) if S /∈ I . Recalling that dS′(F(T0)) = (1±ε ′)dS′(G)

for S′ ∈ H ′ with |S′| ≥ 2, Lemma 4.10 gives∣∣F(T0)
Z∗v
E

∣∣∣∣GIv
E

∣∣ = d
(
F(T0)

Z∗v
E

)
d
(
GIv

E

) = (1 ± 9ε0,2)
∏

z∈E

∣∣F(T0)
Z∗v
z

∣∣
(1 ± 8ε ′)

∏
z∈E |Gv| > (1 − 10ε0,2)

(
1 − δ

1/3
B

)3
> 1/2.

Now |ME,E(T0) ∩ F(T0)
Z∗v
E | ≤ |ME ∩ GIv

E | ≤ θ |GIv
E | ≤ 2θ |F(T0)

Z∗v
E |, giving even a stronger

bound on the marked edges than is needed. Thus A2,0 holds.

Claim B. Suppose A3,j−1 holds. If y /∈ Ev
zj
(Tj − 1) then A1,j and A3,j hold, and if y /∈

DZ∗v
zj ,E

(Tj − 1) then A2,j holds. Thus A3,j−1 and A4,j imply A1,j, A2,j and A3,j.

Proof. Suppose y /∈ Ev
zj
(Tj − 1). Then A1,j holds by definition. A3,j follows from A1,j

similarly to the case j = 0 considered in Claim A. To see this, consider any triple E ∈ H ′ and
Z ⊆ E. Suppose ∅ �= S ⊆ E is unembedded. If S ⊆ Z and S ∈ H(x)∩H(zj) then F(Tj)

Z∗v
S =

FSx(Tj)(v) satisfies (∗4.21) by A1,j, so we have the properties required by A3,j. In fact, we have
the stronger statements in which εν′′

S (Tj),2 is replaced by εν′′
S (Tj),1. For any other S we use the

definition of F(Tj)
Z∗v
S≤ as the restriction of FS≤(Tj) to ∪S′⊆S∩Z ,S′∈H(x)FS′x(Tj)(v). Note that by

Lemmas 3.11 and 4.5 we get the same result if we replace FS′x(Tj)(v) by FS′x(Tj − 1)(v) for
those S′ /∈ H(zj). Now FS′(Tj) is εν′′

S′ (Tj),1-regular for S′ ⊆ S by Lemma 4.13, FS′x(Tj)(v) is
εν′′

S′ (Tj),1-regular for S′ ⊆ S ∩ Z , S′ ∈ H(x) ∩ H(zj) and FS′x(Tj − 1)(v) is εν′′
S′ (Tj−1),2-regular

for S′ ∈ I by A3,j−1. So by regular restriction F(Tj)
Z∗v
S is εν′′

S (Tj),2-regular with dS(F(Tj)
Z∗v) =

(1 ± εν′′
S (Tj),2)dS(F(Tj)). Thus A3,j holds.

Next consider any triple E ∈ H ′ and Z ⊆ E. Suppose y /∈ DZ∗v
zj ,E

(Tj −1). If E ∈ U(zj) then

by definition we have |M
E

Tj ,E
(Tj)∩F(Tj)

Z∗v

E
Tj

| ≤ θν∗ |F(Tj)
Z∗v

E
Tj

|, which is a stronger bound than
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required. On the other hand, if E /∈ U(zj) then consider the most recent time Tj′ < Tj when
we embedded zj′ with E ∈ U(zj′), setting j′ = 0 if there is no such time. Then ETj′ = ETj , and
by the stronger bound at time j′ we have |M

E
Tj ,E

(Tj′) ∩ F(Tj′)Z∗v

E
Tj

| ≤ θν∗ |F(Tj′)Z∗v

E
Tj

|. (Recall

that we also obtained a stronger bound for A2,0 in Claim A.) Now F(Tj)
Z∗v

E
Tj

is obtained from

F(Tj′)Z∗v

E
Tj

by deleting at most 2D vertices φ(zj∗), j′+1 ≤ j∗ ≤ j and the sets containing them,

so |F(Tj)
Z∗v

E
Tj

| ≥ (1 − ε∗)|F(Tj′)Z∗v

E
Tj

|; this can be seen by regular restriction and Lemma 4.10,
or simply from the fact that a trivial bound for the number of deleted sets has a lower order
of magnitude for large n. Therefore |M

E
Tj ,E

(Tj) ∩ F(Tj)
Z∗v

E
Tj

| ≤ |M
E

Tj ,E
(Tj′) ∩ F(Tj′)Z∗v

E
Tj

| ≤
θν∗ |F(Tj′)Z∗v

E
Tj

| < θ ′
ν∗ |F(Tj)

Z∗v

E
Tj

|, so A2,j holds.

Claim C. If A1,j−1 and A3,j−1 hold then |Ev
zj
(Tj − 1) \ Ezj (Tj − 1)| < ε∗|Fxzj (Tj − 1)(v)|.

Proof. For any S ∈ H we write ν ′′
S = ν ′′

S (Tj − 1) and ν∗
S = ν ′′

S (Tj). Consider any
unembedded ∅ �= S ∈ H(x) ∩ H(zj).

Case C.1. Suppose first that S = z has size 1. Note that ν∗
z > max{ν ′′

z , ν ′′
zjz

, ν ′′
xz} by the

analogue of Lemma 4.3 for ν ′′. We consider two cases according to whether xzjz ∈ H.

Case C.1.i. Suppose that xzjz ∈ H. Then Fxz(Tj)(v) = Fxzjz(Tj − 1)(yv). Since

Fxzjz(Tj − 1)(v) = F(Tj − 1)
zjz∗v
zjz , using A3,j−1 we have dzjz(F(Tj − 1)(v)) = (1 ±

εν′′
zj z ,2)dxzjz(F(Tj − 1))dzjz(F(Tj − 1)) > d2

u/2 and Fxzjz(Tj − 1)(v) is εν′′
zj z ,2-regular. We

also have dz(F(Tj − 1)(v)) = (1 ± εν′′
z ,2)dxz(F(Tj − 1))dz(F(Tj − 1))αz. By Lemma 2.2, for

all but at most εν′′
zj z ,3|Fxzj (Tj − 1)(v)| vertices y ∈ Fxzj (Tj − 1)(v) we have |Fxz(Tj)(v)| =

|Fxzjz(Tj − 1)(v)(y)| = (1 ± εν′′
zj z ,3)dzjz(F(Tj − 1)(v))|Fxz(Tj − 1)(v)|, so

dz(F(Tj)(v)) = (1 ± εν′′
zj z ,3)dzjz(F(Tj − 1)(v))dz(F(Tj − 1)(v))

= (1 ± εν′′
zj z ,3)(1 ± εν′′

zj z ,2)(1 ± εν′′
z ,2)

× dxzjz(F(Tj − 1))dzjz(F(Tj − 1))dxz(F(Tj − 1))dz(F(Tj − 1))αz.

Also if y /∈ Ezj (Tj − 1) then (∗4.1) gives

dxz(F(Tj)) = (1 ± εν∗
xz ,0)dxz(F(Tj − 1))dxzjz(F(Tj − 1)), and

dz(F(Tj)) = (1 ± εν∗
z ,0)dz(F(Tj − 1))dzjz(F(Tj − 1)).

Thus for such y we have the required estimate dz(F(Tj)(v)) = (1±εν∗
z ,1)dxz(F(Tj))dz(F(Tj))αz.

Case C.1.ii. Suppose that xzjz /∈ H. Since zjz ∈ H and xzj ∈ H we have

Fxz≤(Tj) = Fxz≤(Tj − 1)[(Fxzj (Tj − 1)(y), Fzzj (Tj − 1)(y), {∅})],
i.e. Fxz(Tj) is the bipartite subgraph of Fxz(Tj − 1) induced by Fxzj (Tj − 1)(y) and Fzzj (Tj −
1)(y). Then we have Fxz(Tj)(v) = Fxz(Tj −1)(v)∩Fzzj (Tj −1)(y). Now Fzzj (Tj −1) is εν′′

zj z ,1-

regular by Lemma 4.13 and dz(F(Tj − 1)(v)) = (1 ± εν′′
z ,2)dxz(F(Tj − 1))dz(F(Tj − 1))αz >

d2
u/2 by A3,j−1. Then by Lemmas 2.3 and 2.2, for all but at most εν′′

zj z ,2|Fxzj (Tj − 1)(v)|
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vertices y ∈ Fxzj (Tj − 1)(v) we have |Fxz(Tj)(v)| = |Fxz(Tj − 1)(v) ∩ Fzzj (Tj − 1)(y)| =
(1 ± εν′′

zj z ,2)dzzj (F(Tj − 1))|Fxz(Tj − 1)(v)|. This gives

dz(F(Tj)(v)) = (1 ± εν′′
zj z ,2)dzzj (F(Tj − 1))dz(F(Tj − 1)(v))

= (1 ± εν′′
zj z ,2)(1 ± εν′′

z ,2)dzzj (F(Tj − 1))dxz(F(Tj − 1))dz(F(Tj − 1))αz.

We also have dz(F(Tj)) = (1 ± εν∗
z ,0)dz(F(Tj − 1))dzzj (F(Tj − 1)) if y /∈ Ezj (Tj − 1) by

(∗4.1) and dxz(F(Tj)) = (1 ± ε
1/2
ν∗

xz ,0)dxz(F(Tj − 1)) by Lemma 2.3, and using xzjz /∈ H. Thus
for such y we have the required estimate dz(F(Tj)(v)) = (1 ± εν∗

z ,1)dxz(F(Tj))dz(F(Tj))αz.

Case C.2. The remaining case is when S = z′z has size 2. Note that xzjz′z is r-partite,
as z′z ∈ H(x) ∩ H(zj) and xzj ∈ H. Note also that ν∗

z′z > max{ν ′′
z′z, ν

′′
zjz′z, ν

′′
xz′z}. Consider the

complex

J = Fzjz′z≤(Tj − 1)


 ⋃

S′⊆zjz′z,S′∈H(x)

FS′x(Tj − 1)(v)


 .

We claim that Fxz′z(Tj)(v) = J(y). To see this, note first that Fxz′z≤(Tj) = Fxz′z≤(Tj −
1)[Fxz′z<(Tj)] by Lemma 3.11. Then by Lemma 4.5 we can write Fxz′z≤(Tj) = Fxz′z≤(Tj −
1) ∗ Fxz′z<(Tj) and so

Fxz′z≤(Tj)(v) = Fz′z≤(Tj − 1) ∗ Fz′z≤(Tj) ∗ Fxz′z≤(Tj − 1)(v) ∗ Fxz′z<(Tj)(v)

= Fz′z≤(Tj) ∗ Fxz′z≤(Tj − 1)(v) ∗ Fxz′≤(Tj)(v) ∗ Fxz≤(Tj)(v).

Here we used Fz′z≤(Tj − 1) ∗ Fz′z≤(Tj) = Fz′z≤(Tj − 1)[Fz′z≤(Tj)] = Fz′z≤(Tj) and
Fxz′z<(Tj)(v) = Fxz′≤(Tj)(v) ∪ Fxz≤(Tj)(v) = Fxz′≤(Tj)(v) ∗ Fxz≤(Tj)(v). To put the above
identity in words: Fxz′z(Tj)(v) is the bipartite subgraph of Fz′z≤(Tj)∩Fxz′z(Tj −1)(v) induced
by Fxz′(Tj)(v) and Fxz(Tj)(v). Also,

J = Fzjz′z≤(Tj − 1) ∗
⊙

S′⊆zjz′z,S′∈H(x)

FS′x≤(Tj − 1)(v), so by Lemma 4.5(ii)

J(y) = Fz′z≤(Tj − 1) ∗
⊙

S′⊆z′z,S′∈H(x)

FS′x≤(Tj − 1)(v)

∗ Fzjz′z≤(Tj − 1)(y) ∗
⊙

S′⊆zjz′z,S′∈H(x)

FS′x≤(Tj − 1)(vy)

= Fz′z≤(Tj) ∗ Fxz′z≤(Tj − 1)(v) ∗
⊙

S′⊆zjz′z,S′∈H(x)

FS′x≤(Tj − 1)(vy).

Here we used Fzjz′z≤(Tj − 1)(y) = Fz′z≤(Tj) and Fz′z≤(Tj − 1) ∗ Fz′z≤(Tj) = Fz′z≤(Tj −
1)[Fz′z≤(Tj)] = Fz′z≤(Tj). We also recall that S = z′z ∈ H(x), so S′ ∈ H(x) for any S′ ⊆ z′z.
Note that

⊙
S′⊆zjz′z,S′∈H(x) FS′x≤(Tj − 1)(vy) is a 1-complex containing {∅}, Fxzjz(Tj − 1)(vy)

if xzjz ∈ H and Fxzjz′(Tj − 1)(vy) if xzjz′ ∈ H. As in Case C.1, we have Fxz(Tj)(v) =
Fxzjz(Tj −1)(vy) if xzjz ∈ H or Fxz(Tj)(v) = Fxz(Tj −1)(v)∩Fz(Tj) if xzjz /∈ H, and similarly
Fxz′(Tj)(v) = Fxzjz′(Tj − 1)(vy) if xzjz′ ∈ H or Fxz′(Tj)(v) = Fxz′(Tj − 1)(v) ∩ Fz′(Tj) if
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xzjz′ /∈ H. Thus J(y) is also equal to Fz′z≤(Tj)∗Fxz′z≤(Tj −1)(v)∗Fxz′≤(Tj)(v)∗Fxz≤(Tj)(v),
which proves that Fxz′z≤(Tj)(v) = J(y).

For any S′ ⊆ zjz′z, FS′(Tj − 1) is εν′
S′ ,1-regular by Lemma 4.13 if S′ ∈ H and, using

property (v) above, FS′x(Tj − 1)(v) is εν′′
S′ ,2-regular by A3,j−1 if S′ ∈ H(x). By Lemma 4.8,

Jzjz′z is εν′′
zj z′z ,2-regular with

dzjz′z(J) = (1 ± εν′′
zj z′z ,2)dzjz′z(F(Tj − 1)).

Similarly, by Lemma 2.3, if S′ ⊆ zjz′z, |S′| = 2, S′ /∈ H(x) then JS′ is εν′′
S′ ,2-regular with

dS′(J) = (1±εν′′
S′ ,2)dS′(F(Tj −1)). On the other hand, if S′ ⊆ zjz′z, |S′| = 2, S′ ∈ H(x) then

JS′ = FS′x(Tj − 1)(v) is εν′′
S ,2-regular with dS′(J) = (1 ± εν′′

S ,2)dS′x(F(Tj − 1))dS′(F(Tj − 1))

by A3,j−1. In particular,

dz′z(J) = (1 ± εν′′
z′z ,2)dxz′z(F(Tj − 1))dz′z(F(Tj − 1)).

Now by Lemma 4.6, for all but at most 6ε12D,3|Fxzj (Tj − 1)(v)| vertices y ∈ Fxzj (Tj −
1)(v), Fxz′z(Tj)(v) = J(y) is εν∗

z′z ,0-regular and dz′z(F(Tj)(v)) = dz′z(J(y)) = (1 ±
εν∗

z′z ,0)dzjz′z(J)dz′z(J). Also, dz′z(F(Tj)) = (1 ± εν∗
z′z ,0)dzjz′z(F(Tj − 1))dz′z(F(Tj − 1)) if

y /∈ Ezj (Tj − 1) by (∗4.1), and dxz′z(F(Tj)) = (1 ± εν′′
xz′z ,2)dxz′z(F(Tj − 1)) by Lemmas 4.13

and 4.8. Thus

dz′z(F(Tj)(v)) = (1 ± εν∗
z′z ,0)dzjz′z(J)dz′z(J)

= (1 ± εν∗
z′z ,0)(1 ± εν′′

zj z′z ,2)(1 ± εν′′
z′z ,2)dzjz′z(F(Tj − 1))dxz′z(F(Tj − 1))dz′z(F(Tj − 1))

= (1 ± εν∗
z′z ,1)dz′z(F(Tj))dxz′z(F(Tj)), i.e. (∗4.21) holds for S = zz′.

Combining the estimates for all cases we have at most ε∗|Fxzj (Tj−1)(v)| exceptional vertices
y, so this proves Claim C.

Claim D. If A1,j−1, A2,j−1 and A3,j−1 hold then for any E ∈ U(zj), Z ⊆ E, Z ′ = Z ∪ zj we
have ∣∣DZ ′∗v

zj ,E
(Tj − 1)

∣∣ < θν∗ |Fxzj (Tj − 1)(v)|.

Proof. Note that ν∗ > ν by Lemma 4.3, since E ∈ U(zj).

Case D.1. First consider the case zj ∈ E. Then ETj = E\zj and F
E

Tj≤(Tj) = FE≤(Tj−1)(y).
We will show that

F(Tj)
Z∗v

E
Tj≤ = F(Tj − 1)Z ′∗v

E≤ (y). (+4.21)

Before proving this in general we will illustrate a few cases of this statement. Suppose
that x ∈ E, say E = xzjz for some z. If z is embedded then E = xzj and ETj = x, so
F(Tj)

Z∗v
x = Fx(Tj) = Fxzj (Tj − 1)(y) = F(Tj − 1)Z ′∗v

xzj
(y). If z is not embedded then E = E

and ETj = xz, F(Tj)
Z∗v
z is F(Tj)xz(v) = F(Tj − 1)E(vy) if z ∈ I or F(Tj)z = Fzjz(Tj − 1)(y)

otherwise, and F(Tj)
Z∗v
xz is the bipartite subgraph of F(Tj)xz = F(Tj − 1)E(y) spanned by
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F(Tj)
Z∗v
x = Fx(Tj) = Fxzj (Tj − 1)(y) and F(Tj)

Z∗v
z . Also, we have P ∈ F(Tj − 1)Z ′∗v

E (y)

if Py ∈ F(Tj − 1)Z ′∗v
E , i.e. Py ∈ F(Tj − 1)E and (Py)Sv ∈ FSx(Tj − 1) for all S ⊆ Z ′,

S ∈ H(x). Equivalently, (i) P ∈ F(Tj − 1)E(y) = F(Tj)xz, (ii) for S ⊆ Z \ zj, S ∈ H(x)
we have PSv ∈ FSx(Tj − 1), i.e. PS ∈ FSx(Tj − 1)(v), and (iii) if Szj ∈ H(x) we have
PSyv ∈ FSxzj (Tj − 1), i.e. PS ∈ FSxzj (Tj − 1)(y)(v) = FSx(Tj)(v). Thus P ∈ F(Tj)

Z∗v
xz .

On the other hand, suppose that x /∈ E and consider the case that E is unembedded,
i.e. E = E = zjz′z say. Then F(Tj)

Z∗v
z′z is the bipartite subgraph of F(Tj)

′
z′z spanned by

F(Tj)
′
z and F(Tj)

′
z′ , where we write F(Tj)

′
z′z for F(Tj)xz′z(v) if z′z ∈ I or F(Tj)z′z otherwise,

F(Tj)
′
z for F(Tj)xz(v) if z ∈ I or F(Tj)z otherwise, and F(Tj)

′
z′ for F(Tj)xz′(v) if z′ ∈ I or

F(Tj)z′z otherwise. Recall that F(Tj)xz(v) is Fxzjz(Tj − 1)(vy) if xzjz ∈ H (see Case C.1.i) or
Fxz(Tj − 1)(v) ∩ Fzjz(Tj − 1)(y) if xzjz /∈ H (see Case C.1.ii). Similar statements hold for

Fxz′(Tj)(v). Also, if z′z ⊆ Z then F(Tj − 1)Z ′∗v
E≤ is the complex J defined in Case C.2, so as

shown there F(Tj)xz′z≤(v) = F(Tj − 1)Z ′∗v
E≤ (y).

We deduce (+4.21) from the case A = ETj of the following more general statement, which
will also be used in Cases D.2 and D.3:

F(Tj)
Z∗v
A≤ = F(Tj − 1)Z ′∗v

Az≤j
(y) for A ∈ H(zj). (†4.21)

To see this, note that FSx≤(Tj) = FSx≤(Tj − 1)[FSxz≤j
(Tj − 1)(y)] for any zj /∈ S ∈ I by

Definition 3.7 (deleting y has no effect), so by Lemma 4.5 we have

FSx≤(Tj)(v) = (FSx≤(Tj − 1) ∗ FSxz≤j
(Tj − 1)(y))(v)

= FS≤(Tj − 1) ∗ FSz≤j
(Tj − 1)(y)

∗ FSx≤(Tj − 1)(v) ∗ FSxz≤j
(Tj − 1)(yv)

= FSx≤(Tj − 1)(v) ∗ FSz≤j
(Tj − 1)(y) ∗ FSxz≤j

(Tj − 1)(yv),

since FSz≤j
(Tj − 1)(y) ∗ FS≤(Tj − 1) = FSz≤j

(Tj − 1)(y). Now by definition and Lemma 4.5

we have

F(Tj − 1)Z ′∗v
Az≤j

= FAz≤j
(Tj − 1)[∪S∈I ′FSx(Tj − 1)(v)] = FAz≤j

(Tj − 1) ∗
⊙
S∈I ′

FSx≤(Tj − 1)(v), so

F(Tj − 1)Z ′∗v(y)A≤ = FA≤(Tj − 1) ∗
⊙
S∈I

FSx≤(Tj − 1)(v)

∗ FAz≤j
(Tj − 1)(y) ∗

⊙
S∈I ′

FSx≤(Tj − 1)(vy)

= FAz≤j
(Tj − 1)(y) ∗

⊙
S∈I

FSx≤(Tj − 1)(v) ∗
⊙
S∈I ′

FSx≤(Tj − 1)(vy).

Here we used FA≤(Tj − 1) ∗ FAz≤j
(Tj − 1)(y) = FAz≤j

(Tj − 1)(y). On the other hand,

FZ∗v
A≤ (Tj) = FA≤(Tj)[∪S∈IFSx(Tj)(v)] = FA≤(Tj) ∗

⊙
S∈I

FSx≤(Tj)(v)

= FA≤(Tj) ∗
⊙
S∈I

(FSx≤(Tj − 1)(v) ∗ FSz≤j
(Tj − 1)(y) ∗ FSxz≤j

(Tj − 1)(yv))

= FAz≤j
(Tj − 1)(y) ∗

⊙
S∈I

FSx≤(Tj − 1)(v) ∗
⊙
S′∈I ′

FS′x≤(Tj − 1)(vy) = F(Tj − 1)Z ′∗v(y)A≤ .
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In the second equality above we substituted for FSx≤(Tj)(v), and in the third we set S′ = Szj

and used FSz≤j
(Tj − 1)(y) ∗ FAz≤j

(Tj − 1)(y) = FAz≤j
(Tj − 1)(y). This proves (†4.21), and so

(+4.21).
Now M

E
Tj ,E

(Tj) = ME,E(Tj − 1)(y) by Lemma 3.14, so we have M
E

Tj ,E
(Tj)∩ F(Tj)

Z∗v

E
Tj

=
ME,E(Tj − 1)(y) ∩ F(Tj − 1)Z ′∗v

E≤ (y). Recalling that F(Tj − 1)Z ′∗v
zj

= Fxzj (Tj − 1)(v), we have

DZ ′∗v
zj ,E

(Tj − 1) =
{

y ∈ Fxzj (Tj − 1)(v) :

∣∣(ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E≤

)
(y)

∣∣∣∣F(Tj − 1)Z ′∗v
E≤ (y)

∣∣ > θν∗

}
.

Also, F(Tj −1)Z ′∗v
E≤ is ε12D,2-regular by A3,j−1, so writing B′

zj
for the set of vertices y ∈ F(Tj −

1)Z ′∗v
zj

for which we do not have |F(Tj −1)Z ′∗v
E

(y)| = (1± ε∗)|F(Tj −1)Z ′∗v
E

|/|F(Tj −1)Z ′∗v
zj

|,
we have |B′

zj
| < ε∗|F(Tj − 1)Z ′∗v

zj
| by Lemma 4.12. Now

 :=
∑

y∈DZ′∗v
zj ,E (Tj−1)

∣∣(ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E≤

)
(y)

∣∣

> θν∗
∑

y∈DZ′∗v
zj ,E (Tj−1)\B′

zj

∣∣F(Tj − 1)Z ′∗v
E≤ (y)

∣∣

> (1 − ε∗)θν∗
(∣∣DZ ′∗v

zj ,E
(Tj − 1)

∣∣ − ε∗|Fxzj (Tj − 1)(v)|) ∣∣F(Tj − 1)Z ′∗v
E

∣∣/|Fxzj (Tj − 1)(v)|.

We also have an upper bound

 ≤
∑

y∈Fxzj (Tj−1)(v)

∣∣(ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E≤

)
(y)

∣∣
= ∣∣ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v

E≤
∣∣ < θ ′

ν

∣∣F(Tj − 1)Z ′∗v
E≤

∣∣,
where the last inequality holds by A2,j−1. Therefore

∣∣DZ ′∗v
zj ,E

(Tj − 1)
∣∣

|Fxzj (Tj − 1)(v)| <
θ ′

ν

(1 − ε∗)θν∗
+ ε∗ < θν∗ .

Case D.2. Next consider the case zj /∈ E and E ∈ H(zj). Then ETj = ETj−1 = E and
F

E
Tj≤(Tj) = FEz≤j

(Tj − 1)(y). Also, by (†4.21) we have F(Tj)
Z∗v
E≤ = F(Tj − 1)Z ′∗v

Ez≤j
(y). Now

ME,E(Tj) = ME,E(Tj − 1) ∩ FE(Tj) by Lemma 3.14 and F(Tj)
Z∗v
E

⊆ FE(Tj), so ME,E(Tj) ∩
F(Tj)

Z∗v
E

= ME,E(Tj − 1)∩ F(Tj − 1)Z ′∗v
Ezj

(y). Since F(Tj − 1)Z ′∗v
zj

= Fxzj (Tj − 1)(v), we have

DZ ′∗v
zj ,E

(Tj − 1) =

y ∈ Fxzj (Tj − 1)(v) :

∣∣ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
Ezj

(y)
∣∣∣∣F(Tj − 1)Z ′∗v

Ezj
(y)

∣∣ > θν∗


 .

Also, since E ∈ H(zj) we have Ezj ⊆ E
Tj−1

0 for some triple E0 ∈ H ′, so applying
A3,j−1 to E0 we see that F(Tj − 1)Z ′∗v

Ez≤j
is ε12D,2-regular. Then writing B′

zj
for the set of
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vertices y ∈ F(Tj − 1)Z ′∗v
zj

for which we do not have |F(Tj − 1)Z ′∗v
Ezj

(y)| = (1 ± ε∗)|F(Tj −
1)Z ′∗v

Ezj
|/|F(Tj − 1)Z ′∗v

zj
|, we have |B′

zj
| < ε∗|F(Tj − 1)Z ′∗v

zj
| by Lemma 4.12. Now

 :=
∑

y∈DZ′∗v
zj ,E (Tj−1)

∣∣ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
Ezj

(y)
∣∣ > θν∗

∑
y∈DZ′∗v

zj ,E (Tj−1)\B′
zj

∣∣F(Tj − 1)Z ′∗v
Ezj

(y)
∣∣

> (1 − ε∗)θν∗
(∣∣DZ ′∗v

zj ,E
(Tj − 1)

∣∣ − ε∗|Fxzj (Tj − 1)(v)|) ∣∣F(Tj − 1)Z ′∗v
Ezj

∣∣/|Fxzj (Tj − 1)(v)|.

We also have  ≤ ∑
y∈Fxzj (Tj−1)(v) |ME,E(Tj −1)∩F(Tj −1)Z ′∗v

Ezj
(y)|. This sum counts all pairs

(y, P) with P ∈ ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E

, y ∈ Fxzj (Tj − 1)(v) and Py ∈ F(Tj − 1)Z ′∗v
Ezj

,

so  ≤ ∑
P∈ME,E (Tj−1)∩F(Tj−1)Z′∗v

E
|F(Tj − 1)Z ′∗v

Ezj
(P)|. By Lemma 4.14(vi) we have

∣∣F(Tj − 1)Z ′∗v
Ezj

(P)
∣∣ = (1 ± ε∗)

∣∣F(Tj − 1)Z ′∗v
Ezj

∣∣∣∣F(Tj − 1)Z ′∗v
E

∣∣
for all but at most ε∗|F(Tj − 1)Z ′∗v

E
| sets P ∈ F(Tj − 1)Z ′∗v

E
. Therefore

 ≤ ∣∣ME,E(Tj−1)∩F(Tj−1)Z ′∗v
E

∣∣(1+ε∗)

∣∣F(Tj − 1)Z ′∗v
Ezj

∣∣∣∣F(Tj − 1)Z ′∗v
E

∣∣+ε∗
∣∣F(Tj−1)Z ′∗v

E

∣∣|Fxzj (Tj−1)(v)|.

Combining this with the lower bound on  gives

(1 − ε∗)θν∗
(∣∣DZ ′∗v

zj ,E
(Tj − 1)

∣∣/|Fxzj (Tj − 1)(v)| − ε∗
)

< (1 + ε∗)

∣∣ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E

∣∣∣∣F(Tj − 1)Z ′∗v
E

∣∣ + ε∗

∣∣F(Tj − 1)Z ′∗v
E

∣∣|Fxzj (Tj − 1)(v)|∣∣F(Tj − 1)Z ′∗v
Ezj

∣∣ .

Now F(Tj − 1)Z ′∗v
E

= F(Tj − 1)Z∗v
E

, |ME,E(Tj − 1) ∩ F(Tj − 1)Z∗v
E

| < θ ′
ν |F(Tj − 1)Z∗v

E
| by

A2,j−1, and
|F(Tj−1)Z′∗v

E
||Fxzj (Tj−1)(v)|

|F(Tj−1)Z′∗v
Ezj

| ≤ 2d−4
u � ε−1

∗ by Lemma 4.14 and A3,j−1, so

∣∣DZ ′∗v
zj ,E

(Tj − 1)
∣∣

|Fxzj (Tj − 1)(v)| <
(1 + ε∗)θ ′

ν + √
ε∗

(1 − ε∗)θν∗
+ ε∗ < θν∗ .

Case D.3. It remains to consider the case when zj /∈ E and E /∈ H(zj). Since E ∈ U(zj)

and E /∈ H(zj) we have |E| ≥ 2. Then FE≤(Tj) = FE≤(Tj − 1)[FE<(Tj)] by Lemma 3.11.
Also, we claim that

F(Tj)
Z∗v
E≤ = F(Tj − 1)Z∗v

E≤
[
F(Tj)

Z∗v
E<

]
. (♦4.21)

To see this, consider S ⊆ E and P ∈ F(Tj)
Z∗v
S . Then by definition P ∈ FS(Tj) and

PS′ ∈ FS′x(Tj)(v) for all S′ ⊆ S ∩ Z with S′ ∈ H(x). Since FS(Tj) ⊆ FS(Tj − 1) it follows
that P ∈ F(Tj−1)Z∗v

S . Also, for any S′′ ⊆ S′ ⊆ S with S′ � E, S′′ ⊆ Z and S′′ ∈ H(x) we have
PS′ ∈ FS′(Tj) and PS′′ ∈ FS′′x(Tj)(v), so PS′ ∈ F(Tj)

Z∗v
S′ . Thus P ∈ F(Tj − 1)Z∗v

E≤ [F(Tj)
Z∗v
E< ].

Random Structures and Algorithms DOI 10.1002/rsa



328 KEEVASH

Conversely, suppose that S ⊆ E and P ∈ F(Tj − 1)Z∗v
E≤ [F(Tj)

Z∗v
E< ]S. If S �= E then P ∈

F(Tj)
Z∗v
E< ⊆ F(Tj)

Z∗v
E≤ . Now suppose S = E. Then P ∈ FE(Tj − 1) and PS′ ∈ FS′(Tj) for

S′ � S, so P ∈ FE(Tj). Also, for S′ � S we have PS′ ∈ F(Tj)
Z∗v
S′ , so PS′′ ∈ FS′′x(Tj)(v) for

all S′′ ⊆ S′ ∩ Z with S′′ ∈ H(x). Therefore P ∈ F(Tj)
Z∗v
S . This proves (♦4.21). Note also that

since z /∈ E we can replace Z by Z ′ in (♦4.21).
Since ME,E(Tj) = ME,E(Tj − 1) ∩ FE(Tj) and F(Tj)

Z ′∗v
E

⊆ FE(Tj) we have ME,E(Tj) ∩
F(Tj)

Z ′∗v
E

= ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E≤ [F(Tj)

Z ′∗v
E< ]. Then

DZ ′∗v
zj ,E

(Tj − 1) =
{

y ∈ Fxzj (Tj − 1)(v) :

∣∣ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E≤ [F(Tj)

Z ′∗v
E< ]E

∣∣∣∣F(Tj − 1)Z ′∗v
E≤ [F(Tj)

Z ′∗v
E< ]E

∣∣ > θν∗

}
.

Next note that by A3,j−1 and Lemma 4.10 we have

d
(
F(Tj − 1)Z ′∗v

E

) = (1 ± 8ε∗)
∏
S⊆E

dS(F(Tj − 1))
∏
S∈I

dSx(F(Tj − 1))
∏

S∈I ,|S|=1

αS.

Now consider y /∈ Ev
zj
(Tj − 1). By Claim B we can apply the properties in A3,j with this

choice of y, so we also have

d
(
F(Tj)

Z ′∗v
E

) = (1 ± 8ε∗)
∏
S⊆E

dS(F(Tj))
∏
S∈I

dSx(F(Tj))
∏

S∈I ,|S|=1

αS.

Now dS(F(Tj)) is (1 ± ε∗)dS(F(Tj − 1))dSzj (F(Tj − 1) for S ∈ H(zj) by (∗4.1) or (1 ±
ε∗)dS(F(Tj−1)) for S /∈ H(zj)by Lemma 4.14. Therefore d(F(Tj)

Z ′∗v
E

) = (1±40ε∗)d(F(Tj−
1)Z ′∗v

E
) × d∗, where

d∗ =
∏

S⊆E,S∈H(zj)

dSzj (F(Tj − 1))
∏

S∈I ,Sx∈H(zj)

dSxzj (F(Tj − 1))

= (1 ± 8ε∗)
∏

S⊆E,S∈H(zj)

dSzj (F(Tj − 1)Z ′∗v).

To see the second equality above, note that for any S ∈ I with Sx ∈ H(zj), applying A3,j−1

to any triple E0 ∈ H with Szj ⊆ E
Tj−1

0 , since Szj ⊆ Z ′ = Zzj we have dSzj (F(Tj − 1)Z ′∗v) =
(1 ± ε∗)dSxzj (F(Tj − 1))dSzj (F(Tj − 1)). We deduce that

∣∣F(Tj − 1)Z ′∗v
E≤

[
F(Tj)

Z ′∗v
E<

]
E

∣∣ = (1 ± 50ε∗)
∣∣F(Tj − 1)Z ′∗v

E

∣∣d∗

for such y /∈ Ev
zj
(Tj − 1). Now

 :=
∑

y∈DZ′∗v
zj ,E (Tj−1)

∣∣ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E≤

[
F(Tj)

Z ′∗v
E<

]
E

∣∣

> θν∗
∑

y∈DZ′∗v
zj ,E (Tj−1)\Bzj

∣∣F(Tj − 1)Z ′∗v
E≤

[
F(Tj)

Z ′∗v
E<

]
E

∣∣

> (1 − 50ε∗)θν∗
(∣∣DZ ′∗v

zj ,E
(Tj − 1)

∣∣ − √
ε∗|Fxzj (Tj − 1)(v)|) ∣∣F(Tj − 1)Z ′∗v

E

∣∣d∗.
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(Note that we used the estimate |Bzj | < 2ε|Fzj (Tj − 1)| <
√

ε∗|Fxzj (Tj − 1)(v)|, by
Lemma 4.13 and Claim C.) We also have  ≤ ∑

y∈Fxzj (Tj−1)(v) |ME,E(Tj − 1) ∩ F(Tj −
1)Z ′∗v

E≤ [F(Tj)
Z ′∗v
E< ]E|. This sum counts all pairs (y, P) with P ∈ ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v

E
,

y ∈ Fxzj (Tj − 1)(v) and PS ∈ F(Tj)
Z ′∗v
S for all S � E, S ∈ H(zj); there is no need to consider

S /∈ H(zj), as by Lemma 3.11 we get the same expression if we replace the restriction to
F(Tj)

Z ′∗v
S by F(Tj − 1)Z ′∗v

S for such S. Note that F(Tj)
Z ′∗v
S = F(Tj)

Z∗v
S and PS ∈ F(Tj)

Z∗v
S ⇔

PSy ∈ F(Tj − 1)Z ′∗v
Szj

by (†4.21). Given P, let Fv
P,Z be the set of y ∈ Fxzj (Tj − 1)(v) satisfying

this condition, and let Bv
Z be the set of P ∈ F(Tj − 1)Z ′∗v

E
such that we do not have∣∣Fv

P,Z

∣∣ = (1 ± ε∗)|Fxzj (Tj − 1)(v)|d∗ = (1 ± ε∗)
∣∣F(Tj − 1)Z ′∗v

zj

∣∣d∗.

Lemma 4.11 applied with G = F(Tj − 1)Z ′∗v
E≤ and I = {i(S) : S � E, S ∈ H(zj)} gives

|Bv
Z | < ε∗|F(Tj − 1)Z ′∗v

E
|. Then

 ≤ ∣∣ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E

∣∣(1 + ε∗)|Fxzj (Tj − 1)(v)|d∗

+ ε∗
∣∣F(Tj − 1)Z ′∗v

E

∣∣|Fxzj (Tj − 1)(v)|.
Combining this with the lower bound on  we obtain

(1 − 50ε∗)θν∗

( ∣∣DZ ′∗v
zj ,E

(Tj − 1)
∣∣

|Fxzj (Tj − 1)(v)| − √
ε∗

)
< (1 + ε∗)

∣∣ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E

∣∣∣∣F(Tj − 1)Z ′∗v
E

∣∣ + ε∗
d∗ .

Now d∗ � ε∗, and |ME,E(Tj − 1) ∩ F(Tj − 1)Z ′∗v
E

| < θ ′
ν |F(Tj − 1)Z ′∗v

E
| by A2,j−1 (since

F(Tj − 1)Z ′∗v
E

= F(Tj − 1)Z∗v
E

). Then∣∣DZ ′∗v
zj ,E

(Tj − 1)
∣∣

|Fxzj (Tj − 1)(v)| <
(1 + ε∗)θ ′

ν + √
ε∗

(1 − 50ε∗)θν∗
+ √

ε∗ < θν∗ .

This completes the proof of Claim D.

Claim E. Conditional on the events Ai,j′ , 1 ≤ i ≤ 4, 0 ≤ j′ < j and the embedding up to
time Tj − 1 we have P(A4,j) > du/2.

Proof. Suppose A1,j−1, A2,j−1 and A3,j−1 hold. Then Claim D gives |DZ ′∗v
zj ,E

(Tj − 1)| <

θ12D|Fxzj (Tj − 1)(v)| for any E ∈ U(zj), Z ⊆ E, Z ′ = Z ∪ zj. Also Fxzj (Tj − 1)(v) >

(1−δ
1/4
B )du|Fzj (Tj −1)| by A3,j−1 and since αzj > 1−2δ

1/3
B . As |Ezj (Tj −1)| < ε∗|Fzj (Tj −1)|

by Lemma 4.13, Bzj = Ezj (Tj−1)∪Ev
zj
(Tj−1) has size |Bzj | <

√
ε∗|Fxzj (Tj−1)(v)| by Claim

C. Since H has maximum degree at most D we have at most 2D2 choices for E ∈ U(zj) then
8 choices for Z ⊆ E, so |OKv

zj
(Tj − 1)|/|Fxzj (Tj − 1)(v)| > 1 − √

ε∗ − 16D2θ12D > 1 − θ∗.
Now y = φ(zj) is chosen uniformly at random in OKzj (Tj − 1) ⊆ Fzj (Tj − 1), and
OKv

zj
(Tj − 1) ⊆ OKzj (Tj − 1). Then Claim E follows from

P
(
y ∈ OKv

zj
(Tj − 1)

) =
OKv

zj
(Tj − 1)

OKzj (Tj − 1)
>

(1 − θ∗)|Fxzj (Tj − 1)(v)|
|Fzj (Tj − 1)|

> (1 − θ∗)(1 − δ
1/4
B )du > du/2.
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To finish the proof of the lemma, note that if all the events Ai,j, 1 ≤ i ≤ 4, 1 ≤ j ≤ g
hold, then the events A4,j imply that φ(H(x)) ⊆ (G \ M)(v). Multiplying the conditional
probabilities given by Claim E over at most 2D vertices of VNH(x) gives probability at least
(du/2)2D > p.

4.6. The Conclusion of the Algorithm

The algorithm will be successful if the following two conditions hold. Firstly, it must
not abort during the iterative phase because of the queue becoming too large. Secondly,
there must be a system of distinct representatives for the available images of the unem-
bedded vertices, which all belong to the buffer B. Recall that Ax = Fx(tN

x ) \ ∪E�xMx,E(tN
x )

is the available set for x ∈ B at the time tN
x when the last vertex of VNH(x) is embed-

ded. Since VNH(x) has been embedded, until the conclusion of the algorithm at time T ,
no further vertices will be marked as forbidden for the image x, and no further neighbour-
hood conditions will be imposed on the image of x, although some vertices in Ax may be
used to embed other vertices in Xx. Thus the set of vertices available to embed x at time
T is A′

x = Ax ∩ Vx(T) = Fx(T) \ ∪E�xMx,E(T). Therefore we seek a system of distinct
representatives for {A′

x : x ∈ X(T)}.
We start with the ‘main lemma’, which is almost identical to Lemma 2.6. For

completeness we repeat the proof, giving the necessary modifications.

Lemma 4.22. Suppose 1 ≤ i ≤ r, Y ⊆ Xi and A ⊆ Vi with |A| > ε∗n. Let EA,Y be the
event that (i) no vertices are embedded in A before the conclusion of the algorithm, and (ii)
for every z ∈ Y there is some time tz such that |A ∩ Fz(tz)|/|Fz(tz)| < 2−2D|A|/|Vi|. Then
P(EA,Y ) < p|Y |

0 .

Proof. We start by choosing Y ′ ⊆ Y with |Y ′| > |Y |/(2D)2 so that vertices in Y ′ are
mutually at distance at least 3 (this can be done greedily, using the fact that H has maximum
degree D). It suffices to bound the probability of EA,Y ′ . Note that initially we have |A ∩
Fz(0)|/|Fz(0)| = |A|/|Vi| for all z ∈ Xi. Also, if no vertices are embedded in A, then
|A ∩ Fz(t)|/|Fz(t)| can only be less than |A ∩ Fz(t − 1)|/|Fz(t − 1)| for some z and t if
we embed a neighbour of z at time t. It follows that if EA,Y ′ occurs, then for every z ∈ Y ′

there is a first time tz when we embed a neighbour w of z and have |A ∩ Fz(tz)|/|Fz(tz)| <

|A ∩ Fz(tz − 1)|/2|Fz(tz − 1)|.
By Lemma 4.13, the densities dz(F(tz−1)), dz(F(tz−1)) and dzw(F(tz−1)) are all at least

du and Fzw(tz −1) is ε∗-regular. Applying Lemma 2.2, we see that there are at most ε∗|Fw(tz −
1)| ‘exceptional’ vertices y ∈ Fw(tz−1) that do not satisfy |A∩Fz(tz)| = |Fzw(tz−1)(y)∩A∩
Fz(tz −1)| = (1±ε∗)dzw(F(tz −1))|A∩Fz(tz −1)|. On the other hand, the algorithm chooses
φ(w) = y to satisfy (∗4.1), so |Fz(tz)| = (1±ε∗)dzw(F(tz −1))|Fz(tz −1)|. Thus we can only
have |A∩Fz(tz)|/|Fz(tz)| < |A∩Fz(tz−1)|/2|Fz(tz−1)| by choosing an exceptional vertex y.
But y is chosen uniformly at random from |OKw(tz −1)| ≥ (1−θ∗)|Fw(tz −1)| possibilities
(by Corollary 4.16). It follows that, conditional on the prior embedding, the probability of
choosing an exceptional vertex for y is at most ε∗|Fw(tz − 1)|/|OKw(tz − 1)| < 2ε∗.

Since vertices of Y ′ have disjoint neighbourhoods, we can multiply the conditional
probabilities over z ∈ Y ′ to obtain an upper bound of (2ε∗)|Y ′|. Recall that this bound
is for a subset of EA,Y ′ in which we have specified a certain neighbour w for every vertex
z ∈ Y ′. Taking a union bound over at most (2D)|Y ′| choices for these neighbours gives
P(EA,Y ) ≤ P(EA,Y ′) < (4ε∗D)|Y ′| < p|Y |

0 .
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Now we can prove the following theorem, which implies Theorem 4.1. The proof is
quite similar to the graph case, except that the marked edges create an additional case when
verifying Hall’s criterion, which is covered by Lemma 4.20.

Theorem 4.23. With high probability the algorithm embeds H in G \ M.

Proof. First we estimate the probability of the iteration phase aborting with failure, which
happens when the number of vertices that have ever been queued is too large. We can
take a union bound over all 1 ≤ i ≤ r and Y ⊆ Xi with |Y | = δQ|Xi| of P(Y ⊆ Q(T)).
Suppose that the event Y ⊆ Q(T) occurs. Then for every z ∈ Y there is some time t such that
|Fz(t)| < δ′

Q|Fz(tz)|, where tz < t is the most recent time at which we embedded a neighbour
of z. Since A = Vi(T) is unused we have A∩Fz(t) = A∩Fz(tz), so |A∩Fz(tz)|/|Fz(tz)| = |A∩
Fz(t)|/|Fz(tz)| ≤ |Fz(t)|/|Fz(tz)| < δ′

Q. However, we have |A| ≥ δBn/2 by Lemma 4.3(i),
so since δ′

Q � δB we have |A ∩ Fz(tz)|/|Fz(tz)| < 2−2D|A|/|Vi|. Taking a union bound over
all possibilities for i, Y and A, Lemma 4.22 implies that the failure probability is at most
r · 4Cn · p

δQn

0 < o(1), since p0 � δQ.
Now we estimate the probability of the conclusion of the algorithm aborting with failure.

By Hall’s criterion for finding a system of distinct representatives, the conclusion fails if
and only if there is 1 ≤ i ≤ r and S ⊆ Xi(T) such that |∪z∈SA′

z| < |S|. Recall that
|Xi(T)| ≥ δBn/2 by Lemma 4.3(i) and buffer vertices have disjoint neighbourhoods. We
divide into cases according to the size of S.

0 ≤ |S|/|Xi(T)| ≤ γ . For every unembedded z and triple E containing z we have |Fz(T)| ≥
dun by Lemma 4.13 and |Mz,E(T)| ≤ θ∗|Fz(T)| by Lemma 4.15. Since z has degree at
most D we have |A′

z| ≥ (1 − Dθ∗)dun > γ n, so this case cannot occur.
γ ≤ |S|/|Xi(T)| ≤ 1/2. We use the fact that A := Vi(T) \ ∪z∈SA′

z is a large set of unused
vertices which cannot be used by any vertex z in S: we have |A| ≥ |Vi(T)| − |S| ≥
|Xi(T)|/2 ≥ δBn/4, yet A ∩ Fz(T) ⊆ ∪E�zMz,E(T) has size at most Dθ∗|Fz(T)| by
Lemma 4.15, so |A ∩ Fz(T)|/|Fz(T)| ≤ Dθ∗ < 2−2D|A|/|Vi|. As above, taking a union
bound over all possibilities for i, S and A, Lemma 4.22 implies that the failure probability
is at most r · 4Cn · pγ δBn/2

0 < o(1), since p0 � γ , δB.
1/2 ≤ |S|/|Xi(T)| ≤ 1 − γ . We use the fact that W := Vi(T) \ ∪z∈SA′

z satisfies W ∩ Az =
W ∩ A′

z = ∅ for every z ∈ S. Now |W | ≥ |Vi(T)| − |S| ≥ γ |Xi(T)| ≥ γ δBn/2, so
by Lemma 4.20, for each z the event W ∩ Az = ∅ has probability at most θ∗ when
we embed VNH(z), conditional on the prior embedding. Multiplying the conditional
probabilities and taking a union bound over all possibilities for i, S and W , the failure
probability is at most r · 4Cn · θ

δBn/4
∗ < o(1), since θ∗ � δB.

1 − γ ≤ |S|/|Xi(T)| ≤ 1. We claim that with high probability ∪z∈SA′
z = Vi(T), so in fact

Hall’s criterion holds. It suffices to consider sets S ⊆ Xi(T) of size exactly (1 −
γ )|Xi(T)|. The claim fails if there is some v ∈ Vi(T) such that v /∈ A′

z for every
z ∈ S. Since v is unused we have v /∈ Az, and by Lemma 4.21, for each z the event
v /∈ Az has probability at most 1 − p when we embed VNH(z), conditional on the prior
embedding. Multiplying the conditional probabilities and taking a union bound over all
1 ≤ i ≤ r, v ∈ Vi and S ⊆ Xi(T) of size (1−γ )|Xi(T)|, the failure probability is at most
rCn

( Cn
(1−γ )Cn

)
(1 − p)(1−γ )|Xi(T)| < o(1). This estimate uses the bounds

( Cn
(1−γ )Cn

) ≤ 2
√

γ n,

(1 − p)(1−γ )|Xi(T)| < e−pδBn/4 < 2−p2n and γ � p.

In all cases we see that the failure probability is o(1).
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5. APPLYING THE BLOW-UP LEMMA

To demonstrate the utility of the blow-up lemma we will work through an application in this
section. To warm up, we sketch the proof of Kühn and Osthus [31, Theorem 2] on packing
bipartite graphs using the graph blow-up lemma. Then we generalise this result to packing
tripartite 3-graphs. We divide this section into four subsections, organised as follows. In
the first subsection we illustrate the use of the graph blow-up lemma, which is based on
a decomposition obtained from Szemerédi’s Regularity Lemma and a simple lemma that
one can delete a small number of vertices from a regular pair to make it super-regular.
The second subsection describes some more hypergraph regularity theory for 3-graphs:
the Regular Approximation Lemma and Counting Lemma of Rödl and Schacht. In the
third subsection we give the 3-graph analogue of the super-regular deletion lemma, which
requires rather more work than the graph case. We also give a ‘black box’ reformulation of
the blow-up lemma that will be more accessible for future applications. We then apply this
in the fourth subsection to packing tripartite 3-graphs.

5.1. Applying the Graph Blow-Up Lemma

In this subsection we sketch a proof of the following result of Kühn and Osthus. First we
give some definitions. For any graph F, an F-packing is a collection of vertex-disjoint copies
of F. We say that a graph G is (a±b)-regular if the degree of every vertex in G lies between
a − b and a + b.

Theorem 5.1. For any bipartite graph F with different part sizes and 0 < c ≤ 1 there is
a real ε > 0 and positive integers C, n0 such that any (1 ± ε)cn-regular graph G on n > n0

vertices contains an F-packing covering all but at most C vertices.

Note that the assumption that F has different part sizes is essential. For example, if
F = C4 is a 4-cycle and G is a complete bipartite graph with parts of size (1 + ε)n/2
and (1 − ε)n/2 then any F-packing leaves at least εn vertices uncovered. Also, we cannot
expect to cover all vertices even when the number f of vertices of F divides n, as G may be
disconnected and have a component in which the number of vertices is not divisible by f .

Without loss of generality we can assume F is a complete bipartite graph Kr,s for some
r �= s. It is convenient to assume that G is bipartite, having parts A and B of sizes n/2. This
can be achieved by choosing A and B randomly: if G is (1 ± ε)cn-regular then with high
probability the induced bipartite graph is (1±2ε)cn/2-regular. Then we refine the partition
(A, B) using the following ‘degree form’ of Szemerédi’s Regularity Lemma.

Lemma 5.2. Suppose 0 < 1/T � ε � d < 1 and G = (A, B) is a bipartite graph with
|A| = |B| = n/2. Then there are partitions A = A0 ∪A1 ∪· · ·∪At and B = B0 ∪B1 ∪· · ·∪Bt

for some t ≤ T such that |Ai| = |Bi| = m for 1 ≤ i ≤ t for some m and |A0 ∪ B0| ≤ εn, and
a spanning subgraph G′ of G such that dG′(x) > dG(x) − (d + ε)n for every vertex x and
every pair (Ai, Bj) with 1 ≤ i, j ≤ k induces a bipartite subgraph of G′ that is either empty
or ε-regular of density at least d.

Lemma 5.2 can be easily derived from the usual statement of Szemerédi’s Regularity
Lemma (see e.g. [33, Lemma 41] for a non-bipartite version). We refer to the parts Ai and Bi

with 1 ≤ i ≤ t as clusters and the parts A0 and B0 as exceptional sets. We write (Ai, Bj)G′ for
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the bipartite subgraph of G′ induced by Ai and Bj. There is a naturally associated reduced
graph, in which vertices correspond to clusters and edges to dense regular pairs: R is a
weighted bipartite graph on ([t], [t]) with an edge (i, j) of weight dij whenever (Ai, Bj)G′ is
ε-regular of density dij ≥ d. We choose the parameter d to satisfy ε � d � c.

The next step of the proof is to select a nearly-perfect matching in R, using the defect
form of Hall’s matching theorem. Using the fact that G is (1 ± ε)cn-regular one can show
that for any I ⊆ [t] we have |NR(I)| ≥ (1 − 2(d + 2ε)/c)|I| > (1 − √

d)|I| (say) so R has
a matching of size (1 − √

d)t. The details are given in Lemma 11 of [31].
Now it is straightforward to find an F-packing covering all but at most 3

√
dn vertices.

For each edge (i, j) of the matching in R we greedily remove copies of Kr,s while possible,
alternating which of Ai and Bj contains the part of size s to maintain parts of roughly equal
size. While we still have at least εm vertices remaining in each of Ai and Bj, the definition of
ε-regularity implies that the remaining subgraph (Ai, Bj)G′ has density at least d − ε. Then
the Kövari-Sós-Turán theorem [29] implies that we can choose the next copy of Kr,s. We
can estimate the number of uncovered vertices by 2

√
dt ·m < 2

√
dn in clusters not covered

by the matching, 2t · εm < 2εn in clusters covered by the matching, and εn in A0 ∪ B0, so
at most 3

√
dn vertices are uncovered.

However, we want to prove the stronger result that there is an F-packing covering all but
at most C vertices. To do this we first move a small number of vertices from each cluster
to the exceptional sets so as to make the matching pairs super-regular. This is a standard
property of graph regularity; we include the short proof of the next lemma for comparison
with the analogous statement later for hypergraphs.

Lemma 5.3. Suppose G = (A, B) is an ε-regular bipartite graph of density d with
|A| = |B| = m. Then there are A∗ ⊆ A and B∗ ⊆ B with |A∗| = |B∗| = (1 − ε)m such that
the restriction G∗ of G to (A∗, B∗) is (2ε, d)-super-regular.

Proof. Let A0 = {x ∈ A : d(x) < (d−ε)m}. Then |A0| < εm, otherwise (A0, B)would con-
tradict the definition of ε-regularity for (A, B). Similarly B0 = {x ∈ B : d(x) < (d − ε)m}
has |B0| < εm. Let A∗ be obtained from A by deleting a set of size εm containing A0.
Define B∗ similarly. Then |A∗| = |B∗| = (1 − ε)m. For any A′ ⊆ A∗, B′ ⊆ B∗ with
|A′| > 2ε|A∗|, |B′| > 2ε|B∗| we have |A′| > εm, |B′| > 2εm, so (A′, B′)G has den-
sity d ± ε by ε-regularity of G. Thus G∗ is 2ε-regular. Also, for any vertex x of G∗

we have dG∗(x) ≥ dG(x) − εm ≥ (d − ε)m − εm ≥ (d − 2ε)(1 − ε)m, so G∗ is
(2ε, d)-super-regular.

We make the matching pairs (ε, 2d)-super-regular and move all discarded vertices and
unmatched clusters into the exceptional sets. For convenient notation, we redefine A1, . . . , At′
and B1, . . . , Bt′ , where t′ = (1 − √

d)t, to be the parts of the super-regular matched pairs,
and A0, B0 to be the new exceptional sets. Thus |Ai| = |Bi| = (1 − ε)m for 1 ≤ i ≤ t′ and
|A0 ∪ B0| ≤ εn + 2t′εm + 2

√
dtm < 3

√
dn.

We will select vertex-disjoint copies of Kr,s to cover A0 ∪B0. We want to do this in such a
way that the matching pairs remain super-regular (with slightly weaker parameters) and the
uncovered parts of the clusters all have roughly equal sizes. Then we will be able to apply
the graph blow-up lemma (Theorem 2.1) to pack the remaining vertices in each matching
pair almost perfectly with copies of Kr,s. (We assumed |Vi| = |Xi| = n in Theorem 2.1 for
simplicity, but it is easy to replace this assumption by n ≤ |Vi| = |Xi| ≤ 2n, say.) The sizes
of the uncovered parts in a pair may not permit a perfect Kr,s-packing, but it is easy to see
that one can cover all but at most r + s vertices in each pair. Taking C = T(r + s) we will
thus cover all but at most C vertices.
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It remains to show how to cover A0 ∪ B0 with vertex-disjoint copies of Kr,s. First we
set aside some vertices that we will not use so as to preserve the super-regularity of the
matching pairs. For each matching pair (i, j) we randomly partition Ai as A′

i ∪ A′′
i and Bj as

B′
j ∪B′′

j . We will only use vertices from A′ = ∪iA′
i and B′ = ∪jB′

j when covering A0 ∪B0. By
Chernoff bounds, with high probability these partitions have the following properties:

1. all parts A′
i, A′′

i , B′
j, B′′

j have sizes (1 − ε)m/2 ± m2/3.

2. every vertex x has at least d(x)/2 − 4
√

dn neighbours in A′ ∪ B′.
3. whenever a vertex x has K ≥ εm neighbours in a cluster Ai it has K/2 ± m2/3

neighbours in each of A′
i, A′′

i ; a similar statement holds for clusters Bj.
4. each of NG′(x)∩B′′

j and NG′(y)∩A′′
i have size at least dm/2−m2/3 for every matching

edge (i, j) and x ∈ Ai, y ∈ Bj.

Now we cover A0 ∪B0 by the following greedy procedure. Suppose we are about to cover
a vertex x ∈ A0 ∪B0, say x ∈ A0. We consider a cluster to be heavy if we have covered more
than d1/4m of its vertices. Since |A0 ∪ B0| < 3

√
dn we have covered at most 3(r + s)

√
dn

vertices by copies of Kr,s, so there are at most 4(r + s)d1/4t heavy clusters. Since G is
(1 ± ε)cn-regular, x has at least cn/3 neighbours in B′ by property 2. At most 4(r + s)d1/4n
of these neighbours lie in heavy clusters and at most cn/4 of them lie in clusters Bj where
x has at most cm/4 neighbours. Thus we can choose a matching pair (i, j) such that x has
at least cm/4 neighbours in Bj, so at least cm/10 neighbours in B′

j by property 3. Since
(Ai, Bj) is 2ε-regular, (A′

i, N(x) ∩ B′
j) has density at least d/2, so by Kövari-Sós-Turán we

can choose a copy of Kr−1,s with r − 1 vertices in A′
i and s vertices in N(x) ∩ B′

j. Adding x
we obtain a copy of Kr,s covering x.

Thus we can cover A0∪B0, only using vertices from A′∪B′, and by avoiding heavy clusters
we never cover more than d1/4m+max{r, s} vertices in any cluster. For each matching edge
(i, j), the uncovered part of (Ai, Bj)G′ is 3ε-regular, and has minimum degree at least dm/3
by property 4. Thus it is super-regular, and as described above we can complete the proof
via the blow-up lemma.

5.2. The Regular Approximation Lemma and Dense Counting Lemma

In order to apply regularity methods to 3-graphs we need a result analogous to the Sze-
merédi Regularity Lemma, decomposing an arbitrary 3-graph into a bounded number of
3-complexes, most of which are regular. This was achieved by Frankl and Rödl [9], but as
we mentioned in Section 3, in this sparse setting the parameters are not suitable for our
blow-up lemma. We will instead use the regular approximation lemma, which provides a
dense setting for an approximation of the original 3-graph. For 3-graphs this result is due to
Nagle, Rödl and Schacht [37] and in general to Rödl and Schacht [41]. A similar result was
proved by Tao [45]. For simplicity we will just discuss the lemma for 3-graphs, although
the statement for k-graphs is very similar. Note also that we will formulate the results using
the notation established in this paper. We start with a general definition.

Definition 5.4. Suppose that V = V1 ∪ · · · ∪ Vr is an r-partite set. A partition k-system P
on V is a collection of partitions PA of K(V)A for every A ∈ ([r]

≤k

)
. We say that P is a partition

k-complex if every two sets S, S′ in the same cell of PA are strongly equivalent, defined as in
[13] to mean that SB and S′

B belong to the same cell of PB for every B ⊆ A. Given S ∈ K(V)

we write CP
S for the cell in PA containing S. We write CS = CP

S when there is no danger of
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ambiguity. For any S′ ⊆ S we write CS′ ≤ CS and say that CS′ lies under or is consistent
with CS. We define the cell complex CS≤ = ∪S′⊆SCS′ .

We can use a partition 2-complex to decompose a 3-graph as follows.

Definition 5.5. Suppose G is an r-partite 3-graph on V and P is a partition 2-complex
on V. We define G[P] to be the coarsest partition 3-complex refining P and the partitions
{GS, K(V)S \ GS} for S ∈ G.

We make a few remarks here to explain the structures defined in Definitions 5.4 and 5.5.
The partition 2-complex P has vertex partitions and graph partitions. The vertex partitions
Pi are of the form Vi = V 1

i ∪· · ·∪V ai
i for some ai, for 1 ≤ i ≤ r. The graph partitions Pij are

of the form K(V)ij = J1
ij ∪ · · · ∪ J

aij
ij for some aij, for 1 ≤ i < j ≤ r. By strong equivalence,

any bipartite graph J
bij
ij is spanned by some pair (V bi

i , V
bj
j ): it cannot cut across several such

pairs. We also say that V bi
i and V

bj
j lie under or are consistent with J

bij
ij . A choice of i < j < k,

singleton parts V bi
i , V

bj
j , V

bk
k and graph parts J

bij
ij , J

bjk
jk , J

bik
ik such that the singleton parts are

consistent with the graph parts is called a triad. (This terminology is used by Rödl et al.) If
we consider the set of triangles in a triad, then we obtain a partition of the r-partite triples of
V as we range over all triads. Another way to describe this is to say as in [13] that S, S′ are
weakly equivalent when SB, S′

B are in the same cell of PB for every strict subset B � A. Let
P∗

A denote the partition of K(V)A into weak equivalence classes. Then P∗
ijk is the partition of

K(V)ijk by triads as described above. The partition 3-complex G[P] has two cells for each
triad: for each cell C of P∗

ijk we have cells Gijk ∩ C and (K(V) \ G)ijk ∩ C of G[P]ijk . For
embeddings in G only the cells Gijk ∩ C are of interest, but we include both for symmetry
in the definition. We make the following further definitions.

Definition 5.6. Suppose P is a partition k-complex. We say that P is equitable if for every
k′ ≤ k the k′-cells all have equal size, i.e. |T | = |T ′| for every T ∈ PA, T ′ ∈ PA′ , A, A′ ∈ ([r]

k′
)
.

We say that P is a-bounded if |PA| ≤ a for every A. We say that P is ε-regular if every
cell complex CS≤ is ε-regular. We say that r-partite 3-graphs G0 and G on V are ν-close if
|G0

A�GA| < ν|K(V)A| for every A ∈ ([r]
3

)
. Here � denotes symmetric difference.

The following is a slightly modified version of the Regular Approximation Lemma
[41, Theorem 14].2 The reader should note the key point of the constant hierarchy: although
the closeness of approximation ν may be quite large (it will satisfy d2 � ν � d3), the
regularity parameter ε will be much smaller.

Theorem 5.7 (Rödl-Schacht [41]). Suppose integers n, a, r and reals ε, ν satisfy 0 <

1/n � ε � 1/a � ν, 1/r and that G0 is an r-partite 3-graph on an equitable r-partite set
of n vertices V = V1 ∪ · · · ∪ Vr, where a!|n. Then there is an a-bounded equitable r-partite
partition 2-complex P on V and an r-partite 3-graph G on V that is ν-close to G0 such that
G[P] is ε-regular.

2The differences are: (i) we are starting with an initial partition of V , so technically we are using a simplified form
of [41, Lemma 25], (ii) a weaker definition of ‘equitable’ is given in [41], that the singleton cells have equal sizes,
but in fact they prove their result with the definition used here, and (iii) we omit the parameter η in our statement,
as by increasing r we can ensure that all but at most ηn3 edges are r-partite.
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As we mentioned earlier, ε-regular 3-complexes are useful because of a counting lemma
that allows one to estimate the number of copies of any fixed complex J , using a suitable
product of densities. First we state a counting lemma for tetrahedra, analogous to the triangle
counting lemma in (1). Suppose 0 < ε � d, γ and G is an ε-regular 4-partite 3-complex
on V = V1 ∪ · · ·∪V4 with all relative densities dS(G) ≥ d. Then G∗

[4] is the set of tetrahedra
in G. We have the estimate

d
(
G∗

[4]
)

:=
∣∣G∗

[4]
∣∣

|V1||V2||V3||V4| = (1 ± γ )
∏

S⊆[4]
dS(G). (7)

This follows from a result of Kohayakawa, Rödl and Skokan [22, Theorem 6.5]: they proved
a counting lemma for cliques in regular k-complexes.

More generally, suppose J is an r-partite 3-complex on Y = Y1 ∪ · · · ∪ Yr and G is an
r-partite 3-complex on V = V1 ∪ · · · ∪ Vr . We let �(Y , V) denote the set of all r-partite
maps from Y to V : these are maps φ : Y → V such that φ(Yi) ⊆ Vi for each i. We say that
φ is a homomorphism if φ(J) ⊆ G. For I ⊆ [r] we let GI : K(V)I → {0, 1} also denote the
characteristic function of GI , i.e. GI(S) is 1 if S ∈ GI and 0 otherwise. The following general
dense counting lemma from [42] gives an estimate for partite homomorphism density dJ(G)

of J in G, by which we mean the probability that a random r-partite map from Y to V is
a homomorphism from J to G. We use the language of homomorphisms for convenient
notation, but note that we can apply the same estimate to the density of embedded copies
of J in G, as most maps are injective.

Theorem 5.8 (Rödl-Schacht [42], see Theorem 13).3 Suppose 0 < ε � d, γ , 1/r, 1/j,
that J and G are r-partite 3-complexes with vertex sets Y = Y1∪· · ·∪Yr and V = V1∪· · ·∪Vr

respectively, that |J| = j, and G is ε-regular with all densities dS(G) ≥ d. Then

dJ(G) = Eφ∈�(Y ,V)

[∏
A∈J

GA(φ(A))

]
= (1 ± γ )

∏
A∈J

dA(G).

5.3. Obtaining Super-Regularity

Suppose that we want to embed some bounded degree 3-graph H in another 3-graph G0

on a set V of n vertices, where n is large. We fix constants with hierarchy 0 < 1/n �
ε � 1/a � ν, 1/r � 1. We delete at most a! vertices so that the number remaining is
divisible by a!, take an equitable r-partition V = V1 ∪ · · · ∪ Vr , and apply Theorem 5.7
to obtain an a-bounded equitable r-partite partition 2-complex P on V and an r-partite
3-graph G on V that is ν-close to G0 such that G[P] is ε-regular. Since G is so regular,
our strategy for embedding H in G0 will be to think about embedding it in G, subject to
the rule that the edges M = G \ G0 are marked as ‘forbidden’. Recall that we refer to the
pair (G, M) as a marked complex. To apply the 3-graph blow-up lemma (Theorem 4.1) we
need the following analogue of Lemma 5.3, showing that we can enforce super-regularity
by deleting a small number of vertices.

3We have rephrased their statement and slightly generalised it by allowing the sets Yi to have more than one vertex:
this version can easily be deduced from the case |Yi| = 1, 1 ≤ i ≤ r by defining an auxiliary complex with the
appropriate number of copies of each Vi (see [4]).
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Lemma 5.9. Suppose that 0 < ε0 � ε � ε ′ � d2 � θ � d3, 1/r, and (G, M) is a
marked r-partite 3-complex on V = V1 ∪ · · · ∪ Vr such that when defined GS is ε0-regular,
|MS| ≤ θ |GS| and dS(G) ≥ d|S| if |S| = 2, 3. Then we can delete at most 2θ 1/3|Gi| vertices
from each Gi, 1 ≤ i ≤ r to obtain an (ε, ε ′, d2/2, 2

√
θ , d3/2)-super-regular marked complex

(G�, M�).

Proof. The idea is to delete vertices which cause failure of the regularity, density or
marking conditions in Definition 3.16 (super-regularity). However, some care must be taken
to ensure that this process terminates. There are three steps in the proof: firstly, we identify
sets Yi of vertices in Gi that cause the conditions on marked edges to fail; secondly, we
identify sets Zi of vertices in Gi that either cause the regularity and density conditions to fail
or have atypical neighbourhood in some Yj; thirdly, we delete the sets Yi and Zi and show
that what remains is a super-regular pair.

Step 1. Fix 1 ≤ i ≤ r. We will identify a set Yi of vertices in Gi that are bad with respect
to the conditions on marked edges in the definition of super-regularity. For any j, k such that
Gijk is defined we let Yi,jk be the set of vertices v ∈ Gi for which |M(v)jk| >

√
θ |G(v)jk|. For

any triple S such that GS is defined and subcomplex I of S≤ such that GS′i is defined for all
S′ ∈ I we let Y I

i,S be the set of vertices v ∈ Gi for which |(M ∩ GIv)S| >
√

θ |GIv
S |. Let Yi be

the union of all such sets Yi,jk and Y I
i,S. We will show that |Yi| < θ 1/3|Gi|.

First we bound the sets Yi,jk . Let Zi,jk be the set of vertices v ∈ Gi such that we do not have
|G(v)jk| = (1 ± ε)|Gijk|/|Gi| and G(v)S is ε-regular with dS(G(v)) = (1 ± ε)dS(G)dSi(G)

for ∅ �= S ⊆ jk. Since Gijk is ε0-regular we have |Zi,jk| < ε|Gi| by Lemma 4.12 and
Lemma 4.6. Therefore

∑
v∈Yi,jk

|M(v)jk| >
√

θ
∑

v∈Yi,jk\Zi,jk
|G(v)jk| >

√
θ(|Yi,jk|−ε|Gi|)(1−

ε)|Gijk|/|Gi|. We also have an upper bound
∑

v∈Yi,jk
|M(v)jk| ≤ |Mijk| ≤ θ |Gijk| by the

hypotheses of the lemma. This gives |Yi,jk|/|Gi| <
√

θ/(1 − ε) + ε < 2
√

θ .
Now we bound Y I

i,S. Define Zi,S to equal Zi,jk if S = ijk or Zi,ab ∪ Zi,bc ∪ Zi,ac if i /∈
S = abc. If v ∈ Gi \ Zi,S then by regular restriction GIv

S≤ is
√

ε-regular and dS′(GIv) is
(1 ± ε)dS′(G)dS′i(G) if ∅ �= S′ ∈ I or (1 ± √

ε)dS′(G) otherwise. By Lemma 4.10 we
have d(GS) = (1 ± 8ε)

∏
S′⊆S dS′(G) and d(GIv

S ) = (1 ± 8
√

ε)
∏

S′⊆S dS′(GIv) = (1 ±
20

√
ε)d(GS)

∏
∅�=S′∈I dS′i(G).

Write  = ∑
v∈YI

i,S
|(M ∩ GIv)S|. Then

 >
√

θ
∑

v∈YI
i,S\Zi,S

∣∣GIv
S

∣∣ >
√

θ
(∣∣Y I

i,S

∣∣ − 3ε|Gi|
)
(1 − 20

√
ε)|GS|

∏
∅�=S′∈I

dS′i(G).

For any P ∈ GS, let GP,I be the set of v ∈ Gi such that PS′v ∈ GS′i for all ∅ �= S′ ∈ I . Let BI

be the set of P ∈ GS such that we do not have |GP,I | = (1 ± ε ′)|Gi|∏∅�=S′∈I dS′i(G). Then
|BI | ≤ ε ′|GS| by Lemma 4.11. Now  ≤ ∑

v∈Gi
|(M ∩ GIv)S|, which counts all pairs (v, P)

with P ∈ MS and v ∈ GP,I , so

 ≤ |MS|(1 + ε ′)|Gi|
∏

∅�=S′∈I

dS′i(G) + ε ′|GS||Gi|.

Combining this with the lower bound on  we obtain

√
θ
(∣∣Y I

i,S

∣∣/|Gi| − 3ε
)
(1 − 20

√
ε) <

|MS|
|GS| (1 + ε ′) + ε ′ ∏

∅�=S′∈I

dS′i(G)−1.
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Since |MS| < θ |GS| and ε ′ � d2 we deduce that |Yi,jk|/|Gi| < 2
√

θ .
In total we deduce that |Yi|/|Gi| <

((r−1
2

) + 28
(r

3

))
2
√

θ < θ 1/3.

Step 2. Next we come to the regularity and density conditions. Recall that G(v) is ε-
regular with dS(G(v)) = (1 ± ε)dS(G)dSi(G) for ∅ �= S ⊆ jk when v /∈ Zi,jk , where
|Zi,jk| < ε|Gi|. Now suppose Gij is defined and let Z ′

i,j be the set of v ∈ Gi such that
|G(v)j ∩ Yj| �= dij(G)|Yj| ± ε|Gj|. We claim that |Z ′

i,j| < 2ε|Gi|. To prove this, we can
assume that |Yj| > ε|Gj|, otherwise Z ′

i,j is empty. Since Gij is ε0-regular, Gij[Yj] is ε-regular
by Lemma 2.3. Then the bound on Z ′

i,j follows from Lemma 2.2. Let Zi be the union of all
the sets Zi,jk and Z ′

i,j. Then |Zi|/|Gi| <
(r

2

)
ε + 2(r − 1)2ε <

√
ε, say.

Step 3. Now we show that deleting Yi ∪ Zi from Gi for every 1 ≤ i ≤ r gives an
(ε, ε ′, d2/2, 2

√
θ , d3/2)-super-regular marked complex (G�, M�). To see this, note first that

the above upper bounds on Yi and Zi show that we have deleted at most 2θ 1/3-proportion
of each Gi. Since G is ε0-regular with dS(G) ≥ d|S| if |S| = 2, 3, regular restriction implies
that G� is ε-regular with dS(G�) = (1±ε)dS(G) if |S| = 2, 3 and di(G�) > (1−2θ 1/3)di(G)

for 1 ≤ i ≤ r. This gives property (i) of super-regularity.

Now suppose Gij is defined and v ∈ G�

i . Then |G(v)j| = (1 ± ε)dij(G)|Gj| and |G(v)j ∩
Yj| = dij(G)|Yj| ± ε|Gj| since v /∈ Z ′

i,j. Since G�

j = Gj \ (Yj ∪ Zj) and |Zj| <
√

ε|Gj| we have

|G�(v)j| = |G(v)j \ (Yj ∪ Zj)| = |G(v)j| − dij(G)|Yj| ± 2
√

ε|Gj| = (1 ± ε ′)dij(G
�)
∣∣G�

j

∣∣.
Next suppose that Gijk is defined and v ∈ G�

i . Then djk(G(v)) = (1 ± ε)djk(G)dijk(G) and
G(v)jk is ε-regular, so djk(G�(v)) = (1 ± ε ′)djk(G�)dijk(G�) and G�(v)jk is ε ′-regular by
regular restriction. Also, since v /∈ Yi,jk we have |M(v)jk| ≤ √

θ |G(v)jk|. Since

|G�(v)jk| = djk(G
�(v))|G�(v)j||G�(v)k| >

(1 − ε ′)(1 − 2θ 1/3)2djk(G(v))|G(v)j||G(v)k| >
1

2
|G(v)jk|

we have |M�(v)jk| ≤ |M(v)jk| ≤ 2
√

θ |G�(v)|. This gives property (ii) of super-regularity.
Finally, consider any triple S such that GS is defined and subcomplex I of S≤ such that GS′i

is defined for all S′ ∈ I . Since v /∈ Zi,S, GIv
S≤ is

√
ε-regular and dS′(GIv) is (1±ε)dS′(G)dS′i(G)

if ∅ �= S′ ∈ I or (1 ± √
ε)dS′(G) otherwise. For j ∈ S, we have dj(G�Iv) = dj(G�) >

(1 − 2θ 1/3)dj(G) if j /∈ I or dj(G�Iv) = dj(G�(v)) = (1 ± ε ′)dij(G�)dj(G�) > 1
2 d2dj(G)

if j ∈ I . Then by regular restriction, for |S′| ≥ 2 with S′ ⊆ S, G�Iv
S′ is ε ′-regular with

dS′(G�Iv) = (1±ε1/4)dS′(GIv) equal to (1±ε ′)dS′(G�)dS′i(G�) if ∅ �= S′ ∈ I or (1±ε ′)dS′(G�)

otherwise. Also, by Lemma 4.10 we have∣∣G�Iv
S

∣∣∣∣GIv
S

∣∣ = d
(
G�Iv

S

)
d
(
GIv

S

) = (1 ± 10ε ′)
∏
S′⊆S

dS′(G�Iv)

dS′(GIv)
> (1 − 20ε ′)(1 − 2θ 1/3)3 > 1/2.

Since v /∈ Y I
i,S we have |(M ∩ GIv)S| ≤ √

θ |GIv
S |, so |(M� ∩ G�Iv)S| ≤ 2

√
θ |G�Iv

S |. This gives
property (iii) of super-regularity, so the proof is complete.

Remark 5.10. For some applications it may be important to preserve exact equality of
the part sizes, i.e. start with |Gi| = n for 1 ≤ i ≤ r and delete exactly 2θ 1/3n vertices
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from each Gi to obtain super-regularity. This can be achieved by deleting the sets Yi and
Zi of Lemma 5.9, together with some randomly chosen additional vertices to equalise the
numbers. With high probability these additional vertices intersect all vertex neighbourhoods
in approximately the correct proportion, and then the same proof shows that the resulting
marked complex is super-regular. We omit the details.

For applications it is also useful to know that super-regularity is preserved when
one restricts to subsets that are both large and have large intersection with every vertex
neighbourhood.

Lemma 5.11 (Super-regular restriction). Suppose 0 < ε � ε ′ � ε ′′ � d2 �
θ � d3, d ′ and (G, M) is a (ε, ε ′, d2, θ , d3)-super-regular marked r-partite 3-complex on
V = V1 ∪ · · · ∪ Vr with Gi = Vi for 1 ≤ i ≤ r. Suppose also that we have V ′

i ⊆ Vi for
1 ≤ i ≤ r, write V ′ = V ′

1 ∪ · · · ∪ V ′
r , G′ = G[V ′], M ′ = M[V ′], and that |V ′

i | ≥ d ′|Vi| and
|G(v)i ∩ V ′

i | ≥ d ′|G(v)i| whenever 1 ≤ i, j ≤ r, v ∈ V ′
j and Gij is defined. Then (G′, M ′) is

(ε ′, ε ′′, d2/2,
√

θ , d3/2)-super-regular.

Proof. The argument is similar to Step 3 of the previous lemma. Suppose |S| = 3, GS is
defined, i ∈ S, v ∈ Gi. By Definition 3.16(i) for (G, M), GS≤ is ε-regular with dS′(G) ≥ d|S′|
for S′ ⊆ S, |S′| = 2, 3. By assumption we have dj(G′) ≥ d ′dj(G) for j ∈ S, so regular
restriction implies that G′

S≤ is ε ′-regular with dS′(G′) ≥ d|S′|/2 for S′ ⊆ S, |S′| = 2, 3. This
gives Definition 3.16(i) for (G′, M ′). Similarly, by Definition 3.16(ii) for (G, M), writing
S = ijk, G(v)jk≤ is ε ′-regular with dS′(G(v)) = (1 ± ε ′)dS′(G)dS′i(G) for ∅ �= S′ ⊆ jk
and |M(v)jk| ≤ θ |G(v)jk|. By assumption we have dj(G′(v)) ≥ d ′dj(G(v)) and dk(G′(v)) ≥
d ′dk(G(v)), so regular restriction implies that G′(v)jk≤ is ε ′′-regular with dS′(G′(v)) = (1 ±
ε ′′)dS′(G′)dS′i(G′) for ∅ �= S′ ⊆ jk. Also |G′(v)jk|/|G(v)jk| = d(G′(v)jk)/d(G(v)jk) >

(d ′)2/2 so |M ′(v)jk|/|G′(v)jk| ≤ 2θ/(d ′)2 <
√

θ . This gives Definition 3.16(ii) for (G′, M ′).
Finally, consider any triple S such that GS is defined and subcomplex I of S≤ such that

GS′i is defined for all S′ ∈ I . By Definition 3.16(iii) for (G, M), |(M ∩ GIv)S| ≤ θ |GIv
S |,

GIv
S≤ is ε ′-regular and dS′(GIv) is (1 ± ε ′)dS′(G)dS′i(G) if ∅ �= S′ ∈ I or (1 ± ε ′)dS′(G)

otherwise. By assumption dj(G′Iv) is dj(G′) > d ′dj(G) if j /∈ I or dj(G′(v)) ≥ d ′dj(G(v))
if j ∈ I . Then by regular restriction, for |S′| ≥ 2 with S′ ⊆ S, G′Iv

S′ is ε ′′-regular with
dS′(G′Iv) = (1 ± √

ε ′)dS′(GIv) equal to (1 ± ε ′′)dS′(G′)dS′i(G′) if ∅ �= S′ ∈ I or (1 ±
ε ′′)dS′(G′) otherwise. Also, by Lemma 4.10 we have |G′Iv

S |/|GIv
S | = d(G′Iv

S )/d(GIv
S ) =

(1±10ε ′)
∏

S′⊆S dS′(G′Iv)/dS′(GIv) > d ′3/2. Therefore |(M∩G′Iv)S|/|G′Iv
S | ≤ 2θ/d ′3 <

√
θ .

This gives Definition 3.16(iii) for (G′, M ′).

Now we will present a ‘black box’ reformulation that goes straight from regularity to
embedding, bypassing super-regularity and the blow-up lemma. This more accessible form
of our results will be more convenient for future applications of the method. First we give
a definition.

Definition 5.12 (Robustly universal). Suppose J is an r-partite 3-complex on Y =
Y1 ∪ · · · ∪ Yr with Ji = Yi for 1 ≤ i ≤ r. We say that J is c�-robustly D-universal if
whenever

(i) Y ′
i ⊆ Yi with |Y ′

i | ≥ c�|Yi| such that Y ′ = ∪r
i=1Y ′

i , J ′ = J[Y ′] satisfy |J ′
S(v)| ≥ c�|JS(v)|

whenever |S| = 3, JS is defined, i ∈ S, v ∈ J ′
i ,
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(ii) H ′ is an r-partite 3-complex on X ′ = X ′
1 ∪ · · · ∪ X ′

r of maximum degree at most D
with |X ′

i | = |Y ′
i | for 1 ≤ i ≤ r,

then J ′ contains a copy of H ′, in which vertices of X ′
i correspond to vertices of Y ′

i for
1 ≤ i ≤ r.

Now we show that one can delete a small number of vertices from a regular complex
with a small number of marked triples to obtain a robustly universal pair.

Theorem 5.13. Suppose 0 ≤ 1/n � ε � d� � d2 � θ � d3, c�, 1/D, 1/C, that G is an
ε-regular r-partite 3-complex on V = V1 ∪ · · · ∪ Vr with dS(G) ≥ d|S| for |S| = 2, 3 when
defined and n ≤ |Gi| = |Vi| ≤ Cn for 1 ≤ i ≤ r, and M ⊆ G= with |MS| ≤ θ |GS| when
defined. Then we can delete at most 2θ 1/3|Gi| vertices from Gi for 1 ≤ i ≤ r to obtain G�

and M� so that

(i) d(G�

S) > d� and |G�

S(v)| > |G�

S|/2|G�

i | whenever |S| = 3, GS is defined, i ∈ S, v ∈ Gi,
and

(ii) G� \ M� is c�-robustly D-universal.

Proof. Define additional constants with ε � ε1 � ε2 � ε3 � d�. Applying Lemma 5.9,
we can delete at most 2θ 1/3|Gi| vertices from each Gi to obtain an (ε1, ε2, d2/2, 2

√
θ , d3/2)-

super-regular marked complex (G�, M�) on some V � = V �

1 ∪ · · · ∪ V �
r . We will show

that J = G� \ M� is (c�, d�)-robustly D-universal. To see this suppose |S| = 3, GS is
defined, i ∈ S, v ∈ G′

i. By Definition 3.16(i) and Lemma 4.10 we have d(G�

S) = (1 ±
8ε1)

∏
S′⊆S dS′(G�) > (1 − 8ε1)(1 − 2θ 1/3)3(d2/2)3(d3/2) > d�. Writing S = ijk, by

Definition 3.16(ii) we have d(G�

S(v)) = djk(G�(v))dj(G�(v))dk(G�(v)) = ∏
∅�=S′⊆jk(1 ±

ε2)dS′(G�)dS′i(G�) so |G�

i ||G�

S(v)|/|G�

S| = di(G�)d(G�

S(v))/d(G�

S) = (1 ± 8ε1)/(1 ± ε2)
3 >

1/2. Now suppose that V ′
i ⊆ V �

i and H ′ are given as in Definition 5.12 applied to J .
Then (G�[V ′], M�[V ′]) is (ε2, ε3, d2/4, 2θ 1/4, d3/4)-super-regular by Lemma 5.11. Applying
Theorem 4.1, J ′ = J[V ′] contains a copy of H ′, in which vertices of X ′

i correspond to vertices
of V ′

i for 1 ≤ i ≤ r.

5.4. Applying the 3-Graph Blow-Up Lemma

In this subsection we illustrate the 3-graph blow-up lemma by proving the following
generalisation of Theorem 5.1 to packings of tripartite 3-graphs.

Theorem 5.14. For any 3-partite 3-graph F in which not all part sizes are equal and
0 < c1, c2 < 1 there is a real ε > 0 and positive integers C, n0 such that if G is a 3-graph
on n > n0 vertices V such that every vertex v has degree |G(v)| = (1 ± ε)c1n2 and every
pair of vertices u, v has degree |G(uv)| > c2n then G contains an F-packing that covers all
but at most C vertices.

We start by recording some auxiliary results that will be used in the proof. First we need
a result of Erdős on the number of copies of a k-partite k-graph.

Theorem 5.15 (Erdős [8]). For any a > 0 and k-partite k-graph F on f vertices there
is b > 0 so that if H is a k-graph on n vertices with at least ank edges then H contains at
least bnf copies of F.
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Next we need Azuma’s inequality on martingale deviations.

Theorem 5.16 (Azuma [2]). Suppose Z0, . . . , Zn is a martingale, i.e. a sequence of random
variables satisfying E(Zi+1|Z0, . . . , Zi) = Zi, and that |Zi − Zi−1| ≤ ci, 1 ≤ i ≤ n, for some
constants ci. Then for any t ≥ 0,

P(|Zn − Z0| ≥ t) ≤ 2 exp

(
− t2

2
∑n

i=1 c2
i

)
.

We also need the following theorem of Kahn, which is a linear programming generalisa-
tion of a theorem of Pippenger on matchings in regular hypergraphs with small codegrees.
(A matching is a set of vertex-disjoint edges.) Suppose H is a k-graph and t : E(H) → R+.
Write t(H) = ∑

A∈E(H) t(A) and t′(S) = ∑
A∈E(H),S⊆A t(A) for S ⊆ V(H). Let co(t) =

max
S∈(V(H)

2 )
t′(S). Say that t is a fractional matching if t′(x) = ∑

A∈E(H):x∈A t(A) ≤ 1 for

every x ∈ V(H).

Theorem 5.17 (Kahn [17]). For any ε > 0 there is δ > 0 so that if H is a k-graph on n
vertices and t is a fractional matching of H with co(t) < δ then H has a matching of size
at least t(H) − εn.

Now we will prove Theorem 5.14. We may suppose that F is complete 3-partite, say
F = K(Y)123 on Y = Y1 ∪ Y2 ∪ Y3. We introduce parameters with the hierarchy

0�1/n0 �ε�ε ′ �ε ′′�d� �d2 �1/a�ν�1/r �d3 �δ�γ�β �α�c1, c2, 1/|Y |.
We delete at most a! vertices of G so that the number remaining is divisible by a!, take an

equitable r-partition V = V1 ∪ · · · ∪ Vr , and apply Theorem 5.7 to obtain an a-bounded
equitable r-partite partition 2-complex P on V and an r-partite 3-graph G′ on V that is ν-
close to G such that G′[P] is ε-regular. Since P is a-bounded, for every graph Jij ∈ Pij with
1 ≤ i < j ≤ r, the densities d(Ji), d(Jj) and d(Jij) are all at least 1/a. We refer to singleton
parts in P as clusters. Let n1 be the size of each cluster. By means of an initial partition we
may also assume that n1 < νn. Let M = G′ \ G be the edges marked as ‘forbidden’.

Next we define the reduced 3-graph R, a weighted 3-graph in which vertices correspond
to clusters and triples correspond to cells of G′[P] that are useful for embedding, in that
they have large density and few marked edges. Let Z = Z1 ∪ · · · ∪ Zr be an r-partite set
with |Zi| = a1 := |Pi| for 1 ≤ i ≤ r, where a1 ≤ a and n − a! < rn1a1 ≤ n. We identify
Zi with [a1], although it is to be understood that Zi and Zj are disjoint for i �= j, and label
the cells of Pi as Ci,1, . . . , Ci,a1 . We identity an r-partite triple S ∈ K(Z) with S′ = ∪i∈SCi,Si ,
where Si = S ∩ Zi. Write N = n2n1 and K(S′) = K(V)[S′]. We say that S is an edge of R
with weight w(S) = |G′[S′]S|/N if |G′[S′]S| > d3|K(S′)S| and |M[S′]S| <

√
ν|K(S′)S|.

We define the weighted degree dw(j) of a vertex j in R to be the sum of w(S) over all
j ∈ S ∈ R. We will delete a small number of vertices from R to obtain a 3-graph R′ that is
almost regular with respect to weighted degrees. For any i ∈ A ∈ ([r]

3

)
and j ∈ Zi we define

Bj
i,A = {S : j ∈ S ∈ K(Z)A, |M[S′]S| >

√
ν|K(S′)S|} and Zi,A = {

j ∈ Zi :
∣∣Bj

i,A

∣∣ > ν1/4a2
1

}
.

Then

|MA| =
∑
j∈Zi

∑
S:j∈S∈K(Z)A

|M[S′]| >
∑
j∈Zi,A

∑
S∈B

j
i,A

√
ν|K(S′)S| > |Zi,A| · ν1/4a2

1 · √
νn3

1.
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Since G′ is ν-close to G (see Definition 5.6) we have |MA| < ν|K(V)A| < ν(n/r)3, so
|Zi,A| < ν1/4(n/rn1)

3/a2
1 < 2ν1/4a1. Let Z ′ = Z ′

1 ∪ · · · ∪ Z ′
r be obtained by deleting all sets

Zi,A from Z and let R′ = R[Z ′]. Since ν � 1/r we have |Z ′
i | > (1 − ν1/5)a1 for 1 ≤ i ≤ r.

Now we estimate the weighted degrees d ′
w(j) in R′. Suppose j ∈ Z ′. We have d ′

w(j) =
N−1

∑
S:j∈S∈R |G′[S′]S|. There are at most a2

1 triples S ∈ K(V) containing j, so at most
d3a2

1n3
1 ≤ d3N triples in G′[S′]S for such S with |G′[S′]S| < d3|K(S′)S|. There are at most

ν1/5a2
1 triples S � Z ′ with j ∈ S ∈ K(V), so at most ν1/5N triples in G′[S′]S for such

S. Since j ∈ Z ′ we have |Bj
i,A| ≤ ν1/4a2

1, so there are at most ν1/4N triples in G′[S′]S

for triples S with j ∈ S ∈ K(V) and |M[S′]S| >
√

ν|K(S′)S|. Finally, there are at most
r(n/r)2n1 = N/r triples that are not r-partite. Altogether, at most 3

2 d3N triples contributing
to d ′

w(j) do not belong to G′[S′]S with j ∈ S ∈ R. Since |G(v)| = (1 ± ε)c1n2 for all v ∈ G
and ε � 1/a � ν � 1/r � d3 we have

d ′
w(j) = N−1

∑
S:j∈S∈R

|G′[S′]S| = N−1
∑
v∈Ci,j

|G(v)| ± 3d3/2 = c1 ± 2d3.

Define t : E(R′) → R2 by t(S) = w(S)/(c1 + 2d3). Then t′(j) = d ′
w(j)/(c1 + 2d3) ≤ 1

for j ∈ R′, so t is a fractional matching. We have

t(R′) =
∑
j∈R′

∑
S:j∈S

t′(j)/3 =
∑
j∈R′

d ′
w(j)/3(c1 + 2d3) > (1 − √

d3)|Z ′|/3.

Also, the trivial bound w(S) < n3
1/N gives co(t) < n/n1 · n3

1/(c1 + 2d3)N < n1/c1n < d3.
Applying Theorem 5.17, there is a matching in R′ of size at least |Z ′|/3 − 1

6δ|Z ′|, i.e. at
most 1

2δ|Z ′| vertices are not covered by the matching.
We can use an edge S of the matching as follows. Consider the partition P∗

S of K(V)S

by weak equivalence, i.e. we have a cell of P∗
S corresponding to each triad of consistent

bipartite graphs indexed by S. The cells lying over S′ = ∪i∈SCi,Si give a partition of K(S′),
which we denote by CS,1 ∪· · ·∪CS,aS . Since P is a-bounded we have aS ≤ a3. Furthermore,
since P is equitable, the triangle counting lemma (1) gives |CS,i| = (1 ± ε ′)|CS,j| for
any 1 ≤ i, j ≤ aS. Now at most 2ν1/4|K(S′)S| triples of G′[S′]S can lie in cells CS,i with
|M ∩ CS,i| > ν1/4|CS,i|; otherwise we would have at least (1 − ε ′)2ν1/4aS such cells, giving
|M[S′]| ≥ (1 − ε ′)2ν1/4aS · ν1/4(1 − ε ′)|K(S′)S|/aS > (1 − 3ε ′)2

√
ν|K(S′)S|, contradicting

S ∈ R. Since |G′[S′]S| > d3|K(S′)S| and ν � d3, more than 1
2 d3|K(S′)S| triples of G′[S′]S lie

in cells CS,i with |M ∩CS,i| < ν1/4|CS,i|, so we can choose such a cell CS,i with |G′ ∩CS,i| >
1
2 d3|CS,i|.

Fix such a cell CS,i for each matching edge S and let GS be the associated cell complex
of G′[P], i.e. GS

S = G′ ∩ CS,i and for S′ � S, GS
S′ is the cell of PS′ underlying CS,i. Then GS

is ε-regular. Also, |GS
S| > 1

2 d3|CS,i|, so writing MS = M ∩ GS we have |MS| < ν1/4|CS,i| <

ν1/5|GS
S|. At this stage, if we were satisfied with an F-packing covering all but o(n) vertices,

we could just repeatedly remove copies of F from each GS \ MS.4 However, we want to
cover all but at most C vertices, so we will apply the blow-up lemma, using the black box
form in the previous subsection. By Lemma 5.13 we can delete at most 2ν1/15n1 vertices

4This could be achieved using the counting lemma to count copies of F in GS and the ‘extension lemma’ to
bound the number of copies of F using an edge in MS . Alternatively one could start the proof with the ‘regular
decomposition lemma’ instead of the regular approximation lemma, then find F using the sparse counting lemma.
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from each cluster so that each (GS, MS) becomes a pair (G�S, M�S) such that JS = G�S \M�S

is 1/2-robustly |Y |2-universal.
Now we gather together all the removed vertices into an exceptional set A0. This includes

at most a! vertices removed at the start of the proof, at most ν1/5n vertices in parts indexed
by Z \ Z ′, at most 1

2δn vertices in parts not covered by the matching, and at most 2ν1/15n
vertices deleted in making the pairs robustly universal. Therefore |A0| < δn. For convenient
notation we denote the clusters of G�S by AS,1, AS,2, AS,3. Thus A0 and AS,1, AS,2, AS,3 for
matching edges S partition the vertex set of G. To cover the vertices of A0 by copies of F
we need the following claim.

Claim. Any vertex v belongs to at least βn|Y |−1 copies of F in G.

Proof. Let � be the set of all pairs (ab, T) such that ab ∈ G(v) and T ∈ (G(ab)\v
|Y3|−1

)
. There

are |G(v)| > (1 − ε)c1n2 choices for ab, and for each ab the minimum degree property
gives at least

(c2n−1
|Y3|−1

)
choices for T . Therefore |�| ≥ (1 − ε)c1n2

(c2n−1
|Y3|−1

)
. Let � be the set of

all T ∈ (V(G)\v
|Y3|−1

)
such that there are at least 1

3 c1c|Y3|−1
2 n2 pairs ab ∈ G(v) with (ab, T) ∈ �.

Then |�| < |�|n2 + ( n
|Y3|−1

) · 1
3 c1c|Y3|−1

2 n2, so

|�| > (1 − ε)c1

(
c2n − 1

|Y3| − 1

)
−

(
n

|Y3| − 1

)
· 1

3
c1c|Y3|−1

2 >
1

3
c1c|Y3|−1

2

(
n

|Y3| − 1

)
.

For each T in �, since α � c1, c2, Theorem 5.15 implies that the sets ab ∈ G(v) with
(ab, T) ∈ � span at least αn|Y1|+|Y2| copies of K|Y1|,|Y2|. Each of these gives a copy of F
containing v when we add T ∪v. Summing over T in � and dividing by |Y |! (a crude estimate
for overcounting) we obtain (since β � α) at least βn|Y |−1 copies of F containing v.

Next we randomly partition each set AS,j as A′
S,j ∪A′′

S,j, each vertex being placed indepen-
dently into either class with probability 1/2. The reason for this partition is that, as in the
proof of Theorem 5.1, we will be able to use the sets A′

S,j when covering the vertices in A0,
whilst preserving the vertices in A′′

S,j so as to maintain super-regularity. Theorem 5.16 gives
the following properties with high probability:

1. |A′
S,j| and |A′′

S,j| are |AS,j|/2 ± n2/3 for every S and j,
2. for every S and j and each vertex v ∈ AS,j, letting {Ti}i �=j denote the singleton classes

of G�S(v), |A′
S,j ∩ Ti| and |A′′

S,j ∩ Ti| are |Ti|/2 ± n2/3 for i �= j, and
3. for any vertex v of G, there are at least γ n|Y |−1 copies of F in which all vertices, except

possibly v, are in ∪S,jA′
S,j.

In fact, the first two properties are simple applications of Chernoff bounds (in which the
martingale is just a sum of independent variables). For the third property we use a vertex
exposure martingale. Fix v and let Z be the random variable which is the number of copies
of F in which all vertices, except possibly v, are in ∪S,jA′

S,j. Since |A0| < δn, the Claim
gives EZ > (1/2)|Y |−1(β − δ)n|Y |−1. Order the vertices of ∪S,jAS,j as v1, . . . , vn′ , where
n′ > (1 − δ)n, and define the random variable Zi as the conditional expectation of Z given
whether vi′ is in A′

S,j or A′′
S,j for i′ ≤ i. Then Z0 = EZ and Zn′ = Z . Also |Zi − Zi−1| < n|Y |−2,

using a crude upper bound on the number of copies of F containing v and some other
vertex vj. Now by Theorem 5.16 we have P(Z < γ n|Y |−1) < P(|Zn′ − Z0| > 2−|Y |βn|Y |−1)

< e−β3n.
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Now we cover A0 by the following greedy procedure. Suppose we are about to cover a
vertex v ∈ A0. We consider a cluster to be heavy if we have covered more than γ n1 of its
vertices. Since |A0| < δn we have covered at most |Y |δn vertices by copies of F, so there are
at most |Y |δn/γ n1 < 1

2γ ra1 heavy clusters. As shown above, there at least γ n|Y |−1 copies
of F that we can use to cover v. At most 1

2γ ra1n1n|Y |−2 < 1
2γ n|Y |−1 of these use a heavy

cluster, so we can cover A0 while avoiding heavy clusters.
Next we restrict to the vertices not already covered by the copies of F covering A0, where

we will use robust universality to finish the packing. Recall that each JS is 1/2-robustly
|Y |2-universal. By properties (1) and (2) of the partitions AS,j = A′

S,j ∪ A′′
S,j, on restricting to

the uncovered vertices we obtain J ′S that satisfies conditions (i) in Definition 5.12. (Property
(i) of Theorem 5.13 and d� � 1/n shows that the ±n2/3 errors are negligible.) Also, any
F-packing has maximum degree less than |Y |2, so satisfies condition (ii) in Definition 5.12.
Thus we can assume that J ′S is complete, in that we can embed any F-packing in J ′S, subject
only to the constraints given by the sizes of the uncovered parts of each cluster.

Now it is not hard to finish the proof with a slightly messy ad hoc argument, but we
prefer to use the elegant argument of Kómlos [23, Lemma 12]. Denote the classes of J ′S by
J1, J2, J3. Since we avoided heavy clusters we have (1 − 2γ )n1 ≤ |Ji| ≤ n1 for 1 ≤ i ≤ 3.
Let P3 = {α ∈ [0, 1]3 : α1 ≤ α2 ≤ α3,

∑3
i=1 αi = 1}. We can associate a ‘class vector’

α(X) ∈ P3 to a 3-partite set X = X1 ∪X2 ∪X3 by α(X)i = |Xσ(i)|/|X|, for some permutation
σ ∈ S3 chosen to put the classes in increasing order by size. For α, β ∈ P3 write α ≺ β if
α1 ≤ β1 and α1+α2 ≤ β1+β2. Since the classes of F are not all of equal size and γ � 1/|Y |
we have α(F) ≺ α(J). By a theorem of Hardy, Littlewood and Pólya, this implies that there
is a doubly stochastic matrix M such that α(J) = Mα(F). By Birkhoff’s theorem M is
a convex combination of permutation matrices M = ∑

i λiPi,
∑

λi = 1. Thus we can
write the class vector of J as α(J) = ∑

i λiPiα(F), which is a convex combination of the
permutations of the class vector of F. In fact, although the constant is not important, since
P3 has dimension 3, we can apply Carathéodory’s theorem to write α(J) = ∑3

i=1 µiPiα(F),∑3
i=1 µi = 1 as a convex combination using only 3 permutations of α(F).5 Finally, to

pack copies of F in J ′S we can use �µi|J|/|Y |� copies of F permuted according to P3, for
1 ≤ i ≤ 3. At most 3|Y | vertices of any Ji are left uncovered because of the rounding, so in
total at most C = 3|Y |ra1 vertices will remain uncovered. This completes the proof.

As for Theorem 5.1, we needed to assume that not all part sizes of F are equal and
we could not expect to cover all vertices. Some assumption on the degrees of pairs was
convenient, as without it a nearly regular 3-graph can have some vertices that do not belong
to any copies of F. For example, let G0 be a tripartite 3-graph on V = V1 ∪ V2 ∪ V3 with
|V1| = |V2| = |V3| = n0/3 such that every vertex v has degree |G0(v)| = (1 ± ε)c1n2

0. Form
G from G0 by adding new vertices v1, . . . , vt where t ≈ (3c1)

−1 and edges so that G(vi) are
pairwise disjoint graphs of size c1n2

0 contained in
(V1

2

) ∪ (V2
2

) ∪ (V3
2

)
. Then G has n = n0 + t

vertices and |G(v)| = (1 ± 2ε)c1n2 for every vertex v. However, for every new vertex vi,
every pair ab ∈ G(vi) is only contained in the edge viab, so vi is not contained in any K2,2,3

(say). This example does not show that the assumption on pairs is necessary, as we can still
cover all but t vertices, but it at least indicates that it may not be so easy to remove the
assumption. For simplicity we assumed that every pair has many neighbours, but it is clear
from the proof that this assumption can be relaxed somewhat. The bottleneck is the Claim,

5This last remark is attributed to Endre Boros in [23].
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which can be established under the weaker assumption that for every vertex v there are at
least n2−θ pairs ab in G(v) with |G(ab)| > n1−θ , for some θ > 0 depending on F.

Finally, we remark that one can apply the general hypergraph blow-up lemma in the
next section and the same proof to obtain the following result (we omit the details). For any
k-partite k-graph F in which not all part sizes are equal and 0 < c1, c2 < 1 there is a real
ε > 0 and positive integers C, n0 such that if G is an k-graph on n > n0 vertices V such that
every vertex v has degree |G(v)| = (1 ± ε)c1nk−1 and every (k − 1)-tuple S of vertices has
degree |G(S)| > c2n then G contains an F-packing that covers all but at most C vertices.

6. GENERAL HYPERGRAPHS

In this section we present the general blow-up lemma. Besides working with k-graphs for
any k ≥ 3, we will introduce the following further generalisations:

(i) Restricted positions: a small number of sets in H may be constrained to use a certain
subset of their potential images in G (provided that these constraints are regular and
not too sparse).

(ii) Complex-indexed complexes: a structure that provides greater flexibility, in particular
the possibility of embedding spanning hypergraphs (such as Hamilton cycles).

We divide this section into five subsections organised as follows. The first subsection
contains various definitions needed for the general case, some of which are similar to those
already given for 3-complexes and some of which are new. In the second subsection we state
the general blow-up lemma and the algorithm that we use to prove it. The third subsection
contains some properties of hypergraph regularity, analogous to those proved earlier for
3-graphs. We give the analysis of the algorithm in the fourth subsection, thus proving the
general blow-up lemma. Since much of the analysis is similar to that for 3-graphs we only
give full details for those aspects of the general case that are different. The last subsection
contains the general cases of the lemmas to be used in applications of the blow-up lemma,
namely Lemmas 5.9, 5.11 (super-regular restriction) and 5.13 (robust universality).

6.1. Definitions

We start by defining complex-indexed complexes.

Definition 6.1. We say R is a multicomplex on [r] if it consists some number of copies
(possibly 0) of every I ⊆ [r] which are partially ordered by some relation, which we denote
by ⊆, such that whenever I∗ ∈ R is a copy of some subset I of [r] and J is a subset of I,
there is a unique copy J∗ of J with J∗ ⊆ I∗. We say that R is a multi-k-complex if |I| ≤ k
for all I ∈ R.

Suppose V is a set partitioned as V = V1 ∪ · · · ∪ Vr. Suppose each Vi, 1 ≤ i ≤ r is
further partitioned as Vi = ∪i∗Vi∗ , where i∗ ranges over all copies of i in R. We say G is an
R-indexed complex on V if it consists of disjoint parts GI for I ∈ R (possibly undefined),
such that Gi ⊆ Vi for singletons i ∈ R, and GI≤ := ∪I ′⊆IGI ′ is a complex whenever GI

is defined. We say that an R-indexed complex J on V is an R-indexed subcomplex of G
if JI ⊆ GI when defined. We say S ⊆ V is r-partite if |S ∩ Vi| ≤ 1 for 1 ≤ i ≤ r. The
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Fig. 1. A complex-indexed complex.

multi-index i∗(S) of S is that I ∈ R with S ∈ GI. If S ∈ G we write GS = Gi∗(S) for the part
of G containing S.

We emphasise that ⊆ is more restrictive than the inclusion relation (also denoted ⊆)
between copies considered merely as subsets of [r]. To avoid confusion we never ‘mix’
subsets with copies of subsets. Thus, if I ∈ R then J ⊆ I means J ∈ R and (J , I) is in
the relation ⊆. Also, if I ∈ R then i ∈ I means {i} ∈ R and ({i}, I) is in the relation ⊆.
We also write i ∈ R to mean {i} ∈ R when the meaning is clear from the context. As in
Definition 3.2, we henceforth simplify notation by writing i instead of {i}.

Remark 6.2. We are adopting similar notation for complex-indexed complexes as for
usual complexes for ease of discussing analogies between the two situations. Thus we
typically denote a singleton multi-index by i and a set multi-index by I . If we need to
distinguish a multi-index from the index of which it is a copy, we typically use the notation
that i∗ is a copy of i and I∗ is a copy of I .

We illustrate Definition 6.1 with the following example.

Example 6.3. Figure 1 depicts an example of an R-indexed complex G in which R is
a multi-3-complex on [4] (not all parts have been labelled). The multi-indices have been
represented as ordered pairs (A, t), where A ∈ ([4]

≤3

)
and t is a number (arbitrarily chosen) to

distinguish different copies of A. An example of the inclusion structure is (34, 2) ⊆ (234, 1),
since the intended interpretation of our picture is that for every triple in G234,1 its restriction
to index 34 lies in G34,2. Other examples are (1, 2) ⊆ (123, 2) and (2, 2) ⊆ (123, 2), but
(1, 1) �⊆ (123, 2) and (12, 3) �⊆ (123, 2), since the intended interpretation of our picture is
that there are triples in G123,2 such that their restriction to index 12 is a pair in G1,2 × G2,2

not belonging to G12,3.

Complex-indexed complexes arise naturally from the partition complexes needed for
regular decompositions of hypergraphs, as in Theorem 5.7. Suppose P is an r-partite partition
k-complex on V . Recall that CS denotes the cell containing a set S. We can index the cells
of P by a multicomplex R on [r], where for each cell CS we form a copy i∗(S) of its (usual)
index i(S). The elements of R are partially ordered by a relation ⊆ which corresponds to
the consistency relation ≤ discussed above, i.e. i∗(S′) ⊆ i∗(S) exactly when CS′ ≤ CS. One
could think of P as a ‘complete R-indexed k-complex’, in that it contains every r-partite set
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of size at most k, although we remark that many partition k-complexes P will give rise to
the same multicomplex R, so the phrase is ambiguous.

Note that if we do not allow sets in R to have multiplicity more than 1 then an R-
indexed complex is precisely an r-partite complex. The reason for working in the more
general context is that R-indexed complexes are the structures that naturally arise from an
application of Theorem 5.7, so a general theory of hypergraph embedding will need to take
this into account. In particular, in order to use every vertex of V we need to consider every
part of the partition Pi of Vi for 1 ≤ i ≤ r, i.e. we need multi-index copies of each index
i. The multi-index copies of larger index sets are useful because it may not be possible to
choose mutually consistent cells. To illustrate this point, it may be helpful to consider an
example of a 4-partite 3-complex where each triple has constant density (say 1/10) and
there is no tetrahedron K3

4 . A well-known example of Rödl is obtained by independently
orienting each pair of vertices at random and taking the edges to be all triples that form
cyclic triangles. (A similar example is described in [36].) Then we cannot make a consistent
choice of cells in any 4-partite subcomplex so that each cell has good density. However, by
working with indexed complexes one can embed using cells from each of the four triples,
provided that the choice of cells is locally consistent.

Much of the notation we set up for r-partite 3-complexes extends in a straightforward
manner to R-indexed complexes for some multi-k-complex R on [r]. Throughout we make
the following replacements: replace ‘3’ by ‘k’, ‘r-partite’ by ‘R-indexed’, ‘I ⊆ [r]’ by
‘I ∈ R’, ‘index’ by ‘multi-index’, i(S) by i∗(S), and understand ⊆ as the partial order of
multi-indices. Thus we define GI≤ = ∪I ′⊆IGI ′ , GI< = ∪I ′�IGI ′ , etc. as in Definition 3.2.
We define restriction of R-indexed complexes as in Definition 3.5, and more generally
composition of R-indexed complexes G and G′ as in Definition 4.4: we define (G ∗ G′)S if
(G ∪ G′)S is defined and say that S ∈ (G ∗ G′)S if A ∈∗ GA and A ∈∗ G′

A for any A ⊆ S.
Lemma 4.5 applies to R-indexed complexes, with the same proof.

As in Definition 3.9, if S ⊆ X is r-partite and I ⊆ i∗(S) we write SI = S ∩ ∪i∈IXi. We
also write ST = Si(T) for any r-partite set T with i∗(T) ⊆ i∗(S). As in Definition 3.6 we
write G∗

I for the set of r-partite |I|-tuples S with i∗(S) = I such that T ∈ GT when defined
for all T � S. When defined we have relative densities dI(G) = |GI |/|G∗

I | and absolute
densities d(GI) = |GI |/∏

i∈I |Vi|. (Recall that i ∈ I means {i} ⊆ I according to R.)
To define regularity we adopt the reformulation using restriction notation already dis-

cussed for 3-complexes. For any I ∈ R such that GI is defined we say that GI is ε-regular if for
every subcomplex J of G with |J∗

I | > ε|G∗
I | and JI undefined we have dI(G[J]) = dI(G)±ε.

Note that if |I| = 0, 1 we have G[J]I = GI , so GI is automatically ε-regular for any ε. We
say that G is ε-regular if whenever any GI is defined it is ε-regular.

Remark 6.4. Some care is needed when forming neighbourhoods in complex-indexed
complexes. The usual definition defines GI(v) and GI≤(v). However the expression G(v)I

may be ambiguous, as there may be several multi-indices I ′ such that I = I ′ \ i, where
i = i∗(v). We avoid this ambiguous expression unless the meaning is clear from the context.
The expression P ∈ G(v) is unambiguous: it means Pv ∈ G.

Henceforth we suppose R is a multi-k-complex on [r], H is an R-indexed complex on
X = ∪i∈RXi and G is an R-indexed complex on V = ∪i∈RVi, with |Vi| = |Xi| for i ∈ R. As
before we want to find an embedding φ of H in G, via an algorithm that considers the vertices
of X in some order and embeds them one at a time. At some time t in the algorithm, for each
S ∈ H there will be some |S|-graph FS(t) ⊆ GS consisting of those sets P ∈ GS that are
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‘free’ for S, in that mapping S to P is ‘locally consistent’ with the embedding so far. These
free sets will be ‘mutually consistent’, in that FS≤(t) = ∪S′⊆SFS′(t) is a complex. With the
modifications already mentioned, we can apply the following definitions and lemmas (and
their proofs) to the general case: Definition 3.7 (the update rule), Lemma 3.10 (consistency),
Lemma 3.11 (iterative construction) and Lemma 3.12 (localisation). Just as some triples
were marked as forbidden for 3-graphs, in the general case some k-tuples M will be marked
as forbidden. Definition 3.13 (MEt ,E(t)) applies in general when E ∈ H is a k-tuple.

Definition 3.15 is potentially ambiguous for R-indexed complexes (see Remark 6.4), so
we adopt the following modified definition.

Definition 6.5. Suppose G is an R-indexed complex on V = ∪i∈RVi, i ∈ R, v ∈ Gi and I
is a submulticomplex of R. We define GIv = G[∪S∈IGS(v)].

Now we give the general definition of super-regularity, which is very similar to that used
for 3-graphs.

Definition 6.6 (Super-regularity). Suppose R is a multi-k-complex on [r], G is an R-
indexed complex on V = ∪i∈RVi and M ⊆ G= := {P ∈ G : |P| = k}. We say that (G, M) is
(ε, ε ′, da, θ , d)-super-regular if

(i) G is ε-regular, and if GS is defined then dS(G) ≥ d if |S| = k or dS(G) ≥ da if |S| < k,
(ii) if GS is defined, i ∈ S and v ∈ Gi then |MS(v)| ≤ θ |GS(v)| if |S| = k and GS≤(v) is

ε ′-regular with dS′\i(GS≤(v)) = (1 ± ε ′)dS′\i(G)dS′(G) for i � S′ ⊆ S,
(iii) for every submulticomplex I of R, if GS is defined, i ∈ R and v ∈ Gi, then |(M∩GIv)S| ≤

θ |GIv
S | if |S| = k, and GIv is ε ′-regular with densities (when defined)

dS(G
Iv) =

{
(1 ± ε ′)dS(G)dT (G) if ∅ �= S = T \ i, T ∈ I , GT defined,
(1 ± ε ′)dS(G) otherwise.

We remark that the parameters in Definition 6.6 will satisfy the hierarchy ε � ε ′ �
da � θ � d. Thus we work in a dense setting with regularity parameters much smaller
than density parameters. Note that we have two density thresholds da and d, where da is
a lower bound on the S-densities when |S| < k and d is a lower bound on the S-densities
when |S| = k. The marking parameter θ again lies between these thresholds. Next we will
formalise the notation dS(F(t)) = dS(FS≤(t)) used for 3-complexes by defining F(t) as an
object in its own right: a complex-coloured complex.

Definition 6.7. Suppose R is a multi-k-complex on [r], H is an R-indexed complex on
X = ∪i∈RXi and G is an R-indexed complex on V = ∪i∈RVi. An H-coloured complex F (in
G) consists of |S|-graphs FS ⊆ GS such that FS≤ = ∪S′⊆SFS′ is a complex for S ∈ H. We
allow FS to be undefined for some S ∈ H. We say that an H-coloured complex J is an H-
coloured subcomplex of F if JS ⊆ FS when defined. The restriction F[J] is the H-coloured
complex with F[J]S = FS≤[JS≤]S. When F(t) is an H-coloured complex at time t we use
F(t)S and FS(t) interchangeably. We let G also denote the H-coloured complex F in G such
that FS = GS for all S ∈ H. When I is a subcomplex of H we let FI denote the H-coloured
complex that consists of FS for every S ∈ I and is otherwise undefined.

We use the terminology ‘coloured’ in analogy with various combinatorial questions
involving hypergraphs in which each set can be assigned several colours. In our case a set
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E ∈ G is assigned as colours all those S ∈ H for which E ∈ FS. Note also that if we had
the additional property that the parts FS, S ∈ H were mutually disjoint, i.e. any set in G
has at most one colour from H, then F would be an H-indexed complex. (We make this
comment just to illustrate the definition: we will not have cause to consider any H-indexed
complexes.)

In the proof of Theorem 4.1 there were several places where we divided the argument
into separate cases. This will not be feasible for general k, so we will introduce some more
notation, which may at first appear somewhat awkward, but will repay us by unifying cases
into a single argument.

Definition 6.8. Suppose R is a multi-k-complex on [r], H is an R-indexed complex on
X = ∪i∈RXi and G is an R-indexed complex on V = ∪i∈RVi. Fix x ∈ X.

(i) We define a multi-(k + 1)-complex R+ on [r + 1] as follows. There is a single multi-
index copy of r + 1, also called r + 1. Suppose x ∈ Xi∗ , where i∗ ∈ R is a copy of
some i ∈ [r]. Consider I∗ ∈ R such that I∗ is a copy of I ⊆ [r]. If i∗ ∈ I∗ we let I∗c

be a copy of (I \ i) ∪ {r + 1}. If i∗ /∈ I∗ and I∗ �= J \ i∗ for any J ∈ R we let I∗+ be a
copy of I ∪ {r + 1}. We extend ⊆ by the rules (when defined) J ⊆ I∗c for i∗ /∈ J ⊆ I∗;
Jc ⊆ I∗c for i∗ ∈ J ⊆ I∗; Jc ⊆ I∗+ for i∗ ∈ J and J \ i∗ ⊆ I∗; I∗ ⊆ I∗+; and J+ ⊆ I∗+

for J ⊆ I∗.
(ii) Let Xr+1 = {xc} consist of a single new vertex that we consider to be a copy of x.6 Let

H+ be the R+-indexed complex H ∪{Sxc : S ∈ H} on X+ = X ∪Xr+1, where i∗(Sxc) is
(i∗(Sx))c if Sx ∈ H or i∗(S)+ if Sx /∈ H. If Sx ∈ H we write (Sx)c = Sxc. If x /∈ S ∈ H
we write Sc = S. If S ∈ H \ H(x) we write S+ = Sxc. Note that i∗((Sx)c) = (i∗(Sx))c

and i∗(S+) = (i∗(S))+.
(iii) Let Vr+1 be a new set of vertices disjoint from V having the same size as Vx = Vi∗ .

We think of Vr+1 as a copy of Vx, in that for each v ∈ Vx there is a copy vc ∈ Vr+1. Let
G+ be the R+-indexed complex G ∪ {Pvc : P ∈ G, v ∈ Vx} on V+ = V ∪ Vr+1, where
i∗(Pvc) is i∗(Pv)c if Pv ∈ G or i∗(P)+ if Pv /∈ G. If Pv ∈ G we write (Pv)c = Pvc.
If v /∈ P ∈ G we write Pc = P. If P ∈ G \ G(v) we write P+ = Pvc. Note that
i∗((Pv)c) = (i∗(Pv))c and i∗(P+) = (i∗(P))+.

(iv) If I ⊆ H or I ⊆ G we write Ic = {Ac : A ∈ I}.
(v) Suppose F is an H-coloured complex in G. We define H+-coloured complexes Fc =⋃

S∈H Fc
S and F+ = ⋃

S∈H(FS ∪Fc
S) = F ∪Fc. Suppose I is an R-indexed subcomplex

of H. The plus complex is FI+x = G+[F ∪ F+
Ic ].

We give the following example to illustrate Definition 6.8.

Example 6.9. As in Example 3.8, suppose that H and G are 4-partite 3-complexes, that
we have 4 vertices xi ∈ Xi, 1 ≤ i ≤ 4 that span a tetrahedron K3

4 in H, that we have the
edges x′

1x′
2x3 and x′

1x′
3x′

4 and all their subsets for some other 4 vertices x′
i ∈ Xi, 1 ≤ i ≤ 4,

and that there are no other edges of H containing any xi or x′
i , 1 ≤ i ≤ 4. We can think of

H and G as R-indexed complexes with R = ([4]
≤3

)
, i.e. we have one copy of each subset of

[4] of size at most 3.

6To avoid confusion we should point out that the use of ‘copy’ here is different to the sense in which multi-indices
are copies of normal indices.
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We work through Definition 6.8, setting x = x1. R+ is the subcomplex of [5] that contains
R = ([4]

≤3

)
and all sets S ∪ 5 with S ∈ ([4]

≤3

)
. H+ is the R+-indexed complex on X+ = X ∪ X5

where X5 = {xc
1} and H+ consists of all sets S and Sxc

1 with S ∈ H. G+ is the R+-indexed
complex on V+ = V ∪ V5 where V5 = {vc : v ∈ V1} and G+ consists of all sets S and Svc

with S ∈ G and v ∈ V1. Note that H+ and G+ are 5-partite 4-complexes.
Let F(0) be the H-coloured 3-complex in which F(0)S = GS for all S ∈ H. We will

describe the plus complex F(0)H+x1 . For any S ∈ H we have F(0)
H+x1
S = F(0)S = GS by

equation (2). Similarly, for any S ∈ H(x1) we have F(0)
H+x1
Sxc

1
= (F(0)+

Hc)Sxc
1

= Gc
Sx1

. (Recall

that S ∈ H(x1) iff Sx1 ∈ H.) For example, F(0)
H+x1
x2xc

1
= Gc

x2x1
= {v2vc

1 : v2v1 ∈ Gx2x1}. If

S ∈ H \ H(x1) then F(0)
H+x1
Sxc

1
consists of all P ∈ G+

Sxc
1

such that for all S′ ⊆ S we have

PS′ ∈ GS′ and PS′xc
1

∈ Gc
S′x1

if S′ ∈ H(x1). For example, F(0)
H+x1
x1x2x3xc

1
consists of all 4-tuples

v′
1v2v3vc

1 where v1v2v3 and v′
1v2v3 are in G123.

Now suppose, as in Example 3.8, that we start the embedding by mapping x1 to some
v1 ∈ V1. Let F(1) be the H-coloured 3-complex given by the update rule: this is worked out
in Example 3.8 and formally defined in Definition 3.7. We can also describe it using the plus
complex. For example, we saw that Fx2x3x4(1) = F(1)x2x3x4 consists of all triples in G234 that
form a triangle in the neighbourhood of v1, i.e. form a tetrahedron with v1. We can write this
as F(1)x2x3x4 = F(0)H+x1(vc

1)x2x3x4 , as by definition v2v3v4vc
1 ∈ F(0)

H+x1
x2x3x4xc

1
exactly when

v1v2v3v4 is a tetrahedron. Another example from Example 3.8 is that F(1)x′
1x′

2x3
consists of

all triples P ∈ G123 not containing v1 such that P3 = P ∩ V3 is a neighbour of v1. We can
write this as F(1)x′

1x′
2x3

= F(0)H+x1(vc
1)x′

1x′
2x3

\ v1, as by definition v′
1v2v3vc

1 ∈ F(0)
H+x1
x′
1x′

2x3xc
1

exactly when v′
1v2v3 ∈ G123 and v1v3 ∈ G13.

Note that the plus complex in Definition 6.8(v) depends on H, but we suppress this in
the notation, as H will always be clear from the context. We have also suppressed x from
the notation in R+ (etc). One should note that the definition of F+ is rather different than
G+ and H+. To clarify this definition, we note that F+

Hc = Fc, and also that F+
Ic = Fc

Ic , so
one could also write FI+x = G+[F ∪ Fc

Ic ]. To justify the definition of the plus complex, we
note that Fc and F+ are H+-coloured complexes in G+, as Fc

(Sxc)≤ is the copied version of
the complex FSx≤ for any S ∈ H. Then F ∪ F+

Ic is an H+-coloured complex in G+, with
(F ∪F+)S = FS for S ∈ H and (F ∪F+

Ic)Sc = Fc
S for S ∈ I . Regarding G+ as an H+-coloured

complex in G+, the plus complex FI+x is a well-defined H+-coloured complex in G+. By
equation (2) we have

FI+x
S = FS for S ∈ H and FI+x

Sc = Fc
S for S ∈ I .

As noted in Remark 6.4, some care must be taken to avoid ambiguity when defining
neighbourhoods. We adopt the following convention:

FI+x(vc)S = FI+x
Sxc (vc) for S ∈ H.

Note that we set I = H in Example 6.9, and indeed this is the typical application of this
definition. The reason for allowing general I is for proving the analogue of Lemma 4.21
in the general case. Next we prove a lemma which confirms that the plus complex does
describe the update rule in general, when we map x to φ(x) = y at time t.

Lemma 6.10. If x /∈ S ∈ H then F(t)S≤ = F(t − 1)H+x(yc)S≤ \ y.
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Proof. By Definition 3.7 we have FS≤(t) = FS≤(t −1)[FS.x≤(t −1)(y)]\y. Thus P ∈ FS(t)
exactly when P ∈ FS(t − 1), y /∈ P and PS′y ∈ FS′x(t − 1) for all S′ ⊆ S with S′ ∈ H(x).
Since PS′y ∈ FS′x(t − 1) ⇔ PS′yc ∈ FS′x(t − 1)c, Definition 6.8 gives P ∈ FS(t) exactly
when y /∈ P and Pyc ∈ F(t − 1)H+x

Sxc .

We also note that the plus complex can describe the construction GIv in a similar manner.
For the following identity we could take H = R, considered as an R-indexed complex with
exactly one set S ∈ HS for every S ∈ R. Actually, the identity makes sense for any R-indexed
complex H , when we interpret each R-indexed complex as an H-coloured complex as in
Definition 6.7, i.e. GIv is the H-coloured complex F in GIv with FS = GIv

S for all S ∈ H,
and similarly for GI+v(vc).

Lemma 6.11. GI+x(vc)S = GIv
S for S ∈ H and v ∈ Gx.

Proof. We have P ∈ GIv
S exactly when P ∈ GS and P′v ∈ G for all P′ ⊆ P with i∗(P′v) ∈ I .

Since P′v ∈ G ⇔ P′vc ∈ Gc this is equivalent to Pvc ∈ GI+x
Sxc .

6.2. The General Blow-Up Lemma

Now we come to the general blow-up lemma. First we give a couple of definitions. Suppose
R is a multi-k-complex on [r]. We write |R| for the number of multi-indices in R. For S ∈ R,
the degree of S is the number of T ∈ R with S ⊆ T .

Theorem 6.12 (Hypergraph blow-up lemma). Suppose that

(i) 0 � 1/n � 1/nR � ε � ε ′ � c � da � θ � d, c′, 1/DR, 1/D, 1/C, 1/k,
(ii) R is a multi-k-complex on [r] of maximum degree at most DR with |R| ≤ nR,

(iii) H is an R-indexed complex on X = ∪i∈RXi of maximum degree at most D, G is
an R-indexed complex on V = ∪i∈RVi, GS is defined whenever HS is defined, and
n ≤ |Xi| = |Vi| = |Gi| ≤ Cn for i ∈ R,

(iv) M ⊆ G= = {S ∈ G : |S| = k} and (G, M) is (ε, ε ′, da, θ , d)-super-regular,
(v) � is an H-coloured complex in G with �x defined only when x ∈ X∗, where |X∗ ∩Xi| ≤

c|Xi| for all i ∈ R, and for S ∈ H, when defined �S is ε ′-regular with dS(�) > c′dS(G),

Then there is a bijection φ : X → V with φ(Xi) = Vi for i ∈ R such that for S ∈ H we have
φ(S) ∈ GS, φ(S) ∈ GS \ MS when |S| = k and φ(S) ∈ �S when defined.

We make some comments here to explain the statement of Theorem 6.12. An informal
statement is that we can embed any bounded degree R-indexed complex in any super-regular
marked R-indexed complex, even with some restricted positions. The restricted positions
are described by assumption (v): for some sets S ∈ H we constrain the embedding to
satisfy φ(S) ∈ �S, for some H-coloured complex � that is regular and dense and is not
defined for too many vertices. Note that we now allow the embedding to use all |R| parts of
V , provided that R is of bounded degree. Thus this theorem could be used for embedding
spanning hypergraphs, such as Hamilton cycles. Even in the graph case, embedding spanning
subgraphs is a generalisation of the graph blow-up lemma in [24]. A blow-up lemma for
spanning subgraphs was previously given by Csaba [5] (see [20] for another application).
Restricted positions have arisen naturally in many applications of the graph blow-up lemma,
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and will no doubt be similarly useful in future applications of the hypergraph blow-up
lemma. In particular, a simplified form of the condition (where �S is only defined when
|S| = 1) is used in a forthcoming work [19] on embedding loose Hamilton cycles in
hypergraphs. We allow a general H-coloured complex � as the proof is the same, and it
would be needed for embedding general Hamilton cycles.7

We prove Theorem 6.12 with an embedding algorithm that is very similar to that used
for Theorem 4.1. We introduce more parameters with the hierarchy

0 ≤ 1/n � 1/nR � ε � ε ′ � ε0,0 � · · · � εk3D,3 � ε∗
� p0 � c � γ � δQ � p � du � da � θ � θ0 � θ ′

0 � · · · � θk3D � θ ′
k3D

� θ∗ � δ′
Q � δB � d, c′, 1/D, 1/DR, 1/C, 1/k.

The roles of the parameters from Theorem 4.1 are exactly as before. Our generalisations to
R-indexed complexes and restricted positions have introduced some additional parameters,
so one should note how they fit into the hierarchy. The restricted positions hypothesis has
two parameters c and c′. Parameter c controls the number of restricted positions and satisfies
p0 � c � γ . Parameter c′ gives a lower bound on the density relative to G of the constraints
and satisfies c′ � δB. The indexing complex R has two parameters nR and DR. Parameter
nR is a bound for |R| and can be very large, provided that n is even larger. Parameter DR

bounds the maximum degree of R and satisfies DR � 1/δB.

Initialisation and notation. Write X ′
∗ = X∗ ∪⋃

x∈X∗ VNH(x). We choose a buffer set B ⊂ X
of vertices at mutual distance at least 9 in H so that |B ∩ Xi| = δB|Xi| for i ∈ R and
B ∩ X ′

∗ = ∅. Since n ≤ |Xi| ≤ Cn for i ∈ R and H has maximum degree D we can
construct B by selecting vertices one-by-one greedily. Every vertex neighbourhood in
H has size less than kD, so there are at most (kD)8 vertices at distance less than 9 from
any vertex of H. Similarly, there are at most (kDR)

8 multi-indices j ∈ R at distance
less than 9 from any fixed multi-index i ∈ R. Thus at any stage we have excluded at
most (kDR)

8(kD)8δBCn < n/2 vertices from Xi, since δB � 1/DR. Similarly, since
|X∗ ∩ Xj| < c|Xj| for all j ∈ R we have |X ′

∗ ∩ Xi| < (kDR)
8(kD)8cCn <

√
cn. Since

|Xi| ≥ n we can construct B greedily. Let N = ∪x∈BVNH(x) be the set of all vertices
that have a neighbour in the buffer. Then N is disjoint from X∗, as we chose B disjoint
from X ′

∗. Also, |N ∩ Xi| < (kDR)(kD)δBcn <
√

δB|Xi| for any i ∈ R.
For S ∈ H we set FS(0) = G[�]S. We define L = L(0), q(t), Q(t), j(t), J(t), Xi(t),

Vi(t) as in the 3-graph algorithm. We let X(t) = ∪i∈RXi(t) and V(t) = ∪i∈RVi(t).
Iteration. At time t, while there are still some unembedded non-buffer vertices, we select

a vertex to embed x = s(t) according to the same selection rule as for the 3-graph
algorithm. We choose the image φ(x) of x uniformly at random among all elements
y ∈ Fx(t − 1) that are ‘good’ (a property defined below). Note that all expressions
at time t are to be understood with the embedding φ(x) = y, for some unspecified
vertex y.

7While [19] and the current paper have been under review, more general results on Hamilton cycles have been
obtained in [28] and [21] without using the hypergraph blow-up lemma. However, it seems most likely that more
complicated embedding problems will require the hypergraph blow-up lemma.
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Definitions.
1. For a vertex x we write νx(t) for the number of elements in VNH(x) that have

been embedded at time t. For a set S we write νS(t) = ∑
y∈S νy(t). We also

define ν ′
S(t) as follows. When |S| = k we let ν ′

S(t) = νS(t). When |S| < k we
let ν ′

S(t) = νS(t) + K , where K is the maximum value of ν ′
Sx′(t′) over vertices

x′ embedded at time t′ ≤ t with S ∈ H(x′); if there is no such vertex x′ we let
ν ′

S(t) = νS(t).
2. For any r-partite set S we define FS(t) = FS(t − 1)y if x ∈ S or FS(t) = FS≤(t −

1)[FS.x≤(t−1)(y)]S \y if x /∈ S. We define an exceptional set Ex(t−1) ⊆ Fx(t−1)

by saying y is in Fx(t − 1) \ Ex(t − 1) if and only if for every unembedded
∅ �= S ∈ H(x),

dS(F(t)) = (1 ± εν′
S (t),0)dS(F(t − 1))dSx(F(t − 1)), and FS(t) is εν′

S (t),0-regular.

(∗6.2)

3. We define Et , MEt ,E(t), Dx,E(t−1) and U(x) as in the 3-graph algorithm, replacing
‘triple’ by ‘k-tuple’. We obtain the set of good elements OKx(t−1) from Fx(t−1)

by deleting Ex(t − 1) and Dx,E(t − 1) for every E ∈ U(x).
We embed x as φ(x) = y where y is chosen uniformly at random from the good

elements of Fx(t − 1). We update L(t), q(t) and j(t) as before, using the same rule for
adding vertices to the queue. We repeat until the only unembedded vertices are buffer
vertices, but abort with failure if at any time we have |Q(t) ∩ Xi| > δQ|Xi| for some
i ∈ R. Let T denote the time at which the iterative phase terminates (whether with
success or failure).

Conclusion. When all non-buffer vertices have been embedded, we choose a system of
distinct representatives among the available slots A′

x (defined as before) for x ∈ X(T)

to complete the embedding, ending with success if possible, otherwise aborting with
failure.

Similarly to Lemma 4.2, the algorithm embeds H in G \ M unless it aborts with failure.
Furthermore, when �S is defined we have FS(0) = G[�]S = �S, so we ensure that φ(S) ∈
�S. Note that any vertex neighbourhood contains at most (k − 1)D vertices. Thus in the
selection rule, any element of the queue can cause at most (k − 1)D vertices to jump
the queue. Note also that when a vertex neighbourhood jumps the queue, its vertices are
immediately embedded at consecutive times before any other vertices are embedded. We
collect here a few more simple observations on the algorithm.

Lemma 6.13.

(i) For any i ∈ R and time t we have |Vi(t)| ≥ δBn/2.
(ii) For any i ∈ R and time t we have |J(t) ∩ Xi| <

√
δQn.

(iii) We have νx(t) ≤ (k − 1)D for any vertex and ν ′
S(t) ≤ k3D for any S ∈ H. Thus the

ε-subscripts are always defined in (∗6.2).
(iv) For any z ∈ VNH(x) we have νz(t) = νz(t − 1) + 1, so for any S ∈ H that intersects

VNH(x) we have νS(t) > νS(t − 1).
(v) If νS(t) > νS(t − 1) then ν ′

S(t) > ν ′
S(t − 1).

(vi) If z is embedded at time t′ ≤ t and S ∈ H(z) then ν ′
S(t) ≥ ν ′

Sz(t) > ν ′
Sz(t

′ − 1).
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Proof. The proofs of (i) and (iii–vi) are similar to those in Lemma 4.3 so we omit them.
For (ii) we have to be more careful to get a good bound inside each part. Note that we only
obtain a new element x of J(t)∩ Xi when x is a neighbour of some b ∈ B and some z within
distance 4 of x is queued. In particular z is within distance 5 of x. Given i, there are at most
(kDR)

5 choices for j = i∗(z) ∈ R, at most |Q(t) ∩ Xj| < δQCn choices for z, then at most
(kD)5 choices for x. Therefore |J(t) ∩ Xi| < (kDR)

5(kD)5δQCn <
√

δQn.

6.3. Hypergraph Regularity Properties

This subsection contains various properties of hypergraph regularity analogous to those
described earlier for 3-graphs. We start with the general counting lemma, analogous to
Theorem 5.8.

Theorem 6.14 (Rödl-Schacht [42], see Theorem 13). Suppose 0 < ε �
d, γ , 1/r, 1/j, 1/k, that J and G are r-partite k-complexes with vertex sets Y = Y1 ∪· · ·∪Yr

and V = V1 ∪ · · · ∪ Vr respectively, that |J| = j, and G is ε-regular with all densities at
least d. Then

d(J , G) = Eφ∈�(Y ,V)

[∏
A∈J

GA(φ(A))

]
= (1 ± γ )

∏
A∈J

dA(G).

A useful case of Theorem 6.14 is when r = k and J = [k]≤ consists of all subsets of a
k-tuple; this gives the following analogue of Lemma 4.10.

Lemma 6.15. Suppose 0 < ε � ε ′ � d, 1/k, G is a k-partite k-complex on V = V1∪· · ·∪
Vk with all densities dS(G) > d and G is ε-regular. Then d(G[k]) = (1 ± ε ′)

∏
S⊆[k] dS(G).

Next we give the analogue of Lemma 4.6.

Lemma 6.16 (Vertex neighbourhoods). Suppose G is a k-partite k-complex on V = V1∪
· · · ∪ Vk with all densities dS(G) > d and 0 < ηI � η′

I � d, 1/k for each I ⊆ [k]. Suppose
that each GI is ηI -regular. Then for all but at most 2

∑
I⊆[k−1] η

′
Ik|Gk| vertices v ∈ Gk, for

every ∅ �= I ⊆ [k−1], G(v)I is (η′
I +η′

Ik)-regular with dI(G(v)) = (1±η′
I ±η′

Ik)dI(G)dIk(G).

Proof. The argument is similar to that in Lemmas 2.2 and 4.6. We show the following
statement by induction on |C|: for any subcomplex C of [k − 1]≤, for all but at most
2
∑

I∈C η′
Ik|Gk| vertices v ∈ Gk , for every I ∈ C, G(v)I is (η′

I +η′
Ik)-regular with dI(G(v)) =

(1 ± η′
I ± η′

Ik)dI(G)dIk(G). The base case is C = ∅, or less trivially any C with |I| ≤ 2 for
all I ∈ C, by Lemmas 2.2 and 4.6.

For the induction step, fix any maximal element I of C. By induction hypothesis, for all
but at most 2

∑
I ′∈C\I η′

I ′k|Gk| vertices v ∈ Gk , for every I ′ ∈ C \ I , G(v)I ′ is (η′
I ′ + η′

I ′k)-
regular with dI ′(G(v)) = (1 ± η′

I ′ ± η′
I ′k)dI ′(G)dI ′k(G). Let G′

k be the set of such vertices. It
suffices to show the claim that all but at most 2η′

Ik|Gk| vertices v ∈ G′
k have the following

property: if Jv is a subcomplex of G(v)I< with |(Jv)∗
I | > (η′

I + η′
Ik)|G(v)∗

I | then |G[Jv]I | =
(1 ± η′

I/2)dI(G)|(Jv)∗
I | and |G(v)[Jv]I | = (1 ± η′

Ik/2)dIk(G)|G[Jv]I |.
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Suppose for a contradiction that this claim is false. Let γ = maxI ′⊆I η′
I ′ . By Theorem 6.14,

for any v ∈ G′
k we have

∣∣G(v)∗
I

∣∣∏
i∈I

|Vi|−1 = d
(
G(v)∗

I

)
> (1 − γ )

∏
I ′�I

(
1 − η′

I ′ − η′
I ′k

)
dI ′(G)dI ′k(G) >

1

2
d2k

.

Then for any Jv ⊆ G(v)I< with |(Jv)∗
I | > (η′

I +η′
Ik)|G(v)∗

I | we have |(Jv)∗
I | > ηI

∏
i∈I |Vi| ≥

ηI |G∗
I |, so |G[Jv]I | = (dI(G) ± ηI)|(Jv)∗

I | = (1 ± η′
I/2)dI(G)|(Jv)∗

I |, since GI is ηI -regular.
So without loss of generality, we can assume that we have vertices v1, . . . , vt ∈ G′

k with
t > η′

Ik|Gk|, and subcomplexes Jvi ⊆ G(vi)I< with |(Jvi)∗
I | > (η′

I + η′
Ik)|G(vi)

∗
I | such

that |G(vi)[Jvi ]I | < (1 − η′
I ′k/2)dIk(G)|G[Jvi ]I | for 1 ≤ i ≤ t. Define complexes Ai =

G[Jvi ]I ∪ {viS : S ∈ Jvi} and A = ∪t
i=1Ai.

We have |A∗
Ik| = ∑t

i=1 |(Ai)∗
Ik| = ∑t

i=1 |G[Jvi ]I |. Now |G[Jvi ]I | > (dI(G) − ηI)|(Jvi)∗
I |,

dI(G) > d, |(Jvi)∗
I | > (η′

I + η′
Ik)|G(vi)

∗
I | > η′

Ik · 1
2 d2k ∏

i∈I |Vi| and t > η′
Ik|Gk|, so

∣∣A∗
Ik

∣∣ > η′
Ik|Gk| · (d − ηI) · η′

Ik · 1

2
d2k ∏

i∈I

|Vi| > ηIk

∏
i∈Ik

|Vi| ≥ ηIk

∣∣G∗
Ik

∣∣.
Since GIk is ηIk-regular we have dIk(G[A])Ik = dIk(G)±ηIk . Therefore |G∩A∗

Ik| > (dIk(G)−
ηIk)|A∗

Ik| = (dIk(G) − ηIk)
∑t

i=1 |G[Jvi ]I |. But we also have

∣∣G∩A∗
Ik

∣∣ =
t∑

i=1

|G(vi)[Jvi ]I | <

t∑
i=1

(
1−η′

I ′k/2
)
dIk(G)|G[Jvi ]I | < (dIk(G)−ηIk)

t∑
i=1

|G[Jvi ]I |,

contradiction. This proves the claim, and so completes the induction.

We apply Lemma 6.16 in the next lemma showing that arbitrary neighbourhoods are
typically regular.

Lemma 6.17 (Set neighbourhoods). Suppose 0 < ε � ε ′ � d, 1/k and G is an ε-
regular k-partite k-complex on V = V1 ∪ · · · ∪ Vk with all densities dS(G) > d. Then for
any A ⊆ [k] and for all but at most ε ′|GA| sets P ∈ GA, for any ∅ �= I ⊆ [k] \ A, G(P)I is
ε ′-regular with dI(G(P)) = (1 ± ε ′)

∏
A′⊆A dA′I(G) (and d∅(G(P)) = 1 as usual).

Proof. For convenient notation suppose that A = [k′] for some k′ < k. Introduce additional
constants with the hierarchy ε � ε1 � ε ′

1 � · · · � εk′ � ε ′
k′ � ε ′. We prove inductively

for 1 ≤ t ≤ k′ that for all but at most εt|G[t]| sets S ∈ G[t], for any ∅ �= I ⊆ [k] \ [t], G(S) is
εt-regular with dI(G(S)) = (1 ± εt)

∏
T⊆[t] dTI(G). The base case t = 1 is immediate from

Lemma 6.16 with ε ′ replaced by ε1. For the induction step, consider S ∈ G[t] such that for
any ∅ �= I ⊆ [k] \ [t], G(S) is εt-regular with dI(G(S)) = (1 ± εt)

∏
T⊆[t] dTI(G). We have

dI(G(S)) > 1
2 d2t

, so we can apply Lemma 6.16 to G(S) with ηI = εt , η′
I = 2−kε ′

t and d

replaced by 1
2 d2t

. Then for all but at most ε ′
t |G(S)t+1| vertices v ∈ G(S)t+1, for every ∅ �= I ⊆

[k]\[t+1], G(S)(v)I = G(Sv)I is ε ′
t-regular with dI(G(Sv)) = (1±ε ′

t)dI(G(S))dIk(G(S)) =
(1 ± 2ε ′

t)
∏

T⊆[t+1] dTI(G). Also, since |G[t+1]| > 1
2 d2t+1 ∏t+1

i=1 |Vi| by Theorem 6.14, the
number of pairs (S, v) for which this fails is at most εt|G[t]| · |Vt+1| + |G[t]| · ε ′

t |G(S)t+1| <

εt+1|G[t+1]|.
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We omit the proofs of the next three lemmas, as they are almost identical to those of
the corresponding Lemmas 4.8, 4.9 and 4.12, replacing 123 by [k] and using Theorem 6.14
instead of the triangle-counting lemma.

Lemma 6.18 (Regular restriction). Suppose G is a k-partite k-complex on V = V1 ∪
· · · ∪ Vk with all densities dS(G) > d, G[k] is ε-regular, where 0 < ε � d, 1/k, and J ⊆ G
is a (k − 1)-complex with |J∗

[k]| >
√

ε|G∗
[k]|. Then G[J][k] is

√
ε-regular and d[k](G[J]) =

(1 ± √
ε)d[k](G).

Lemma 6.19. Suppose G is a k-partite k-complex on V = V1 ∪ · · ·∪Vk with all densities
dS(G) > d and G[k] is ε-regular, where 0 < ε � d, 1/k. Suppose also that J ⊆ G is a
(k − 1)-complex, and when defined, dI(J) > d and JI is η-regular, where 0 < η � d. Then
G[J][k] is

√
ε-regular and d[k](G[J]) = (1 ± √

ε)d[k](G).

Lemma 6.20. Suppose G is a k-partite k-complex on V = V1 ∪ · · ·∪Vk with all densities
dS(G) > d and G is ε-regular, where 0 < ε � ε ′ � d, 1/k. Then for any A ⊆ [k] and for
all but at most ε ′|GA| sets P ∈ GA we have |G(P)[k]\A| = (1 ± ε ′)|G[k]|/|GA|.

Note that we will not need an analogue of the technical Lemma 4.11.

6.4. Analysis of the Algorithm

We start the analysis of the algorithm by showing that most free vertices are good. First we
record some properties of the initial sets FS(0), taking into account the restricted positions.

Lemma 6.21. FS(0) is ε ′-regular with dS(F(0)) > c′dS(G) and |FS(0)| > (c′)2|S| |GS|.

Proof. By definition we have FS(0) = G[�]S. Condition (i) of Definition 6.6 tells us that
GS is ε-regular with dS(G) ≥ da. Hypothesis (v) of Theorem 6.12 says that when defined
�S′ is ε ′-regular with dS′(�) > c′dS′(G) for S′ ⊆ S. If �S is defined then FS(0) = �S is
ε ′-regular with dS(F(0)) = dS(�) > c′dS(G). Otherwise, by Lemma 6.19, �S is

√
ε-regular

with dS(F(0)) = (1 ± ε)dS(G) > c′dS(G). The estimate |FS(0)| > (c′)2|S| |GS| follows by
applying Theorem 6.14 to F(0)S≤ and GS≤ . Note that d∅(F(0)) = d∅(G) = 1, so one of the
c′ factors compensates for the error terms in Theorem 6.14.

Our next lemma handles the definitions for regularity and density in the algorithm.

Lemma 6.22. The exceptional set Ex(t − 1) defined by (∗6.2) satisfies |Ex(t − 1)| <

ε∗|Fx(t − 1)|, and FS(t) is εν′
S (t),1-regular with dS(F(t)) ≥ du for every S ∈ H.

Proof. We argue by induction on t. At time t = 0 the first statement is vacuous and the
second follows from Lemma 6.21, since dS(G) ≥ da for S ∈ H. Now suppose t ≥ 1 and
∅ �= S ∈ H is unembedded, so x /∈ S. We consider various cases for S to establish the bound
on the exceptional set and the regularity property, postponing the density bound until later
in the proof.

We start with the case when S ∈ H(x). By induction FS′(t − 1) is εν′
S′ (t−1),1-regular and

dS′(F(t − 1)) ≥ du for every S′ ⊆ Sx. Write ν = maxS′⊆S ν ′
S′x(t − 1) and ν∗ = max{ν ′

S(t −
1), ν ′

Sx(t − 1)}. By Lemma 6.16, for all but at most εν,2|Fx(t − 1)| vertices y ∈ Fx(t − 1),
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FS(t) = FSx(t − 1)(y) is εν∗ ,2-regular with dS(F(t)) = (1 ± εν∗ ,2)dS(F(t − 1))dSx(F(t − 1)).
Also, we claim that ν ′

S(t) > ν∗. This holds by Lemma 6.13: (iv) gives νS(t) > νS(t − 1),
(v) gives ν ′

S(t) > ν ′
S(t − 1), and (vi) gives ν ′

S(t) > ν ′
Sx(t − 1). Thus we have (∗6.2) for such

y. We also note for future reference that dS(F(t)) > d2
u/2. In the argument so far we have

excluded at most εk3D,2|Fx(t − 1)| vertices y ∈ Fx(t − 1) for each of at most 2k−1D sets
S ∈ H(x); this gives the required bound on Ex(t − 1). We also have the required regularity
property of FS(t), but for now we postpone showing the density bounds.

Next we consider the case when S ∈ H and S /∈ H(x). We show by induction on |S| that
FS(t) is εν′

S (t),1-regular with dS(F(t)) > du/2, and moreover FS(t) is εν′
S (t−1),2-regular when

S intersects VNH(x). Note that if S intersects VNH(x) then we have ν ′
S(t) > ν ′

S(t − 1) by
Lemma 6.13(v). For the base case when S = {v} has size 1 we have |Fv(t)| = |Fv(t − 1) \
y| ≥ |Fv(t − 1)| − 1, so dv(F(t)) ≥ dv(F(t − 1)) − 1/n > du/2. For the induction step,
suppose that |S| ≥ 2. Recall that Lemma 3.11 gives FS(t) = FS≤(t − 1)[FS<(t)]S. Since
FS(t − 1) is εν′

S (t−1),1-regular, by Lemma 6.18, FS(t) is εν′
S (t−1),2-regular with dS(F(t)) =

(1 ± εν′
S (t−1),2)dS(F(t − 1)). This gives the required property in the case when S intersects

VNH(x). Next suppose that S and VNH(x) are disjoint. Let t′ be the most recent time at which
we embedded a vertex x′ with a neighbour in S. Then by Lemma 3.12, FS≤(t) is obtained
from FS≤(t′) just by deleting all sets containing any vertices that are embedded between
time t′+1 and t. Equivalently, FS(t) = FS(t′)[((Fz(t) : z ∈ S), {∅})]. Now FS(t′) is εν′

S (t′−1),2-
regular with dS(F(t′)) > du and ν ′

S(t) ≥ ν ′
S(t

′) > ν ′
S(t

′ − 1), so FS(t) is εν′
S (t),1-regular with

dS(F(t)) > du/2 by Lemma 6.18.
Now we have established the bound on Ex(t − 1) and the regularity properties, so it

remains to show the density bounds. First we consider any unembedded S ∈ H with |S| = k.
Then FS(t) = F(0)[FS<(t)]S, similarly to (4) in Lemma 4.13. By Lemma 6.21, F(0)S is
ε ′-regular with dS(F(0)) > c′d. Also, we showed above for every S′ � S that FS′(t) is
εν′

S′ (t),1-regular with dS′(F(t)) > du/2. Now Lemma 6.19 shows that FS(t) is
√

ε ′-regular

with dS(F(t)) = (1 ± √
ε ′)dS(F(0)) > c′d/2. In particular we have dS(F(t)) > du, though

we also use the bound c′d/2 below.
Next we show for k − 1 ≥ |S| ≥ 2 that dS(F(t)) > 4d2D2(k−|S|)

a . We argue by induction
on t and reverse induction on |S|, i.e. we assume that the bound holds for larger sets than
S. When |S| = k we have already proved dS(F(t)) > c′d/2 > 4d2

a . Let t′ ≤ t be the most
recent time at which we embedded a vertex x′ with S ∈ H(x′), or let t′ = 0 if there is
no such vertex x′. Note that we may have t′ = t if S ∈ H(x). Let J(t) be the 1-complex
((Fz(t) : z ∈ S), {∅}). As in Lemma 4.13 we have FS(t) = F(t′)[J(t)]S, so Lemma 6.18 gives
dS(F(t)) > dS(F(t′))/2. Also, (∗6.2) gives dS(F(t′)) = (1± εν′

S (t′),0)dS(F(t′ −1))dSx′(F(t′ −
1)), where dSx′(F(t′ − 1)) > 4d2D2(k−|S|−1)

a by induction. Thus the S-density starts with
dS(F(0)) > c′da, loses a factor no worse than 1/2 before we embed some x′ with S ∈ H(x′),
then loses a factor no worse than d2D2(k−|S|−1)

a on at most D occasions when we embed some
x′ with S ∈ H(x′). This gives dS(F(t)) > c′da/2 · d2D2(k−|S|−1)+1

a > 4d2D2(k−|S|)
a . In particular

we have dS(F(t)) > du, though we also use the bound 4d2D2(k−|S|)
a below.

Finally we consider any unembedded vertex z. Suppose that the current z-regime started
at some time tz ≤ t. If tz > 0 then we embedded some neighbour w = s(tz) of z at time tz. By
(∗6.2) and the above bound for pair densities we have dz(F(tz)) > dwz(F(tz − 1))dz(F(tz −
1))/2 > d2D2(k−2)

a dz(F(tz − 1)). Now we consider cases according to whether z is in the list
L(t − 1), the queue q(t − 1) or the queue jumpers j(t − 1). Suppose first that z ∈ L(t − 1).
Then the rule for updating the queue in the algorithm gives |Fz(t)| ≥ δ′

Q|Fz(tz)|. Next
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suppose that z ∈ j(t − 1) ∪ q(t − 1), and z first joined j(t′) ∪ q(t′) at some time t′ < t.
Since z did not join the queue at time t′ − 1 we have |Fz(t′ − 1)| ≥ δ′

Q|Fz(tz)|. Also,
between times t′ and t we only embed vertices that are in the queue or jumping the queue,
or otherwise we would have embedded z before x. Now |Q(t) ∩ Xi| ≤ δQCn for i ∈ R,
or otherwise we abort the algorithm, and |J(t) ∩ Xz| <

√
δQn by Lemma 6.13(ii), so we

embed at most 2
√

δQ|Vz| vertices in Vz between times t′ and t. Thus we have catalogued
all possible ways in which the number of vertices free for z can decrease. It may decrease
by a factor of d2D2(k−2)

a when a new z-regime starts, and by a factor δ′
Q during a z-regime

before z joins the queue. Also, if z joins the queue or jumps the queue it may decrease by
at most 2

√
δQ|Vz| in absolute size. Since z has at most 2D neighbours, and |Fz(0)| > c′|Vz|,

we have |Fz(t)| ≥ (d2D2(k−2)

a δ′
Q)kDc′|Vz| − 2

√
δQ|Vz| > du|Vz|.

From now on it will often suffice and be more convenient to use a crude upper bound
of ε∗ for any epsilon parameter. The estimates in Lemma 4.14 hold in general (we can
replace 12D by k3D in (vi)). We also need some similar properties for plus complexes. In
the following statement H+ is to be understood as in Definition 6.8 but with x replaced by z.

Lemma 6.23. Suppose z ∈ X and S′ ⊆ S ∈ H+ are unembedded and I is a subcomplex
of H. Then

(i) F(t)I+z
S≤ is εk3D,3-regular.

(ii) If S ∈ H then dS(F(t)I+z) = dS(F(t)).
If S ∈ H+ \ H then dS(F(t)I+z) is dT (F(t)) if S = T c, T ∈ I or 1 otherwise.

(iii) For all but at most ε∗|F(t)I+z
S′ | sets P ∈ F(t)I+z

S′ we have

∣∣F(t)I+z
S (P)

∣∣ = (1 ± ε∗)
∣∣F(t)I+z

S

∣∣/∣∣F(t)I+z
S′

∣∣.
(iv) d(F(t)I+z

S ) = (1 ± ε∗)
∏

T⊆S dT (F(t)I+z).
(v)

∣∣F(t)I+z
S

∣∣∣∣F(t)I+z
S′

∣∣∣∣F(t)I+z
S\S′

∣∣ = d
(
F(t)I+z

S

)
d
(
F(t)I+z

S′
)
d
(
F(t)I+z

S\S′
) = (1 ± 4ε∗)

∏
T :T⊆S,T�S′ ,T�S\S′

dT (F(t)I+z).

(vi) Statements (iii–v) hold replacing F(t)I+z
S≤ (t) by F(t)I+z

S≤ (t)[�] for any εk3D,3-regular
subcomplex � of F(t)I+z

S≤ (t), such that dT (�) ≥ ε∗ when defined.

Proof. If S ∈ H then F(t)I+z
S≤ = F(t)S≤ . Now suppose S ∈ H+ \ H, say S = Tzc with

T ∈ H . Then by Definition 6.8, F(t)I+z
S≤ = G+[F(t) ∪ F(t)+

Ic ]S≤ consists of all Pyc with
P ∈ F(t)T and PS′yc ∈ FS′z(t)c when defined for all S′z ∈ I . Thus we can write F(t)I+z

S≤ =
K(V+)[F(t) ∪ F(t)+

Ic ]S≤ . Note that K(V+)S′ is ε-regular with dS′(K(V+)) = 1 for any
S′ ∈ H+. Thus (i) and (ii) follow by regular restriction. The other statements of the Lemma
can be proved as in Lemma 4.14.

Our next lemma concerns the definitions for marked edges in the algorithm.
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Lemma 6.24.

(i) For every k-tuple E ∈ H we have |MEt ,E(t)| < θ ′
ν′

Et (t)
|FEt (t)|, and in fact

|MEt ,E(t)| ≤ θν′
Et (t)

|FEt (t)| for E ∈ U(x).

(ii) For every x and k-tuple E ∈ U(x) we have |Dx,E(t − 1)| < θν′
Et (t)

|Fx(t − 1)|.

Proof. Throughout we use the notation E = Et−1, ν = ν ′
E
(t − 1), ν∗ = ν ′

Et (t).
(i) To verify the bound for t = 0 we use our assumption that (G, M) is (ε, ε ′, da, θ , d)-

super-regular. We take I = ({∅}), when for any v we have GIv = G by Definition 6.5. Then
condition (iii) in Definition 6.6 gives |ME| ≤ θ |GE|. Since E0 = E we have ME,E(0) =
ME ∩FE(0), where |FE(0)| > (c′)2k |GE| by Lemma 6.21. Since θ � c′ we have |ME,E(0)| ≤
|ME| ≤ θ |GE| < θ(c′)−2k |FE(0)| < θ0|FE(0)|. Now suppose t > 0. When E ∈ U(x)
we have |MEt ,E(t)| ≤ θν∗ |FEt (t)| by definition, since the algorithm chooses y = φ(x) /∈
Dx,E(t − 1). Now suppose E /∈ U(x), and let t′ < t be the most recent time at which we
embedded a vertex x′ with E ∈ U(x′). Then Et′ = Et , ν ′

Et (t′) = ν∗, and |MEt′ ,E(t′)| ≤
θν′

Et (t
′)|FEt′ (t′)| by the previous case. For any z ∈ Et , we can bound |Fz(t)| using the same

argument as that used at the end of the proof of Lemma 6.22. We do not embed any
neighbour of z between time t′ + 1 and t, so the size of the free set for z can only decrease
by a factor of δ′

Q and an absolute term of 2
√

δQn. Since dz(F(t′)) ≥ du � δQ we have
|Fz(t)| ≥ δ′

Q|Fz(t′)| − 2
√

δQn ≥ 1
2δ

′
Q|Fz(t′)|. By Lemma 3.11, for every ∅ �= S ⊆ Et , FS(t)

is obtained from FS(t′) by restricting to the 1-complex ((Fz(t) : z ∈ S), {∅}). If |S| ≥ 2 then
Lemma 6.18 gives dS(F(t)) = (1± ε∗)dS(F(t′)). Now d(FEt (t)) = (1± ε∗)

∏
S⊆Et dS(F(t))

by Lemma 6.15, so

|FEt (t)|
|FEt (t′)| = (

1 ± 2k+1ε∗
) ∏

S⊆Et

dS(F(t))

dS(F(t′))
= (

1 ± 2k+2ε∗
) ∏

z∈Et

dz(F(t))

dz(F(t′))
>

(
δ′

Q/2
)k

/2.

Therefore |MEt ,E(t)| ≤ |MEt ,E(t′)| ≤ θν∗ |FEt (t′)| < 2(δ′
Q/2)−kθν∗ |FEt (t)| < θ ′

ν∗ |FEt (t)|.
(ii) The argument when x ∈ E is identical to that in Lemma 4.15, so we just consider the

case when x /∈ E. Then Et = Et−1 = E. Note that when E ∈ U(x) we have E∩VNH(x) �= ∅,
so ν∗ > ν. By Lemma 6.10 we have F(t)E = F(t − 1)H+x(yc)E \ y = (F(t − 1)H+x

Exc \ y)(yc).
Since ME,E(t) = ME,E(t − 1) ∩ FE(t) we have

Dx,E(t − 1) =
{

y ∈ Fx(t − 1) :

∣∣ME,E(t − 1) ∩ (
F(t − 1)H+x

Exc \ y
)
(yc)

∣∣∣∣(F(t − 1)H+x
Exc \ y

)
(yc)

∣∣ > θν∗

}
.

Then

 :=
∑

y∈Dx,E (t−1)

∣∣ME,E(t − 1) ∩ (
F(t − 1)H+x

Exc \ y
)
(yc)

∣∣
> θν∗

∑
y∈Dx,E (t−1)\Ex(t−1)

∣∣(F(t − 1)H+x
Exc \ y)(yc)

∣∣
> (1 − 2ε∗)θν∗(|Dx,E(t − 1)| − ε∗|Fx(t − 1)|) ∣∣F(t − 1)H+x

Exc

∣∣/|Fxc(t − 1)|
= (1 − 2ε∗)θν∗(|Dx,E(t − 1)|/|Fx(t − 1)| − ε∗)

∣∣F(t − 1)H+x
Exc

∣∣.
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Here we used |Fxc(t−1)| = |Fx(t−1)|, and in the second inequality we applied Lemma 6.23,
with a factor 1 − 2ε∗ rather than 1 − ε∗ to account for the error from deleting y (which has
a lower order of magnitude). We also have  ≤ ∑

y∈Fx(t−1) |ME,E(t − 1)∩ F(t − 1)H+x
Exc (yc)|.

This counts all pairs (y, P) with P ∈ ME,E(t − 1), y ∈ Fx(t − 1) and Pyc ∈ F(t − 1)H+x
Exc , so

we can rewrite it as  ≤ ∑
P∈ME,E (t−1) |F(t − 1)H+x

Exc (P)|. By Lemma 6.23 we have

∣∣F(t − 1)H+x
Exc (P)

∣∣ = (1 ± ε∗)

∣∣F(t − 1)H+x
Exc

∣∣∣∣F(t − 1)H+x
E

∣∣
for all but at most ε∗|F(t − 1)H+x

E
| sets P ∈ F(t − 1)H+x

E
. Since F(t − 1)H+x

E
= FE(t − 1)

we have

 ≤ |ME,E(t − 1)|(1 + ε∗)

∣∣F(t − 1)H+x
Exc

∣∣
|FE(t − 1)| + ε∗|FE(t − 1)||Fx(t − 1)|.

Combining this with the lower bound on  we obtain

(1 − 2ε∗)θν∗
( |Dx,E(t − 1)|

|Fx(t − 1)| − ε∗

)
< (1 + ε∗)

|ME,E(t − 1)|
|FE(t − 1)| + ε∗

|FE(t − 1)||Fx(t − 1)|∣∣F(t − 1)H+x
Exc

∣∣ .

Now |ME,E(t−1)| < θ ′
ν |FE(t−1)| by (i) and

|FE (t−1)||Fx(t−1)|
|F(t−1)H+x

Exc | ≤ d−2k

u � ε−1
∗ , by Lemma 6.23,

so

|Dx,E(t − 1)|
|Fx(t − 1)| <

(1 + ε∗)θ ′
ν + √

ε∗
(1 − 2ε∗)θν∗

+ ε∗ < θν∗ .

The following corollary is now immediate from Lemmas 6.22 and 6.24. Recall that
OKx(t − 1) is obtained from Fx(t − 1) by deleting Ex(t − 1) and Dx,E(t − 1) for E ∈ U(x),
and note that since H has maximum degree at most D we have |U(x)| ≤ (k − 1)D2.

Corollary 6.25. |OKx(t − 1)| > (1 − θ∗)|Fx(t − 1)|.

Next we consider the initial phase of the algorithm, during which we embed the neigh-
bourhood N of the buffer B. We give three lemmas that are analogous to those used for the
3-graph blow-up lemma. First we recall the key properties of the selection rule during the
initial phase. Since H has maximum degree D we have |VNH(x)| ≤ (k − 1)D for all x. We
embed all vertex neighbourhoods VNH(x), x ∈ B at consecutive times, and before x or any
other vertices at distance at most 4 from x. Then Lemma 3.12 implies that if we start embed-
ding VNH(x) just after some time T0 then Fz(T0) = Fz(0)∩ Vz(T0) consists of all vertices in
Fz(0) that have not yet been used by the embedding, for every z at distance at most 3 from x.
Recall that Fz(0) = G[�]z is either a set of restricted positions �z with |�z| > c′|Gz| = c′|Vz|
or is Gz = Vz if �z is undefined. We chose B disjoint from X ′

∗ = X∗∪⋃
x∈X∗ VNH(x), so B∪N

is disjoint from X∗. Thus for z ∈ VNH(x)∪{x} we have Fz(T0) = Vz(T0). We also recall that
|B ∩ Vz| = δB|Vz|, |N ∩ Vz| <

√
δB|Vz|, |Q(T0) ∩ Vz| ≤ δQ|Vz| and |J(T0) ∩ Vz| ≤ √

δQ|Vz|
by Lemma 4.3(ii). Since δQ � δB � c′, for any z at distance at most 3 from x we have

|Fz(T0)| = |Fz(0) ∩ Vz(T0)| >
(
1 − δ

1/3
B

)|Fz(0)|. (8)
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Our first lemma is analogous to Lemma 4.18. We omit the proof, which is almost identical
to that for 3-graphs. The only modifications are to replace 2D by (k − 1)D, 12D by k3D,
and

∑r
�=1 by a sum over at most DR neighbours � ∈ R of i; the estimates are still valid as

δB � 1/DR.

Lemma 6.26. With high probability, for every S ∈ R with |S| = 2 lying over some i, j ∈ R,
and vertex v ∈ Gi with |GS(v)| ≥ du|Vj|, we have |GS(v) ∩ Vj(TI)| > (1 − δ

1/3
B )|GS(v)|.

Next we fix a vertex x ∈ B and write VNH(x) = {z1, . . . , zg}, with vertices listed in the
order that they are embedded. We let Tj be the time at which zj is embedded. By the selection
rule, VNH(x) jumps the queue and is embedded at consecutive times: Tj+1 = Tj + 1 for
1 ≤ j ≤ g − 1. For convenience we also define T0 = T1 − 1. Note that no vertex of VNH(x)
lies in Xx. Our second lemma shows that for that any W ⊆ Vx that is not too small, the
probability that W does not contain a vertex available for x is quite small.

Lemma 6.27. For any W ⊆ Vx with |W | > ε∗|Vx|, conditional on any embedding of the
vertices {s(u) : u < T1} that does not use any vertex of W, we have P[Ax ∩ W = ∅] < θ∗.

Proof. The proof is very similar to that of Lemma 4.20, so we will just describe the
necessary modifications. We note that since B ∪ N is disjoint from X∗ we do not need to
consider restricted positions in this proof. Suppose 1 ≤ j ≤ g and that we are considering
the embedding of zj. We interpret quantities at time Tj with the embedding φ(zj) = y, for
some as yet unspecified y ∈ Fzj (Tj − 1). We define Wj, [Wj], EW

zj
(Tj − 1), DW

zj ,E
(Tj − 1) and

the events Ai,j as before (replacing triples with k-tuples). The proofs of Claims A, B, C, E
and the conclusion of the proof are almost identical to before. We need to modify various
absolute constants to take account of the dependence on k, e.g. changing 20 to 2k+2 in Claim
A, 12 to k3 in Claim E, and g ≤ 2D to g ≤ (k − 1)D. Also, when we apply equation (8)
instead of (5) we will replace 2

√
δB by δ

1/3
B .

To complete the proof of the lemma it remains to establish Claim D. This requires more
substantial modifications, similar to those in Lemma 6.24, so we will give more details
here. Suppose that A1,j−1 and A2,j−1 hold and E is a k-tuple containing x. As before we write
E = ETj−1, ν = ν ′

E
(Tj − 1), ν∗ = ν ′

E
Tj

(Tj) and Bzj = Ezj (Tj − 1) ∪ EW
zj

(Tj − 1). Again we

have |Bzj | < 2ε∗|Fzj (Tj −1)|. We are required to prove that |DW
zj ,E

(Tj −1)| < θν∗ |Fzj (Tj −1)|.
The proof of Case D.1 when zj ∈ E is exactly as before, so we just consider the case zj /∈ E.
In Lemma 4.20 we divided this into Cases D.2 and D.3, but here we will give a unified
argument.

Suppose that zj /∈ E. Then ETj = ETj−1 = E. Also x ∈ E ∩ VNH(zj), so ν∗ > ν. By

Lemma 6.10 we have F(Tj)E = F(Tj − 1)H+zj (yc)E \ y = (F(Tj − 1)
H+zj

Ezc
j

\ y)(yc). Now

Wj = Wj−1 ∩ Fxzj (Tj − 1)(y) = Wj−1 ∩ F(Tj − 1)
H+zj
xzc

j
(yc), so

FE(Tj)[Wj] = (
F(Tj − 1)

H+zj

Ezc
j

\ y
)
(yc)[Wj] = (

F(Tj − 1)
H+zj

Ezc
j

[Wj−1] \ y
)
(yc).

Since ME,E(Tj) = ME,E(Tj − 1) ∩ FE(Tj) we have

DW
zj ,E

(Tj−1) =


y ∈ Fzj (Tj − 1) :

∣∣ME,E(Tj − 1) ∩ (
F(Tj − 1)

H+zj

Ezc
j

[Wj−1] \ y
)
(yc)

∣∣
∣∣(F(Tj − 1)

H+zj

Ezc
j

[Wj−1] \ y
)
(yc)

∣∣ > θν∗


.
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Then

 :=
∑

y∈DW
zj ,E (Tj−1)

∣∣ME,E(Tj − 1) ∩ (
F(Tj − 1)

H+zj

Ezc
j

[Wj−1] \ y
)
(yc)

∣∣

> θν∗
∑

y∈DW
zj ,E (Tj−1)\B′

zj

∣∣(F(Tj − 1)
H+zj

Ezc
j

[Wj−1] \ y
)
(yc)

∣∣

> (1 − 2ε∗)θν∗
(∣∣DW

zj ,E
(Tj − 1)

∣∣ − 2ε∗|Fzj (Tj − 1)|) ∣∣F(Tj − 1)
H+zj

Ezc
j

[Wj−1]
∣∣/|Fzc

j
(Tj − 1)|

= (1 − 2ε∗)θν∗
(∣∣DW

zj ,E
(Tj − 1)

∣∣/|Fzj (Tj − 1)
∣∣ − 2ε∗

)∣∣F(Tj − 1)
H+zj

Ezc
j

[Wj−1]
∣∣.

Here we used |Fzc
j
(Tj − 1)| = |Fzj (Tj − 1)| and Lemma 6.23 with � = (Wj−1, {∅}), as

usual denoting the exceptional set by B′
zj

; the factor 1 − 2ε∗ rather than 1 − ε∗ accounts
for the error from deleting y (which has a lower order of magnitude). We also have  ≤∑

y∈Fzj (Tj−1) |ME,E(Tj − 1) ∩ F(Tj − 1)
H+zj

Ezc
j

[Wj−1](yc)|. This counts all pairs (y, P) with

P ∈ ME,E(Tj − 1)[Wj−1], y ∈ Fzj (Tj − 1) and Pyc ∈ F(Tj − 1)
H+zj

Ezc
j

[Wj−1], so we can rewrite

it as  ≤ ∑
P∈ME,E (Tj−1)[Wj−1] |F(Tj − 1)

H+zj

Ezc
j

[Wj−1](P)|. By Lemma 6.23, we have

∣∣F(Tj − 1)
H+zj

Ezc
j

[Wj−1](P)
∣∣ = (1 ± ε∗)

∣∣F(Tj − 1)
H+zj

Ezc
j

[Wj−1]
∣∣

∣∣F(Tj − 1)
H+zj

E
[Wj−1]

∣∣
for all but at most ε∗|F(Tj − 1)

H+zj

E
[Wj−1]| sets P ∈ F(Tj − 1)

H+zj

E
[Wj−1].

Since F(Tj − 1)
H+zj

E
= FE(Tj − 1) we have

 ≤ |ME,E(Tj −1)[Wj−1]|(1+ε∗)

∣∣F(Tj − 1)
H+zj

Ezc
j

[Wj−1]
∣∣

|FE(Tj − 1)[Wj−1]| +ε∗|FE(Tj −1)[Wj−1]||Fzj (Tj −1)|.

Combining this with the lower bound on  we obtain

(1 − 2ε∗)θν∗

(∣∣DW
zj ,E

(Tj − 1)
∣∣

|Fzj (Tj − 1)| − 2ε∗

)

< (1 + ε∗)
|ME,E(Tj − 1)[Wj−1]|
|FE(Tj − 1)[Wj−1]| + ε∗

|FE(Tj − 1)[Wj−1]||Fzj (Tj − 1)|∣∣F(Tj − 1)
H+zj

Ezc
j

[Wj−1]
∣∣ .

Now |ME,E(Tj − 1)[Wj−1]| < θν |FE(Tj − 1)| by A2,j−1 and

|FE(Tj − 1)[Wj−1]||Fzj (Tj − 1)|∣∣F(Tj − 1)
H+zj

Ezc
j

[Wj−1]
∣∣ ≤ d−2k

u � ε−1
∗ ,
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by Lemma 6.23, so ∣∣DW
zj ,E

(Tj − 1)
∣∣

|Fzj (Tj − 1)| <
(1 + ε∗)θν + √

ε∗
(1 − 2ε∗)θν∗

+ 2ε∗ < θν∗ .

Our final lemma for the initial phase is similar to the previous one, but instead of asking
for a set W of vertices to contain an available vertex for x, we ask for some particular vertex
v to be available for x.

Lemma 6.28. For any v ∈ Vx, conditional on any embedding of the vertices {s(u) : u <

T1} that does not use v, with probability at least p we have φ(H(x)) ⊆ (G \ M)(v), so
v ∈ Ax.

Proof. We follow the proof of Lemma 4.21, indicating the necessary modifications. We
note again that since B ∪ N is disjoint from X∗, restricted positions have no effect on any
z ∈ VNH(x) ∪ {x}. However, we need to consider all vertices within distance 3 of x, so
some of these may have restricted positions. The bound in equation (8) will be adequate
to deal with these. By Remark 6.4 we also need to clarify the meaning of neighbourhood
constructions, which are potentially ambiguous: F(Tj)(v)S is F(Tj)Sx(v) when Sx ∈ H or
undefined when Sx /∈ H.

For z ∈ VNH(x) we define αz as before. We also define αS = 1 for S ∈ H with |S| ≥ 2. As
before, we define ν ′′

S (t) similarly to ν ′
S(t), replacing ‘embedded’ with ‘allocated’. Suppose

1 ≤ j ≤ g and that we are considering the embedding of zj. We interpret quantities at time
Tj with the embedding φ(zj) = y, for some as yet unspecified y ∈ Fzj (Tj − 1). We define
Ev

zj
(Tj − 1) as before, except that the condition for |S| = 2 now applies whenever |S| ≥ 2.

We define Y , H ′, F(Tj)
Z∗v
S≤ and DZ∗v

zj ,E
(Tj − 1) as before. Properties (i–iv) of Z hold as before.

We define the events Ai,j as before.
Recall that we used the notation Z ⊆ Y , Z ′ = Zzj, I = {S ⊆ Z : S ∈ H(x)}, I ′ = {S ⊆

Z ′ : S ∈ H(x)}. Here we also define J = {S ⊆ Zx : S ∈ H} and J ′ = {S ⊆ Z ′x : S ∈ H}.
Using the plus complex notation we can write

F(Tj)
Z∗v
S≤ = F(Tj)

J+v(vc)S≤ . (+6.28)

To see this, we need to show that P ∈ F(Tj)
Z∗v
S ⇔ Pvc ∈ F(Tj)

J+v
Sxc . Recall that F(Tj)

Z∗v
S

consists of all sets P ∈ FS(Tj) such that PS′v ∈ FS′x(Tj) for all S′ ⊆ S with S′ ∈ I . Also, from
Definition 6.8(v) we have Pvc ∈ F(Tj)

J+v
Sxc if and only if P ∈ F(Tj)S (this is the restriction

from F) and PS′vc ∈ (F(Tj)
+
Jc)S′xc = F(Tj)

c
S′xc for every S′ ⊆ S with S′x ∈ J . Since S′ ∈ I

⇔ S′x ∈ J , this is equivalent to the condition for F(Tj)
Z∗v
S , as required.

The proof of Claim A is similar to before. Instead of the bound |Fz(T0)| > (1−2
√

δB)|Vz|
from equation (5) we use |Fz(T0)| > (1 − δ

1/3
B )|Vz| from equation (8). We again have

|Fz(T0) ∩ G(v)z| > (1 − δ
1/3
B )|G(v)z| for z ∈ VNH(x) by Lemma 6.26, using the fact that

z /∈ X∗. Again, A4,0 holds by definition and Lemma 6.26 implies that A1,0 holds with high
probability. The arguments for A2,0 and A3,0 are as before, modifying the absolute constants
to take account of their dependence on k. (In the A2,0 argument we have F(0)Z∗v

E = GJv
E ,

where we let J also denote the submulticomplex {i∗(S) : S ∈ J} of R.) The proofs of Claims
B and E and the conclusion of the lemma are also similar to before. As usual we replace
triple by k-tuple, 2D by (k−1)D and 12D by k3D. Also, in Claim E we previously estimated
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2D2 choices for E then 8 choices for Z; here we estimate (k − 1)D2 choices for E then 2k

choices for Z . To complete the proof of the lemma it remains to establish Claims C and D.
These require more substantial modifications, so we will give the details here.

We start with Claim C. Suppose that A1,j−1 and A3,j−1 hold. We are required to prove
that |Ev

zj
(Tj − 1) \ Ezj (Tj − 1)| < ε∗|Fxzj (Tj − 1)(v)|. For any S ∈ H we write ν ′′

S =
ν ′′

S (Tj − 1) and ν∗
S = ν ′′

S (Tj). Consider any unembedded ∅ �= S ∈ H(x) ∩ H(zj). Note that
ν∗

S > max{ν ′′
S , ν ′′

Sx, ν ′′
Szj

}. Applying the definitions, it suffices to show that for all but at most
εk3D,3|Fxzj (Tj − 1)(v)| vertices y ∈ Fxzj (Tj − 1)(v) \ Ezj (Tj − 1), FSx(Tj)(v) is εν∗

S ,1-regular
with dS(F(Tj)(v)) = (1 ± εν∗

S ,1)dSx(F(Tj))dS(F(Tj))αS. We claim that

FSx(Tj)(v) = F(Tj − 1)H+zj (vyc)S.

To see this we apply Definition 6.8, which tells us that for P ∈ F(Tj − 1)S, v0 ∈ F(Tj − 1)x

and y0 ∈ F(Tj − 1)zj we have Pv0yc
0 ∈ F(Tj − 1)

H+zj
Sxzc

j
exactly when Pv0 ∈ F(Tj − 1)Sx and

(Pv0)S′y0 ∈ F(Tj − 1)S′zj for all S′ ⊆ Sx, S′ ∈ H(zj). Therefore F(Tj − 1)H+zj (vyc)S consists
of all P ∈ F(Tj − 1)S such that Pv ∈ F(Tj − 1)Sx and (Pv)S′ ∈ F(Tj − 1)S′zj (y) for all
S′ ⊆ Sx, S′ ∈ H(zj). By Definition 3.7 this is equivalent to Pv ∈ F(Tj)Sx, i.e. P ∈ FSx(Tj)(v)
as claimed. (We do not need to delete y as S and x are in H(zj).)

By Definition 6.8, F(Tj − 1)
H+zj
Sxzc

j
is F(Tj − 1)c

Sxzj
if Sxzj ∈ H or consists of all Pyc with

P ∈ F(Tj − 1)Sx, y ∈ F(Tj − 1)zj and PS′y ∈ F(Tj − 1)S′zj for S′ ⊆ Sx with S′ ∈ H(zj). Thus

F(Tj −1)
H+zj
Sxzc

j
(v) is F(Tj −1)c

Sxzj
(v) if Sxzj ∈ H or F(Tj −1)[F(Tj −1)Sxz≤j

(v)]c
Szj

if Sxzj /∈ H.

Either way we can see that is εν′′
Szj

,2-regular: in the first case we write F(Tj − 1)Sxzj (v) =
F(Tj − 1)

Szj∗v

Szj
and use A3,j−1; in the second case we use Lemma 6.19 and the fact that

F(Tj − 1)c
Szj

is a copy of F(Tj − 1)Szj , which is εν′′
Szj

,1-regular by Lemma 6.22. Also by

A3,j−1, dSzc
j
(F(Tj − 1)H+zj (v)) is (1 ± εν′′

Szj
,2)dSzj (F(Tj − 1))dSxzj (F(Tj − 1)) if Sxzj ∈ H or

(1 ± εν′′
Szj

,2)dSzj (F(Tj − 1)) if Sxzj /∈ H. Similarly, F(Tj − 1)
H+zj
Sx (v) is εν′′

S ,2-regular with

dS(F(Tj − 1)H+zj (v)) = (1 ± εν′′
S ,2)dS(F(Tj − 1))dSx(F(Tj − 1))αS.

Since x ∈ H(zj) we have F(Tj−1)H+zj (v)zc
j
= Fxzj (Tj−1)c(v). By Lemma 6.16, for all but

at most
∑

S′⊆Sxzj
εν′′

S′ ,3|Fxzj (Tj −1)(v)| vertices y ∈ Fxzj (Tj −1)(v), writing η = εν′′
S ,3 +εν′′

Szj
,3,

FSx(Tj)(v) = F(Tj − 1)H+zj (v)(yc)S is η-regular with

dS(F(Tj)(v)) = dS(F(Tj − 1)H+zj (vyc))

= (1 ± η)dS(F(Tj − 1)H+zj (v))dSzj (F(Tj − 1)H+zj (v)).

= (1 ± 3η)dS(F(Tj − 1))dSx(F(Tj − 1))αS · dSzj (F(Tj − 1))dSxzj (F(Tj − 1))
1Sxzj∈H .

This gives the required regularity property for FSx(Tj)(v). Next, (∗6.2) gives

dS(F(Tj)) = (1 ± εν∗
S ,0)dS(F(Tj − 1))dSzj (F(Tj − 1)) and

dSx(F(Tj)) = (1 ± εν∗
Sx ,0)dSx(F(Tj − 1))dSxzj (F(Tj − 1))

1Sxzj∈H ,
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so since ν∗
S > max{ν ′′

S , ν ′′
Sx, ν ′′

Szj
} we have dS(F(Tj)(v)) = (1 ± εν∗

S ,1)dSx(F(Tj))dS(F(Tj))αS.
This proves Claim C.

It remains to prove Claim D. Suppose that A1,j−1, A2,j−1 and A3,j−1 hold, E ∈ U(zj),
Z ⊆ E and Z ′ = Z ∪ zj. As before we write E = ETj−1, ν = ν ′′

E
(Tj − 1), ν∗ = ν ′′

E
Tj

(Tj),
Bzj = Ezj (Tj − 1) ∪ Ev

zj
(Tj − 1). Since E ∈ U(zj) we have ν∗ > ν. We are required to prove

that |DZ ′∗v
zj ,E

(Tj − 1)| < θν∗ |Fxzj (Tj − 1)(v)|. The proof of Case D.1 when zj ∈ E is exactly as
before, so we just consider the case zj /∈ E.

Suppose that zj /∈ E. Then ETj = ETj−1 = E. By Lemma 6.10 we have

F(Tj)E = F(Tj − 1)H+zj (yc)E \ y = (
F(Tj − 1)

H+zj

Ezc
j

\ y
)
(yc).

We claim that

F(Tj)
Z∗v
E≤ = F(Tj − 1)H+zj (yc)J+v(vc)E≤ \ y = F(Tj − 1)J ′+v(vc)H+zj (yc)E≤ \ y. (†6.28)

For the first equality we use (+6.28) to get F(Tj)
Z∗v
E≤ = F(Tj)

J+v(vc)E≤ and substitute F(Tj) =
F(Tj − 1)H+zj (yc) \ y from Lemma 6.10. For the second equality we apply Definition 6.8
as follows. Suppose S ⊆ E. We have P ∈ F(Tj − 1)H+zj (yc)J+v(vc)S exactly when P ∈
F(Tj −1)H+zj (yc)S and PS′v ∈ F(Tj −1)H+zj (yc)S′x for all S′ ⊆ S with S′x ∈ J . Equivalently,
P ∈ F(Tj − 1)S, PUy ∈ F(Tj − 1)Uzj for U ⊆ S with U ∈ H(zj), PS′v ∈ F(Tj − 1)S′x and
(Pv)S′′y ∈ F(Tj − 1)S′′zj for S′ ⊆ S with S′x ∈ J and S′′ ⊆ S′x with S′′ ∈ H(zj). Note that it
is equivalent to assume x ∈ S′′, as otherwise the S′′ condition is covered by the U condition.
Writing W = S′′ \ x and using J = {A ⊆ Zx : A ∈ H} we have

P ∈ F(Tj−1)H+zj (yc)J+v(vc)S if and only if P ∈ F(Tj−1)S, PUy ∈ F(Tj−1)Uzj for U ⊆ S
with U ∈ H(zj), PS′v ∈ F(Tj − 1)S′x for S′ ⊆ S ∩ Z , S′ ∈ H(x), and PW vy ∈ F(Tj − 1)Wxzj

for W ⊆ S ∩ Z with W ∈ H(xzj).
On the other hand, we have P ∈ F(Tj − 1)J ′+v(vc)H+zj (yc)S exactly when P ∈ F(Tj −

1)J ′+v(vc)S and PUy ∈ F(Tj − 1)J ′+v(vc)Uzj for all U ⊆ S with U ∈ H(zj). Equivalently,
P ∈ F(Tj − 1)S, PS′v ∈ F(Tj − 1)S′x for S′ ⊆ S with S′x ∈ J ′, PUy ∈ F(Tj − 1)Uzj and
(Py)U′v ∈ F(Tj − 1)U′x for U ⊆ S with U ∈ H(zj) and U ′ ⊆ Uzj with U ′x ∈ J ′. Note
that it is equivalent to assume zj ∈ U ′, as otherwise the U ′ condition is covered by the S′

condition. Writing W = U ′ \ zj and using J ′ = {A ⊆ Z ′x : A ∈ H} we have
P ∈ F(Tj − 1)J ′+v(vc)H+zj (yc)S if and only if P ∈ F(Tj − 1)S, PS′v ∈ F(Tj − 1)S′x for

S′ ⊆ S ∩ Z ′ = S ∩ Z with S′ ∈ H(x), PUy ∈ F(Tj − 1)Uzj for U ⊆ S with U ∈ H(zj), and
PW yv ∈ F(Tj − 1)Wzjx for W ⊆ S ∩ Z with W ∈ H(xzj).

This proves (†6.28). Now, since ME,E(Tj) = ME,E(Tj − 1) ∩ FE(Tj) we have

DZ ′∗v
zj ,E

(Tj−1) =


y ∈ Fzj (Tj − 1) :

∣∣ME,E(Tj − 1) ∩ (
F(Tj − 1)J ′+v(vc)

H+zj

Ezc
j

\ y
)
(yc)

∣∣
∣∣(F(Tj − 1)J ′+v(vc)

H+zj

Ezc
j

\ y
)
(yc)

∣∣ > θν∗


.

Writing B′
zj

for the set of vertices y ∈ F(Tj − 1)J ′+v(vc)
H+zj
zj = F(Tj − 1)xzj (v) for which we

do not have∣∣F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

(yc)
∣∣ = (1 ± ε∗)

∣∣F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

∣∣/|F(Tj − 1)xzj (v)|,

Random Structures and Algorithms DOI 10.1002/rsa



366 KEEVASH

we have |B′
zj
| < ε∗|F(Tj−1)xzj (v)|by Lemma 6.20. Here we use the fact that the ‘double plus’

complex is εk3D,3-regular; the proof of this is similar to that of Lemma 6.23(i): F(Tj −1)J ′+v

is εk3D,1-regular, F(Tj − 1)J ′+v(vc) is εk3D,2-regular by Lemma 6.16, F(Tj − 1)J ′+v(vc)H+zj is
εk3D,3-regular. Then

 :=
∑

y∈DZ′∗v
zj ,E (Tj−1)

∣∣ME,E(Tj − 1) ∩ (
F(Tj − 1)J ′+v(vc)

H+zj

Ezc
j

\ y
)
(yc)

∣∣

> θν∗
∑

y∈DZ′∗v
zj ,E (Tj−1)\B′

zj

∣∣(F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

\ y
)
(yc)

∣∣

> (1 − 2ε∗)θν∗
(∣∣DZ ′∗v

zj ,E
(Tj − 1)

∣∣ − ε∗|F(Tj − 1)xzj (v)|
) ∣∣F(Tj − 1)J ′+v(vc)

H+zj

Ezc
j

∣∣
|F(Tj − 1)xzj (v)|

= (1 − 2ε∗)θν∗
(∣∣DZ ′∗v

zj ,E
(Tj − 1)

∣∣/|F(Tj − 1)xzj (v)| − ε∗
)∣∣F(Tj − 1)J ′+v(vc)

H+zj

Ezc
j

∣∣.
We also have

 ≤
∑

y∈Fxzj (Tj−1)(v)

∣∣ME,E(Tj − 1) ∩ F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

(yc)
∣∣.

This counts all pairs (y, P) with P ∈ ME,E(Tj −1)∩F(Tj −1)J ′+v(vc)
H+zj

E
, y ∈ Fxzj (Tj −1)(v)

and Pyc ∈ F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

, so we can rewrite it as

 ≤
∑

P∈ME,E (Tj−1)∩F(Tj−1)J′+v(vc)
H+zj
E

∣∣F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

(P)
∣∣.

For all but at most ε∗|F(Tj − 1)J ′+v(vc)
H+zj

E
| sets P ∈ F(Tj − 1)J ′+v(vc)

H+zj

E
, we have

∣∣F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

(P)
∣∣ = (1 ± ε∗)

∣∣F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

∣∣
∣∣F(Tj − 1)J ′+v(vc)

H+zj

E

∣∣ .

(Recall that the ‘double plus’ complex is εk3D,3-regular and use Lemma 6.20.) Therefore

 ≤ ∣∣ME,E(Tj − 1) ∩ F(Tj − 1)J ′+v(vc)
H+zj

E

∣∣ · (1 + ε∗)

∣∣F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

∣∣
∣∣F(Tj − 1)J ′+v(vc)

H+zj

E

∣∣
+ ε∗

∣∣F(Tj − 1)J ′+v(vc)
H+zj

E

∣∣|F(Tj − 1)xzj (v)|.
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Combining this with the lower bound on  we have

(1 − 2ε∗)θν∗
(∣∣DZ ′∗v

zj ,E
(Tj − 1)

∣∣/|F(Tj − 1)xzj (v)| − ε∗
)

≤ (1 + ε∗)

∣∣ME,E(Tj − 1) ∩ F(Tj − 1)J ′+v(vc)
H+zj

E

∣∣∣∣F(Tj − 1)J ′+v(vc)
H+zj

E

∣∣
+ ε∗

∣∣F(Tj − 1)J ′+v(vc)
H+zj

E

∣∣|F(Tj − 1)xzj (v)|∣∣F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

∣∣ .

Since zj /∈ E, Definition 6.8 and equation (†6.28) give F(Tj − 1)J ′+v(vc)
H+zj

E
= F(Tj −

1)J ′+v(vc)E = F(Tj − 1)J+v(vc)E = F(Tj − 1)Z∗v
E

, so

∣∣ME,E(Tj − 1) ∩ F(Tj − 1)J ′+v(vc)
H+zj

E

∣∣ < θ ′
ν

∣∣F(Tj − 1)J ′+v(vc)
H+zj

E

∣∣
by A2,j−1. We also have

∣∣F(Tj − 1)J ′+v(vc)
H+zj

E

∣∣|F(Tj − 1)xzj (v)|∣∣F(Tj − 1)J ′+v(vc)
H+zj

Ezc
j

∣∣ ≤ d−2k

u � ε−1
∗ ,

similarly to Lemma 6.23(v) (the statement is only for F(t), but the estimate for the densities
is valid for any εk3D,3-regular complex). Therefore

∣∣DZ ′∗v
zj ,E

(Tj − 1)
∣∣

|Fxzj (Tj − 1)(v)| <
(1 + ε∗)θ ′

ν + √
ε∗

(1 − 2ε∗)θν∗
+ ε∗ < θν∗ .

The analysis for the conclusion of the algorithm is very similar to that for 3-graphs,
with the usual modifications to absolute constants to account for their dependence on k.
The only important difference is to take account of restricted positions. Lemma 4.22 (the
‘main lemma’) holds, provided that we assume that the set Y is disjoint from the set X∗ of
vertices with restricted positions. We applied Lemma 4.22 in the proof of Theorem 4.23 to
show that it is very unlikely that the iteration phase aborts with failure. This required an
estimate for the probability that a given set Y ⊆ Xi of size δQ|Xi| is contained in Q(T) (the
vertices that have ever been queued). Since |X∗ ∩ Xi| ≤ c|Xi| and c � δQ, we can apply
the same argument to Y \ X∗, which has size at least 1

2δQ|Xi|. The remainder of the proof of
Theorem 4.23 is checking Hall’s condition for the sets {A′

z : z ∈ S}, where S ⊆ Xi(T) ⊆ B.
No changes are required here, as we chose the buffer B to be disjoint from X∗. This completes
the proof of Theorem 6.12.

6.5. Obtaining Super-Regularity and Robust Universality

We conclude with some lemmas that will be useful when applying the blow-up lemma.
We start with the analogue of Lemma 5.9, showing that one can delete a small number of
vertices to enforce super-regularity.
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Lemma 6.29. Suppose 0 < ε0 � ε � ε ′ � da � θ � 1/DR, d, 1/k, we have a multi-
k-complex R on [r] with maximum degree at most DR, and (G, M) is an R-indexed marked
complex on V = ∪i∈RVi such that when defined GS is ε0-regular, |MS| ≤ θ |GS|, dS(G) ≥ da

when |S| ≥ 2 and dS(G) ≥ d when |S| = k. Then we can delete at most 2θ 1/3|Gi| vertices
from each Gi, i ∈ R to obtain an (ε, ε ′, da/2, 2

√
θ , d/2)-super-regular marked complex

(G�, M�).

Proof. The proof is similar to that of Lemma 5.9, so we will just sketch the necessary
modifications. Similarly to before, for any i, S such that i ∈ S, |S| = k and GS is defined
we let Yi,S\i be the set of vertices v ∈ Gi for which |MS(v)| > θ |GS(v)|. We also let Zi,S\i be
the set of vertices v ∈ Gi such that we do not have |GS(v)| = (1 ± ε)|GS|/|Gi| and GS≤(v)
is ε-regular with dS′\i(GS≤(v)) = (1 ± ε)dS′\i(G)dS′(G) for i � S′ ⊆ S. As before we have
|Zi,S\i| < ε|Gi| and |Yi,S\i| < 2

√
θ . Next, consider any k-tuple S containing at least one

neighbour of i in R such that GS is defined, and any subcomplex I of Si≤ such that GS′ is
defined for all S′ ∈ I . We let Y I

i,S be the set of vertices v ∈ Gi for which |(M ∩ GIv)S| >√
θ |GIv

S |. Note that we only need to consider S containing at least one neighbour of i in R,
as otherwise we have GIv

S = GS, and |MS| ≤ θ |GS| by assumption. We let Zi,S be the union
of all Zi,S′ with i /∈ S′ ⊆ S, |S′| = k − 1. Recall from Lemma 6.11 that GIv

S = GI+i(vc)S. If
v /∈ Zi,S then GI+i

Sic is
√

ε-regular by regular restriction and |GI+i(vc)S| = (1 ± ε ′)|GI+i
Sic |/|Gi|

by Lemma 6.20. Then  = ∑
v∈YI

i,S
|(M ∩ GIv)S| = ∑

v∈YI
i,S

|(M ∩ GI+i(vc))S| satisfies

 >
√

θ
∑

v∈YI
i,S\Zi,S

|(M ∩ GI+i(vc))S| >
√

θ
(∣∣Y I

i,S

∣∣ − kε|Gi|
)
(1 − ε ′)

∣∣GI+i
Sic

∣∣/|Gi|.

We also have  ≤ ∑
v∈Gi

|(M ∩ GI+i(vc))S|, which counts all pairs (v, P) with P ∈ MS,

v ∈ Gi and Pvc ∈ GI+i. By Lemma 6.20 we have |GI+i(P)ic | = (1 ± ε ′)|GI+i
Sic |/|GI+i

S | for all
but at most ε ′|GI+i

S | sets P ∈ GI+i
S . Since GI+i

S = GS we have

 ≤
∑
P∈MS

|GI+i(P)ic | ≤ |MS|(1 + ε ′)
∣∣GI+i

Sic

∣∣/|GS| + ε ′|GS||Gi|.

Combining this with the lower bound on  and using |MS| ≤ θ |GS| we obtain |Y I
i,S|/|Gi| <

(1+ε′)θ+√
ε′

(1−ε′)√θ
+kε < 2

√
θ . Let Yi be the union of all such sets Yi,S\i and Y I

i,S. Since θ � 1/DR we

have |Yi| < θ 1/3|Gi| as in Step 1 of Lemma 5.9. We define Z ′
i,j, Zi and obtain |Zi| <

√
ε|Gi|

as in Step 2 of Lemma 5.9. Now we delete Yi ∪ Zi from Gi for every i ∈ R; as in Step 3 of
Lemma 5.9 this gives an (ε, ε ′, da/2, 2

√
θ , d/2)-super-regular marked complex (G�, M�).

The next lemma is analogous to Lemma 5.11; we omit its very similar proof.

Lemma 6.30 (Super-regular restriction). Suppose 0 < ε � ε ′ � ε ′′ � da �
θ � d, d ′, 1/k, we have a multi-k-complex R, and (G, M) is a (ε, ε ′, da, θ , d)-super-regular
marked R-indexed complex on V = ∪i∈RVi with Gi = Vi for i ∈ R. Suppose also that we
have V ′

i ⊆ Vi for i ∈ R, write V ′ = ∪i∈RV ′
i , G′ = G[V ′], M ′ = M[V ′], and that |V ′

i | ≥ d ′|Vi|
and |G′

S(v) ∩ V ′
i | ≥ d ′|GS(v)| whenever S ∈ R with |S| = 2 lies over i, j ∈ R and v ∈ Gj.

Then (G′, M ′) is (ε ′, ε ′′, da/2,
√

θ , d/2)-super-regular.

More generally, the same proof shows that super-regularity is preserved on restriction to
a dense regular subcomplex �, provided that the singleton parts of � have large intersection
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with every vertex neighbourhood. More precisely, suppose (G, M) is as in Lemma 6.30 and
� is an ε ′-regular subcomplex of G with |�S| ≥ d ′|GS| when defined and |GS(v) ∩ �i| ≥
d ′|GS(v)| whenever S ∈ R with |S| = 2 lies over i, j ∈ R, v ∈ Gj and �i is defined. Then
(G′, M ′) is (ε ′, ε ′′, d ′da,

√
θ , d ′d)-super-regular. Next we will reformulate the blow-up lemma

in a more convenient ‘black box’ form. The following definition of ‘robustly universal’ is
more general than that used for 3-graphs, in that it allows for restricted positions.

Definition 6.31 (Robustly universal). Suppose R is a multi-k-complex R and J is an
R-indexed complex on Y = ∪i∈RYi with Ji = Yi for i ∈ R. We say that J is (c�, c)-robustly
D-universal if whenever

(i) Y ′
i ⊆ Yi with |Y ′

i | ≥ c�|Yi| such that Y ′ = ∪i∈RY ′
i , J ′ = J[Y ′] satisfy |J ′

S(v)| ≥ c�|JS(v)|
whenever |S| = k, JS is defined, i ∈ S, v ∈ J ′

i ,
(ii) H ′ is an R-indexed complex on X ′ = ∪i∈RX ′

i of maximum degree at most D with
|X ′

i | = |Y ′
i | for i ∈ R,

(iii) X∗ ⊆ X ′ with |X∗ ∩ X ′
i | ≤ c|X ′

i | for all i ∈ R, and �x ⊆ Y ′
x with |�x| ≥ c�|Y ′

x| for
x ∈ X∗,

then there is a bijection φ : X ′ → V ′ with φ(X ′
i ) = V ′

i for i ∈ R such that φ(S) ∈ JS for
S ∈ H ′ and φ(x) ∈ �x for x ∈ X∗.

More generally, one can allow restrictions to regular subcomplexes in both conditions
(i) and (iii) of Definition 6.31, but for simplicity we will not formulate the definition here.
As before, one can delete a small number of vertices from a regular complex with a small
number of marked k-tuples to obtain a robustly universal complex. As for Theorem 5.13,
the proof is immediate from Lemma 6.30, Definition 6.31 and Theorem 6.12.

Theorem 6.32. Suppose 0 < 1/n � 1/nR � ε � c � d� � da � θ �
c�, d, 1/k, 1/DR, 1/D, we have a multi-k-complex R on [r] with maximum degree at most
DR and |R| ≤ nR, G is an ε-regular R-indexed complex on V = ∪i∈RVi with n ≤ |Vi| =
|Gi| ≤ Cn for i ∈ R, dS(G) ≥ da when |S| ≥ 2 and dS(G) ≥ d when |S| = k, and M ⊆ G=
with |MS| ≤ θ |GS| when defined. Then we can delete at most 2θ 1/3|Gi| vertices from Gi for
i ∈ R to obtain G� and M� so that

(i) d(G�

S) > d� and |G�

S(v)| > d�|G�

S|/|G�

i | whenever |S| = k, G�

S is defined, i ∈ S,
v ∈ G�

i , and
(ii) G� \ M� is (c�, c)-robustly D-universal.

Finally, we mention that one can allow much smaller densities in the restricted positions,
provided that one makes an additional assumption to control the marking edges. We can
replace c′ by da in condition (v) of Theorem 6.12, provided that we add the following
additional assumptions:

(v.1) |MS(v)| ≤ θ |�S(v)| when |S| = k, �S is defined, i ∈ S and v ∈ �i,
(v.2) |(M ∩ G[�]Iv)S| ≤ θ |G[�]Iv

S | for any submulticomplex I of R, when |S| = k, v ∈ Gi

and S ∩ VNR(i) �= ∅.

Note that these conditions ensure that the marked edges are controlled in G[�] exactly
as in conditions (ii) and (iii) of super-regularity, so the proof goes through as before. In
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this general form there is no simplification to be gained by reformulating the statement
in a black box form. We suppressed this refined form in the statement of Theorem 6.12
to avoid overburdening the reader with technicalities, but we note that it may be needed
in some applications. Indeed, one may well have to generate restricted positions using
neighbourhood complexes in G, and then c′ will be of the order of the densities in G.

6.6. Concluding Remarks

The theory of regularity and super-regularity for hypergraphs is considerably more involved
than that for graphs. As explained in Section 3, these technicalities cannot be avoided, but the
black box reformulation in Lemma 6.32 should make the hypergraph blow-up lemma more
convenient for future applications. The graph blow-up lemma has had many applications
in modern graph theory, so it is natural to look for hypergraph generalisations of these
results. However, many such applications build on basic results for graphs for which the
hypergraph analogue is unknown. For example, in our application in Section 5 we only
needed a matching, and were able to rely on Kahn’s matching theorem, which is already
quite a difficult result. Thus one may expect it will take longer for the hypergraph blow-up
lemma to achieve its full potential.

Another question for future research is to obtain an algorithmic version of our theorem,
along the lines of the algorithmic graph blow-up lemma in [27]. In applications this could
be combined with an algorithmic version of hypergraph regularity given by [6]. A rather
different direction of research would be along the lines of the ‘infinitary’ versions of hyper-
graph regularity theory, whether probabilistic [1, 45], analytic [34], model theoretic [7] or
algebraic [10, 38]. It is natural to ask whether the blow-up lemma has an interpretation in
any of these frameworks.

Further refinements could include estimating the number of embeddings, rather than
just proving the existence of a single embedding as in this paper. Here it may be helpful
to note that one can combine Lemma 6.28 with martingale estimates to show that with
high probability there will be at least 1

2 p|B ∩ Xv| vertices x ∈ B ∩ Xv such that φ(H(x)) ⊆
(G \ M)(v). We also note that small improvements to the tail decay of our martingales
may be obtained from the Optional Sampling Theorem (see e.g. [14] p. 462). One could
also try to obtain (nearly) perfect edge-decompositions of super-regular complexes into
copies of a given bounded degree hypergraph. For example, one could ask for hypergraph
generalisations of a result of Frieze and Krivelevich [11] that one can cover almost all edges
of an ε-regular graph by edge-disjoint Hamilton cycles.8
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INDEX OF NOTATION AND TERMINOLOGY

(·), see neighbourhood see FS(t) 14
(·)+, 75
(·)c, 75
A≤, 11
A′

x, 22
Ax, 22, 38
Ai,j, 39, 46
B, 5
Bj

i,A, 67
Bzj , 41, 46
CS,i, 68
CS≤(t), 15
DW

zj ,E
(Tj − 1), 39

DZ∗v
zj ,E

(Tj − 1), 45
DR, 78
Dx,E(t − 1), 22
E, 3
E(H), 3
EW

zj
(Tj − 1), 39

Et , 17, 74
Ev

zj
(Tj − 1), 45

Ex(t − 1), 21, 29
E, 32
F(Tj)

Z∗v
S≤ , 45

F(t)S, 74
FI+x, 75
FI , 74
FS(t), 14, 73, 74
FS(t − 1)y, 14
Fx(t), 5
FS<(t), 16
FS≤(t), 14, 74
FSx(t − 1)(y), 14
G, 4, 73
G ∗ G′, 23, 73
G[P], 61
G0, 62
GIv , 17, 74
G=, 18, 74
GI , 62
H , 4, 73
H ′, 45
H(S), 3
H[·], 13
HS, 3

HI , 11
H∗

I , 14
HS, 11
HI< , 11
HI≤ , 11
I , 46
I ′, 46
J(t), 21
K(S′), 67
K(·), 11
Kr,s, 58
L(t), 5
M, 13, 62, 74
MEt ,E(t), 17, 74
N , 5, 67
OK , 6, 35, 39, 46, 79, 86
P, 60
P∗

A, 61
PA, 60
Q(t), 5
R, 67, 73
R′, 68
S.x, 15
SI , 15
T , 6, 22
T0, 8, 38
TI , 36
Tj, 8, 38
T123(G), 4
U(x), 22
V , 4, 73
V(H), 3
V(t), 6
VNH(x), 3
Vi(t), 6
Vx, 5
W , 39, 87
X, 4, 73
X ′

∗, 78
X(t), 6
X∗, 77
Xi(t), 6
Y , 45
Z , 45, 46, 67
Z ′, 46, 68
Zi,A, 67
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[Wj], 39
[n], 3
�, 61
�, 77, 94, 95
�j(t), 36
�(Y , V), 62
��,j(t), 36
α, 67
αS, 89
αz, 45
β, 67⊙

, 23( X
<k

)
, 3( X

≤k

)
, 3(X

k

)
, 3

δ, 67
δ′

Q, 5
δB, 5
δQ, 5
ε-regular, see regular 3
γ , 5, 67
∈, 72
∈∗, 23
≤, 61, 72
�, 3
co(t), 67
ν, 32, 41, 45
ν-close, see close 61
ν ′′

S , 48
ν ′′

S (t), 45
ν ′

S(t), 21, 79
ν∗, 32, 45
ν∗

S , 48
νS(t), 21, 79
νx(t), 21, 79
E, 41, 45
φ, 5, 20, 73
\y, 15
⊆, 71
a ± b, 3
a, 62
a-bounded, see bounded 61
a1, 67
c, 78
c′, 78
c�, 66
d ′

w(j), 68

d(HI), 14
d�, 66
dI(H), 14
dJ(G), 62
du, 5
dw(j), 67
dij, 6
g, 8, 38
i(S), 11
i∗(S), 72
j(t), 21
n1, 67
nR, 78
p, 5
p0, 5
q(t), 5
r-partite, see partite 11
s(t), 5
t, 14
t′(S), 67
t(H), 67
tN
x , 22

v, 35
w(S), 67
x, 14, 35
y, 14, 39
zj, 8, 38
*, see H∗

I , ∈∗, G ∗ G′,
⊙

, F(Tj)
Z∗v
S≤ ,

i∗(S), P∗
A

3-complex, 11
3-graph blowup lemma, 19

absolute density, see density 14
allocated, 45
annotated ε, 20
annotated θ , 20
available, 22, 35, 38
average, 28
Azuma, 67

black box, 65, 94
bounded, 61
buffer, 5
buffer parameter, 5

cell, 60
cell complex, 61
Chernoff, 60
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close, 61
cluster, 58, 67
complete, 11
complex-coloured, 74
complex-indexed, 71
composition, 23, 73
concatenation, 11
conclusion, 56
consistent, 61, 72
copy, 71, 75

dangerous, 22, 39, 45
defined, 11
degree, 3, 77
dense counting lemma, 62, 80
dense setting, 12
density, 3, 11, 14, 73

edge set, 3
empty complex, 14, 15
equitable, 61
exceptional, 21, 29, 39, 45, 79, 82

fractional matching, 67
free, 4, 5, 14, 74

good, 6–8, 22, 29, 79, 86
graph blow-up lemma, 4

H-coloured, see complex-coloured
74

heavy, 60, 70
homomorphism, 62
hypergraph blow-up lemma, 77

I-density, 14, see relative density 14
index, 11
initial phase, 8, 35, 86
intersection, 12

jump, 21

k-complex, 3
k-graph, 3

lies under, 61
list, 5
local, 17, 74, 86
locally consistent, 14, 16, 74

main lemma, 9, 56
marked, 17, 74, 85
marked complex, 13
martingale, 67
matching, 59, 67
multi-k-complex, 71
multi-index, 72
multicomplex, 71
mutually consistent, 14, 74

neighbourhood, 3

packing, 58, 66
pair neighbourhoods, 26
partite, 11
partite homomorphism density, 62
partition k-complex, 60
partition k-system, 60
plus complex, 75, 84

queue, 5
queue admission parameter, 5
queue threshold, 5

R-indexed, see complexed-indexed
71

reduced 3-graph, 67
reduced graph, 59
regime, 22
regular, 3, 12, 61, 73
regular approximation lemma, 61
regular restriction, 7, 26, 82
relative density, 14, 73
restricted positions, 71, 77, 82, 86
restriction, 13, 73, 74
robustly universal, 65, 94

selection rule, 21
separate, 23
set neighbourhoods, 81
simplicial complex, 3
spanning, 4, 77
sparse setting, 12
sphere of influence, 45
strongly equivalent, 60
super-regular, 4, 18, 74
super-regular restriction, 65, 94
supermartingale, 36
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triad, 61, 68
triangles, 4
typical degrees, 6

undefined, 11
unembedded, 21
union, 12
update rule, 15, 74

vertex neighbourhood, 3, 25, 80
vertex regular, 11
vertex set, 3

walk, 3
weakly equivalent, 61, 68
weight, 67
weighted degree, 67
with high probability, 3
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