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Abstract. The concept of a hyperheuristic is introduced as an approach 
that operates at a higher lever of abstraction than current metaheuristic 
approaches. The hyperheuristic manages the choice of which lower-
level heuristic method should be applied at any given time, depending 
upon the characteristics of the region of the solution space currently 
under exploration. We analyse the behaviour of several different 
hyperheuristic approaches for a real-world personnel scheduling 
problem. Results obtained show the effectiveness of our approach for 
this problem and suggest wider applicability of hyperheuristic 
approaches to other problems of scheduling and combinatorial 
optimisation. 
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1. Introduction 
Personnel scheduling involves the allocation of personnel to timeslots and possibly 
locations. The literature uses a variety of terms to describe the same or similar 
problems. For example, Meissels and Lusternik [11] used the term employee 
timetabling when utilising a Constraint Satisfaction Problem (CSP) model to 
schedule employees. The term rostering can be found in Burke et. al. [2,3] where 
they employ a hybrid tabu search algorithm to schedule nurses in a Belgian 
hospital. Dodin et. al. [5] use the term (audit) scheduling and employ tabu search 
to schedule audit staff. Labor scheduling is used by Easton et. al. [7] where they 
utilise a distributed genetic algorithm technique to determine the number of 
employees and their work schedules based on predetermined work patterns. 
Mason et. al. [10] presented an integrated approach using heuristic descent, 
simulation, and integer programming techniques to schedule staff of the Auckland 
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International Airport, New Zealand. They obtained results which triggered major 
changes in the attitude of the airport staff who are now enthusiastic about the 
contribution of computer-based decision. Burke et. al. [2] used a hybrid tabu 
search algorithm to schedule nurses. The tabu search is a hybridised memetic 
approach which combines a steepest descent heuristic within a genetic algorithm 
framework. The resultant search produces a solution which is better than either the 
memetic algorithm or the tabu search when run in isolation. The hybridised method 
was run using data supplied by a Belgian hospital and the results were much better 
than the manual techniques currently being used. Dowsland [6] uses tabu search 
combined with strategic oscillation to schedule nurses. Dowsland defined chain 
neighbourhoods as a combination of basic and simple neighbourhoods. Using these 
neighbourhoods, the search is allowed to make some moves into infeasible regions 
in the hope that it could quickly reach a good solution beyond the infeasible 
regions. The result is a robust and effective method which is capable of producing 
solutions which are of similar quality to those of a human expert.   
However, the heuristic and metaheuristic approaches developed for particular 
personnel scheduling problems are not generally applicable to other problem 
domains (or even instances of the same or similar problems). Heuristic and 
metaheuristic approaches tend to be knowledge rich, requiring substantial expertise 
in both the problem domain and appropriate heuristic techniques [1], and thus 
expensive to implement. In this paper we propose a hyperheuristic approach, 
which operates at a level of abstraction above that of a metaheuristic. The 
hyperheuristic will have no domain knowledge, other than that embedded in a 
range of simple knowledge-poor heuristics. The resulting approach should be 
cheap and fast to implement, requiring far less expertise in either the problem 
domain or heuristic methods, and robust enough to effectively handle a range of 
problems and problem instances from a variety of domains. 
Other researchers have investigated general-purpose heuristic-based methods for 
scheduling and optimisation problems. Hart et. al. [9] used a genetic algorithm-
based approach to select which of several simple heuristics to apply at each step of 
a real-world problem of chicken catching and transportation. Although the 
principle of evolving the choice of heuristic could extend to other problems, the 
incorporation of hard constraints in the chromosome in this implementation 
depends on the problem being tackled. Tsang and Voudouris [12] introduced the 
idea of having a Fast Local Search (FLS) combined with a Guided Local Search 
GLS) and applied it to a workforce scheduling problem. FLS is a fast hill climbing 
method which heuristically ignores moves used in the past without any 
improvement and GLS is a method which diversifies the search to other regions 
each time a local optimum is reached. Although FLS+GLS is extendible to other 
problems, FLS is domain dependent. Mladenovic and Hansen [8] introduced the 
idea of Variable Neighbourhood Search (VNS) and applied it to many 
combinatorial optimisation problems including the Travelling Salesman Problem 
(TSP) and the p-Median problem. VNS uses a range of higher level neighbourhood 
operators for diversification. When a lower level neighbourhood search operator 
reaches a local optimum, the search jumps to a random neighbour in the current 
high-level neighbourhood. When this diversification move proves ineffective, the 
next higher level neighbourhood is used. The idea of VNS is applicable to different 
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problems, although domain knowledge is needed to define effectively both the 
number and order of the neighbourhoods. 
Our hyperheuristic method does not use problem-specific information other than 
that provided by a range of simple, and hence easy and cheap to implement, 
knowledge-poor heuristics. A hyperheuristic is able to choose between low level 
heuristics without the need to use domain knowledge, by using performance 
indicators which are not specific to the problem each time a low level heuristic is 
called, in order to decide which heuristic to use when at a particular point in the 
search space.  
In order for our hyperheuristic approach to be applicable, we assume that 
implementing simple local search neighbourhoods and other heuristics (such as 
greedy constructive heuristics) for the problem in question is relatively easy. Our 
experience in real world personnel and production scheduling problems suggests 
that this is often the case. Indeed, on first presenting a problem which is solved 
using manual or simple computer techniques, it is often easier for the manual 
scheduler to express the problem by discussing the ways in which the problem is 
solved currently, rather than the constraints of the problem. Usually these ways of 
manually solving a scheduling or optimisation problem correspond to simple, easy-
to-implement heuristics. We may also implement very easily simple local search 
heuristics based upon swapping, adding and dropping events in the schedule. We 
also require some method of numerically comparing solutions, i.e. one or more 
quantitative objective functions.  
Each low level heuristic communicates with the hyperheuristic using a common 
problem-independent interface architecture. The hyperheuristic can either choose 
to call a low level heuristic in order to see what would happen if the low-level 
heuristic were used, or to allow the low-level heuristic to change the current 
solution. The hyperheuristic may also provide additional information such as the 
amount of time which is to be allowed. When called, a low-level heuristic returns a 
range of parameters related to solution quality or other features (in the case we 
describe in this paper, a single objective function value is returned) and details of 
the time required by the neighbourhood function, which allows us to monitor the 
expected improvement per time unit of each low-level heuristic. It is important to 
note that the hyperheuristic only knows whether each objective function is to be 
maximised or minimised (or kept within some range etc.) and has no direct 
information as to what the objective function represents. We illustrate this idea in 
fig. 1. All communication between the problem domain and the hyperheuristic is 
made through a barrier, through which domain knowledge is not allowed to cross. 
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Fig. 1. The hyperheuristic approach and the problem domain barrier 

 
The rest of the paper is organised as follows. In section 2 we define a real-world sales 
summit scheduling problem that we use as a case study to test the effectiveness of our 
methods. In section 3 we introduce our hyperheuristic approaches and in section 4 we 
present the choice function which many of the approaches require. We then give the 
results of our experimentation in Section 5. Finally Section 6 presents conclusions and 
discusses the wider potential for application of hyperheuristic approaches. 

 
 

2. The sales summit scheduling problem 
The problem we are studying is encountered by a commercial company that 

organises regular sales summits which bring together two groups of company 
representatives. The first group, suppliers, represent companies who wish to sell some 
product or service and the second group, delegates, represent companies that are 
potentially interested in purchasing the products and services. Suppliers pay a fee to 
have a stand at the sales summit and they provide a list of the delegates that they 
would like to meet, where each meeting requested by a supplier is classified as either 
a priority meeting which the supplier feels strongly may yield a sale, or a non-priority 
meeting about which the supplier feels less strongly. Delegates do not pay a fee and 
have their travelling and hotel expenses paid by the organiser of the sales summit. In 
addition to meetings with suppliers, seminars are organised where delegates may meet 
other delegates. Each delegate supplies a list of the seminars which he will attend in 
advance of the sales summit, and is guaranteed attendance at all of the seminars which 
he requests. There are 24 meeting timeslots available for both seminars and meetings, 
where each seminar lasts as long as three supplier/delegate meetings. There are 43 
suppliers, 99 potential delegates and 12 seminars. The problem is to: 

 

Problem Domain 

Problem Domain Barrier 

Hyper-Heuristic Domain 
Time Taken 
Objectives 

Low level heuristic to use 
Time allowed 
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1- Schedule meetings consisting of (supplier, delegate, timeslot) triples 
 

Subject to: 
1- Each delegate must attend all seminars which they have requested  
2- Each delegate must have at most 12 meetings 
3- No delegate can be scheduled for more than one activity (meeting or 

seminar) within the same timeslot  
4- No supplier can be scheduled for more than one meeting within the same 

timeslot  
5- Each supplier should have at least 17 priority meetings  
6- Each supplier should have at least 20 priority and nonpriority meetings in 

total 
 

The objective is to minimise the number of delegates who actually attend the sales 
summit out of the 99 possible delegate attendees, and hence the variable cost of the 
sales summit, whilst ensuring that suppliers have sufficient delegate meetings. Several 
other commercial considerations are of secondary importance and will not be 
considered in this paper. 

 
Once delegates have been put into seminar groups, reducing the number of delegate 
timeslots available, a set of (supplier, delegate, timeslot) meeting triples must be 
found which minimises the number of attending delegates, whilst keeping all 
suppliers and the attending delegates happy. Analysis of the solutions produced using 
the method currently used by the company, a greedy heuristic still simpler than that 
which we use below to find an initial solution, suggests that in practice we may relax 
constraints 5 and 6, so long as no individual supplier has substantially fewer than 17 
priority meetings, or 20 meetings in total. We have relaxed these constraints in the 
model given below. 
 
We denote by S the set of suppliers, D the set of delegates and T the set of timeslots. 
Let Pij be 1 if (supplier i, delegate j) is a Priority meeting and 0 otherwise (i∈ S, j∈ 
D). Our decision variables are denoted xijk (i∈ S, j∈ D, k∈ T), where xijk is 1 if 
supplier i is to meet delegate j in timeslot k, otherwise xijk is 0. We can now formulate 
the problem as follows: 



 6 

{ } (4)    Tk Dj Si   x

(3)      Tk  Si      ,      x

(2)     Tk  Dj      ,      x

(1)                Dj    ,x
:to Subject

 xx.

xP   E(x) minimise

ijk

Dj
ijk

Si
ijk

Si Tk
ijk

Dj Si Tk
ijk

Si Dj Tk
ijk

Si Dj Tk
ijkij

∈∈∈∈

∈∈≤

∈∈≤

∈≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−=

∑

∑

∑∑

∑ ∑∑∑ ∑∑

∑ ∑∑

∈

∈

∈ ∈

∈ ∈ ∈∈ ∈ ∈

∈ ∈ ∈

,,,1,0

,1

,1

12

72,1min820,0max050

17,0max

2

2

  

 The evaluation function E(x)=B(x)+ 0.05 C(x)+ 8 H(x), where: 
 

∑ ∑∑

∑ ∑∑

∑ ∑∑

∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈

⎭
⎬
⎫

⎩
⎨
⎧

=−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−=

Dj Si Tk
ijkij

Si Dj Tk
ijk

Si Dj Tk
ijkij

xPxdxH

xxC

xPxB

,1min  d(x)  with  72)()(

20,0max)(

.17,0max)(

2

2

2

 
B(x) represents the penalty associated with suppliers who have less than 17 priority 
meetings, where the quadratic nature of the penalty ensures that any suppliers with 
substantially less than 17 priority meetings result in a large penalty. C(x) represents 
the penalty associated with suppliers who have less than 20 meetings in total, where 
again the quadratic nature of the penalty ensures that any suppliers with substantially 
less than 20 meetings are heavily penalised. However, these meetings are much less 
significant overall than priority meetings (and, for example, we would only want to 
include delegates with a large number of priority meetings) and C(x) is multiplied by 
a factor of 0.05 to reflect this. d(x) is the number of delegates who attend the sales 
summit in the meeting schedule. H(x) represents the penalty associated with the cost 
of each delegate, and the factor of 8 reflects the fact that a delegate should be included 
only to satisfy a supplier who would otherwise have significantly less than 17 priority 
meetings, or eight suppliers who are missing a single meeting. Note that in a solution 
where each supplier had the required 20 meetings, there would be 43*20 = 860 
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meetings. Each delegate can attend at most 12 supplier meetings, so that ⎡860/12⎤ 
=72 delegates are required in this case. We penalise only delegates over 72, to avoid a 
large constant term in H(x) dominating B(x) and C(x). This will be of particular 
importance for the roulette wheel approach which we will discuss later. Later, when 
the  vector x to which we are referring is clear, we will simply refer to these quantities 
as E, B, C, d and H. 
 
Currently, meetings are scheduled using a very simple heuristic which cycles through 
all suppliers and allocates the first (supplier, delegate, timeslot) triple available from 
an ordered list of delegates, where the order is simply the order in which the delegates 
were entered onto the database. The resulting solution has B = 226, C = 48.65, d = 99, 
H = 216, giving a total penalty of 444.43. 
 
We find an initial schedule using a greedy approach INITIALGREEDYas follows: 
 
 
INITIALGREEDY: 

Do 
 

1. Let SO be a list of suppliers ordered by increasing number of priority 
meetings (and increasing number of total meetings where two suppliers have 
the same number of priority meetings). 
 
2. Let DO be a list of delegates who currently have less than 12 meetings 
scheduled, ordered by decreasing number of meetings scheduled 
 
3. Find the first supplier s∈ SO such that there is a delegate d∈ DO where s 
and d both have a common free timeslot t, and (s,d,t) is a priority meeting. 
 
4. If no meeting triple was found in 3, then find the first supplier s∈ SO such 
that there is a delegate d∈ DO where s and d both have a common free 
timeslot t, and (s,d,t) is a non-priority meeting. 
 

Until no meeting is found in either step 3 or step 4 
 

 
By considering the most priority-dissatisfied supplier first at each iteration, we 
attempt to treat suppliers equitably. By attempting to choose the busiest possible 
delegate at each iteration, we try to minimise the number of delegates in the solution. 
The solution produced by the constructive heuristic is used as starting solution for all 
hyperheuristics that we consider below. It yields a solution with B = 52, C = 111, d = 
93, H = 168, giving a total penalty of 225.55. 
 
3. Hyperheuristic approaches to the sales summit scheduling problem 
Having introduced the general nature of hyperheuristic approaches in the introduction, 
we will now consider the specifics of our approach for the sales summit scheduling 
problem given above.  
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The low-level heuristics which we used may all be regarded as local search 
neighbourhoods which accept a current solution, perform a single local search move, 
and return a perturbed solution. We denote these neighbourhoods N1, N2, …, Nη. The 
neighbourhoods that we used are given in the appendix. It should be noted that all of 
our hyperheuristic approaches are independent of the nature or number of low-level 
heuristics N1, N2, …, Nη. Each neighbourhood can be requested to actually perform 
the best perturbation on the current solution, or investigate the effect upon the single 
objective function given if the neighbourhood perturbation were performed. Each 
neighbourhood also returns the amount of CPU time which a call used. 
We have considered three different categories of hyperheuristic approaches: random 
approaches, greedy approaches and choice-function based approaches. Further, for 
each of the approaches implemented, we investigate two varieties. In the first variety, 
denoted by the suffix OI (Only Improving), we will only accept moves which 
improve the current solution. In the second variety, denoted by the suffix AM (All 
Moves), all moves are accepted. Each hyperheuristic will continue until a stopping 
criterion is met, which is a time limit in all cases. 
We consider three random approaches. The first, SIMPLERANDOM, randomly chooses 
a low-level heuristic to apply at each iteration until the stopping criterion is met. The 
second, RANDOMDESCENT, again chooses a low-level heuristic at random, but this 
time, once a low-level heuristic has been chosen, it is applied repeatedly until a local 
optimum is reached where it does not result in any improvement in the objective 
value of the solution. The third, RANDOMPERMDESCENT, is similar to 
RANDOMDESCENT except that first we choose a random permutation of the low-level 
heuristics N1, N2, …, Nη, and when application of  a low-level heuristic does not result 
in any improvement, we cycle round to the next heuristic in this permutation. Note 
that for the All Moves (AM) versions of RANDOMDESCENT and 
RANDOMPERMDESCENT, we will carry out one move which makes the current 
solution worse, before moving on to a new neighbourhood. 
The GREEDY approach which we consider will evaluate, at each iteration, the change 
in objective function value caused by each low-level heuristic upon the current 
solution and apply the best low-level heuristic so long as this yields an improvement. 
The AM and OI versions of the GREEDY approach are then identical to each other. 
In the third category of hyperheuristic approaches we introduce a choice function  F, 
that the hyperheuristic will use to decide on the choice of low-level heuristic to be 
called next. For each low-level heuristic the choice function F aims to measure how 
likely that low-level heuristic is to be effective, based upon the current state of 
knowledge of the region of the solution space currently under exploration. We have 
implemented four different methods for using the choice function. The first three 
methods are independent of both the low-level heuristics used and the exact details of 
how the choice function is arrived at. The fourth method is also independent of the 
low-level heuristics used but decomposes the choice function into its component 
parts. We shall describe the fourth method later, once the definition of F is given. In 
the first STRAIGHTCHOICE method, we simply choose, at each iteration, the low-level 
heuristic which yields the best value of F. In the second RANKEDCHOICE method we 
rank the low-level heuristics according to F and evaluate the changes in objective 
function value caused by a fixed proportion of the highest ranking heuristics, applying 
the heuristic which yields the best solution. The third ROULETTECHOICE method 
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assumes that for all low-level heuristics, F is always greater than zero. At each 
iteration a low-level heuristic Ni is chosen with probability which is proportional to 
F(Ni)/ΣiF(Ni). RANKEDCHOICE and ROULETTECHOICE are analogous to the rank-based 
selection and the roulette wheel selection from the Genetic Algorithms literature [4].  
 

4. The Choice Function 
The choice function is the key to capturing the nature of the region of the solution 
space currently under exploration and deciding which neighbourhood to call next, 
based on the historical performance of each neighbourhood. In our implementation 
we record, for each low level heuristic, information concerning the recent 
effectiveness of the heuristic (f1), information concerning the recent effectiveness of 
consecutive pairs of heuristics (f2) and information concerning the amount of time 
since the heuristic was last called (f3). 
So for f1 we have 

∑ −=
n jn

jnn
j NT

NI
Nf

)(
)(

)( 1
1 α

 
where In(Nj) (respectively Tn(Nj)) is the change in the evaluation function 
(respectively the amount of time taken) the nth last time heuristic j was called, and α is 
a parameter between 0 and 1, which reflects the greater importance attached to recent 
performance. Then after calling heuristic Nj, the new value of f1(Nj) can be calculated 
from the old value using the formula  
 
f1(Nj) ← I1(Nj)/T1(Nj) + α f1(Nj). 

 
f1 expresses the idea that if a low-level heuristic recently improved well on the quality 
of the solution, this heuristic is likely to continue to be effective.  Note that In(Nj) is 
negative if there was an improvement and positive otherwise. 
We consider that f1 alone fails to capture much information concerning the synergy 
between low-level heuristics. Part of that synergy is measured by f2 which may be 
expressed as 
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where In(Nj,Nk) (resp. Tn(Nj,Nk)) is the change in the evaluation function (resp. amount 
of time taken) the nth last time heuristic k was called immediately after heuristic j and 
β is a parameter between 0 and 1, which again reflects the greater importance attached 
to recent performance. Then if we call heuristic Nk immediately after Nj, the new 
value of f2(Nj,Nk) can be calculated from the old value using the formula  
 
f2(Nj,Nk) ← I1(Nj,Nk)/ T1(Nj,Nk) + β f2(Nj,Nk). 
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f2 expresses the idea that, if heuristic Nj immediately followed by heuristic Nk was 
recently effective and we have just used heuristic Nj, then Nk may well be effective 
again.  Note that In(Nj, Nk) is negative if there was an improvement and positive 
otherwise. 
 
Both f1 and f2 are there for the purpose of intensifying the search. f3 provides an 
element of diversification, by favouring those low-level heuristics that have not 
recently been used. Then we have 

)(NNf jj τ
 
where τ(Nj) is number of seconds of CPU time which have elapsed since heuristic Nj 
was last called.  
For STRAIGHTCHOICE and RANKEDCHOICE hyperheuristics we will use the choice 
function F only to provide a ranking, and we will be indifferent as to the sign of F. 
However, for the ROULETTECHOICE hyperheuristic approach we want F to take only 
positive values, even for low-level heuristics which result in the objective function 
becoming much worse. Assume that the solution was perturbed most recently by low-
level heuristic Nj. Recall that for our minimisation problem, large negative values of f1 
and f2 are desirable. We define F as follows: 

 
Here δ  is a parameter set at a value which leads to sufficient diversification,  

=)(3

} Q                      

),(f ),(f  - )(f  max{-)(
)(f ),(f   )(f

321

321 kkjk NNNN

kkjkk NNNNNF
δβαρ

δβα
−+

+=

{ }

η

εδβα

10

)(),()(,0max 321∑ ++−−
= k

kkk NfNNjfNf
Q

 
Where we have used ε = 1 and ρ = 1.5, to ensure that low-level heuristics which 
worsen the objective function value of the solution have a small, but non-zero 
probability of being chosen in the ROULETTECHOICE hyperheuristic, and that this 
probability falls rapidly to zero for low-level heuristics which have exhibited very bad 
performance. The small term ε/10η should enable every neighbourhood, no matter 
how bad, to be able to come around and diversify the solution after every other 
neighbourhood has been visited about 10 times.  
The fourth DECOMPCHOICE method considers the individual components f1, f2 and f3, 
of F. It tries the (up to four) low level heuristics which yield the best values of f1, f2, 
f3, and F and performs the best move yielded by one of these low level heuristics..  
 
As we can see the kind of information used by the hyperheuristic approaches to  
choose low-level heuristics is not specific to the summit scheduling problem 
whatsoever (change in the evaluation function, time taken on the last call, time 
elapsed since last call for each heuristic).  
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5. Results 
We used each of our hyperheuristics to solve the sales summit scheduling problem 
described in section 2. The hyperheuristics were implemented in C++ and the 
experiments were conducted on a Pentium II 225MHz with 128MB RAM running 
under Windows NT Version 4.0. In all experiments the stopping condition was 300 
seconds of CPU time. There are η = 10 low-level heuristics all of which are very 
simple (and easy to implement). They are based either on the methods currently used 
for generating a schedule, or on simple moves such as swaps. 
At this stage of development we determined values of α, β and δ experimentally. We 
chose (α, β, δ) = (0.9, 0.1, 1.5) for all the AM cases and (α, β, δ) = (0.2, 0.2, 0.8) for 
the OI ones. Each single value of (α, β, δ) was averaged over 5 trials and we noticed 
that the deviation between the different trials for a single value was greater than the 
deviation between different values of (α, β, δ) thus making the sensitivity of the 
hyperheuristic under different (α, β, δ) less critical. It is undesirable that parameters 
need to be tuned in order for a general hyperheuristic approach to be effective, but the 
tuning process can be automated to preserve the problem-independence of the 
approach. Future work will investigate adaptively changing heuristic parameters 
during the solution process itself. 
In the RANKEDCHOICE the top r neighbourhoods (with respect to F) are tested and the 
best neighbourhood is retained. In our experiments we chose  

⎡ ⎤η25.0=r
 
In the Roulette-Wheel approach we make the choice of the next neighbourhood 
randomly based upon a weighted probability function. The hyperheuristic chooses a 
random number v in the range [0, A] where 
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we choose neighbourhood k if ak-1 ≤ v < ak. 
 
All choice-function based hyperheuristics start with a choice function initialised to 0. 
In order for the choice function based hyperheuristics to initialise the values of f1, f2, 
f3, and F for each neighbourhood, we randomly call the neighbourhoods for an initial 
warm-up period. This warm-up period is included in the time allowed to the choice 
function based hyperheuristics. In our case the warm-up lasts 100 seconds of CPU out 
of the total 300 seconds allowed. Apart from GREEDY which is entirely deterministic, 
all our hyperheuristic are averaged over 5 runs and, in each run we changed the seed 
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used to generate random values. The standard deviation obtained from 
STRAIGHTCHOICE was 14.16 in the AM case and 13.23 in the OI one. 
Our results for all of the hyperheuristic approaches as well as the greedy heuristic, 
which is currently used for the sales summit problem, and our INITIALGREEDY 
heuristic which is used to generate an initial solution for each of our hyperheuristic 
approaches, are given in table 1. For each algorithm, in addition to E, we give the 
values of B, C, H, d, which are defined in section 2. We also give m and c where m is 
the number of meetings scheduled and c the total number of neighbourhood calls 
made.  
 
 
Algorithm B C d H E m c 
Original Greedy Heuristic 226.00 48.65 99.00 216.00 444.43 823.00 - 
INITIALGREEDY 52.00 111.00 93.00 168.00 225.55 811.00 - 
SIMPLERANDOM –AM 27.00 83.20 89.80 142.40 173.56 828.00 1102.60 
SIMPLERANDOM –OI 57.80 47.20 80.80 70.40 130.56 838.00 786.60 
RANDOMDESCENT-AM 53.80 32.60 86.80 118.40 173.83 847.80 825.60 
RANDOMDESCENT-OI 56.40 35.40 85.00 104.00 162.17 844.60 789.40 
RANDOMPERMDESCENT –AM 57.60 28.20 85.20 105.60 164.61 849.20 850.40 
RANDOMPERMDESCENT –OI 52.40 23.80 87.80 126.40 179.99 852.60 866.00 
GREEDY –AM 56.00 27.00 86.00 112.00 169.35 851.00 847.00 
GREEDY –OI 56.00 27.00 86.00 112.00 169.35 851.00 836.00 
STRAIGHTCHOICE-AM 60.00 118.00 76.20 33.60 99.50 811.80 774.40 
STRAIGHTCHOICE-OI 47.80 53.20 83.20 89.60 140.06 841.40 908.00 
RANKEDCHOICE –AM 44.40 84.40 78.80 54.40 103.02 824.80 880.80 
RANKEDCHOICE –OI 49.40 56.60 83.20 89.60 141.83 838.40 1007.00 
ROULETTECHOICE –AM 59.20 132.60 76.00 32.00 97.83 809.40 765.20 
ROULETTECHOICE –OI 53.80 43.60 83.60 92.80 148.78 842.60 937.20 
DECOMPCHOICE –AM 38.80 74.80 78.40 51.20 93.74 826.00 782.40 
DECOMPCHOICE –OI 47.20 61.80 83.00 88.00 138.29 837.80 1014.00 

Table 1 - Experiment results  

 
We see that our INITIALGREEDY heuristic produced a much better solution than the 
algorithm currently used to schedule the sales summit (Original Greedy Heuristic). 
All the hyperheuristics except SIMPLERANDOM and RANDOMDESCENT produced a 
better solution in the AM case than in the OI case. It appears that the OI version, 
which does not accept neighbour moves which yield a worse solution has a greater 
tendency than the AM version to get stuck early in a local optimum from which it 
never escapes.  The SIMPLERANDOM and RANDOMDESCENT approaches use the 
different low level heuristics in an erratic and unselective manner, and in their case 
accepting only improving moves limits the damage done by poor random choice of 
low level heuristics. The superiority of the AM approaches over the OI approaches is 
clearest for the more sophisticated choice function based approaches. Note that the 
GREEDY approach will always produce identical results in AM and OI cases (since the 
only non-improving move ever accepted in the GREEDY-AM case is the final move). 
We see that the choice function based approaches which accept nonimproving moves 
are all significantly better than the other approaches. The large difference between 
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AM and OI versions of these hyperheuristics is probably due to the diversification 
component of the choice function being stifled, since the OI version becomes stuck in 
a local optimum too early. Encouragingly, all of the choice function based 
hyperheuristics produce good results. This would lend some support to the idea that 
each of these approaches is a general approach which could be used for a wide range 
of problem instances and a wide range of problems (so long as appropriate low level 
heuristics were available). Overall DECOMPCHOICE hyperheuristic performed better than 
all the others. It also appears that the controlled randomness of the ROULETTECHOICE 

yields improvement over the STRAIGHTCHOICE and RANKEDCHOICE hyperheuristics. All 
of these simple choice function based approaches appear worthy of further 
investigation. 
 
 
6. Conclusion 
We have presented the idea of a hyperheuristic, that allows us to use knowledge-poor 
low level heuristics, which generally lead to poor local optima when considered in 
isolation, in a framework which yields results which may, in some cases, be as good 
or better than those provided by knowledge-rich metaheuristic approaches. We have 
applied a range of hyperheuristics to a real world sales summit scheduling problem. 
The results obtained are far superior to those provided by the system currently used to 
generate schedules. We believe that this approach is promising for a wide range of 
scheduling and optimisation problems. 
We believe that hyperheuristics have three important advantages over knowledge rich 
approaches for practical scheduling and optimisation problems. The first is that, for 
many practical problems, modelling the problem using simple heuristics which 
describe the way that the system is currently solved (often by hand) is an easy way for 
problem owners to consider their problem. The second is that simple heuristics based 
upon current user practice, simple local search neighbourhoods and greedy methods 
are quick to implement on a computer. Since this is all that is required in order to 
apply a hyperheuristic method, this should yield a method for fast prototyping of 
decision support systems for practical scheduling and optimisation problems. Indeed, 
we might simply keep adding low-level heuristics until we are satisfied (following 
experimentation) that we have sufficient to provide good results. We then use cheap 
computer time to find out how best to manage the low-level heuristics, rather than 
expensive expertise.  The third is that the approach should generalise readily to small 
changes in the model (and indeed to large changes in the problem through the 
addition and modification of low level heuristics, if necessary) yielding an approach 
which is robust enough to effectively handle a very wide range of problems and 
problem instances.  
We do not regard hyperheuristics as a panacea to solve all problems in scheduling and 
optimisation (and so long as no fast algorithm is found for an NP-hard problem this is 
unlikely even to be possible). Simply that for a very wide range of real world 
problems where a reasonable solution is required in an acceptable amount of time, 
hyperheuristics should prove to be a useful tool.   
In this paper we have introduced a range of simple choice function based 
hyperheuristic approaches, which are effective in spite of their simplicity, for the real-
world problem which we have considered. While the details of the choice function are 
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relatively complex, the user is shielded from this, simply supplying the objective 
function and the low-level heuristics. At this stage of development our hyperheuristic 
has several parameters, which may be tuned automatically to preserve domain-
knowledge independence of the approach.  
Several issues will be dealt with in future work including the following. Parameter 
values will be set adaptively by the hyperheuristic in order for it to be a genuine 
problem-independent method applicable to a wide range of problems and instances, 
using different sets and types of low-level heuristics. We shall apply our approaches 
not only to other instances (with different but realistic objective functions) of this 
real-world problem but also to other personnel scheduling problems. We shall 
consider how we may embed a range of more sophisticated methods into our 
hyperheuristic. In particular, we will consider the development of hyperheuristics 
which use metaheuristic techniques to decide which low level heuristic to use, 
including population-based choice functions, tabu search and simulated annealing. 
We also intend to consider a genetic-programming approach to choice function 
evolution.  
 
 
Appendix:  The low level sales summit scheduling heuristics used 
 
We used 10 low-level heuristics: 
 
1 – Remove one delegate: This heuristic removes one delegate who has at least one meeting 
scheduled. It chooses the delegate with the least number of priority meetings, and the least 
number of meetings in total where there is a tie.  
 
2- Increase priority of one meeting: This heuristic replaces one non-priority meeting with a 
priority meeting involving the same supplier, by changing the assigned delegate, if possible, 
without adding any new delegates. 
 
3- Add one delegate: This heuristic adds one delegate (the delegate with the largest number of 
potential priority meetings) who currently has no meetings and greedily schedules as many 
meetings involving the new delegate as possible.  
 
4- Add meetings to dissatisfied supplier - version 1: This heuristic adds as many meetings as 
possible to one dissatisfied supplier until the supplier is satisfied (if possible), without adding 
new delegates. This may only involve the deletion and rearrangement of meetings already 
arranged between delegates and other supplier, but only for “saturated” delegates who already 
have 12 meetings. 
 
5- Add meetings to dissatisfied or priority-dissatisfied supplier:  Same as the previous heuristic 
except that here the heuristic considers priority-dissatisfied suppliers (who may already have 
enough meetings, but not of sufficient priority) as well as dissatisfied ones.  
 
6- Add meetings to dissatisfied supplier - version 2: Same as in heuristic 4, except that here the 
heuristic may move meetings of nonsaturated delegates who have less than 12 meetings as well 
as saturated ones.  
 
7- Cut surplus supplier meetings: This heuristic takes each supplier who has more than 20 
meetings scheduled and removes all the extra meetings ( in increasing order of priority).  
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8- Add meetings to priority-dissatisfied supplier: This heuristic takes a supplier who has too 
few priority meetings and adds as many priority-meetings as possible to him, without adding 
delegates or violating the limitation on the maximum number of meetings per delegate . 
 
9- Add meetings to dissatisfied supplier: Same as 8 but considers only suppliers who have 
enough priority meetings but too few meetings in total, and adds non-priority meetings, without 
adding delegates or violating the limitation on the maximum number of meetings per delegate.   
 
10- Add delegates and meetings to priority-dissatisfied supplier: Same as 8 except we allow the 
addition of new delegates (those who do not currently have any meetings). 
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