
A Hyperheuristic Approach to Scheduling a Sales
Summit

Peter Cowling, Graham Kendall, Eric Soubeiga

Automated Scheduling, optimisAtion and Planning (ASAP) Research Group
School of Computer Science and Information Technology, The University of Nottingham,

Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
Email: pic|gxk|exs@cs.nott.ac.uk

Abstract. The concept of a hyperheuristic is introduced as an approach
that operates at a higher lever of abstraction than current metaheuristic
approaches. The hyperheuristic manages the choice of which lower-
level heuristic method should be applied at any given time, depending
upon the characteristics of the region of the solution space currently
under exploration. We analyse the behaviour of several different
hyperheuristic approaches for a real-world personnel scheduling
problem. Results obtained show the effectiveness of our approach for
this problem and suggest wider applicability of hyperheuristic
approaches to other problems of scheduling and combinatorial
optimisation.

Key words: Hyperheuristics, Metaheuristics, Heuristics, Personnel Scheduling,
Local Search, Choice Function

1. Introduction
Personnel scheduling involves the allocation of personnel to timeslots and possibly
locations. The literature uses a variety of terms to describe the same or similar
problems. For example, Meissels and Lusternik [11] used the term employee
timetabling when utilising a Constraint Satisfaction Problem (CSP) model to
schedule employees. The term rostering can be found in Burke et. al. [2,3] where
they employ a hybrid tabu search algorithm to schedule nurses in a Belgian
hospital. Dodin et. al. [5] use the term (audit) scheduling and employ tabu search
to schedule audit staff. Labor scheduling is used by Easton et. al. [7] where they
utilise a distributed genetic algorithm technique to determine the number of
employees and their work schedules based on predetermined work patterns.
Mason et. al. [10] presented an integrated approach using heuristic descent,
simulation, and integer programming techniques to schedule staff of the Auckland

 2

International Airport, New Zealand. They obtained results which triggered major
changes in the attitude of the airport staff who are now enthusiastic about the
contribution of computer-based decision. Burke et. al. [2] used a hybrid tabu
search algorithm to schedule nurses. The tabu search is a hybridised memetic
approach which combines a steepest descent heuristic within a genetic algorithm
framework. The resultant search produces a solution which is better than either the
memetic algorithm or the tabu search when run in isolation. The hybridised method
was run using data supplied by a Belgian hospital and the results were much better
than the manual techniques currently being used. Dowsland [6] uses tabu search
combined with strategic oscillation to schedule nurses. Dowsland defined chain
neighbourhoods as a combination of basic and simple neighbourhoods. Using these
neighbourhoods, the search is allowed to make some moves into infeasible regions
in the hope that it could quickly reach a good solution beyond the infeasible
regions. The result is a robust and effective method which is capable of producing
solutions which are of similar quality to those of a human expert.
However, the heuristic and metaheuristic approaches developed for particular
personnel scheduling problems are not generally applicable to other problem
domains (or even instances of the same or similar problems). Heuristic and
metaheuristic approaches tend to be knowledge rich, requiring substantial expertise
in both the problem domain and appropriate heuristic techniques [1], and thus
expensive to implement. In this paper we propose a hyperheuristic approach,
which operates at a level of abstraction above that of a metaheuristic. The
hyperheuristic will have no domain knowledge, other than that embedded in a
range of simple knowledge-poor heuristics. The resulting approach should be
cheap and fast to implement, requiring far less expertise in either the problem
domain or heuristic methods, and robust enough to effectively handle a range of
problems and problem instances from a variety of domains.
Other researchers have investigated general-purpose heuristic-based methods for
scheduling and optimisation problems. Hart et. al. [9] used a genetic algorithm-
based approach to select which of several simple heuristics to apply at each step of
a real-world problem of chicken catching and transportation. Although the
principle of evolving the choice of heuristic could extend to other problems, the
incorporation of hard constraints in the chromosome in this implementation
depends on the problem being tackled. Tsang and Voudouris [12] introduced the
idea of having a Fast Local Search (FLS) combined with a Guided Local Search
GLS) and applied it to a workforce scheduling problem. FLS is a fast hill climbing
method which heuristically ignores moves used in the past without any
improvement and GLS is a method which diversifies the search to other regions
each time a local optimum is reached. Although FLS+GLS is extendible to other
problems, FLS is domain dependent. Mladenovic and Hansen [8] introduced the
idea of Variable Neighbourhood Search (VNS) and applied it to many
combinatorial optimisation problems including the Travelling Salesman Problem
(TSP) and the p-Median problem. VNS uses a range of higher level neighbourhood
operators for diversification. When a lower level neighbourhood search operator
reaches a local optimum, the search jumps to a random neighbour in the current
high-level neighbourhood. When this diversification move proves ineffective, the
next higher level neighbourhood is used. The idea of VNS is applicable to different

 3

problems, although domain knowledge is needed to define effectively both the
number and order of the neighbourhoods.
Our hyperheuristic method does not use problem-specific information other than
that provided by a range of simple, and hence easy and cheap to implement,
knowledge-poor heuristics. A hyperheuristic is able to choose between low level
heuristics without the need to use domain knowledge, by using performance
indicators which are not specific to the problem each time a low level heuristic is
called, in order to decide which heuristic to use when at a particular point in the
search space.
In order for our hyperheuristic approach to be applicable, we assume that
implementing simple local search neighbourhoods and other heuristics (such as
greedy constructive heuristics) for the problem in question is relatively easy. Our
experience in real world personnel and production scheduling problems suggests
that this is often the case. Indeed, on first presenting a problem which is solved
using manual or simple computer techniques, it is often easier for the manual
scheduler to express the problem by discussing the ways in which the problem is
solved currently, rather than the constraints of the problem. Usually these ways of
manually solving a scheduling or optimisation problem correspond to simple, easy-
to-implement heuristics. We may also implement very easily simple local search
heuristics based upon swapping, adding and dropping events in the schedule. We
also require some method of numerically comparing solutions, i.e. one or more
quantitative objective functions.
Each low level heuristic communicates with the hyperheuristic using a common
problem-independent interface architecture. The hyperheuristic can either choose
to call a low level heuristic in order to see what would happen if the low-level
heuristic were used, or to allow the low-level heuristic to change the current
solution. The hyperheuristic may also provide additional information such as the
amount of time which is to be allowed. When called, a low-level heuristic returns a
range of parameters related to solution quality or other features (in the case we
describe in this paper, a single objective function value is returned) and details of
the time required by the neighbourhood function, which allows us to monitor the
expected improvement per time unit of each low-level heuristic. It is important to
note that the hyperheuristic only knows whether each objective function is to be
maximised or minimised (or kept within some range etc.) and has no direct
information as to what the objective function represents. We illustrate this idea in
fig. 1. All communication between the problem domain and the hyperheuristic is
made through a barrier, through which domain knowledge is not allowed to cross.

 4

Fig. 1. The hyperheuristic approach and the problem domain barrier

The rest of the paper is organised as follows. In section 2 we define a real-world sales
summit scheduling problem that we use as a case study to test the effectiveness of our
methods. In section 3 we introduce our hyperheuristic approaches and in section 4 we
present the choice function which many of the approaches require. We then give the
results of our experimentation in Section 5. Finally Section 6 presents conclusions and
discusses the wider potential for application of hyperheuristic approaches.

2. The sales summit scheduling problem
The problem we are studying is encountered by a commercial company that

organises regular sales summits which bring together two groups of company
representatives. The first group, suppliers, represent companies who wish to sell some
product or service and the second group, delegates, represent companies that are
potentially interested in purchasing the products and services. Suppliers pay a fee to
have a stand at the sales summit and they provide a list of the delegates that they
would like to meet, where each meeting requested by a supplier is classified as either
a priority meeting which the supplier feels strongly may yield a sale, or a non-priority
meeting about which the supplier feels less strongly. Delegates do not pay a fee and
have their travelling and hotel expenses paid by the organiser of the sales summit. In
addition to meetings with suppliers, seminars are organised where delegates may meet
other delegates. Each delegate supplies a list of the seminars which he will attend in
advance of the sales summit, and is guaranteed attendance at all of the seminars which
he requests. There are 24 meeting timeslots available for both seminars and meetings,
where each seminar lasts as long as three supplier/delegate meetings. There are 43
suppliers, 99 potential delegates and 12 seminars. The problem is to:

Problem Domain

Problem Domain Barrier

Hyper-Heuristic Domain
Time Taken
Objectives

Low level heuristic to use
Time allowed

 5

1- Schedule meetings consisting of (supplier, delegate, timeslot) triples

Subject to:
1- Each delegate must attend all seminars which they have requested
2- Each delegate must have at most 12 meetings
3- No delegate can be scheduled for more than one activity (meeting or

seminar) within the same timeslot
4- No supplier can be scheduled for more than one meeting within the same

timeslot
5- Each supplier should have at least 17 priority meetings
6- Each supplier should have at least 20 priority and nonpriority meetings in

total

The objective is to minimise the number of delegates who actually attend the sales
summit out of the 99 possible delegate attendees, and hence the variable cost of the
sales summit, whilst ensuring that suppliers have sufficient delegate meetings. Several
other commercial considerations are of secondary importance and will not be
considered in this paper.

Once delegates have been put into seminar groups, reducing the number of delegate
timeslots available, a set of (supplier, delegate, timeslot) meeting triples must be
found which minimises the number of attending delegates, whilst keeping all
suppliers and the attending delegates happy. Analysis of the solutions produced using
the method currently used by the company, a greedy heuristic still simpler than that
which we use below to find an initial solution, suggests that in practice we may relax
constraints 5 and 6, so long as no individual supplier has substantially fewer than 17
priority meetings, or 20 meetings in total. We have relaxed these constraints in the
model given below.

We denote by S the set of suppliers, D the set of delegates and T the set of timeslots.
Let Pij be 1 if (supplier i, delegate j) is a Priority meeting and 0 otherwise (i∈ S, j∈
D). Our decision variables are denoted xijk (i∈ S, j∈ D, k∈ T), where xijk is 1 if
supplier i is to meet delegate j in timeslot k, otherwise xijk is 0. We can now formulate
the problem as follows:

 6

{ } (4) Tk Dj Si x

(3) Tk Si , x

(2) Tk Dj , x

(1) Dj ,x
:to Subject

 xx.

xP E(x) minimise

ijk

Dj
ijk

Si
ijk

Si Tk
ijk

Dj Si Tk
ijk

Si Dj Tk
ijk

Si Dj Tk
ijkij

∈∈∈∈

∈∈≤

∈∈≤

∈≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−=

∑

∑

∑∑

∑ ∑∑∑ ∑∑

∑ ∑∑

∈

∈

∈ ∈

∈ ∈ ∈∈ ∈ ∈

∈ ∈ ∈

,,,1,0

,1

,1

12

72,1min820,0max050

17,0max

2

2

 The evaluation function E(x)=B(x)+ 0.05 C(x)+ 8 H(x), where:

∑ ∑∑

∑ ∑∑

∑ ∑∑

∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈

⎭
⎬
⎫

⎩
⎨
⎧

=−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−=

Dj Si Tk
ijkij

Si Dj Tk
ijk

Si Dj Tk
ijkij

xPxdxH

xxC

xPxB

,1min d(x) with 72)()(

20,0max)(

.17,0max)(

2

2

2

B(x) represents the penalty associated with suppliers who have less than 17 priority
meetings, where the quadratic nature of the penalty ensures that any suppliers with
substantially less than 17 priority meetings result in a large penalty. C(x) represents
the penalty associated with suppliers who have less than 20 meetings in total, where
again the quadratic nature of the penalty ensures that any suppliers with substantially
less than 20 meetings are heavily penalised. However, these meetings are much less
significant overall than priority meetings (and, for example, we would only want to
include delegates with a large number of priority meetings) and C(x) is multiplied by
a factor of 0.05 to reflect this. d(x) is the number of delegates who attend the sales
summit in the meeting schedule. H(x) represents the penalty associated with the cost
of each delegate, and the factor of 8 reflects the fact that a delegate should be included
only to satisfy a supplier who would otherwise have significantly less than 17 priority
meetings, or eight suppliers who are missing a single meeting. Note that in a solution
where each supplier had the required 20 meetings, there would be 43*20 = 860

 7

meetings. Each delegate can attend at most 12 supplier meetings, so that ⎡860/12⎤
=72 delegates are required in this case. We penalise only delegates over 72, to avoid a
large constant term in H(x) dominating B(x) and C(x). This will be of particular
importance for the roulette wheel approach which we will discuss later. Later, when
the vector x to which we are referring is clear, we will simply refer to these quantities
as E, B, C, d and H.

Currently, meetings are scheduled using a very simple heuristic which cycles through
all suppliers and allocates the first (supplier, delegate, timeslot) triple available from
an ordered list of delegates, where the order is simply the order in which the delegates
were entered onto the database. The resulting solution has B = 226, C = 48.65, d = 99,
H = 216, giving a total penalty of 444.43.

We find an initial schedule using a greedy approach INITIALGREEDYas follows:

INITIALGREEDY:

Do

1. Let SO be a list of suppliers ordered by increasing number of priority
meetings (and increasing number of total meetings where two suppliers have
the same number of priority meetings).

2. Let DO be a list of delegates who currently have less than 12 meetings
scheduled, ordered by decreasing number of meetings scheduled

3. Find the first supplier s∈ SO such that there is a delegate d∈ DO where s
and d both have a common free timeslot t, and (s,d,t) is a priority meeting.

4. If no meeting triple was found in 3, then find the first supplier s∈ SO such
that there is a delegate d∈ DO where s and d both have a common free
timeslot t, and (s,d,t) is a non-priority meeting.

Until no meeting is found in either step 3 or step 4

By considering the most priority-dissatisfied supplier first at each iteration, we
attempt to treat suppliers equitably. By attempting to choose the busiest possible
delegate at each iteration, we try to minimise the number of delegates in the solution.
The solution produced by the constructive heuristic is used as starting solution for all
hyperheuristics that we consider below. It yields a solution with B = 52, C = 111, d =
93, H = 168, giving a total penalty of 225.55.

3. Hyperheuristic approaches to the sales summit scheduling problem
Having introduced the general nature of hyperheuristic approaches in the introduction,
we will now consider the specifics of our approach for the sales summit scheduling
problem given above.

 8

The low-level heuristics which we used may all be regarded as local search
neighbourhoods which accept a current solution, perform a single local search move,
and return a perturbed solution. We denote these neighbourhoods N1, N2, …, Nη. The
neighbourhoods that we used are given in the appendix. It should be noted that all of
our hyperheuristic approaches are independent of the nature or number of low-level
heuristics N1, N2, …, Nη. Each neighbourhood can be requested to actually perform
the best perturbation on the current solution, or investigate the effect upon the single
objective function given if the neighbourhood perturbation were performed. Each
neighbourhood also returns the amount of CPU time which a call used.
We have considered three different categories of hyperheuristic approaches: random
approaches, greedy approaches and choice-function based approaches. Further, for
each of the approaches implemented, we investigate two varieties. In the first variety,
denoted by the suffix OI (Only Improving), we will only accept moves which
improve the current solution. In the second variety, denoted by the suffix AM (All
Moves), all moves are accepted. Each hyperheuristic will continue until a stopping
criterion is met, which is a time limit in all cases.
We consider three random approaches. The first, SIMPLERANDOM, randomly chooses
a low-level heuristic to apply at each iteration until the stopping criterion is met. The
second, RANDOMDESCENT, again chooses a low-level heuristic at random, but this
time, once a low-level heuristic has been chosen, it is applied repeatedly until a local
optimum is reached where it does not result in any improvement in the objective
value of the solution. The third, RANDOMPERMDESCENT, is similar to
RANDOMDESCENT except that first we choose a random permutation of the low-level
heuristics N1, N2, …, Nη, and when application of a low-level heuristic does not result
in any improvement, we cycle round to the next heuristic in this permutation. Note
that for the All Moves (AM) versions of RANDOMDESCENT and
RANDOMPERMDESCENT, we will carry out one move which makes the current
solution worse, before moving on to a new neighbourhood.
The GREEDY approach which we consider will evaluate, at each iteration, the change
in objective function value caused by each low-level heuristic upon the current
solution and apply the best low-level heuristic so long as this yields an improvement.
The AM and OI versions of the GREEDY approach are then identical to each other.
In the third category of hyperheuristic approaches we introduce a choice function F,
that the hyperheuristic will use to decide on the choice of low-level heuristic to be
called next. For each low-level heuristic the choice function F aims to measure how
likely that low-level heuristic is to be effective, based upon the current state of
knowledge of the region of the solution space currently under exploration. We have
implemented four different methods for using the choice function. The first three
methods are independent of both the low-level heuristics used and the exact details of
how the choice function is arrived at. The fourth method is also independent of the
low-level heuristics used but decomposes the choice function into its component
parts. We shall describe the fourth method later, once the definition of F is given. In
the first STRAIGHTCHOICE method, we simply choose, at each iteration, the low-level
heuristic which yields the best value of F. In the second RANKEDCHOICE method we
rank the low-level heuristics according to F and evaluate the changes in objective
function value caused by a fixed proportion of the highest ranking heuristics, applying
the heuristic which yields the best solution. The third ROULETTECHOICE method

 9

assumes that for all low-level heuristics, F is always greater than zero. At each
iteration a low-level heuristic Ni is chosen with probability which is proportional to
F(Ni)/ΣiF(Ni). RANKEDCHOICE and ROULETTECHOICE are analogous to the rank-based
selection and the roulette wheel selection from the Genetic Algorithms literature [4].

4. The Choice Function
The choice function is the key to capturing the nature of the region of the solution
space currently under exploration and deciding which neighbourhood to call next,
based on the historical performance of each neighbourhood. In our implementation
we record, for each low level heuristic, information concerning the recent
effectiveness of the heuristic (f1), information concerning the recent effectiveness of
consecutive pairs of heuristics (f2) and information concerning the amount of time
since the heuristic was last called (f3).
So for f1 we have

∑ −=
n jn

jnn
j NT

NI
Nf

)(
)(

)(1
1 α

where In(Nj) (respectively Tn(Nj)) is the change in the evaluation function
(respectively the amount of time taken) the nth last time heuristic j was called, and α is
a parameter between 0 and 1, which reflects the greater importance attached to recent
performance. Then after calling heuristic Nj, the new value of f1(Nj) can be calculated
from the old value using the formula

f1(Nj) ← I1(Nj)/T1(Nj) + α f1(Nj).

f1 expresses the idea that if a low-level heuristic recently improved well on the quality
of the solution, this heuristic is likely to continue to be effective. Note that In(Nj) is
negative if there was an improvement and positive otherwise.
We consider that f1 alone fails to capture much information concerning the synergy
between low-level heuristics. Part of that synergy is measured by f2 which may be
expressed as

∑ −=
n kjn

kjnn
kj NNT

NNI
NNf

),(
),(

),(1
2 β

where In(Nj,Nk) (resp. Tn(Nj,Nk)) is the change in the evaluation function (resp. amount
of time taken) the nth last time heuristic k was called immediately after heuristic j and
β is a parameter between 0 and 1, which again reflects the greater importance attached
to recent performance. Then if we call heuristic Nk immediately after Nj, the new
value of f2(Nj,Nk) can be calculated from the old value using the formula

f2(Nj,Nk) ← I1(Nj,Nk)/ T1(Nj,Nk) + β f2(Nj,Nk).

 10

f2 expresses the idea that, if heuristic Nj immediately followed by heuristic Nk was
recently effective and we have just used heuristic Nj, then Nk may well be effective
again. Note that In(Nj, Nk) is negative if there was an improvement and positive
otherwise.

Both f1 and f2 are there for the purpose of intensifying the search. f3 provides an
element of diversification, by favouring those low-level heuristics that have not
recently been used. Then we have

)(NNf jj τ

where τ(Nj) is number of seconds of CPU time which have elapsed since heuristic Nj
was last called.
For STRAIGHTCHOICE and RANKEDCHOICE hyperheuristics we will use the choice
function F only to provide a ranking, and we will be indifferent as to the sign of F.
However, for the ROULETTECHOICE hyperheuristic approach we want F to take only
positive values, even for low-level heuristics which result in the objective function
becoming much worse. Assume that the solution was perturbed most recently by low-
level heuristic Nj. Recall that for our minimisation problem, large negative values of f1
and f2 are desirable. We define F as follows:

Here δ is a parameter set at a value which leads to sufficient diversification,

=)(3

} Q

),(f),(f -)(f max{-)(
)(f),(f)(f

321

321 kkjk NNNN

kkjkk NNNNNF
δβαρ

δβα
−+

+=

{ }

η

εδβα

10

)(),()(,0max 321∑ ++−−
= k

kkk NfNNjfNf
Q

Where we have used ε = 1 and ρ = 1.5, to ensure that low-level heuristics which
worsen the objective function value of the solution have a small, but non-zero
probability of being chosen in the ROULETTECHOICE hyperheuristic, and that this
probability falls rapidly to zero for low-level heuristics which have exhibited very bad
performance. The small term ε/10η should enable every neighbourhood, no matter
how bad, to be able to come around and diversify the solution after every other
neighbourhood has been visited about 10 times.
The fourth DECOMPCHOICE method considers the individual components f1, f2 and f3,
of F. It tries the (up to four) low level heuristics which yield the best values of f1, f2,
f3, and F and performs the best move yielded by one of these low level heuristics..

As we can see the kind of information used by the hyperheuristic approaches to
choose low-level heuristics is not specific to the summit scheduling problem
whatsoever (change in the evaluation function, time taken on the last call, time
elapsed since last call for each heuristic).

 11

5. Results
We used each of our hyperheuristics to solve the sales summit scheduling problem
described in section 2. The hyperheuristics were implemented in C++ and the
experiments were conducted on a Pentium II 225MHz with 128MB RAM running
under Windows NT Version 4.0. In all experiments the stopping condition was 300
seconds of CPU time. There are η = 10 low-level heuristics all of which are very
simple (and easy to implement). They are based either on the methods currently used
for generating a schedule, or on simple moves such as swaps.
At this stage of development we determined values of α, β and δ experimentally. We
chose (α, β, δ) = (0.9, 0.1, 1.5) for all the AM cases and (α, β, δ) = (0.2, 0.2, 0.8) for
the OI ones. Each single value of (α, β, δ) was averaged over 5 trials and we noticed
that the deviation between the different trials for a single value was greater than the
deviation between different values of (α, β, δ) thus making the sensitivity of the
hyperheuristic under different (α, β, δ) less critical. It is undesirable that parameters
need to be tuned in order for a general hyperheuristic approach to be effective, but the
tuning process can be automated to preserve the problem-independence of the
approach. Future work will investigate adaptively changing heuristic parameters
during the solution process itself.
In the RANKEDCHOICE the top r neighbourhoods (with respect to F) are tested and the
best neighbourhood is retained. In our experiments we chose

⎡ ⎤η25.0=r

In the Roulette-Wheel approach we make the choice of the next neighbourhood
randomly based upon a weighted probability function. The hyperheuristic chooses a
random number v in the range [0, A] where

∑
=

=
η

1
)(

j
jFA

Given

00 =a

η,...,1,)(
1

== ∑
=

kjFa
k

j
k

we choose neighbourhood k if ak-1 ≤ v < ak.

All choice-function based hyperheuristics start with a choice function initialised to 0.
In order for the choice function based hyperheuristics to initialise the values of f1, f2,
f3, and F for each neighbourhood, we randomly call the neighbourhoods for an initial
warm-up period. This warm-up period is included in the time allowed to the choice
function based hyperheuristics. In our case the warm-up lasts 100 seconds of CPU out
of the total 300 seconds allowed. Apart from GREEDY which is entirely deterministic,
all our hyperheuristic are averaged over 5 runs and, in each run we changed the seed

 12

used to generate random values. The standard deviation obtained from
STRAIGHTCHOICE was 14.16 in the AM case and 13.23 in the OI one.
Our results for all of the hyperheuristic approaches as well as the greedy heuristic,
which is currently used for the sales summit problem, and our INITIALGREEDY
heuristic which is used to generate an initial solution for each of our hyperheuristic
approaches, are given in table 1. For each algorithm, in addition to E, we give the
values of B, C, H, d, which are defined in section 2. We also give m and c where m is
the number of meetings scheduled and c the total number of neighbourhood calls
made.

Algorithm B C d H E m c
Original Greedy Heuristic 226.00 48.65 99.00 216.00 444.43 823.00 -
INITIALGREEDY 52.00 111.00 93.00 168.00 225.55 811.00 -
SIMPLERANDOM –AM 27.00 83.20 89.80 142.40 173.56 828.00 1102.60
SIMPLERANDOM –OI 57.80 47.20 80.80 70.40 130.56 838.00 786.60
RANDOMDESCENT-AM 53.80 32.60 86.80 118.40 173.83 847.80 825.60
RANDOMDESCENT-OI 56.40 35.40 85.00 104.00 162.17 844.60 789.40
RANDOMPERMDESCENT –AM 57.60 28.20 85.20 105.60 164.61 849.20 850.40
RANDOMPERMDESCENT –OI 52.40 23.80 87.80 126.40 179.99 852.60 866.00
GREEDY –AM 56.00 27.00 86.00 112.00 169.35 851.00 847.00
GREEDY –OI 56.00 27.00 86.00 112.00 169.35 851.00 836.00
STRAIGHTCHOICE-AM 60.00 118.00 76.20 33.60 99.50 811.80 774.40
STRAIGHTCHOICE-OI 47.80 53.20 83.20 89.60 140.06 841.40 908.00
RANKEDCHOICE –AM 44.40 84.40 78.80 54.40 103.02 824.80 880.80
RANKEDCHOICE –OI 49.40 56.60 83.20 89.60 141.83 838.40 1007.00
ROULETTECHOICE –AM 59.20 132.60 76.00 32.00 97.83 809.40 765.20
ROULETTECHOICE –OI 53.80 43.60 83.60 92.80 148.78 842.60 937.20
DECOMPCHOICE –AM 38.80 74.80 78.40 51.20 93.74 826.00 782.40
DECOMPCHOICE –OI 47.20 61.80 83.00 88.00 138.29 837.80 1014.00

Table 1 - Experiment results

We see that our INITIALGREEDY heuristic produced a much better solution than the
algorithm currently used to schedule the sales summit (Original Greedy Heuristic).
All the hyperheuristics except SIMPLERANDOM and RANDOMDESCENT produced a
better solution in the AM case than in the OI case. It appears that the OI version,
which does not accept neighbour moves which yield a worse solution has a greater
tendency than the AM version to get stuck early in a local optimum from which it
never escapes. The SIMPLERANDOM and RANDOMDESCENT approaches use the
different low level heuristics in an erratic and unselective manner, and in their case
accepting only improving moves limits the damage done by poor random choice of
low level heuristics. The superiority of the AM approaches over the OI approaches is
clearest for the more sophisticated choice function based approaches. Note that the
GREEDY approach will always produce identical results in AM and OI cases (since the
only non-improving move ever accepted in the GREEDY-AM case is the final move).
We see that the choice function based approaches which accept nonimproving moves
are all significantly better than the other approaches. The large difference between

 13

AM and OI versions of these hyperheuristics is probably due to the diversification
component of the choice function being stifled, since the OI version becomes stuck in
a local optimum too early. Encouragingly, all of the choice function based
hyperheuristics produce good results. This would lend some support to the idea that
each of these approaches is a general approach which could be used for a wide range
of problem instances and a wide range of problems (so long as appropriate low level
heuristics were available). Overall DECOMPCHOICE hyperheuristic performed better than
all the others. It also appears that the controlled randomness of the ROULETTECHOICE

yields improvement over the STRAIGHTCHOICE and RANKEDCHOICE hyperheuristics. All
of these simple choice function based approaches appear worthy of further
investigation.

6. Conclusion
We have presented the idea of a hyperheuristic, that allows us to use knowledge-poor
low level heuristics, which generally lead to poor local optima when considered in
isolation, in a framework which yields results which may, in some cases, be as good
or better than those provided by knowledge-rich metaheuristic approaches. We have
applied a range of hyperheuristics to a real world sales summit scheduling problem.
The results obtained are far superior to those provided by the system currently used to
generate schedules. We believe that this approach is promising for a wide range of
scheduling and optimisation problems.
We believe that hyperheuristics have three important advantages over knowledge rich
approaches for practical scheduling and optimisation problems. The first is that, for
many practical problems, modelling the problem using simple heuristics which
describe the way that the system is currently solved (often by hand) is an easy way for
problem owners to consider their problem. The second is that simple heuristics based
upon current user practice, simple local search neighbourhoods and greedy methods
are quick to implement on a computer. Since this is all that is required in order to
apply a hyperheuristic method, this should yield a method for fast prototyping of
decision support systems for practical scheduling and optimisation problems. Indeed,
we might simply keep adding low-level heuristics until we are satisfied (following
experimentation) that we have sufficient to provide good results. We then use cheap
computer time to find out how best to manage the low-level heuristics, rather than
expensive expertise. The third is that the approach should generalise readily to small
changes in the model (and indeed to large changes in the problem through the
addition and modification of low level heuristics, if necessary) yielding an approach
which is robust enough to effectively handle a very wide range of problems and
problem instances.
We do not regard hyperheuristics as a panacea to solve all problems in scheduling and
optimisation (and so long as no fast algorithm is found for an NP-hard problem this is
unlikely even to be possible). Simply that for a very wide range of real world
problems where a reasonable solution is required in an acceptable amount of time,
hyperheuristics should prove to be a useful tool.
In this paper we have introduced a range of simple choice function based
hyperheuristic approaches, which are effective in spite of their simplicity, for the real-
world problem which we have considered. While the details of the choice function are

 14

relatively complex, the user is shielded from this, simply supplying the objective
function and the low-level heuristics. At this stage of development our hyperheuristic
has several parameters, which may be tuned automatically to preserve domain-
knowledge independence of the approach.
Several issues will be dealt with in future work including the following. Parameter
values will be set adaptively by the hyperheuristic in order for it to be a genuine
problem-independent method applicable to a wide range of problems and instances,
using different sets and types of low-level heuristics. We shall apply our approaches
not only to other instances (with different but realistic objective functions) of this
real-world problem but also to other personnel scheduling problems. We shall
consider how we may embed a range of more sophisticated methods into our
hyperheuristic. In particular, we will consider the development of hyperheuristics
which use metaheuristic techniques to decide which low level heuristic to use,
including population-based choice functions, tabu search and simulated annealing.
We also intend to consider a genetic-programming approach to choice function
evolution.

Appendix: The low level sales summit scheduling heuristics used

We used 10 low-level heuristics:

1 – Remove one delegate: This heuristic removes one delegate who has at least one meeting
scheduled. It chooses the delegate with the least number of priority meetings, and the least
number of meetings in total where there is a tie.

2- Increase priority of one meeting: This heuristic replaces one non-priority meeting with a
priority meeting involving the same supplier, by changing the assigned delegate, if possible,
without adding any new delegates.

3- Add one delegate: This heuristic adds one delegate (the delegate with the largest number of
potential priority meetings) who currently has no meetings and greedily schedules as many
meetings involving the new delegate as possible.

4- Add meetings to dissatisfied supplier - version 1: This heuristic adds as many meetings as
possible to one dissatisfied supplier until the supplier is satisfied (if possible), without adding
new delegates. This may only involve the deletion and rearrangement of meetings already
arranged between delegates and other supplier, but only for “saturated” delegates who already
have 12 meetings.

5- Add meetings to dissatisfied or priority-dissatisfied supplier: Same as the previous heuristic
except that here the heuristic considers priority-dissatisfied suppliers (who may already have
enough meetings, but not of sufficient priority) as well as dissatisfied ones.

6- Add meetings to dissatisfied supplier - version 2: Same as in heuristic 4, except that here the
heuristic may move meetings of nonsaturated delegates who have less than 12 meetings as well
as saturated ones.

7- Cut surplus supplier meetings: This heuristic takes each supplier who has more than 20
meetings scheduled and removes all the extra meetings (in increasing order of priority).

 15

8- Add meetings to priority-dissatisfied supplier: This heuristic takes a supplier who has too
few priority meetings and adds as many priority-meetings as possible to him, without adding
delegates or violating the limitation on the maximum number of meetings per delegate .

9- Add meetings to dissatisfied supplier: Same as 8 but considers only suppliers who have
enough priority meetings but too few meetings in total, and adds non-priority meetings, without
adding delegates or violating the limitation on the maximum number of meetings per delegate.

10- Add delegates and meetings to priority-dissatisfied supplier: Same as 8 except we allow the
addition of new delegates (those who do not currently have any meetings).

References

[1] Aickelin U., Dowsland K. Exploiting problem structure in a genetic algorithm
approach to a nurse rostering problem. Journal of Scheduling, 2000; 3: 139-153.

[2] Burke E K, Cowling P, De Causmaecker P, Vanden Berghe G. A memetic

approach to the nurse rostering problem, To appear in the International Journal of
Applied Intelligence.

[3] Burke E, De Causmaecker P, Vanden Berghe G. A hybrid tabu search algorithm

for the nurse rostering problem. selected papers of the Second Asia-Pacific
Conference on Simulated Evolution and Learning (SEAL ’98), Springer Lecture
Notes in Artificial Intelligence vol. 1585: 186-194.

[4] Back T, Fogel D B, Michalewicz Z (eds), Handbook of Evolutionary
Computation. IOP Publishing Ltd. and Oxford University Press, 1997.

[5] Dodin B, Elimam A A, Rolland E. Tabu search in audit scheduling. European

Journal of Operational Research 1998; 106: 373-92.

[6] Dowsland K A. Nurse scheduling with tabu search and strategic oscillation.

European Journal of Operational Research 1998; 106: 393-407.

[7] Easton F F, Mansour N. A distributed genetic algorithm for deterministic and
stochastic labor scheduling problems. European Journal of Operational Research
1999; 118:505-23.

[8] Mladenovic N., Hansen P. Variable Neighborhood Search. Computers and
Operations Research 1997; 24: 1097-1100.

[9] Hart E, Ross P, Nelson J. Solving a Real-World Problem Using an Evolving

Heuristically Driven Schedule Evolutionary Computation 1998; 6/1: 61-80.

 16

[10] Mason, Ryan, Panton. Integrated Simulation, Heuristic and Optimisation
Approaches to Staff Scheduling, Operations research 1998; 46/2: 161-75.

[11] Meisels A, Lusternik N. Experiments on networks of employee timetabling

problems. Lecture Notes in Computer Science 1408, Practice And Theory of
Automated Timetabling II 1997; Selected papers 130-55.

[12] Tsang E, Voudouris C. Fast local search and guided local search and their

application to British Telecom’s workforce scheduling problem. Operations
Research letters 1997; 20: 119-27

	6. Conclusion
	Appendix: The low level sales summit scheduling heuristics used

