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Abstract
Background

Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However,
there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aim
to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and
recurrence of HCC patients as well as exploring the potential mechanism.

Methods

Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent
clustering analysis. Three DEGs closely related to overall survivalOSwere identi�ed using Cox
regression and LASSO analysis. Then the hypoxia-related signature was developed and validated in
TCGA and International Cancer Genome Consortium (ICGC) database. The Gene Set Enrichment Analysis
(GSEA) was performed to explore signaling pathways regulated by the signature. CIBERSORT was used
for estimating the fractions of immune cell types.

Results

A total of 397 hypoxia-related DEGs in HCC were detected and three genes (PDSS1, CDCA8 and SLC7A11)
among them were selected to construct a prognosis, recurrence and diagnosis model. Then patients were
divided into high- and low-risk groups. Our hypoxia-related signature was signi�cantly associated
with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished
HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively
regulate immune response. Meanwhile, the high-risk group had higher fractions of macrophages, B
memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as
PD1and PDL1.

Conclusions

Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis,
prognosis and recurrence of HCC, and it provided an immunological perspective for developing
personalized therapies.

Background
 Hepatocellular carcinoma (HCC) accounts for 85% of liver cancers, and the disease burden of HCC is
increasing globally[1]. Although progress on treatment strategies for HCC has been made, the overall 5-
year survival rate for HCC patients remains less than 20%[2]. Nowadays, the research of molecular
mechanism based on bioinformatics analysis has become one of the most important tools for cancer
research[3, 4]. Therefore, it is of great signi�cance to search for molecular markers for early diagnosis,
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survival prediction and recurrence monitoring of HCC, which can improve patients’ strati�cation and
optimize medical intervention. The low rate of early diagnosis and high rate of metastasis and recurrence
have considerable impact on the prognosis of HCC patients, which are mainly related to the invasiveness
and high proliferative activity of tumor cells[5]. However, the mechanism of tumor progression has not
been completely realized.

Hypoxia is an intrinsic characteristic of solid tumors due to the imbalance between the rate of tumor cell
proliferation and nutrient supply of vascular[6]. Existing studies have recognized the critical roles played
by hypoxia on tumor angiogenesis, cell proliferation, as well as cell differentiation and apoptosis[7, 8];
Liver is one of the three organs most susceptible to hypoxia and it has been found that hypoxia was
involved in the metastasis, poor prognosis and radiation resistance of HCC [9, 10]. Nevertheless, its
potential regulatory mechanism remains unclear. In recent years, there is an increasing interest in the
tumor microenvironment which immune cells in it play a crucial role in the progression of tumor[11-13].
Previous studies have shown that hypoxia can regulate the status of tumor immune microenvironment,
such as promoting the recruitment of innate immune cells and interfering with the differentiation and
function of adaptive immune cells[14]. Therefore, further study on the relationship between hypoxia and
immunity in HCC is required in order to develop new therapeutic strategies.

Immunocheckpoint inhibition has become an effective and frequently-used way of immunotherapy[15].
As a new feature of cancer, tumor mutation burden (TMB) is de�ned as the total number of somatic
mutations in the genome of tumor cells[16], and high TMB may produce many neoantigens to stimulate
the anti-tumor immune response[16]. Clinical data demonstrated that patients with high TMB were more
likely to bene�t from immunocheckpoint inhibitor therapy[17, 18], which suggesting that TMB should be
an appropriate biomarker for assessing the effect of immune treatment.

In this study, we analyzed hypoxia-related genes in HCC by using TCGA and GEO database and
constructed a consistent clustering. Then we built the prediction model for diagnosis, recurrence and
prognosis of HCC. We also explored the association of hypoxia with immune in�ltration and
immunocheckpoints in HCC. These �ndings may make a meaningful contribution to the development of
comprehensive therapeutic strategies for HCC patients.

Methods
Identi�cation of differentially expressedgenes (DEGs) between HCC and noncancer tissues

The differentially expressed genes (DEGs) related to hypoxia and HCC were identi�ed with limma, an R
package[19]. The DEGs with an absolute log2-fold change (FC) > 1 and an adjusted P value < 0.05 were
considered for further analysis.

Acquisition of hypoxia-related genes associated with HCC
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The mRNA expression pro�les and corresponding clinical information associated with HCC patients were
obtained from The Cancer Genome Atlas—Liver Hepatocellular Carcinoma dataset (TCGA‐LIHC)
(including 370 HCC and 50 normal tissue samples). The mRNA-sequencing data of Human HCC cell lines
were obtained from the Gene Expression Omnibus database (GEO), which included GSE59729 (with gene
expression pro�les of Huh-7 cells under normoxia and hypoxia for 24 hours) and GSE41666 (with gene
expression pro�les of HepG2 cells exposed to normoxia and hypoxia for 24 hours). A total of 1,401
hypoxia-related DEGs expressed by HepG2 from GSE41666 and 1,279 hypoxia-related DEGs expressed by
Huh7 from GSE59729 were matched with HCC-related information obtained from TCGA. The data from
TCGA and GEO databases are freely available to the public, and this research also strictly followed
access policies and publication guidelines, therefore this study did not require ethical review and approval
from an Ethics Committee.

Classi�cation of molecular subgroups by consistent clustering

The ConsensusClusterPlus package in R software was utilized for the consistent clustering to determine
subgroups of HCC samples from TCGA. The Euclidean squared distance metric and the K-means
clustering algorithm was used for classifying samples into k clusters with k=2 to k=9. About 80% of the
samples were selected in each iteration, and the results were compiled over 100 iterations. The results are
presented in the form of heatmaps of the consistency matrix generated by pheatmap R package, and the
optimal number of clusters was determined by the consistent cumulative distribution function (CDF)
graph and the delta region graph[20]. We considered that the optimal number of clusters should satisfy
the following criteria: high consistency of clustering, low coe�cient of variation, and no signi�cant
increase in the area under the CDF curve. According to the relative non-signi�cant change of the area
under the CDF curve, the corresponding number of categories was determined.

Establishment and validation of a prognostic predictive signature

The univariate Cox regression analysis was conducted to identify the prognostic value of the DEGs for OS
and genes with a P value <0.05 were considered statistically signi�cant. Subsequently the Least absolute
shrinkage and selection operator (LASSO) Cox regression[21] was performed by using the glmnet R
package to shrink scope of gene screening, we performed 1,000 substitution samples of the dataset and
selected the markers with repeat occurrence frequencies of more than 900. Finally, a multivariate Cox
regression analysis was performed to identify highly correlated genes and construct the prognostic gene
signature. The regression coe�cient (β) was derived from multivariate Cox regression analysis and the
Prognosis Index (PI) = (βmRNA1* expression level of mRNA1) + (βmRNA2* expression level of mRNA2) +…+
(βmRNAn* expression level of mRNAn). Based on the optimal cut-off value determined by using X-tile
software, patients with survival data were divided into high- and low-risk groups. The Kaplan-Meier
survival analysis was used to evaluate the predictive ability of the prognostic model, which was further
validated in the ICGC dataset.

Independence of the prognostic gene signature from other clinical characteristics



Page 6/29

Univariate and multivariate Cox proportional hazard regression analyses were performed to determine
whether the predictive ability of prognostic model was independent of conventional clinical
characteristics. A bilateral P value <0.05 was considered statistically signi�cant. The hazard ratio (HR)
and 95% con�dence intervals were calculated.

Construction and evaluation of a predictive nomogram

All independent prognostic factors were used to build a nomogram[22] in order to evaluate the 1-, 3-, and
5-year survival probability for patients with HCC. The calibration plot was performed for an internal
validation to verify the accuracy. Time-dependent receiver operating characteristic (ROC) analysis was
conducted to evaluate the predictive performance of the nomogram. Decision curve analysis (DCA) was
performed to assess the clinical net bene�t[23].

Gene set enrichment analysis

Gene set enrichment analysis (GSEA)[24]was performed using prognosis index with Clusterpro�ler
package to identify signaling pathways regulated by the hypoxia-related signature. The correlation
coe�cients, CI and P-values were calculated using R software. P<0.05 was considered statistically
signi�cant.

Estimation of immune cell type fractions

CIBERSORT is a method for characterizing the cell composition from their gene expression pro�les and is
the most frequently cited tool for estimating and analyzing immune cells in�ltration[25]. We utilized
CIBERSORT to estimate the fractions of immune cell types between low- and high-risk groups. The sum
of all the estimated immune cell type scores is equal to 1 in each sample.

Real-time PCR analysis

Total RNA was isolated using Trizol reagent (Invitrogen, Eugene, OR, USA). The �rst-strand cDNA was
synthesized with Prime-Script RT Master Mix (TaKaRa) followed by qPCR detection using the SYBR Green
Master Mix (TaKaRa). The following primers were used: PDSS1 F: 5′- AGCCAACAGTTGTAAAGCAGTATTT
-3′ and R: 5′- GTTTGTTGCACACCATCACTCTGT -3′; CDCA8 F: 5′- GCACAGCGAGGTTTTGCTCA -3′ and R:
5′- AACTGGGTAGGGACGAGGA -3′; and SLC7A11 F: 5′- ATGGGACAAGAAACCCAGGTG -3′ and R: 5′-
TCCCTATTTTGTGTCTCCCCTTG -3′.

Statistical analysis

Continuous variables were summarized as the mean±standard deviation (SD). Differences between
groups were compared by Wilcox test through R software. Different hypoxia subtypes were compared by
using the Kruskal–Wallistest. The signi�cance of survival time differences was calculated using the log-
rank test with a threshold of P-value < 0.05. Kaplan Meier curves were plotted to show the survival time
differences.
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Results
Identi�cation of DEGs related to hypoxia in HCC

We identi�ed DEGs (|LogFC| >1, P < 0.05) using the mRNA expression pro�le between HCC and adjacent
noncancerous tissues from TCGA database (Table 4). Then we matched the differentially expressed
mRNA-sequencing data between hypoxia-treated and untreated HCC cell lines in GEO database (Table 2-
3) and obtained 397 DEGs which were related to hypoxia in HCC (Figure 1A). By using the Gene Ontology
(GO) enrichment and functional analysis, we found that these genes are enriched in DNA replication, cell
division, cell cycle and also somatic diversi�cation of immune receptors (Figure 1B).

Using the hypoxia-related genes for the consistent clustering of HCC molecular subgroups

Consistent clustering of 397 hypoxia-related DEGs were constructed by using the ConsensusClusterPlus
R software package. The average clustering consistency and inter-cluster variation coe�cient of each
cluster number were calculated and the optimal cluster number was determined by using CDF. As shown
in Figure 2A, the clustering outcoming was stable when k=4. We further analyzed CDF delta area curve
and found that the area under the CDF curve tended to be stable after 4 clusters (Figure 2B). The item-
Consensus Plot also showed that the sample classi�cation was relatively stable when the clustering
number was selected as 4 (Figure 2C). Finally, we built a consensus matrix graph which 397 DEGs were
assigned to 4 clusters in order to evaluate the composition and quantity of clustering more intuitively
(Figure 2D). The heatmap of 397 hypoxia-related DEGs in 4 clusters was shown in Figure 2E.

The results from Kaplan–Meier plot showed the signi�cant differences in survival probability and
recurrence rate among these 4 subgroups. Compared to the other three clusters, the samples in cluster-2
had the worst prognosis and the highest recurrence rate (Figure 3A-B). We further analyzed the
distribution of AFP, gender, degree of vascular in�ltration, TNM stage, pathological grade, and age in
these 4 subgroups (Figure 3C). Samples in cluster-4 were associated with high AFP expression level,
undifferentiated tumor cells and lymphatic metastasis while cluster-3 showed high incidence of distant
metastasis; cluster-2 had a higher degree of vascular invasion and more tumor cells with low
differentiation. Moreover, most of patients in cluster-2 were male and generally aged between 65 and 70
years. It is worth noting that patients in cluster-2 showed the highest TMB than other three clusters
(Figure3D-E), suggesting a bene�t of immunotherapy.

Construction and validation of a hypoxia-related prognosis signature with good performance

We performed a univariate Cox regression and found 291 DEGs signi�cantly related to OS of HCC
patients (P<0.01) (Table 1). Then a Lasso‐penalized Cox analysis was performed to further shrink the
scope of gene screening. The penalty parameter was established through 10‐fold cross‐validation. We
selected 11 DEGs, which appeared over 900 times of a total of 1000 repetitions (Figure S1). Finally, by
analyzing a multivariate Cox regression, three genes (PDSS1, SLC7A11, CDCA8) conforming to the
proportional hazards (PH) assumption were selected to build a prognostic model as follows: the
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prognostic index (PI) = (0.337 * expression level of PDSS1) + (0.383* expression level of SLC7A11) +
(0.356* expression level of CDCA8). The optimal cut-off value of 2.296 for the risk store was produced
using X-tile software and patients with survival time from TCGA-LIHC were divided into a high- and low-
risk group. The K-M curve showed that the OS of the high-risk group was signi�cantly poorer than that of
low-risk group (P<0.001, HR=4.76) (Figure 4A). The area under the time-dependent ROC curves (AUCs) for
0.5-, 1‐, 3‐ and 5‐year overall survival (OS) were 0.76, 0.78, 0.7 and 0.7, respectively, indicating a good
predictive performance of this prognostic model (Figure 4C).

We further validated the prediction ability of this prognostic signature using HCC samples from ICGC
database (Table 5). Consistent with above results, HCC patients were divided into a high- and low-risk
group with an optimal cut-off value of 18.812 and patients in the high-risk group had poorer survival
probability than the low-risk group (P<0.001, HR=5.26) (Figure 4B). The AUCs of the three‐gene prognostic
model were 0.68, 0. 75, 0.77 and 0.77 for the 0.5-, 1-, 3- and 4‐year survival times (Figure 4D). Meanwhile,
we attempted to compare the hypoxia-related signature with other prognostic models published
previously[26, 27]. For the hypoxia-related signature, methylation-driven prognostic model and three-gene
prognostic model, the AUCs was 0.78, 0.67 and 0.67 in TCGA cohort and 0.75, 0.64 and 0.64 in ICGC
cohort, respectively (Figure S2). Taken together, our prognostic model showed a higher speci�city and
sensitivity.

Evaluating the independent role of prognostic signature and building a predictive nomogram for OS
prediction in the HCC cohort from TCGA

Univariate and multivariate Cox regression analysis were used to evaluate whether the predictive value of
the prognostic model was independent of other traditional clinical characteristics. The results showed
that the TNM stage (P<0.05, HR=1.828) and the risk score (P<0.05, HR=1.683) were independent
prognostic factors for OS (Figure 5A). Then we built a predictive nomogram which may be helpful to
accurately predict a certain clinical outcome (Figure 5B)[28]. Each level of independent factors was
assigned one score and a total score was calculated by summing up the scores in each individual. The
survival probability for the individuals at 1-, 3-, and 5- year was obtained through the function conversion
relationship of total scores. The calibration plot for internal validation of the nomogram showed better
consistency between the predicted OS outcomes and actual observations (Figure 5C-E). The C-index was
0.54, 0.65 and 0.66 for the TNM stage, the prognostic model and the nomogram (95%CI: 0.58--0.73),
further indicating that our nomogram had a higher predicting consistency. The AUCs of the nomogram at
1-, 3- and 5- year OS were 0.672, 0.684 and 0.675, which were better than the models with single
independent factors (Figure 5F-H). The DCA was used to evaluate guiding signi�cance of these models
for clinical application and the results showed that the combined model was the best for predicting the
OS (Figure 5I-K). For the hypoxia-related signature, methylation-driven prognostic model and three-gene
prognostic model, the C-index reached 070, 0.64 and 0.64 in TCGA database and 0.74, 0.65 and 0.65 in
ICGC database, indicating a more sensitive and valuable predictive performance of hypoxia-related
model.
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Evaluation of the hypoxia-related genes for predicting the recurrence of HCC patients

TCGA-LIHC cohort with release-free survival (RFS) information and recurrent status of HCC patients was
utilized as a training set for an independent evaluation, and the HCC cohort from GSE14520 (Table 6)
was used as a validation set. Based on these three hypoxia-related genes, we constructed a recurrence
signature by using the regression coe�cient (β’) of multivariate Cox ccproportional hazards. The
prognostic index (PI) = (0.060 * expression level of PDSS1) + (0.045* expression level of SLC7A11) +
(0.041* expression level of CDCA8). In both training and validation set, patients were divided into a high-
and low-risk group based on the risk score of 0.953 and 1.247. The distribution of risk score and gene
expression was examined (Figure 6A, S3A). From the results of Kaplan–Meier survival analysis, patients
in high-risk group had signi�cantly higher recurrence rate than the low-risk group. (Figure 6B, 6E) and we
also performed ROC analysis to evaluate the predictive accuracy of our recurrence model (Figure 6C,
S3B). Compared with other prognostic models, the AUCs was 0.64, 0.6 and 0.6 for the hypoxia-related
signature, methylation-driven prognostic model and three-gene prognostic model (Figure 6D). All these
results indicated a more reliable predictive ability of our hypoxia-related recurrence model.

Building a nomogram for predicting recurrent probability of HCC patients and evaluating its predictive
performance

We performed a univariate and multivariate Cox regression analysis and screened out three independent
factors related to the recurrence of HCC (P<0.05) (including the age, the TNM stage and the risk score of
our recurrence signature) (Figure 7A). The nomogram for recurrence prediction was built by integrating
these three factors (Figure 7B) The level of each factor was assigned according to the regression
coe�cient of each in�uencing factor, and then the scores were added to obtain the total score. Finally, the
predicted value of the individual outcome was calculated through the function conversion relationship
between the total score and the probability of occurrence of outcome. The calibration plot of the
nomogram showed a consistency between the prediction and observation (Figure 7C-E). The C-index was
0.62, 0.56, 0.63 and 0.71 for the age, TNM stage, the prognostic model and the nomogram (95%CI: 0.64-
-0.78). From the results of ROC analysis in Figure 7F-H, the AUCs of nomogram at 1-, 3-, 5-year was 0.746,
0.741, 0.717, respectively, which was obviously higher than other models with single independent factors.
The DCA curves showed that the combined model obtained a higher net bene�t (Figure 7I-K). Through
comparative analysis with other recurrence models, the C-index was 060, 0.59 and 0.59 for the hypoxia-
related signature, methylation-driven prognostic model and three-gene prognostic model. These results
indicated that our recurrent nomogram performed a better sensitivity and speci�city of HCC recurrence
prediction and could provide clinicians with more speci�c guidelines.

Establishment of a diagnostic model based on hypoxia-related genes in HCC

As the diagnosis is of great importance for proper management of patients, we further analyzed whether
hypoxia-related genes also contribute to more accurate diagnosis of HCC. A diagnostic model based on
these three hypoxia-related genes was constructed by using a stepwise logistic regression method. The
diagnostic score was �nally identi�ed as follows: logit (P = HCC) = 1.171 + (-0.571) × PDSS1 expression
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level + (-1.019) × SLC7A11 expression level + (-2.037) × CDCA8 expression level. In TCGA cohort with 50
normal samples paired 50 HCC samples, our diagnostic model achieved a sensitivity of 94% and a
speci�city of 92% (Figure 8A). We also utilized ICGC cohort with 190 normal samples paired 219 HCC
samples as a validation set, and the diagnostic model obtained a sensitivity of 90% and a speci�city of
94% (Figure 8C). As shown in ROC analysis (Figure 8B, D), the AUCs of our model reached 0.986 and
0.962 in TCGA and ICGC cohort, indicating a satisfactory accuracy of prediction. To further verify the
clinical application of the model, we collected a group of patient-derived tissues, in which 13 tumor
tissues were paired with 13 adjacent tissues. The results were proved to be satisfactory as a sensitivity of
92% and a speci�city of 92% were calculated. (Figure 8E-F)

Liver nodule is a kind of hepatic hyperplasia caused by various factors. It is indistinguishable from the
early stage of liver cancer, and the corresponding treatment methods are different. We aimed to establish
a diagnostic model by using a stepwise logistic regression method to better distinguish liver cancer from
hepatic nodules. The diagnostic score was identi�ed as follows: logit (P = HCC) = -45.308 + 0.628 ×
PDSS1 expression level + 8.452 × SLC7A11 expression level + 4.047 × CDCA8 expression level. We tested
the diagnostic performance of the model in two databases, GSE6764 and GSE89377 cohort. One
achieved a sensitivity of 88.57% and a speci�city of 82.35%, the other one achieved a sensitivity of 87.5%
and a speci�city of 77.27% (Figure 9A, C). The AUCs for GSE6764 and GSE89377 were 0.934 and 0.935
(Figure 9B, D). These data further con�rmed that the diagnostic model was a novel predictive tool with
high accuracy and potential clinical value.

Validation of the expression and genetic alterations and independent prognostic analysis for genes

We detected genetic alterations of the three genes from cBioportal database[29] and found that PDSS1,
SLC7A11 and CDCA8 possessed genetic alterations of 9%, 3% and 5% (Figure 10A). These results helped
explain that the abnormal gene expression may be attributable to genetic alterations. To further con�rm
the expression level of each gene in HCC, we used TCGA database containing 50 tumor and 50 normal
samples. We found all the three genes were highly expressed in HCC compared with in normal liver
tissues (Figure10B-D). The assessment of mRNA expression for each gene in HCC clinical specimens
shows that it is higher in tumor tissues (P<0.05) (Figure 10E-G). The protein expression of CDCA8 and
SLC7A11 (also known as xCT) by IHC were showed in Figure S4. We also detected the mRNA expression
of these three genes in normal hepatocytes and different hepatoma cell lines. The results showed that
PDSS1, SLC7A11 and CDCA8 were signi�cantly upregulated in hepatoma cell lines (P<0.05) (Figure 10H-
J). Moreover, by analyzing gene expression in GSE6764 cohort, we found that the expression levels of
PDSS1, CDCA8 and SLC7A11 were signi�cantly higher in tumor tissue than those in liver nodules
(Figure10K-M). We also attempted to explore the interaction between each two genes. As shown in
Figure10O-Q, there was a sort of synergy between CDCA8 and PDSS1 as well as SLC7A11 (P<0.05).

Kaplan-Meier Plotter database[30] was used in order to analyze the effect of single gene on HCC
prognosis. The results showed that the high‐expression level of PDSS1, CDCA8 or SLC7A11 was
separately related to a shorter overall survival time (Figure11A-C). In addition, the progression-free
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survival (PFS) analysis, which can better re�ect tumor progression and predict clinical bene�ts, also
showed an association between higher expression level of a single gene and faster disease progression
(Figure11D-F). To achieve a better understanding of the functional characteristics of three genes, we
performed Gene set enrichment analysis, which showed that some immune-related pathways, such as
JAK–STAT3 signaling, The NF-kappa B signaling, were highly active in the high-risk group (Figure11G-I).

Comparison of the immune microenvironment between high- and low-risk groups

Tumor immune cell in�ltration refers that the immune cells move from the blood to the tumor tissue. The
immune cells in tumors are closely related to clinical outcomes and they are most likely to serve as drug
targets to improve survival rate [31]. Since these three genes have been found to enriched in some
immune pathways, we then analyzed the relationship between hypoxia-related genes and immune cell
in�ltration as well as immune checkpoints in HCC. Patients in the high-risk group had higher ratios of M0
macrophages, memory B cells and follicular helper T cells than those in the low-risk group (P <0.05)
(Figure12A-C). Moreover, we found that the expression levels of TIM3, B7H3, CTLA4, PD1 and PDL1 in the
high-risk group were obviously higher than those in the low-risk group (P <0.05) (Figure12D-H). Our
�ndings lead us to conclude that tumor immune microenvironment may be responsible for the prognosis
of HCC patients with high expression of hypoxia-related genes.

Discussion
 Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in the world, and
the development of HCC is a complicated process in�uenced by various factors[32]. Though some
progresses have been made in the treatments of HCC, such as surgical resection, microwave ablation and
liver transplantation, the prognosis of HCC patients remains poor[33]. In recent years, high-throughput
sequencing and data analysis have gradually become more signi�cant tools for biomedical research,
which can identify biomarkers for prognosis predicting, recurrence monitoring as well as clinical
strati�cation[3, 34, 35]. Therefore, it is urgent to apply to HCC and explore key targets for the treatment.

Hypoxia is a prominent characteristic of malignant tumors, especially in HCC[36]. It was demonstrated in
several studies that hypoxia was involved in the aggressive development of HCC[8]. Nevertheless, due to
the multiple roles of hypoxia, the speci�c role of hypoxia in the development of liver cancer remains
unclear [37]. In this study, we identi�ed three hypoxia-related genes (PDSS1, CDCA8 and SLC7A11)
closely relating to HCC. CDCA8, involving in protein metabolism and mitosis, has been demonstrated to
participate in malignant progression of tumor cells and lead to poor prognosis in liver, stomach and lung
cancer[38]. SLC7A11 (also known as xCT) plays a critical role in maintaining redox homeostasis and has
been con�rmed to be associated with the prognosis of HCC[39]. PDSS1 is involved in coenzyme Q
biosynthesis, but little is known about the relationship between PDSSI and cancer[40]. Our results showed
that this three-gene signature was an independent factor affecting the prognosis of HCC and the model
had a better predictive performance on both prognosis and recurrence. What’s more, the diagnostic model
based on these three genes had a high sensitivity and speci�city, and could help distinguish HCC from
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dysplastic nodules. Consensus Clustering is a common method for classi�cation of cancer subtypes. We
divided the samples into 4 clusters according to the hypoxia-related DEGs dataset of HCC and compared
the differences among clusters. It should be pointed out that cluster-2 had a higher TMB, indicating that
patients in cluster-2 were more likely to bene�t from immunocheckpoint inhibitor therapy[41].

Much work so far has focused on the role of hypoxia in regulating the immune response in tumors.
Hypoxia can interfere with the differentiation and function of immune cells through regulating the
expression of co-stimulating receptors and the types of cytokines[42, 43]. The immune system is able to
recognize and eliminate tumor cells through innate and adaptive mechanisms. However, the tumor
microenvironment could suppress this anti-tumor response through a number of inhibitory pathways
which were known as immunocheckpoints[44]. Our results of GSEA indicated that hypoxia-related
signature could positively regulate some immune signaling pathways. The high-risk group based on the
expression level of hypoxia-related genes had a higher in�ltration proportion of macrophages, B memory
cells and follicle-assisted T cell, as well as higher expression levels of immune checkpoints. These
evidence for the association between hypoxia and immunity highlighted the importance of
immunotherapy for HCC patients with high expression level of three hypoxia-related genes.

However, some limitations of this study should be noted. First, the process of adjusting the weight of
regression coe�cient in LASSO might ignore some important factors contributing to HCC prognosis.
Second, our nomogram did not perform external validation as there was a lack of speci�c clinical data in
ICGC database. Moreover, our retrospective �ndings need to be further validated in prospective research.
Finally, the complex interaction between tumor cells and immune cells in hypoxic environments remains
to be further explored.

Conclusion
In summary, we identi�ed the hypoxia-related DEGs between HCC and normal tissues and clustered HCC
samples into 4 subgroups. We established the diagnosis, prognosis and recurrence models based on
three hypoxia-related genes, which performed favorable diagnosis and prediction performance for HCC.
Finally, we identi�ed higher proportions of immune cell in�ltration and immunocheckpoint expression in
the high-risk group, which may be more sensitive to bene�t from immunotherapy.
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Figures

Figure 1

Volcano plot showing the differentially expressed hypoxia-related genes of HCC in different databases. A
Common differentially expressed genes between the TCGA and GEO databases. B Gene Ontology (GO)
analysis of 397 hypoxia-related DEGs in HCC.
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Figure 2

Consensus clustering of HCC molecular subgroups based on hypoxia-related DEGs. A Cumulative
distribution function (CDF) curve. B CDF Delta area curve, which indicates the relative change in the area
under the CDF curve for each category number k compared with k-1. The horizontal axis represents the
number k and the vertical axis represents the relative change in the area under the CDF curve. C The Item-
Consensus Plot for k=4. The vertical axis represents item-consensus values and each bar represents each
sample. D The heatmap corresponding to the consensus matrix for k=4 obtained by applying consensus
clustering. The rows and columns of the matrix represent samples. The values of the consistency matrix
are shown in white to dark blue from 0 to 1, which represent the degree of consensus. E The heatmap of
397 hypoxia-related genes in 4 clusters.
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Figure 3

Characterization of different features of hypoxia-related DEGs clustering. A-B K‐M survival curves showed
the differences of overall survival and recurrence rate among the 4 clusters. C Proportion of other clinical
characteristics in 4 clusters. D-E The differences of TMB among 4 clusters.
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Figure 4

Kaplan–Meier analysis, risk score analysis, time‐dependent ROC analysis for a prognosis model based
the three‐gene signature in HCC. A-B K-M survival curve of high- and low-risk in TCGA cohort and ICGC
cohort. C-D Time‐dependent ROC analysis for OS prediction in TCGA and ICGC cohort.



Page 21/29

Figure 5

Construction of the nomogram predicting overall survival for HCC patients in the TCGA cohort. A Forrest
plot of the univariate and multivariate association of the prognostic model and clinicopathological
characteristics with overall survival. B The nomogram was built based on two independent prognostic
factors for predicting OS in HCC patients at 1-, 3-, and 5- year. C-E The calibration plot for internal
validation of the nomogram. F-H Time‐dependent ROC curves of the nomogram for 1‐,3‐ and 5‐year
overall survival in HCC to evaluate the predictive performance of the nomogram. I-K DCA curves of the
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nomogram for 1‐,3‐ and 5‐year overall survival in HCC to evaluate the clinical decision-making bene�ts of
the nomogram.

Figure 6

Kaplan–Meier analysis, risk score analysis, time‐dependent ROC analysis for the recurrence model based
on three-gene signature in HCC. A Distribution of risk scores of HCC patients with different gene
expression levels in TCGA cohort. B The recurrence rate of high- and low-risk group in TCGA. C Time‐
dependent ROC analysis for recurrence prediction in TCGA cohort. D The ROC comparation between
hypoxia-related recurrence signature and other recurrence models.
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Figure 7

Construction of a recurrence nomogram for HCC patients in the TCGA cohort. A Forrest plot of the
univariate and multivariate association of the risk-score model and clinicopathological characteristics
with overall survival. B The nomogram was built based on three independent prognostic factors for
predicting the recurrence in HCC patients at 1-, 3-, and 5- year. C-E The calibration plot for internal
validation of the nomogram. F-H Time‐dependent ROC curves of the nomogram for 1‐,3‐ and 5‐year
recurrence prediction in HCC to evaluate the predictive performance of the nomogram. I-K DCA curves of
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the nomogram for 1‐,3‐ and 5‐year recurrence prediction in HCC to evaluate the clinical decision-making
bene�ts of the nomogram.

Figure 8

Building a diagnostic model for distinguishing HCC from normal samples. Sensitivity and speci�city
validation of the diagnostic model and ROC curves for evaluating the predictive performance. A-B in
TCGA cohort. C-D in ICGC cohort. E-F in clinical specimens.
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Figure 9

Building a diagnostic model for distinguishing HCC from dysplastic nodules. A and C sensitivity and
speci�city validation of the diagnostic model in the GSE6764 and GSE89377 cohort. B and D ROC curves
for evaluating the predictive performance of the diagnostic model.
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Figure 10

Validation of the expression characteristics of hypoxia-related genes. A Genetic alteration detection of the
hypoxia-related genes from the cBioPortal database. B-D The expression level of each gene in TCGA
cohort with 50 HCC samples paired 50 normal samples. E-G Real-time PCR analyses of the mRNA
expressions of each gene in clinical specimens. H-J Real-time PCR analyses of the mRNA expressions of
each gene in different cell lines. K-M The expression level of each gene in GSE6764 cohort with 35 HCC
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samples paired 17 dysplastic nodules. O-Q The correlation analysis between expression levels of
different genes in TCGA cohort with 370 HCC samples.

Figure 11

Prediction performance of hypoxia-related genes for OS and Gene Set Enrichment Analyses of the three-
gene signature. A-C K-M survival curves for high and low expression levels of each gene. D-F progression-
free survival analysis for high and low expression levels of each gene. G-I Three representative Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways in high-risk group via GSEA.
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Figure 12

The overview of immune in�ltration and expression of immune checkpoints in HCC patients with different
risk scores. A-C Violin plots showing in�ltration fractions of different immune cells in the high- and low-
risk groups. D-H Violin plots showing the expression level of immunocheckpoints in high- and low-risk
groups.
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