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α-INCLUSIONS APPLIED TO GROUP THEORY VIA SOFT SET
AND LOGIC

ASLIHAN SEZGIN, NAIM ÇAĞMAN, AND FILIZ ÇITAK

Abstract. Soft set theory, initiated by Molodtsov, is a tool for modeling
various types of uncertainty. In this paper, upper and lower α-inclusions of a
soft set are defined. By using these new notions, some analyzes with respect to
group theory are made and it is shown that some of the subgroups of a group
can be obtained easily with the help of these notions. It is also illustrated that
a soft int-group and a soft uni-group can be obtained by its upper α-subgroups
and lower α-subgroups, respectively. Furthermore, soft int-group by its family
of upper α-subgroups is characterized under a certain equivalence relation.
Finally, a new method used to construct a soft int-group with the help of its
upper α-subgroups are introduced and an application of this method is given.

1. Introduction

The notion of soft set was introduced in 1999 by Molodtsov [1]. Since its incep-
tion, Maji et al. [2] and Ali et al. [3] introduced several operations of soft sets and
Sezgin et al. [4] studied on soft set operations in more detail. And the theory of
soft set has gone through remarkably rapid strides with a wide-ranging applications
especially in decision making [5, 6, 7, 8, 9, 10, 11, 12, 13]. There have been also at-
tempt to softificate various mathematical structures like groups [14], semirings [15],
BCK/BCI-algebras [16, 17], p-ideals [18], BCH-algebras [19], rings [20], near-rings
[21], mappings [22], soft lattices [23], substructures of rings, fields and modules [24].
Çağman et al. [25] introduced the concept of soft int-group which is based on the
inclusion relation and the intersection of sets, and therefore more functional for
developing the theory of soft groups. With the motivation of soft int-group, Sezgin
et al. [26] moreover defined soft uni-group which is based on the inclusion relation
and the union of sets and Muştuoğlu et al. [27] studied its basic properties of soft
uni-groups as regards normal soft uni-groups as well.
In this paper, first the notions of upper/lower α-inclusions and proper up-

per/lower α-inclusions of a soft set are introduced and their basic properties are
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studied. In this connection, the notions of upper α-subgroups of a soft uni-group
and lower α-subgroups of a soft uni-group are introduced. It is shown that some
of the subgroups of a group can be obtained via a soft int-group and its upper
α-subgroups and via a soft uni-group and its lower α-subgroups. And also it is
illustrated that under certain conditions, one can obtain a soft int-group with the
help of its upper α-subgroups and a soft uni-group with the help of its lower α-
subgroups. Since the theory of groups occupies a significant role in mathematics,
with many practical applications, these notions are analyzed in more detail and
some applications of these notions on group theory especially more concerning with
upper α-subgroups of a soft int-group are made. An answer whether the family of
upper α-subgroups of a soft int-group determine the soft int-group uniquely or not
are tried to be found. Firstly, an example to show that two soft int-groups may
have an identical family of upper α-subgroups, but may not be soft equal is given,
and it is proved that for the equality, their image sets have to be equal. Also, it
is shown that given any chain of subgroups of a group, there always exists a soft
int-group whose upper α-subgroups are exactly the members of this chain. Further,
a method used for constructing a soft int-group of G with the help of the subgroups
of G is defined. Finally, it is shown how an upper α-subgroup of a soft int-group is
softificated.

2. Preliminaries

In this section, some basic definition of soft set theory for the sake of completeness
are recalled. Throughout this paper, U refers to an initial universe, E is a set of
parameters, A ⊆ E and P (U) is the power set of U .

Definition 1. [1] A soft set fA over U is a set defined by

fA : E → P (U) such thatfA(x) = ∅ if x /∈ A.

Here, fA is also called approximate function. A soft set over U can be represented
by the set of ordered pairs

fA = {(x, fA(x)) : x ∈ E, fA(x) ∈ P (U)}.

It is clear to see that a soft set is a parametrized family of subsets of the set
U . It is worth noting that the sets fA(x) may be arbitrary. Some of them may be
empty, some may have nonempty intersection. Throughout this paper, fA(x) 6= ∅ if
x ∈ A, all of the soft sets are over U unless otherwise specified and Im(fA) denotes
the image set of fA.

Definition 2. [6] Let fA, fB be soft sets over U . Then, fA is a soft subset of fB,
denoted by fA⊆̃fB, if fA(x) ⊆ fB(x) for all x ∈ E.

Definition 3. [6] Let fA, fB be soft sets over U . Then, fA and fB are soft equal,
denoted by fA = fB, if and only if fA(x) = fB(x) for all x ∈ E.
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Definition 4. [6] The complement of the soft set fA over U is defined by f cA, where
f cA(α) = U \ fA(α) for all α ∈ E.

Definition 5. [25] Let G be a group and fG be a soft set over U . Then, fG is
called a soft int-group of G over U if

i) fG(xy) ⊇ fG(x) ∩ fG(y) for all x, y ∈ G,
ii) fG(x−1) = fG(x) for all x ∈ G.

Definition 6. [26] Let G be a group and fG be a soft set over U . Then, fG is
called an soft uni-group of G over U if

i) fG(xy) ⊆ fG(x) ∪ fG(y) for all x, y ∈ G,
ii) fG(x−1) = fG(x) for all x ∈ G.

For the sake of ease, a soft uni-group is designated by SU -group and a soft
int-group by SI-group in what follows.

Theorem 7. [25] A soft set fG over U is a SI-group over U if and only if
fG(xy

−1) ⊇ fG(x) ∩ fG(y) for all x, y ∈ G.

Theorem 8. [26] A soft set fG over U is a SU -group over U if and only if
fG(xy

−1) ⊆ fG(x) ∪ fG(y) for all x, y ∈ G.

Theorem 9. [25] Let fG be a SI-group over U . Then, fG(e) ⊇ fG(x) for all x ∈ G.

Theorem 10. [26] Let fG be a soft set over U . Then, fG is a SU -group over U if
and only if f cG is a SI-group over U .

3. α-inclusions of a soft set

In this section, first upper and proper upper α-inclusions, lower and proper lower
α-inclusions of a soft set are introduced and their basic properties are given. From
now on, fA is a soft set over U , α and αi, where i ∈ I and I is an arbitrary finite
index set, represents the subsets of U .

Definition 11. [25] Let fA be a soft set over U . Then, upper α-inclusion of the
soft set fA, denoted by f

⊇α
A , is defined as

f⊇αA = {x ∈ A : fA(x) ⊇ α}.

In particular, proper upper α-inclusion of the soft set fA, denoted by f
)α
A , is defined

as
f)αA = {x ∈ A : fA(x) ) α},

where fA(x) ) α means that fA(x) ⊇ α and fA(x) 6= α.

Definition 12. Let fA be a soft set over U . Then, lower α-inclusion of the soft
set fA, denoted by f

⊆α
A , is defined as

f⊆αA = {x ∈ A : fA(x) ⊆ α}.
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In particular, proper lower α-inclusion of the soft set fA, denoted by f
(α
A , is defined

as

f(αA = {x ∈ A : fA(x) ( α},
where fA(x) ( α means that fA(x) ⊆ α and fA(x) 6= α.

Note that, f⊆UA = f⊇∅A = A and f⊆αA ∪ f⊇αA 6= A.
In the following theorem, it is shown that each approximate elements of the soft
set can be characterized with the help of lower and upper α-inclusions.

Proposition 13. Let fA be a soft set over U and x ∈ A. Then,
(1) fA(x) =

⋂
{α ⊆ U : x ∈ f⊆αA }.

(2) fA(x) =
⋃
{α ⊆ U : x ∈ f⊇αA }.

Proposition 14. Let fA be a soft set over U . Then,

(1) f)αA ⊆ f⊇αA and f(αA ⊆ f⊆αA .
(2) f)αA = f⊇αA and f(αA = f⊆αA if and only if α /∈ Im(fA), that is to say, there

is no x ∈ A such that fA(x) = α.

Proposition 15. Let fA be a soft set over U and A = E. Then, if α1, α2 ∈ Im(fA)
such that α1 6= α2, then f

⊇α1
A 6= f⊇α2A and f⊆α1A 6= f⊆α2A .

Proposition 15 gives the idea that different elements of Im(fA) generates different
upper/lower α-inclusions.

Note 16. It is obvious that if A 6= E, then ∅ is always an element of Im(fA).
Thus, Proposition 15 is not valid if there is an element, say αk, in Im(fA) which is
contained in all of the elements of the image set and not equal to null set. Because,
then f⊇∅A = f⊇αkA , but ∅ 6= αk.

Proposition 17. Let fA be a soft set over U and α1, α2 ⊆ U such that α1 ⊆ α2.
Then,

(1) f)α2A ⊆ f)α1A and f⊇α2A ⊆ f⊇α1A .
(2) f(α1A ⊆ f(α2A and f⊆α2A ⊆ f⊇α2A .

In Proposition 17, it is shown that if α1 ⊆ α2, then whether α1 and α2 are
elements of Im(fA) does not become an issue. However in Proposition 18, 19 and
20, it is seen that if α1 ( α2, then it has great importance whether α1 and α2 are
elements of Im(fA).

Proposition 18. Let fA be a soft set over U and α1, α2 ⊆ U such that α1 ( α2.
If α1, α2 /∈ Im(fA), then

(1) f)α2A ⊆ f)α1A and f⊇α2A ⊆ f⊇α1A .
(2) f(α1A ⊆ f(α2A and f⊆α1A ⊆ f⊆α2A .
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Proof. i) Let x ∈ f)α2A , then

fA(x) ) α2 ) α1 ⇒ x ∈ f)α1A ⇒ f)α2A ⊆ f)α1A .

f⊇α2A ⊆ f⊇α1A follows from f)α2A ⊆ f)α1A and Proposition 14.

ii) Let x ∈ f(α1A , then

fA(x) ( α1 ( α2 ⇒ x ∈ f(α2A ⇒ f(α1A ⊆ f(α2A .

f⊆α1A ⊆ f⊆α2A follows from f(α1A ⊆ f(α2A and Proposition 14. �

Proposition 19. Let fA be a soft set over U and α1, α2 ⊆ U such that α1 ( α2.
If α1 /∈ Im(fA) and α2 ∈ Im(fA), then

(1) f)α2A ( f)α1A and f(α1A ⊆ f(α2A .
(2) f⊇α2A ⊆ f⊇α1A and f⊆α1A ⊆ f⊆α2A

Proposition 20. Let fA be a soft set over U and α1, α2 ⊆ U such that α1 ( α2.
If α1, α2 ∈ Im(fA), then

(1) f)α2A ( f)α1A and f(α1A ( f(α2A .
(2) f⊇α2A ( f⊇α1A and f⊆α1A ( f⊆α2A .

Note that in Proposition 18, 19 and 20, whether the set Im(fA) is ordered by
inclusion or not has an important role, too.

Proposition 21. Let fA be a soft set over U and α
′
= U \ α. Then,

f⊆αA = (f cA)
⊇α
′

and f⊇αA = (f cA)
⊆α
′

.

Proof. Let fA be a soft set over U . Then,

(f cA)
⊇α
′

= {x ∈ A : f cA(x) ⊇ α
′
}

= {x ∈ A : U \ fA(x) ⊇ α
′
}

= {x ∈ A : fA(x) ⊆ α}
= f⊆αA

The other equality can be shown similarly, hence omitted. �

4. Applications of α-inclusions to group theory

In this section, the notion of upper α-subgroups of a SI-groups and lower α-
subgroups of a SU -groups are introduced and these notions are studied with respect
to group theory. From now on, G denotes a group with identity e and also G is the
set of parameters under consideration unless otherwise specified.

Theorem 22. [25] Let fG be a soft set over U and α be a subset of U such that
∅ ⊆ α ⊆ fG(e). If fG is a SI-group over U , then f⊇αG is a subgroup of G.
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Theorem 23. Let fG be a soft set over U and α be a subset of U such that
∅ ⊆ fG(e) ⊆ α. If fG is a SU -group over U , then f⊆αG is a subgroup of G.

Proof. Let fG be a SU -group over U , then f cG is a SI-group over U by Theorem

22. It is needed to show that f⊆αG is a subgroup of G. Since f⊆αG = (f cG)
⊇α
′

by Proposition 21, it is enough to show that (f cG)
⊇α
′
is a subgroup of G. Since

fG(e) ⊆ α, it follows that e ∈ f⊆αG and

∅ 6= f⊆αG ⊆ G, so ∅ 6= (f cG)⊇α
′

⊆ G.

Now assume that x, y ∈ (f cG)⊇α
′
, then

f cG(x) ⊇ α
′
and f cG(y) ⊇ α

′
.

Since f cG is a SI-group over U , then

f cG(xy
−1) ⊇ f cG(x) ∩ f cG(y) ⊇ α

′
∩ α

′
= α

′
.

This shows that xy−1 ∈ (f cG)⊇α
′
, which completes the proof. �

From now on, if fG is a SI-group over U , then it is assumed that ∅ ⊆ α ⊆ fG(e)
and if fG is a SU -group over U , then ∅ ⊆ fG(e) ⊆ α is satisfied for all α ⊆ U .

Definition 24. If fG is a SI-group over U , then the subgroups f⊇αG are called
upper α-subgroups of fG. If fG is a SU -group over U , then the subgroups f

⊆α
G are

called lower α-subgroups of fG.

It is known that if G is a finite group, then the number of subgroups of G is
finite. Now, consider the upper α-subgroups of a SI-group fG. It seems that as
the subsets of U changes, so does the upper α-subgroups of fG. But, since each
upper α-subgroup of fG is in fact a subgroup of G, it can be deduced that not all
these upper α-subgroups are distinct, that is, some of the subsets of U generates
the same upper α-subgroups. Otherwise, the number of the subgroups of G would
be equal to 2|P (U)|, which is not the case.
This idea motivates us to find the same upper α-subgroups of a SI-group and lower
α-subgroups of a SU -group while characterizing the number of upper α-subgroups
and lower α-subgroups subgroups with respect to the number of subgroups of a
group. First let us give an example to clarify what is wanted to be meaned.

Example 25. Let G = Z4 be the set of parameters and U = Z4 be the universal
set. IF a soft set over U is constructed by
fG(0) = Z4
fG(1) = {0, 1}
fG(2) = {0, 1, 3}
fG(3) = {0, 1},
then one can easily show that the soft set fG is a SI-group over Z4. Here, the
universal set Z4 has 24 = 16 different improper subsets. However, all the upper
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α-subgroups of fG are:
f⊇Z4G = f

⊇{0,2,3}
G = f

⊇{1,2,3}
G = f

⊇{0,1,2}
G = f

⊇{2,3}
G = f

⊇{1,2}
G = f

⊇{0,2}
G = f

⊇{2}
G =

{0},
f
⊇{0,1,3}
G = f

⊇{1,3}
G = f

⊇{0,3}
G = f

⊇{3}
G = {0, 2} and

f
⊇{0,1}
G = f

⊇{1}
G = f

⊇{0}
G = f⊇∅G = Z4.

Not to our surprise, some of the upper α-subgroups coincide with each others,
since Z4 has only three subgroups, that is, {0}, {0, 2} and Z4. Also since Im(fG) =
{{0, 1}, {0, 1, 3},Z4}, it follows from Note 16 and Proposition 15 that f⊇{0,1}G 6=
f
⊇{0,1,3}
G 6= f⊇Z4G . These ideas may evoke the following questions:
(1) Does the image set of fG have a role in determining the number of upper

α-subgroups of fG?
(2) Why are some of the upper α-subgroups of fG are the same and some of

them different? Under which conditions does the upper α-subgroups of fG
coincide with each others?

(3) In Example 25, is it a coincidence that f⊇αG , where α ∈ Im(fG) constitutes
all the upper α-subgroups of fG? If so, can we obtain all the subgroups of
G by all the upper α-subgroups of fG?

The same questions can be raised for a SU -groups and its lower α-subgroups.
The answers of the first question is found in Theorem 33, the second in Theorem
26 and Theorem 28 and the third in Theorem 33 and Note 34.

Theorem 26. Let fG be a SI-group over U . Then, the subgroups f
⊇α1
G and f⊇α2G

(with α1 ( α2 and α1, α2 /∈ Im(fG)) of fG are equal if and only if there is no x ∈ G
such that α1 ⊆ fG(x) ( α2.

Proof. (⇒) Assume that f⊇α1G = f⊇α2G and there exists x ∈ G such that α1 ⊆
fG(x) ( α2. It follows that x ∈ f⊇α1G and x /∈ f⊇α2G , implying f⊇α1G * f⊇α2G , which
is a contradiction with the hypothesis.
(⇐) Let there be no x ∈ G such that α1 ⊆ fG(x) ( α2. Since α1 ( α2, and
α1, α2 /∈ Im(fG), then f

⊇α2
G ⊆ f⊇α1G by Proposition 18 (i). Now, let x ∈ f⊇α1G ,

then fG(x) ⊇ α1 and fG(x) ⊇ α2 because fG(x) can not be a proper subset of α2.
Thus, x ∈ f⊇α2G and f⊇α1G = f⊇α2G . �

In Theorem 26, it is handled the subgroups f⊇α1G and f⊇α2G of fG with α1 ( α2
and α1, α2 /∈ Im(fG) and investigate the condition that makes them equal. We can
not make such a characterization for the subgroups f⊇α1G and f⊇α2G with α1 ( α2
and α1, α2 ∈ Im(fG). Because, if α1, α2 ∈ Im(fG) such that α1 6= α2, then
obviously f⊇α1G 6= f⊇α2G .

Example 27. In Example 25, {0, 2} /∈ Im(fG) and {0, 2, 3} /∈ Im(fG) also {0, 2} (
{0, 2, 3}. Since there is no x ∈ G such that

{0, 2} ⊆ fG(x) ( {0, 2, 3},
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it follows that f⊇{0,2}G = f
⊇{0,2,3}
G . Now, {0} /∈ Im(fG) and {0, 1, 2} /∈ Im(fG) and

{0} ( {0, 1, 2}. However, since there is x = 1 ∈ G such that

{0} ⊆ fG(1) ( {0, 1, 2},

it follows that f⊇{0}G 6= f
⊇{0,1,2}
G .

Theorem 28. Let fG be a SU -group over U . Then, the subgroups f
⊆α1
G and f⊆α2G

(with α1 ( α2 and α1, α2 /∈ Im(fG)) of fG are equal if and only if there is no x ∈ G
such that α1 ( fG(x) ⊆ α2.

Proof. (⇒) Assume that f⊆α1G = f⊆α2G and there exists x ∈ G such that α1 (
fG(x) ⊆ α2. It follows that x ∈ f⊆α2G and x /∈ f⊆α1G , implying f⊆α2G * f⊆α1G , which
contradicts the hypothesis.
(⇐) Conversely, let there be no x ∈ G such that α1 ( fG(x) ⊆ α2. Since α1 ( α2,

and α1, α2 /∈ Im(fG), then f⊆α1G ⊆ f⊆α2G by Proposition 18 (ii). Now, let x ∈ f⊆α2G ,
then fG(x) ⊆ α2 and fG(x) ⊆ α1 because α1 can not be a proper subset of fG(x).
Thus, x ∈ f⊆α1G and so f⊆α1G = f⊆α2G . �
In Theorem 22 and Theorem 23, it is shown that some of the subgroups of a

group can be obtained by using a SI-group and its upper α-subgroups and by a SU -
group and its lower α-subgroups. With the following two theorems, it is illustrated
that under certain conditions, a SI-group and a SU -group can be obtained by their
upper α-subgroups and lower α-subgroups, respectively.

Theorem 29. Let fG be a soft set over U , f⊇αG be upper α-subgroups of fG for
each α ⊆ U and the set Im(fG) be ordered by inclusion. Then, fG is a SI-group
over U .

Proof. Let x, y ∈ G and fG(x) = α1 and fG(y) = α2. Suppose that α1 ⊆ α2. It is
obvious that x ∈ f⊇α1G and y ∈ f⊇α2G . Since α1 ⊆ α2, it follows by Proposition 17
that x, y ∈ f⊇α1G and since f⊇αG is a subgroup of G for all α ⊆ U , it follows that
xy−1 ∈ f⊇α1G . Hence,

fG(xy
−1) ⊇ α1 = α1 ∩ α2 = fG(x) ∩ fG(y).

Thus, fG is a SI-group over U . �

Theorem 30. Let fG be a soft set over U , f⊆αG be lower α-subgroups of fG for
each α ⊆ U and the set Im(fG) be ordered by inclusion. Then, fG is a SU -group
over U .

Proof. Let x, y ∈ G and fG(x) = α1 and fG(y) = α2. Suppose that α1 ⊆ α2. It is
obvious that x ∈ f⊆α1G and y ∈ f⊆α2G . Since α1 ⊆ α2, it follows from by Proposition
17 that x, y ∈ f⊆α2G and since f⊆αG is a subgroup of G for all α ⊆ U , it follows that
xy−1 ∈ f⊆α2G . Hence,

fG(xy
−1) ⊆ α2 = α1 ∪ α2 = fG(x) ∪ fG(y).
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Therefore, fG is a SU -group over U . �

From now on, it will be more concerned with a SI-group and its upper α-
subgroups.

Note 31. If fG is a SI-group over U , then the set Im(fG) does not need to be
ordered by inclusion as in the case of Example 32. However, it is an immediate
result of Definition 24 that fG attains an infimum on all the upper α-subgroups
even Im(fG) does not form a chain. This significant fact is used in the proof of
Theorem 33.

Example 32. Assume that U = S3 is the universal set and G = Z6 is the set of
parameters. If a soft set is constructed by

fG(0) = S3
fG(1) = fG(5) = {(12), (13), (132)}
fG(2) = fG(4) = {(12), (13), (23), (123), (132)}
fG(3) = {(1), (12), (13), (132)}

then fG is a SI-group over U , whose image set is not ordered by inclusion. Note
that

f⊇S3G = {0}
f
⊇{(1),(12),(13),(132)}
G = {0, 3}

f
⊇{(12),(13),(23),(123),(132)}
G = {0, 2, 4}

f
⊇{(12),(13),(132)}
G = Z6.

Thus, upper α-subgroup {0} attains an infimum on 0, {0, 3} on 3, {0, 2, 4} on 2
and 4, since fG(2) = fG(4), and Z6 on 1 and 5.

Theorem 33. Let G be a finite group, fG be a SI-group over U and I be an
arbitrary finite index set. Then,

G(f⊇αiG ) = {f⊇αiG : i ∈ I, αi ∈ Im(fG)}

contains all the upper α-subgroups of fG.

Proof. Let f⊇αG be any upper α-subgroup of fG. It is wanted to be shown that
f⊇αG ∈ G(f⊇αiG ). If α = αi for some i ∈ I, then there is nothing to prove. Assume
that α 6= αi for all i ∈ I. Then, there does not exist x ∈ G such that fG(x) = α.
Let H = {x ∈ G : fG(x) ) α}. First, let us show that H is a subgroup of G. Since
fG is a SI-group over U , where ∅ ⊆ α ⊆ fG(e) and since there does not exist x ∈ G
such that fG(x) = α, it follows that e ∈ f)αG and ∅ 6= f)αG ⊆ G. Now assume that
x, y ∈ f)αG , then fG(x) ) α and fG(y) ) α, thus

fG(xy
−1) ⊇ fG(x) ∩ fG(y) ⊇ α.
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Since there does not exist x ∈ G such that fG(x) = α, fG(xy−1) ) α, so xy−1 ∈ H,
implying that H is a subgroup of G. Moreover, it is obvious from the definition
of H that fG attains an infimum on H (similar to Note 31). Thus, there exists
h? ∈ H such that

fG(h
?) = Inf{fG(h) : h ∈ H}.

Now, fG(h?) ∈ Im(fG) and thus, fG(h?) = αi∗ for some i∗ ∈ I. Then, we have
Inf{fG(x) : fG(x) ) α} = αi∗ .

Clearly, αi∗ ) α. Also, since there does not exist x ∈ G such that α ⊆ fG(x) ( αi∗ ,
by Proposition 19 and 26, f⊇αG = f⊇αi∗G , thus f⊇αG ∈ G(f⊇αiG ), completing the
proof. �

Note 34. Theorem 33 does not mean that we can obtain all the subgroups of G
by constructing a SI-group and then finding its upper α-subgroups f⊇αG , where α ∈
Im(fG).

In Example 25, we could obtain all the subgroups of Z4 with the help of upper
α-subgroups, where α ∈ Im(fG) = {{0}, {0, 1, 3}, {Z4}}. But this is not always
the case. Because there is not only one SI-group of a group G over U . While
constructing a SI-group, we are free, even we can change the number of the elements
of Im(fG). For example, consider Example 25. If we define a soft set hG over
U = Z4 such that hG(0) = {0, 3}, hG(1) = hG(2) = hG(3) = {3}, then hG is an SI-
group, where G is again Z4. But, since Im(hG) = {{3}, {0, 3}}, by Theorem 33, the
only upper α-subgroups of hG are h

⊇{3}
G = Z4 and h

⊇{0,3}
G = {0}. This means that

we can not obtain the other subgroup {0, 2} of Z4 by hG and its upper α-subgroups.
Namely, there is not any α ∈ Im(hG) such that h⊇αG = {0, 2}. However, see the
following:

Theorem 35. Any subgroup H of a group G can be realized as an upper α-subgroup
of some SI-group over U .

Proof. Let fG be a soft set over U defined by

fG(x) =

{
α, if x ∈ H
∅, if x /∈ H

Then, fG is a SI-group over U . Let a, b ∈ G.
Case 1: Suppose a ∈ H and b ∈ H, then ab ∈ H. It follows that fG(ab) = α and
fG(a) = fG(b) = α. Thus, fG(ab) ⊇ fG(a) ∩ fG(b). And also if a ∈ H, then so is
a−1, thus fG(a) = fG(a

−1) = α.

Case 2: Now, suppose a ∈ H and b /∈ H, then ab /∈ H. It follows that fG(a) = α
and fG(b) = fG(ab) = ∅. Therefore, fG(ab) ⊇ fG(a) ∩ fG(b), furthermore fG(a) =
fG(a

−1) if a ∈ H or a /∈ H.
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Case 3: Now, suppose that a /∈ H and b /∈ H. Then either ab ∈ H or ab /∈ H. It
is easy to show that in any cases, fG(ab) ⊇ fG(a) ∩ fG(b) and fG(a) = fG(a

−1).
Hence, fG is a SI-group over U . Moreover for this SI-group, f

⊇α
G = H. �

Note 36. It is known that if fG is a SI-group over U , then fG(e) ⊇ fG(x) for all
x ∈ G. Let fG(e) = αe, then it turns out to be an interesting case to investigate
the upper αe-subgroup f

⊇αe
G of fG. Because, if x ∈ f⊇αeG , then fG(x) ⊇ α = fG(e)

and it appears that only e ∈ f⊇αeG . But that is not always the case as seen in the
following example.

Example 37. Consider the SI-group fG in Theorem 35. Assume that H 6= {e}
and H 6= G. It is known that fG is a SI-group over U and Im(fG) = {∅, α}. Thus,
by Theorem 33, two upper α-subgroups are

f⊇∅G = G and f⊇αG = {x ∈ G : fG(x) ⊇ α} = H.

Since e ∈ H, fG(e) = α; but f⊇αG = H, which is not equal to “e".

Definition 38. [26] Let fG be a SU -group over U . Then e-set of fG, denoted by
GfG , is defined as

GfG = {x ∈ G : fG(x) = fG(e)}.

Theorem 39. Let fG be a SI-group over U . If fG(e) = αe, then f
⊇αe
G = GfG .

Proof. f⊇αeG = {x ∈ G : fG(x) ⊇ αe} = {x ∈ G : fG(x) = αe}, since αe ⊇ fG(x),
∀x ∈ G by Theorem 9. Writing αe = fG(e),

f⊇αeG = {x ∈ G : fG(x) = fG(e)} = GfG .

�

In Theorem 33, it is seen that the image set of a SI-group has a significant
role in determining the upper α-subgroups, thus from now on the image set of the
SI-group is more concerned.

Note 40. When considering Proposition 20 and Theorem 33 together, it can be
deduced that if fG is a SI-group over U and {α0, α1, . . . , αn} ∈ Im(fG), satisfying
that α0 ) · · · ) αn, then the family of upper α-subgroups form a chain, which is
denoted by C(fG) as below:

C(fG) = f⊇α0G ( f⊇α1G · · · ( f⊇αnG ,

where f⊇α0G = GfG . Moreover since fG attains an infimum on all of the i- upper
α-subgroups and f⊇αiG , where αi ∈ Im(fG) constitutes all the upper α-subgroups,
f⊇αnG which is at the end point of the chain is of course equal to G.

Not to our surprise, only some of the upper α-subgroups of fG form a chain,
since all the subgroups of G, in general, does not form a chain. That is, it makes
no sense to hope all the upper α-subgroups form a chain. In this connection, see
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Example 32, {0, 3} * {0, 2, 4} and {0, 2, 4} * {0, 3}. Of course if the members of
the Im(fG) forms a chain, so does the upper α-subgroups of fG. For further detail,
refer to Theorem 41.

Theorem 41. Let G be a finite group, fG be a SI-group over U and I be an
arbitrary finite index set and

G(f⊇αiG ) = {f⊇αiG : i ∈ I, αi ∈ Im(fG)}.

Then, we have the followings:

(1) There exists a unique ie ∈ I such that αie ⊇ αi, ∀i ∈ I.
(2) GfG =

⋂
i∈I f

⊇αi
G = f

⊇αie
G .

(3) G =
⋃
i∈I f

⊇αi
G .

(4) If the members of Im(fG) forms a chain, so does G(f
⊇αi
G ).

Proof. i) Since fG(e) ∈ Im(fG), there exists a unique ie ∈ I such that fG(e) = αie .
By Theorem 9, fG(e) ⊇ fG(x) for all x ∈ G. It follows that αie ⊇ fG(x), ∀x ∈ G.
Thus, αie ⊇ αi, ∀i ∈ I.

ii) Since in Theorem 39, it is proved that GfG = f
⊇αie
G , where fG(e) = αie , it

is only shown that f⊇αieG =
⋂
i∈I f

⊇αi
G . Since αie ⊇ αi, ∀i ∈ I, f⊇αieG ⊆ f⊇αiG ,

∀i ∈ I by Proposition 17. Thus, f⊇αieG ⊆
⋂
i∈I f

⊇αi
G . Now, let x ∈

⋂
i∈I f

⊇αi
G , then

x ∈ f⊇αiG , ∀i ∈ I. Since ie ∈ I, thus x ∈ f⊇αieG , implying that
⋂
i∈I f

⊇αi
G = f

⊇αie
G .

Thus, the proof is completed.

iii) Since f⊇αiG ⊆ G, ∀i ∈ I,
⋃
i∈I f

⊇αi
G ⊆ G. Now let x ∈ G. It is obvious

that since fG(x) ∈ Im(fG), there exists ix ∈ I such that fG(x) = αix . Clearly,
x ∈ f⊇αixG and thus, x ∈

⋃
i∈I f

⊇αi
G . Therefore, G ⊆

⋃
i∈I f

⊇αi
G , so G =

⋃
i∈I f

⊇αi
G .

iv) Assume that the members of Im(fG) form a chain under proper inclusion.
Then, for any i, j ∈ I, either αi ( αj or αj ( αi. It follows by Proposition 20 that
f⊇αiG ( f

⊇αj
G or f⊇αjG ( f⊇αiG . Of course, if αi ⊆ αj or αj ⊆ αi, it follows that

f⊇αiG ⊆ f⊇αjG or f⊇αjG ⊆ f⊇αiG by Proposition 17. �

5. Characterization of SI-groups

In this section, it is tried to find an answer whether the family of upper α-
subgroups of a SI-group determine the SI-group uniquely or not. The following
example shows that two SI-groups of a G over U may have an identical family of
upper α-subgroups, but the SI-groups may not be soft equal.

Example 42. Let G = Z4 be the set of parameters and U = {1,−1, i,−i} be
the universal set. If a soft set over U is constructed by fG(0) = {1,−1, i,−i},
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fG(1) = fG(3) = {i}, fG(2) = {1, i}, clearly fG is a SI-group over U . Here,
Im(fG) = {{i}, {1, i}, {1,−1, i,−i}}, thus all the upper α-subgroups of fG are

fG
⊇{i} = Z4, fG⊇{1,i} = {0, 2}, fG⊇{1,−1,i,−i} = {0}.

Now, let us define a soft set over U such that hG(0) = {1,−1, i}, hG(1) = hG(3) =
{−1}, hG(2) = {−1, i}. Obviously, hG is a SI-group over U , too and the family of
upper α-subgroups of hG are

hG
⊇{−1} = Z4, hG⊇{−1,i} = {0, 2}, hG⊇{1,−1,i} = {0}.

It is seen that two SI-groups fG and hG have the same family of upper α-subgroups,
however fG is not soft equal to hG.

Proposition 43. Let SG be the class of SI-groups of a group G over U . If I define
a relation R on SG by fGRhG if and only if fG and hG have an identical family of
upper α-subgroups, then the relation R is an equivalence relation.

In Example 42, it is shown that fG and hG may be such that fGRhG but fG and
hG need not to be soft equal. The equivalence relation defined in Proposition 43
partitions SG into equivalence classes. Let fG ∈ SG and [fG] denote the equivalence
class contained fG. If the group G is finite, then the number of possible distinct
upper α-subgroups are finite, as each upper α-subgroups is a subgroup of G in
the usual sense. In Theorem 35, it is shown that any subgroup of a group can be
realized as an upper α-subgroup of a SI-group. All these remarks lead us to the
conclusion that the number of possible chains of upper α-subgroups is finite. Since
each equivalence class can be characterized by its chain of upper α-subgroups, we
have with the following that the number of equivalence classes is finite, although
SG is an infinite family when U is infinite.

Corollary 44. If G is a finite group, then the number of distinct equivalence classes
in SG under the definition of equivalence defined in Proposition 43 is finite. More-
over, SG can be written as a disjoint union

SG = [f1G]∪̇[f2G]∪̇ · · · ∪̇[fkG]
where [f iG], 1 ≤ i ≤ k are all distinct equivalence classes. Here, again note that [f iG]
has an infinite number of SI-groups when U is infinite.

Theorem 45. Let fG and hG be two SI-groups of a finite group G having the
identical family of upper α-subgroups and the sets Im(fG) and Im(hG) be ordered
by inclusion. If Im(fG) = {α0, . . . , αm} and Im(hG) = {β0, . . . , βn}, then

(1) m = n,
(2) f⊇αiG = h

⊇βi
G , 0 ≤ i ≤ m,

(3) If x ∈ G such that fG(x) = αi, then hG(x) = βi, 0 ≤ i ≤ m.

Proof. i) By Theorem 33 that the only upper α-subgroups of fG and hG are the
families of f⊇αiG and h⊇βiG , respectively. Since fG and hG have the identical family
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of upper α-subgroups, it follows that m = n.

ii) Since α0 ) · · · ) αm and β0 ) · · · ) βn, by Theorem 33 and Theorem 45 (i)
that two chains of upper α-subgroups are

f⊇α0G ( f⊇α1G ( · · · ( f⊇αmG = G, h
⊇β0
G ( h

⊇β1
G ( · · · ( h

⊇βn
G = G.

Since the two upper α-subgroups are identical, it is obvious that f⊇α0G = h
⊇β0
G =

{e}. Let f⊇α1G = h
⊇βj
G for some j > 0 (since f⊇α0G = h

⊇β0
G ). Suppose that f⊇α1G =

h
⊇βj
G for some j > 1(j 6= 1). Again, h⊇β1G = f⊇αiG for some α1 ) αi. It is obvious
that αi 6= α1. Thus,

f⊇αiG = h
⊇β1
G ( h

⊇βj
G (since β1 ) βj), so f

⊇αi
G ( h

⊇βj
G .

Now
h
⊇βj
G = f⊇α1G ⊆ f⊇αiG (since α1 ) αi) so h

⊇βj
G ( f⊇αiG

Note that, f⊇αiG ( h
⊇βj
G and h

⊇βj
G ( f⊇αiG contradicts one another, because the

inclusion are both proper inclusion, so I must have f⊇α1G ( h
⊇β1
G . The rest of the

proof follows by induction on i. Finally it is obtained that f⊇αiG = h
⊇βi
G , 0 ≤ i ≤ m.

iii) Let x ∈ G such that fG(x) = αi and hG(x) = βj . By Theorem 45 (ii),

f⊇αiG = h
⊇βi
G , 0 ≤ i ≤ m. Thus, x ∈ h

⊇βi
G implies that hG(x) = βj such that

βj ⊇ βi. So, h
⊇βj
G ( h

⊇βi
G by Proposition 17. Similarly, by Theorem 45 (ii),

h
⊇βj
G = f

⊇αj
G . Therefore, since x ∈ h

⊇βj
G (as hG(x) = βj), x ∈ f

⊇αj
G and so,

fG(x) = αi ⊇ αj . It follows by Proposition 17 that f
⊇αi
G ( f

⊇αj
G . However, by

Theorem 45 (ii), f⊇αiG = h
⊇βi
G and f⊇αjG = h

⊇βj
G . So I have that

h
⊇βi
G = f⊇αiG ( f

⊇αj
G = h

⊇βj
G ,

thus h⊇βiG ( h
⊇βj
G , which contradicts the fact that h

⊇βj
G ( h

⊇βi
G if we do not have

h
⊇βj
G = h

⊇βi
G . We know that h

⊇βj
G = h

⊇βi
G if and only if βj = βi. Thus, fG(x) = αi

and hG(x) = βj = βi, completing the proof. �

Theorem 46. Let fG and hG be two SI-groups of a finite group G such that their
family of upper α-subgroups are identical and their image sets are both ordered by
inclusion. Then,

fG = hG ⇔ Im(fG) = Im(hG).

Proof. Let fG = hG, then Im(fG) = Im(hG) is obvious. Conversely, suppose that
Im(fG) = Im(hG). Let Im(fG) = {α0, α1, · · ·αr} and Im(hG) = {β0, β1, . . . βr},
such that α0 ) α1 ) . . . ) αr and β0 ) β1 ) · · · ) βr. Let

β0 ∈ Im(fG), thus β0 = αt0 for some t0.
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Let αt0 6= α0. It follows that αt0 + α0, since α0 is the maximal element of the
chain. Now, let β1 ∈ Im(fG) and so β1 = αt1 for some t1. Since β0 ) β1, it implies
that αt0 ) αt1 . Continuing similarly,

αt0 ) αt1 ) · · · ) αtr , where β0 = αt0 + α0.

This means that there does not exist any βi ∈ Im(hG) such that α0 = βi. But
this contradicts the fact that Im(fG) = Im(hG). Hence we must have β0 = α0.
Similarly, one can obtain that βi = αi, 0 ≤ i ≤ r. Now, let a0, a1, . . . ar be different
elements of G such that

fG(ai) = αi, 0 ≤ i ≤ r.
By Theorem 45 (iii), hG(ai) = βi, 0 ≤ i ≤ r. Since αi = βi, then fG(ai) = hG(ai),
∀ai ∈ G. Hence fG = hG, completing the proof. �

Since all the subgroups of G, in general, do not form a chain, we can conclude
that not all subgroups of G are upper α-subgroups of a given SI-group whose
image sets form a chain. Therefore, it turns out to be an interesting problem to
find a SI-group whose image sets form a chain and which accommodates as many
subgroups of G as possible in the chain of upper α-subgroups of the SI-group. For
this characterization, I have the following:

Theorem 47. Let G be a group, Hi be subgroups of G such that

{e} = H0 ( H1 ( · · · ( Hr = G

and αi be any sets such that α0 ) α1 ) . . . ) αr for all i = 1, 2 . . . r. If

fG(H0) = α0,
fG(Hi \Hi−1) = αi, (0 ≤ i ≤ r),

for all i = 1, 2 . . . r, then fG is a SI-group over U .

Here, note that the length of the arbitrary chain of sets and the subgroups have
to be the same.

Proof. Before starting the proof, note that if h ∈ Hi, then fG(h) ⊇ αi. In fact,
Hi−1 ( Hi. Then, if h ∈ Hi, h ∈ Hi \Hj or h ∈ Hj , where j < i. If h ∈ Hi \Hj ,
then fG(h) = αi, if h ∈ Hj (say h ∈ Hj \ Hj−1), then fG(h) = αj , where j < i.
Since j < i, it follows that αj ) αi. It means that fG(h) ) αi. Let x, y ∈ G. I
handle the proof in two cases: Case 1: Let x, y ∈ Hi, but not in Hi−1, namely,
x, y ∈ Hi \Hi−1. Then,

fG(x) = fG(y) = αi.

Since Hi is a subgroup of G, it follows that xy ∈ Hi. Thus,

fG(xy) ⊇ αi = fG(x) ∩ fG(y).
Moreover, since x ∈ Hi (and not in Hi−1), and Hi is a subgroup of G, x−1 ∈ Hi.
Thus,

fG(x
−1) = αi = fG(x).
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Case 2: Let x ∈ Hi \Hi−1 and y ∈ Hj \Hj−1 and assume that i > j. It implies
that αj ) αi and Hj ( Hi. Moreover, I have fG(x) = αi and fG(y) = αj , thus
fG(x) ∩ fG(y) = αi. Also, since y ∈ Hj \Hj−1 and i > j, thus y ∈ Hi. It follows
that x, y ∈ Hi and xy ∈ Hi (since Hi is a subgroup of G). This implies that

fG(xy) ⊇ αi = fG(x) ∩ fG(y) = fG(x).

Moreover,
fG(x

−1) = αi = fG(x).

Therefore fG is a SI-group over U . �

Example 48. Consider the group G = Z8. In order to construct a SI-group over
U , I only need an arbitrary chain of sets and subgroups of Z8 forming a chain. It
is known that these two chains have to be with the same length. Let the chain of
subgroups of Z8 be

{0} ( {0, 4} ( {0, 2, 4, 6} ( Z8.
Here, H0 = {0}, H1 = {0, 4}, H2 = {0, 2, 4, 6, 8}, H3 = Z8. Let any chain of sets
whose length is four be the following:

{1, 2, 3, 4, 5} ) {1, 2, 4} ) {1, 2} ) {1}
Here, α0 = {1, 2, 3, 4, 5}, α1 = {1, 2, 4}, α2 = {1, 2}, α3 = {1}. Now it is time to
construct the SI-group.
Since H0 = {0}, then fG(0) = α0 = {1, 2, 3, 4, 5},
Since H1 \H0 = {4}, then fG(4) = α1 = {1, 2, 4},
Since H2 \H1 = {2, 6}, then fG(2) = fG(6) = α2 = {1, 2},
Since H3 \H2 = {1, 3, 5, 7}, then fG(1) = fG(3) = fG(5) = fG(7) = α3 = {1}.
One can easily show that fG is a SI-group over U .

Theorem 49. Let G be a group, Hi be subgroups of G such that

H0 ( H1 ( · · · ( Hr = G

for all i = 1, 2 . . . r. Then, there exists a SI-group of G whose upper α-subgroups
are exactly the members of this chain.

Proof. Let us consider the chain of sets α0 ) α1 ) . . . ) αr. If a soft set over U is
defined by

fG(H0) = α0,
fG(Hi \Hi−1) = αi, (0 ≤ i ≤ r)

then fG is a SI-group over U by Theorem 47. Now, Im(fG) = {α0, α1, . . . , αr}.
Since αi is the element of the chain for all i ∈ I = {1, 2 . . . r}, all the upper α-
subgroups of fG are given the chain of subgroups

f⊇α0G ( f⊇α1G ( · · · ( f⊇αrG = G.

For the final of the proof, note that Hi ⊆ f⊇αiG . In fact, if x ∈ Hi, then fG(x) ⊇ αi
and it follows that x ∈ f⊇αiG . Moreover, if x ∈ f⊇αiG , then fG(x) ⊇ αi, so fG(x) ∈
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{α0, α1, . . . αi}. Therefore, x ∈ Hs for some s ≤ i. Since Hs ( Hi for s ≤ i, x ∈ Hi.
It follows that f⊇αiG ⊆ Hi, completing the proof. �

Example 50. In Example 48, α0 = {1, 2, 3, 4, 5}, α1 = {1, 2, 4}, α2 = {1, 2},
α3 = {1}, that is, α0 ) α1 ) α2 ) α3, so when fG is considered, we have

f⊇α0G = {0}, f⊇α1G = {0, 4}, f⊇α2G = {0, 2, 4, 6, 8} and f⊇α3G = Z8.

It follows that f⊇α3G ) f⊇α2G ) f⊇α1G ) f⊇α0G . Moreover, since H0 = {0}, H1 =
{0, 4}, H2 = {0, 2, 4, 6, 8} and H3 = Z8, it follows that H3 ) H2 ) H1 ) H0. Here,
note that H0 = f⊇α0G , H1 = f⊇α1G , H2 = f⊇α2G and H3 = f⊇α3G , as required.

Finally, it is time to softificate an upper α-subgroup of a SI-group over U with
the following definition.

Definition 51. Let fG be a SI-group over U and f⊇αG be an upper α-subgroup of
fG. Softificated f

⊇α
G is a soft set f?

f
⊇α
G

defined by,

f?
f
⊇α
G

(x) =

{
fG(x), if x ∈ f⊇αG ,
∅, otherwise

for all x ∈ G. Clearly, f?
f
⊇α
G

⊆̃fG.

Theorem 52. Let fG be a SI-group over U and f⊇αG be an upper α-subgroup of
G. Then, f?

f
⊇α
G

is a SI-group over U .

Proof. Assume that x, y ∈ G and x, y ∈ f⊇αG . Since f⊇αG is a subgroup of G, it
follows that xy−1 ∈ f⊇αG . Then,

f?
f
⊇α
G

(xy−1) = fG(xy
−1) ⊇ fG(x) ∩ fG(y) = f?

f
⊇α
G

(x) ∩ f?
f
⊇α
G

(y)

Now suppose that x ∈ f⊇αG and y /∈ f⊇αG . It follows that xy−1 /∈ f⊇αG , then

f?
f
⊇α
G

(xy−1) = ∅ ⊇ fG(x) ∩ ∅ = f?
f
⊇α
G

(x) ∩ f?
f
⊇α
G

(y)

Finally, suppose that x, y /∈ f⊇αG . It follows that either xy−1 /∈ f⊇αG or xy−1 ∈ f⊇αG .
If xy−1 /∈ f⊇αG , then

f?
f
⊇α
G

(xy−1) = ∅ ⊇ ∅ ∩ ∅ = f?
f
⊇α
G

(x) ∩ f?
f
⊇α
G

(y)

If xy−1 ∈ f⊇αG , then

f?
f
⊇α
G

(xy−1) = fG(xy
−1) ⊇ ∅ ∩ ∅ = f?

f
⊇α
G

(x) ∩ f?
f
⊇α
G

(y)

Thus, f?
f
⊇α
G

is a SI-group over U . �
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6. Conclusion

In this paper, the notions of upper (proper) α-inclusions and lower (proper) α-
inclusions of a soft set, upper α-subgroup of a SI-group and lower α-subgroup of a
SU -group are defined and these notions are analyzed with respect to group theory
in the mean of subgroups of a group in more detail. An answer to the question
whether the family of upper α-subgroup of a SI-group determine the SI-group
uniquely or not have bee found. Besides, a method which helps us to construct a
SI-group of G with the help of the upper α-subgroups of fG is introduced. Finally,
it is shown how an upper α-subgroup of a SI-group is softificated.
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