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Abstract

An important fracture mechanics problem is the determination of fracture
toughness values with small specimens that fail after yielding., The J Integral
has an explicit meaning in terms of notch tip conditions in the plastic range
and can be calculated-from single specimen test data. In this paper, an im;
proved J Integral analysis is developed for the Compact specimen by consider-~
ing the combined loading that exists on the net section. The analysis agrees
with linear elastic fracture mechenics in the elastic range and gives a

result close to that given by the Equivalent Energy Method in the plastic range.
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Nomenclature

Crack area, in.2

Crack length, in.

Specimen thickness, in.
Ligament width, in.

Half the ligament width, in.
Modulus of elasticity, ksi.

Elastic strain energy release rate for plane strain
conditions, in.-kips/in.

Function of the plastic angle of rotation due to the
crack, dimensionless

The J Integral, in.-kips/in.2
Critical value of the J Integrsl, in.-kips/in.2

Value of the J Integral for a point on the linear portion
of the load-displacement curve, in.-kips/in.

Plastic portion of the J Integral, in.-kips/ '.I.n.2

Critical wvalue of17}21e elastic erack tip stress intensity
factor, ksi -+ in. ’

Value of the elastic crack tip stress intensity factor
for a point on tsljelinear portion of the load-displacement

curve, ksl ¢ in.

The elastic crack tip stress, intensity factor for plane
strain conditions, ksi- in. /2

Fracture toughness compuJ_E?g according to the Equivalent
Energy Method, ksi . in.

Elastic stiffness, kips/in.
Fully plastic bending moment, in.-kips
Function defined by Eq. (57), dimensionless
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Force, kips
Fully plastic load, kips

Load at a point on the linear portion of the load-
displacement curve, kips

Load at the proportional limit of the load-displacement
curve, kips

Width of a Compact specimen, in.

Shepe factor for the Compact specimen; also
sometimes denoted by f(a/W); dimensionless

Ratio of the width of the internal stress block equi-
librating the applied load at plastic collapse, to the
ligament width, dimensionless

Stiffness coefficient, dimensionless

Total displacement of the applied load due to the crack, in.
Elastic displacement of the applied load due to the crack, in.

Total displacement of the applied load due to the crack, for
a point on the lineer portion of the locad-displacement curve,

in.
Plastlic displacement of the applied load due to the crack, in.

Total displacement of the applied load due to the crack, &t
the proportional limit of the load-displacement curve, in.

Crack tip opening displacement, in.

Elastic portion of the crack tip opening displacement, in.
Plastic portion of the crack tip opening displacement, in.
Complementary energy coefficient, dimensionless

Real energy coefficient, dimensionless

Angle of rotation due to the crack, radians

Elastic angle of rotation due tc the crack, radlans
Plastic angle of rotation due to the crack, radians
Coefficient for compua:lng GE, for elastic conditions; also

used for computing K; cd/E £0r elastic-plastic conditions;
dimensionless



Coefficicat for computing J, for elastic conditions,
dipensionless

Yield stress, ksi
Complementary energy per unit thickness, kips

Real energy per unit thickness, for & point on the linear
portion of the locad-displacement curve, kips

Real energy per unit thickness, kips



Introduction

One of the post important existing problems in the field of applied
fracture mechanles is the caleulation of correct values of fracture toughness
from small specimen test records. In many caeses, specimens large enough to
provide "valid" fracture toughness values cannot be obtained from the product
form of interest. In other cases, large enough specimens can be obtained,
but preparing and testing them is impra.ctical because of limitatlions relzted
to size andfor cost. Unlike large specimens that give "valid" fracture
toughness values, small specimens usually fail after rather than before the
onset of gross yielding. Therefore, a method for obtaining correct values
of fracture toughness from non-linear load-displacement records 1s needed
in order to make the application of fracture mechanics more practical.

The requirements of a satisfactory method for calculeting fracture tough-
ness values from non-linear load-displacement records include the following:

). The quantity representing fracture toughness should be expressed
completely in terms of measurable quantities, .

2., The calculated quantity should have an explicit meaning in terms
of notch tip conditions.

3. The method of calculation should be analytically derived from the
principles of solid mechanics, for nonlinear conditlons, using a minimum
nunber of simplifying assumptions.

4. The calculation should agree with linear elastic fracture mechanics,

for the case of a specimen failing in the linear range of its load-displacement

curve,



Several approaches to the problem of celculating fracture toughness
values from inelastic load-displacement records obtained from small specimens
have been proposed. These methods can be classified as follows:

1. Correlations;

2, Semi-empirical methods

(a) Energy and displacement relationships,
(b) Relationships between material properties and fracture
toughness;

3. Analytical methods.

-At present, correlations are proving extremely useful, but their applicability
{t0 new materials and to changed material condltions is uncertain. Energy and
displacement relationships are apt to lack a general analytical basis, and
some have no definite meaning in terms of notch tlp conditions. Relationships
between material properties and fracture toughness are intriguing, but they
turn out to be dependent upon small microstructural dimensions that are diffi-
cult or impossible to measure directly. Analy"t:lcal methods offer the most
promise of success in the long run, because they stand the best chance of
meeting all of the requirements of a satisfactory method stated above.

The J Integral, derived by Rice ,1’2 is presently the only analytically
based inelastic fracture criterion under development. The J Integral is the
rate of change of total potential energy with respect to crack surface area,
It is an analytical generalization, for nonlinear conditions, of the elastic
strain energy release rate, GI. It also represenis the integral of the total
strain energy density around the crack tip contour.l

Initial experiments by Begley and landes ,5"" using several series of
geometirically identical specimens with incrementally different crack lengths,




bhave demonsirated the feasibility of using the J Integral as 2 fracture
criterion. Recently, analyses have been developed for calculating the
velue cf the J Integral from a single load-displacement cxu've.‘5’6 At
present, the Compact* specimen is being treated as a deeply cracked
beam in pure bending, using the equation6

J"'%J‘; (3] as (1)

vhere b is the length of the uncracked ligement shead of the crack tip, B
is the specimen thickness, P is the total load on the specimen, and A is
the displacement of the load due to the crack. However, it appears that
Ea. (1) is somewhat conservative with respect to linear elastic fracture
mechanics, for the Compact specimen, for failure in the linear
range of the load-dlisplacement curve, The purpose of the analysis to be
presented here 1s to investigate the effect of the axial force, acting in
combination with the bvending moment, on the value of the J Integral for the
Compact specimen. The results indicate that considering the effects
of the axlal force leads to much better agreement between the value of the
J Integral and the value of GI, for linear elastic conditions.

The analysis to be presented here consists of the derivation of the
fully plastic limit load conditions for a Compact specimen, followed
by the derivetion of an expression for the J Integral, for the same specimen,
besed on the assumption that the plastic displacement of the load due to the
crack is a function of the ratio of the applied load to the fully plastic
1imit load. Numericael comparlsons are then made between the value of the

J Integral and the value of GI, for linear elastic conditions. The results

*
Formerly known as the Compact Tension specimen.



indicate that, for the Compact specimen, the formila derived here

1s a significant improvement over the formula for J based on the assumption

that the uncracked ligament is loaded in pure bending.

Plastic Limit Analysis of a Compact Specimen

The fully plastic limit load conditions in a Compact specimen can
be anelyzed with the aid of the familiar interaction equation that relates the
axial force and the bending moment at plastic collapse for a member of rectangu-
lar cross sec*l::i.on.7 However, for this study, en alternate analysis was devel-
oped and used because it provides the value of a single geometric coefficient
that solely determines the effect of the axial force on the value of the J
Integral for the Compact specimen. Referring to Fig. 1, it can be

seen thatthe internal resisting moment at plastic collapse in a Compact

specimen is given by
2
My, = OyBe (L-o) , (2)
and that the applied load at plastic collapse is glven by
pr = O'YBC (20) ’ (5)

vhere oy is the yleld stress, B 1s the specimen thickness, ¢ 1s half the
distance from the crack tip to the back face, and « is the dimensionless
coefficient thet determines the width of the Internal stress block required
to equilibrate the applied load P, . The fully plastic moment is also the

Ip

moment of the applied load P £p about the centrold of the net section, so

that

.fp=fp(a+d) . ' ()



Equating the expressions for pr given by Egs. (2) and (4), and using

Eq. (3) gives

P [% + 1) a=-1=0 . (5)
Solving Eq. (5) for « gives
a=[(%'2+2(%)+2]?L/2-l%+l)‘ . (6)

It will be shown subsequently that o is the coefficient that determines
the effect of the axial force on the value of the J Integral for the Com-
pact specimen. It should be noted that Egs. (2) through (5) are based on
a lower bound plastic limit analysis of the net section, ignoring the stress
triaxislity caused by the crack tip. The justification for this approach,
based on a comparison between the lower bound limit analysis and an upper
bound limiy apalysis that consiéers the stress triaxiality caused by the
crack tip, is given in Appendix A.

The displacement diagram at plastic collapse for a Compact specimen is
shown in Fig. 2. Noting that rotations ocecur about the point of stress

reversal, the plastic angle of rotation eP is defined, in terms of the

plastic load point displacement, by

R (M

eP=za.+(1+cz)cj’

and 1n terms of the plastic crack tip opening displacemént by

5
-"TTra e ° (8)

In Eqs. (7) and (8), A end &, are the plastic load point and crack tip

opening displacements, respectively. Equating the expressioms for eP given

by Eae. (7) end (8), and using the substitution

a=W-=2c F] (9)
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vhere W is the specimen width as defined in Fig. 2, gives

‘1'-’+a-1)
A, = e & - (10)

(L +a)

J Integral Analysis

The starting point for this analysis 1s the same as the one used in
Ref. 6, namely the definition of the J integral as the area, per ‘wiit in-
crease in crack surface area, between two load-displacement curves for two
geometrically identical specimens with incrementally different crack sizes.
Referring to Fig. 3, this area can be represented as the sum of the areas
of a serles of differential parallelograms, one of which is shown shaded in
Fig. 3. The area of one of these differential parallelograms is related to

the value of the J Integral by the expression

dAc )
A?
wheré J is the value of the J Integrel, Ac is the crack surface area, P is
the applied load, A and AP are the total and the plastic displacements of‘
the applied load due to the crack, respectively, and the subscripts P and QP
following the partial derivatives indicate the variable that is held constant
during partial differentiation. The total and the plastic dilsplacements are

related by the equation

A=ty vl (12)

where AE is the elastic displacement of the applied load due to the crack.
Substituting Eq. (12) into Eq. (11), separating the elastic and the plastic

terms, dividing both sides by dAc and



choosing the subsequently most convenient variable of integration for each

term gives

¥ { oP
dJ=(5§E;-)-dP—(\5—).dAP . (13)

P AP
The elastic displacement AE can be written as
p .
AE = x ’ (lll-)

where k is the elastic stiffness, which is independent of P. Therefore,

substituting Eq. (14) into Eq. (13), using the relationship

A =B , (15)

Js_%%_k__l.fl’( ) sy . (36)

The first term in Eq. (16) can be recognized as the elastic strain energy
rélease rate, GI' The second term, the value of which reduces to zero for
linear elastic behavior, is the increase in J over GI caused by nonlinear

behavior, and it will be denoted here by the symbol Jf. Thus,

JP=—%f°AP .g.:i an, . ' (a7)

The value of Jp will be positive because the value of {8P/da) is negative.

AP
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Following the approach taken by Rice ,6 the integral in Eq. (17) will '
be evaluated by assuming that the plastic angle of rotation eP is a function
only of the ratio of the applied load P to the fully plastic collapse load

pr. For application to Eg. (17), this function will be written in its in-

verse form, namely
P= pr g (‘eP) . | (18)

Using Ea. (9), the partial derivative in Eq. (17) can be written as

. (1)

Ba|, ~ 218

AP'E

BP) 1 (aP

A

Substituting Eq. (18) into Eg. (19) then gives

oP 1P oP 1 g o6
U =____J:E +—pr -—-) = . (20)
da 2P dc 2 20 dc
S AT Iy
However,
opP og BGP
—| =By [—] =] (21)
BAP aeP 3AP
c c
so that
{.@.P_
og aAP o
= (22)
aeP P

aeP °
(o)

Therefore, substituting Ea. (22) into Eq. (20) glves
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(fifg %
" dc dc
_ ;) _1 P, 1___ ‘e[ (23)
%a 2 5 708 7 5
4 °F e
]
c
The evaluation of the first term in Egq. (23) begins with the partial
differentiation of Eq. (3) with respect to c¢, which gives
oP
2 ] =20, Bla+c . (24)
Y dc
de e?
Substituting Eq. (9) into Eq. (5) gives
a2+2(%r-l)a-l=0 . (25)
Differentiating Eq. (25) and then eliminating (W/c) by substitution from
Eg. (25) gives
2 :
9 _ 1 +20—-d)a (26)
¢ ¢ (1 + o) '
By substituting Eq. (26) into Eg. (24) and using
b = 2¢ (27)
it follows that
opP
=)
c
1 % 2(1+a (28)
2 p b (1 + *
fp

The evaluation of the second term in Eq. (23) begins with the partial

differentiation of Eq. (7) with respect to ¢ which, with the ald of Eq. (26),
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gives

ﬁa + (1 +a) c}a (1 + o?)

(EE) e ielinks (29)
éP

Taking the partial derivative of Eq. (7) with respect to A? gives

90, 1
\3AP "Erarade (30)

From Egs. (5) end (27), it follows that

2
bl + o
[a + (1 +0q) c] =3 | =53 } . (31)
Then, combining Egs. (29), (30), and (31) gives
90!
g._l"ac‘;AP_g (l—2a—a2)AP (32
2 o6 b 1+ PP . 32)
=)

Finally, substituting Eqs. (28) and (32) into Eq. (23), and the result into

Eq. (17), gives

AP P c{
_2(+0a [ B 2 (1-20-0°) (B 4B
JP“b(l+a2) fo (BldAP"b‘O‘ L+ ) fo 481 . (33)

Eq. (55) enables the value of the J Integral to be computed from a single

Conpact specimen load-displacement curve, considering the effect of

the axial force acting on the net section, which is neglected by Eq. (1).
For the case of pure bending, o = 0, and by replacing A? by A as dis-

cussed in Ref. 6, Eq. (33) reduces to Eq. (1), as it should. The first aend
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second integrals in Eq. (33) are the real work and the complementary work
of the applied load, per unit thickness, respectively. TFor the rigid plastic

case, the complementary work is zero, and the eiastic displacements are also

zero, so that Eq. (33) becomes

2{(+a) P
i3I (34)

J=——
(1 + a2) B
From Eq. (25)

W
srtae-1="%7— , (35)

and by substituting Eq. (35) into Eq. (10),

oo, (56)

Substituting Eas. (36), (27) and (3) into Eq. (34) then gives
J=0,5 , (37

vhich 1s the correci expression for the rigid plastic case, for all geometries.

Comparison of Elastic and J Integral Analyses
Based on Total Displacement

At the present time, J Integral calculations are being made for the
Compact specimen by means of Eq. (1), based on the total displacement
of the applied load.6 As discussed by Rice,6 this procedure is correct if
elther the elastic displacement of the applied load due to the crack is neg-
ligibly smell, or if it also is only a function of the ratio P/pr. The

acceptabllity of a J Integral calculation based on the total disp_lacement
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of the appiied load can be evaluated by comparing the J Integral calculatién
with the known solution for GI’ for linear elastic conditions. This is most
easily done by writing both the elastic solution for GI and the J Integral
solution for elastic conditiocns in the same form as Eq. (1). The elastic

solution for a Compact specimen gives

_B
e (38)

vwhere Y is the elastically calculated nondimensional shape factor, sometimes

denotea® by the symbol f(a/W). Squaring both sides of Eq. (38) and dividing

by E, the elastic modulus gives

K; PPY?
— =Gy = —5~ . (39)
E T mfw .
Using Egqs. (9) and (27), it is ~onvenient to write
e R (40)
1 -8
W
vwhich, when substituted into Eq. (39) gives
PYP(1 - B :
G, = . L1)
T w2

For the linear elastic case,

A 2
[ 15l (2)
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so that rearranging Eq. (42) gives

P? = 2Rk fA £iaa . (43)
o
Substituting Eq. (43) into BEq. (41) gives
, (1)
where
7‘E=2(§2'] (l"% (45)
and
= . (46)
Values of p and Y for the Compact specimen have been calculated by

Roberts.9 Entering these values into Eq. (45) produces the values of )‘E
shown in Table 1. It should be noted that the‘values of xE shown in Table 1
all exceed 2.0. For this reason, Eq. (1) is conservative when applied tc the.
Compact specimen in the linear elastic range.

Expressing Eq. (33) for the J Integral in terms of the total displacement

of the applied load due to the crack, and using the following substitutions,

2(L + o
= , M
Tlr (l + a2) ( 7)
20(1 — 2a - o ) 18
Mo = Q + o ) ’ (48)
A . .
op = j; (%' aa ’ (49)



a(g (50)
gives

)

J = = ¢ . (51)

For the linear elastic case, (¢c/¢r) = 1, and Eq. (51) can be written as

A A
J P
s fy (5l (52)
where
)\J- = T]r + T]c . (53)

Values of A;, and the ratio A, / Ags are listed in Teble 2. The ratio

AE / %J is essentially unity for a/W 2 0.5, indicating that J may be computed
from Eq. (33), based on the total displacement of the applied load due to the
crack, for a/W = 0.5. For a/W < 0.5, the elastic and the plastic displace-

ments should be considered separately, using Eq. (16).

Calculations of Kc from J Integral Test Data

The expression of fracture toughness in the units of the elastic crack
tip stress intensity factor, ksi-in.%, is well established and useful. This
is easily done with the foregoing equations, and in the process, inaccuracies
caused by errors in the load point displacement calibration factor can be

eliminated. Referring to Fig. 4, the value of Jb for an arbitrarily chosen
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polnt on the linear portion of the load-displacement curve can be written as

Ay
JO = "'B' °° ’ (5,4')
where
P A
0, = —g-;— . (55)

For conditions at the onset of fracture, dividing Eq. (51) by Eq. (54) gives

2 (2]
c r
L .pn|X , (56)
Jb ¢o
where
¢
+ L
T ™ % or)
n=—s—- |, (57)
AJ
and
¢c PA ’
== -1 . (58)
¢r J;A Paa
Since
3, (KC)Q (
T Tl ] 59)
JB Kbl
it follows that
K (]
== fulE (60)
o) s}
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vhere
A
o, [ P
Ol v (61)
(o] 0 O
2

Since the point Po lies on the linear portion of the load-displacement curve,

it also follows that

K o= -2 . (62)

Therefore, combining Eqs. (60) and (62) gives

P Y ?
(o] - r
K = n (=— . (63)
¢ B "o)

Note that Eg. (63) is independent of the displacement calibration factor.

The only difference between Eq. (63) and the Equivalent Energy equation for

10, 11

calculating K values developed by Witt and Mager™ - is in the value

Icd
of m. For a J Integral calculation, m is & variable having a value equal

to or less than unity. For an Equivalent Energy calculation, it is arbitrarily
assumed that m = 1. It follows that there is no difference between the two
calculations for the case of pure bending, because for this case, N, = 0 and
m=1,

For points lying between the proportional limit and the meximum load

point of a typical experimentally measured10

Compact specimen load-displece=-
ment curve shown in Fig. 5, values of the ratio (K?cd/ E) + J are listed in

Table 3. The ratio is 1.00 at the proportional limit, and increases to a
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value of 1.08 at the maxiﬁum load point. Thus, fracture toughness values
calculated from Compact specimen data by the J Integral method and by the
Equivalent Energy method will always be in close agreement, provided that
the same measurement point is used for both calculations. The J Integral
method will always give a slightly lower value than the Egquivalent Energy
method in the nonlinear range, and the two methods will agree exactly in

the linear vrange. Thus, the foregoing énalysis resolves, for practical

purposes, the differences that have heretofore appeared to exist between

the elastic, J Integral, and Eguivalent Energy analyses of the Compact

specimen.
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Appendix A: Comments Concerning Plastic Limit
Analyses for the Compact Specimen

In this paper the plastic limit load and the limit moment for a
Compact specimen, as given by Egs. (2) and (3), are estimated by the
Lower Bound Theorem of limit analysis, based on equilibrium.12 The re-
sulting equations are algebraically simple and easy to apply to a J Integral
analysis. However, the accuracy of these Lower Bound equations needs to be '
evaluated, in order to insure that they do not cause systematic errors in
the J Integral analysis. This question can be investigated by means of a
comparison between the Lower Bound solution and Rice's Upper Bound solution
for an edge cracked specim.en,15 based on an assumed plastic collapse mechan-
ism.12 This solution is easily adapted to the Compact specimen by defining
the line of action of the load as the cracked edge of the specimen. Rice13
determined the Upper Bound interaction diagram between the normalized axial
force and tﬁe normalized bending moment at plastic collapse by drawing the
interior envelope to a series of tangents, each located by calculation. His
graphical solution does not appear to agree exactly with the Green and Hundylh
solution for pure bending, but a modification to the interior envelope based
on the normality rule of plasticity produces the desired agreement. Rice15
also fit an ellipse within the graphically determined Upper Béund envelope,
because the equation of the envelope itself was not determined.

Bﬁcci et al5 compared some Compact specimen limit load values measured
experimentally by Westinghouse with values predicted by Rice's graphically
determined interaction diagram. The predicted values were slightly higher

than the measured values, as snould be the case for an Upper Bound analysis.

As shown in Fig. A.l, we found that the same experimental data are bounded
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equally well from below by an adjusted Lower Bound curve which is obtained
by multiplying the Lower Bound limit load values by the plastic constraint
factor of 1.26, which was obtained by Green and Hundyln for a notched beam
loaded in pure bending. Note that Fig. A.l is Fig. 10 from Ref. 5, with
the adjusted Lower Bound curve added. Since multiplying the yield stress
by a constant factor has no effect on the J Integral solution given by Eq.
(33), the use of a Lower Bound limit load solution in this analysis appears
to be well justified. DNote that the rigid-plastic value of J, given by Eq.
(37), is numerically affected by the plastic constraint factor. In addition,

not shown in Fig. A.l is the curve corresponding to Rice's elliptical approxi-

mation,15 vhich passes through the higher data points and falls below the

adjusted Lower Bound curve for 0.7 < a/W < 1.0.



Compact Speeimen

Table 1.

a

W Y
0.30 5.85
0.35 6.54
0.40 7.3%
0.45 8.34
0.50 9.60
0.55 11.26
0.60 13.62
0.65 16.84
0.70 21.56
Note:

Values of Y and B8 are from Ref. 9.

B

14,48
18.41
23,22
29.27
37.2
47.9
63.2
85.8
119.8

Values of Y, B, and }‘E for the

e

3,32
3.12
2.78
2.60
2.48
2.38
2.36
2.32
2.32



Table 2.

J Integral Analysis Parameters for

the Compact Specimen

E
W (0] N, N 7\J.
0.30 0.25 2.352  0.194 2.55
0.35 0.23 2.336 0.202 2.54
0.40 0.21 2,318  0.206 2.52
0.45 0.18 2.284 0.206 2.49
0.50 0.16 2.262 0.198 2.46
0.55 0.14 2.238 0.188 2.43
0.60 0.12 2.206 0.174 2.38
0.65 0.10 2.178 0.156 2.33
0.70 0.09 2,164  0.144 2.31

A

3.32
3.12
2.78
2.60
2.48
2.38
2.36
2.32
2,32

e/ Ay

1.3
1.2
1.1
1.0
1.0
1.0
1.0
1.0
1.0



Table 3. Values of (Kic a / E) = J for Measurement Points in
the Plastic Range of the Load-Displacement Curve for
a Compact Specimen of A533 Grade B Class 1
Steel, a/W = 0.5.

A P ¢c (Kicd / E)
AY PY ¢'r J
1,00 1.00 1.000 1.00
1.50 1.22 0.749 1.02
2.00 1.38 0.619 1.03
2.50 1.50 0.547 1.04
3.00 1.55 0.459 1.05
3.50 1.59 0.402 1.05
4,00 1.6% 0.365 1.06
5.00 1.68 0.306  1.06
6.00 1.70 0.255 1.07
7.00 1.72 0.225 - 1.07
8.00 1.73 0.1% 1.07
9.00 1.7h 0.179 1.07

10.00 1.75 0.163% 1.08




Figure Captions

Fig. 1. BStress conditions in a Compact specimen at plastic
collapse.

Fig. 2. Displacement diagram for a Compact specimen at plastic
collapse.

Fig. 3. Definition of the incremental area between two load-displacement
curves that is related to the J Integral.

Fig. 4. Schematic load per unit thickﬁess versus displacement diagram,
showing the definitions of Po’ ab and ¢o.

Fig. 5. Typical normalized load-displacement diagram for a Compact
specimen.

Fig. A.l. Upper bound and adjusted lower bound limit loads divided by BW
as a function of dimensionless crack size, a/W, for Westinghouse
A533B Compact specimen.
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