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Abstract

An important fracture mechanics problem is the determination of fracture

toughness values with small specimens that fail after yielding. The J Integral

has an explicit meaning in terms of notch tip conditions in the plastic range

and can be calculated from single specimen test data. In this paper, an im-

proved J Integral analysis is developed for the Compact specimen by consider-

ing the combined loading that exists on the net section. The analysis agrees

•with linear elastic fracture mechanics in the elastic range and gives a

resvJLt close to that given by the Equivalent Energy Method in the plastic range.
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Nomenclature

p
A Crack area, in.
c •

a Crack length, in.

B Specimen thickness, in.

b Ligament width, in.

c Half the ligament width, in.

E Modulus of elasticity, ksi.
&_ Elastic strain energy release rate for plane strain

conditions, in.-kips/in.2

g Function of the plastic angle of rotation due to the
crack, dimensionless

J Ihe J Integral, in.-kips/in.2

J Critical value of the J Integral, in.-kips/in,c

J Value of the J Integral for a point on the linear portion
of the load-displacement curve, in.-kips/in.2

Jp Plastic portion of the J Integral, in.-kips/in.

K Critical value of the elastic crack tip stress intensity
factor, ksi • in. ' 2

K Value of the elastic crack tip stress intensity factor
° for a point on the linear portion of the load-displacement

curve, ksi • in. '

K~ The elastic crack tip stress .intensity factor for plane
strain conditions, ksi- in.-1-/2

K- , Fracture toughness computed according to the Equivalent
- Energy Method, ksi • in. 'd

k Elastic stiffness, kips/in.

JL. Fully plastic bending moment, in.-kips

m Function defined by Eq> (57), dimensionless



P Force, kips

P- Fully plastic load, kips

P Load at a point on the linear portion of the load-
displacement curve, kips

Py Load at ihe proportional limit of the load-displacement
curve, kips

W Width of a Compact specimen, in.

Y Shape factor for the Compact specimen; also
sometimes denoted byf(a/W); dimensionless

a Ratio of the width of the internal stress block equi-
librating the applied load at plastic collapse, to the
ligament width, dimensionless

p Stiffness coefficient, dimensionless

A Total displacement of the applied load due to the crack, in.

A- Elastic displacement of the applied load due to the crack, in.

A Total displacement of the applied load due to the crack, for
a point on the linear portion of the load-displacement curve,
in.

Ap Plastic displacement of the applied load due to the crack, in.

Ay Total displacement of the applied load due to the crack, at
the proportional limit of the load-displacement curve, in.

6 Crack tip opening displacement, in.

8g Elastic portion of the crack tip opening displacement, in.

&p Plastic portion of the crack tip opening displacement, in.

t) Complementary energy coefficient, dimensionless

TI Real energy coefficient, dimensionless

6 Angle of rotation due to the crack, radians

0_ Elastic angle of rotation due to the crack, radians
Ei

dp Plastic angle of rotation due to the crack, radians

\, Coefficient for computing 6., for elastic conditions; also
used for computing K^^/E for elastic-plastic conditions;
dimensionless



7v- Coefficient for computing J, for elastic conditions,
diraensionless

o"Y Yield stress, ksi

• Complementary energy per unit thickness, kips

• Real energy per unit thickness, for a point on the linear
portion of the load-displacement curve, kips

• Real energy per unit thickness, kips



Introduction

One of the most important existing problems in the field of applied

fracture mechanics is the calculation of correct values of fracture toughness

from small specimen test records. In many cases, specimens large enough to

provide "valid" fracture toughness values cannot be obtained from the product

form of interest. In other cases, large enough specimens can be obtained,

but preparing and testing them is impractical because of limitations related

to size and/or cost. Unlike large specimens that give "valid" fracture

toughness values, small specimens usually fail after rather than before the

onset of gross yielding. Therefore, a method for obtaining correct values

of fracture toughness from non-linear load-displacement records is needed

in order to make the application of fracture mechanics more practical.

The requirements of a satisfactory method for calculating fracture tough-

ness values from non-linear load-displacement records include the following:

1. She quantity representing fracture toughness should be expressed

completely in tezms of measurable quantities. .

2. The calculated quantity should have an explicit meaning in terms

of notch tip conditions.

5» The method of calculation should be analytically derived from the

principles of solid mechanics, for nonlinear conditions, using a minimum

number of simplifying assumptions.

k. The calculation should agree with linear elastic fracture mechauics,

for the case of a specimen failing in the linear range of its load-displacement

curve.



Several approaches to the problem of calculating fracture toughness

values from inelastic load-displacement records obtained from small specimens

have been proposed. These methods can be classified as follows:

1. Correlations;

2. Semi-empirical methods

(a) Energy and displacement relationships,

(b) Relationships between material properties and fracture

toughness;

5. Analytical methods.

At present, correlations are proving extremely useful, but their applicability

to new materials and to changed material conditions is uncertain. Siergy and

displacement relationships are apt to lack a general analytical basis, and

some have no definite meaning in terms of notch tip conditions. Relationships

between material properties and fracture toughness are intriguing, but they

turn out to be dependent upon small microstructural dimensions that are diffi-

cult or impossible to measure directly. Analytical methods offer the most

promise of success in the long run, because they stand the best chance of

meeting all of the requirements of a satisfactory method stated above.

1 2
The J Integral, derived by Bice, ' is presently the only analytically

based inelastic fracture criterion under development. The J Integral is the

rate of change of total potential energy with respect to crack surface area.

It is an analytical generalization, for nonlinear conditions, of tfae elastic

strain energy release rate, G,. It also represents the integral of the total

strain energy density around the crack tip contour.

Initial experiments by Begley and Landes,*' using several series of

geometrically identical specimens with incrementally different crack lengths,



have demonstrated the feasibility of using the J Integral as a fracture

criterion. Recently, analyses have been developed for calculating the

•5 6value of the J Integral from a single load-displacement curve. ' At

present, the Compact specimen is being treated as a deeply cracked

beam in pure bending, using the equation

where b is the length of the uncracked ligament ahead of the crack tip, B

is the specimen thickness, F is the total load on the specimen, and A is

the displacement of the load due to the crack. However, it appears that

Eq.. (1) is somewhat conservative with respect to linear elastic fracture

mechanics, for the Compact specimen, for failure in the linear

range of the load-displacement curve. The purpose of the analysis to be

presented here is to investigate the effect of the axial force, acting in

combination with the bending moment, on the value of the J Integral for the

Compact specimen. The results indicate that considering the effects

of the axial force leads to much better agreement between the value of the

J Integral and the value of &,, for linear elastic conditions.

The analysis to be presented here consists of the derivation of the

fully plastic limit load conditions for a Compact specimen, followed

by the derivation of an expression for the J Integral, for the same specimen,

based on the assumption that the plastic displacement of the load due to the

crack is a function of the ratio of the applied load to the fully plastic

limit load. Numerical comparisons are then made between the value of the

J Integral and the value of &,, for linear elastic conditions. The results

Formerly known as the Compact Tension specimen.
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indicate that, for the Compact specimen, the formula derived here

is a significant improvement over the formula for J based on the assumption

that the uncracked ligament is loaded in pure bending.

Plastic Limit Analysis of a Compact Specimen

The fully plastic limit load conditions in a Compact specimen can

be analyzed with the aid of the familiar interaction equation that relates the

axial force and the bending moment at plastic collapse for a member of reetangu-
•j

lar cross section. However, for this study, an alternate analysis >?as devel-

oped and used because it providss the value of a single geometric coefficient

that solely determines the effect of the axial force on the value of the J

Integral for the Compact specimen. Referring to Fig. 1, it can be

Been thatthe internal resisting moment at plastic collapse in a Compact

specimen is given by

Mfp "

and that the applied load at plastic collapse is given by

(2a) , (3)

where a v is the yield stress, B is the specimen thickness, c is half the

distance from the crack tip to the back face, and a is the dimensionless

coefficient that determines the width of the internal stress block required

to equilibrate the applied load P_ . The fully plastic moment is also the

moment of the applied load P about the centroid of the net section, so

that

Mfp = pfp (a + c)



Equating the expressions for M_ given "by Eqs. (2) and (k), and using

Eq. (3) gives

a2 + 2 j~ + l| a - 1 = 0 . (5)

Solving Eq. (5) for a gives

- [ 1 5
It will be shown subsequently that a is the coefficient that determines

the effect of the axial force on the value of the J Integral for the Com-

pact specimen. It should be noted that Eqs. (2) through (5) are based on

a lower bound plastic limit analysis of the net section, ignoring the stress

triaxiality caused by the crack tip. The justification for this approach,

based on a comparison between the lower bound limit analysis and an upper

bound limit analysis that considers the stress triaxiality caused by the

crack tip, is given in Appendix A.

The displacement diagram at plastic collapse for a Compact specimen is

shown in Fig. 2. Noting that rotations occur about the point of stress

reversal, the plastic angle of rotation 6p is defined, in terms of the

plastic load point displacement, by

°P " a + (1 + a) c '

and in terms of the plastic crack tip opening displacement by

(7)

I D Eqs. (7) and (8), dp and 8p are the plastic load point and crack tip

opening displacements, respectively. Equating the expressions for ©„ given

"by Eqs. (7) and (8), and using the substitution

a - W - 2c , (9)
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where W is the specimen width as defined in Fig. 2, gives

(1 + a) ?

J Integral Analysis

The starting point for this analysis is the same as the one used in

Ref. 6, namely the definition of the J Integral as the area, per ̂ rait in-

crease in crack surface area, between two load-displacement curves for two

geometrically identical specimens with incrementally different crack sizes.

Referring to Fig. 3, this area can be represented as the sum of the areas

of a series of differential parallelograms, one of which is shown shaded in

Fig. 3. The area of one of these differential parallelograms is related to

the value of the J Integral by the expression

8Pi
p cl

where J is the value of the J Integral, A is the crack surface area, P is

the applied load, A and Ap are the total and the plastic displacements of

the applied load due to the crack, respectively, and the subscripts P and Ap

following the partial derivatives indicate the variable that is held constant

during partial differentiation. The total and the plastic displacements are

related by the equation

A = Ag, + Ap , (12)

where A-, is the elastic displacement of the applied load due to the crack.

Substituting Eq. (12) into Eq. (11), separating the elastic and the plastic

terms, dividing both sides by dA and
c
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choosing the subsequently most convenient variable of integration for each

term gives

(13)

The elastic displacement \, can be written as

where k is the elastic stiffness, which is independent of P. Therefore,

substituting Eq. (Ik) into Eq. (13), using the relationship

A = Ba ,

and integrating both sides of the resulting equation gives

V — 7> TT^

(15)

8(£I 1 r*p (ap\
lT"5J No

(16)

The first term in Eq. (3£) can be recognized as the elastic strain energy-

release rate, Gj. The second term, the value of which reduces to zero for

linear elastic behavior, is the increase in J over G- caused by nonlinear

"behavior, and it will be denoted here by the symbol J_. Thus,

T - - i fJP " B J
8P
8a (17)

The value of Jp will be positive because the value of (8P/8a) is negative.
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Following the approach taken by Rice, the integral in Eq. (17) will

be evaluated by assuming that the plastic angle of rotation 0p is a function

only of the ratio of the applied load P to the fully plastic collapse load

P_ . For application to Eq. (17), this function will be written in its in-

verse form, namely

(18)

Using Eq. (9), the partial derivative in Eq. (17) can be written as

(19)

Substituting Eq. (18) into Eq. (19) then gives

iZ_ fa (20)

However,

'8P
= p.

so that

(22)

Therefore, substituting Eq. (22) into Eq. (20) gives



9P
8a

1
- 2

8Pfp)

Pfp

P + 2

eepj
9c ,'A

aepj
9A,

5 /9PK (25)

The evaluation of the first term in Eq. (23) begins with the partial

differentiation of Eq. (3) with respect to c, which gives

9P
is.
dc

Substituting Eq. (9) into Eq. (5) gives

a 2 + 2 (^- lj a - 1 = 0 .

Differentiating Eq. (25) and then eliminating (W/c) by substitution from

Eq. (25) gives

da 1 (1 + 2a - Q ? ) a
8c = c (1 + ^)

(25)

(26)

By substituting Eq. (26) into Eq. (2k) and using

b = 2c (27)

it follows that

1
2

9c

b (TT
q)

(28)

The evaluation of the second term in Eq. (23) begins with the partial

differentiation of Eq. (7) with respect to c which, with the aid of Eq. (26),



gives

80p\ Ap (1 - 2a - a 2 )

" [a + d + a) of (l

Taking the partial derivative of Eq. (7) with respect to A_ gives

/ 8Gp\ 1
aSpi = [a + (1 + a) cj V
• ' c

From Eqs. (5) and (27), it follows that

2a i[a + (1 + a) c] - | ±i£-\ . (31)

Then, combining Eqs. (29), (30), and (31) gives

£> flfl I ~ Vi ^ . 9.9 ' (32)
«?)'

Finally, substituting Eqs. (28) and (32) into JBq. (23), and the result into

Eq. (17)J gives

2 (1 + a) f [pldA_ 2. (1 - 2a - a2) [B Jj/PJ

Eq. (33) enables the value of the J Integral to be confuted from a single

Compact specimen load-displacement curve, considering the effect of

the axial force acting on the net section, which is neglected by Eq. (l).

For the case of pure bending, a = o, and by replacing Ap by A as dis-

cussed in Ref. 6, Eq. (33) reduces to Eq. (1), as it should. The first and

(33)



second integrals in Eq. (33) are the real work and the complementary work

of the applied load, per unit thickness, respectively. For the rigid plastic

case, the complementary work is zero, and the elastic displacements are also

zero, so that Eq. (33) becomes

2 (1 + a)
J = r & .

b (1 + or) B

From Eq. (25)

!•„_!.!•£. , (35)

and by substituting Eq. (35) into Eq. (10),

A " 2a(l + a) 5 * (56)

Substituting Eqs. (36), (27) and (3) into Eq. (5k) then gives

J - OyS , (37)

which is the correct expression for the rigid plastic case, for all geometries.

Comparison of Elastic and J Integral Analyses
Based on Total Displacement

At the present time, J Integral calculations are being made for the

Compact specimen by means of Eq. (l), based on the total displacement

of the applied load. As discussed by Bice, this procedure is correct if

either the elastic displacement of the applied load due to the crack is neg-

ligibly small, or if it also is only a function of the ratio T/'P . The

acceptability of a J Integral calculation based on the total displacement
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of the applied load can be evaluated by comparing the J Integral calculation

with the known solution for Gj> for linear elastic conditions. This is most

easily done by writing both the elastic solution for GT and the J Integral

solution for elastic conditions in the same form as Eq. (l). The elastic

solution for a Compact specimen gives

where Y is the elastically calculated nondimensional shape factor, sometimes
Q

denoted by the symbol f(a/W). Squaring both sides of Eq. (58) and dividing

by E, the elastic modulus gives

K? P^ 2

-±- = G - - 5 - . (39)
E

Using Eqs. (9) and (27), it is convenient to write

which, when substituted into Eq. (39) gives

ax

For the linear elastic case,

A

o
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so that rearranging Eg. (42) gives

P2=2BkJ (I;

Substituting Eq. (43) into Eq. (41) gives

h JnI b Jo

where

v

and

EB

Values of fj and Y for the Compact specimen have been calculated by

Roberts.° Entering these values into Eq. (45) produces the values of ?w,

shown in Table 1. It should be noted that the values of X_, shown in Table 1

all exceed 2.0. For this reason, Eq. (l) is conservative when applied to the

Compact specimen in the linear elastic range.

Expressing Eq. (35) for the J Integral in terms of the total displacement

of the applied load due to the crack, and using the following substitutions,

2(1 + a)
V = (1 + a

2) '

2a(l - 2a - a2)

(1 + a 2) 2

(hi)

(48)

(49)
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•--/" " ( I ) * (50)

gives

(5D

For the linear elastic case, (* /<t> ) = 1* and Eq. (51) can be written as

where

(53)

Values of A_, and the ratio A_, / 7v_, are listed in Table 2. The ratio

Tu / AT is essentially unity for a/w ^0.5, indicating that J may be computed

from Eq. (33), based on the total displacement'of the applied load due to the

crack, for a/W ^0.5. For a/w < 0.5, the elastic and the plastic displace-

ments should be considered separately, using Eq. (16).

Calculations of K from J Integral Test Data

The expression of fracture toughness in the units of the elastic crack

tip stress intensity factor, ksi>in.^, is well established and useful. This

is easily done with the foregoing equations, and in the process, inaccuracies

caused by errors in the load point displacement calibration factor can be

eliminated. Referring to Fig. k, the value of J for an arbitrarily chosen
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point on the linear portion of the load-displacement curve can be written as

(5*0

where

Vo
2B (55)

For conditions at the onset of fracture, dividing Eq. (51) by Eq. (5k) gives

(56)

where

m = (57)

and

_c
PA

- 1 (58)

Since

ir (59)

it follows that

5;
K (60)
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where

A

4 A — • <6i>Ao o

Since the point P lies on the linear portion of the load-displacement curve,

it also follows that

POY
K = -2— . (62)
° /T

Iherefore, combining Eqs. (60) and (62) gives

Note that Eq. (63) is independent of the displacement calibration factor.

The only difference between Eq. (63) and the Equivalent Energy equation for

calculating Ky , values developed by Witt and Mager ' is in the value

of m. For a J Integral calculation, m is a variable having a value equal

to or less than unity. For an Equivalent Energy calculation, it is arbitrarily

assumed that m = 1. It follows that there is no difference between the two

calculations for the case of pure bending, because for this case, TJ = 0 and

ra = 1.

For points lying between the proportional limit and the maximum load

point of a typical experimentally measured Compact specimen load-displace-

ment curve shown in Fig. 5, values of the ratio (IC ./ E) + J are listed in

lable 3. The ratio is 1.00 at the proportional limit, and increases to a
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value of 1.08 at the maximum load point. Thus, fracture toughness values

calculated from Compact specimen data by the J Integral method and "by the

Equivalent Energy method will always be in close agreement, provided that

the same measurement point is used for both calculations. The J Integral

method will always give a slightly lower value than the Equivalent Energy

method in the nonlinear range, and the two methods will agree exactly in

the linear range. Thus, the foregoing analysis resolves, for practical

purposes, the differences that have heretofore appeared to exist between

the elastic, J Integral, and Equivalent Energy analyses of the Compact

specimen.
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Appendix A: Comments Concerning Plastic Limit
Analyses for the Compact Specimen

In this paper the plastic limit load and the limit moment for a

Compact specimen, as given by Eqs. (2) and (5), are estimated by the

12

Lower Bound Theorem of limit analysis, based on equilibrium. The re-

sulting equations are algebraically simple and easy to apply to a J Integral

analysis. However, the accuracy of these Lower Bound equations needs to be

evaluated, in order to insure that they do not cause systematic errors in

the J Integral analysis. This question can be investigated by means of a

comparison between the Lower Bound solution and Rice's Upper Bound solution
for an edge cracked specimen, based on an assumed plastic collapse mechan-

12
ism. This solution is easily adapted to the Compact specimen by defining

the line of action of the load as the cracked edge of the specimen. Rice *

determined the Upper Bound interaction diagram between the normalized axial

force and the normalized bending moment at plastic collapse by drawing the

interior envelope to a series of tangents, each located by calculation. His

graphical solution does not appear to agree exactly with the Green and Hundy"

solution for pure bending, but a modification to the interior envelope based

on the normality rule of plasticity produces the desired agreement. Rice ^

also fit an ellipse within the graphically determined Upper Bound envelope,

because the equation of the envelope itself was not determined.

5
Bucci et al compared some Compact specimen limit load values measured

experimentally by Westinghouse with values predicted by Rice's graphically

determined interaction diagram. The predicted values were slightly higher

than the measured values, as snould be the case for an Upper Bound analysis.

As shown in Fig. A.I, we found that the same experimental data are bounded
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equally well from below by an adjusted Lower Bound curve which is obtained

by multiplying the Lower Bound limit load values by the plastic constraint

factor of 1.26, which was obtained by Green and Hundy for a notched beam

loaded in pure bending. Note that Fig. A.I is Fig. 10 from Ref. 5, with

the adjusted Lower Bound curve added. Since multiplying the yield stress

by a constant factor has no effect on the J Integral solution given by Eq.

(33)* the use of a Lower Bound limit load solution in this analysis appears

to be well justified. Note that the rigid-plastic value of J, given by Eq.

(37), is numerically affected by the plastic constraint factor. In addition,

not shown in Fig. A.I is the curve corresponding to Rice's elliptical approxi-

mation; •* which passes through the higher data points and falls below the

adjusted Lower Bound curve for 0.7 < a/W < 1.0.



Table 1. Values of Y, p, and A™ for the

Compact Specimen

a
W

0.50

0.55
0.40

0.45

0.50

0.55
0.60

O.65

Y

5.85
6.54

7.55
8.54
9.60

11.26

15.62

16.84

P

14.48
18.41

25.22

29.27

57-2

47-9
65.2
85.8

5.52
5.12

2.78

2.60
2.48

2.58

2.56
2.52

0.70 21.56 119.8 2.52

Note: Values of Y and p are from Ref. 9.



Table 2. J Integral Analysis Parameters for
the Compact Specimen

W a TI n
c

0.30 0.25 2.552 0.194 2.55 5.52 1.5

O.55 0.23 2.556 0.202 2.54 5-12 1.2
0.40 0.21 2.518 0.206 2.52 2.78 1.1

0.45 0.18 2.284 0.206 2.49 2.60 1.0
0.50 0.16 2.262 O.198 2.46 2.48 1.0
0.55 0.14 2.238 0.188 2.43 2.38 1.0

0.60 0.12 2.206 0.174 2.38 2.36 1.0

0.65 0.10 2.178 0.156 2.55 2.32 1.0

0.70 0.09 2.164 0.144 2.31 2.32 1.0



Table 3. Values of (K^cd / E) -:- J for Measurement Points in

the Plastic Range of the Load-Displacement Curve for
a Compact Specimen of A533 Grade B Class 1
Steel, a/W =0.5.

1 1 _!£
VV TD (h

nc y r
1.00 1.00 1.000 1.00

1.50 1.22 0.749 1.02

2.00 1.38 0.619 1.03

2.50 1.50 0.547 i.o4

3.00 1.55 0.459 1.05

3.5O 1.59 0.402 1.05

4.00 I.63 O.365 1.06

5.00 1.68 0.306 1.06

6.00 1.70 0.255 1.07

7.00 1.72 0.225 1.07

8.00 1.73 O.I96 1.07

9.00 1.74 0.179 1.07

10.00 1.75 0.163 1.08



Figure Captions

Pig. 1. Stress conditions in a Compact specimen at plastic
collapse.

Fig. 2. Displacement diagram for a Compact specimen at plastic
collapse.

Fig. 5. Definition of the incremental area between two load-displacement
curves that is related to the J Integral.

Fig. h. Schematic load per unit thickness versus displacement diagram,
showing the definitions of P , A and * .

Fig. 5. lirpical normalized load-displacement diagram for a Compact
specimen.

Fig. A.I. Upper 'bound and adjusted lower bound limit loads divided by BW
as a function of dimensionless crack size, a/w, for Westinghouse
A533B Compact specimen.
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ORNL-DWG 74-106

ACTUAL FAILURE POINT

Figure k
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ORNL-DWG 74-109

WESTINGHOUSE DATA

o 1T CTS
• 2T CTS

= 70 ksi

RICE'S GRAPHICAL
UPPER BOUND SOLUTION

LOWER BOUND
SOLUTION x 1.26

Figure A.I


