# A Jacobi-Davidson type SVD method 

## Citation for published version (APA):

Hochstenbach, M. E. (2001). A Jacobi-Davidson type SVD method. SIAM Journal on Scientific Computing, 23(2), 606-628. https://doi.org/10.1137/S1064827500372973

## DOI:

10.1137/S1064827500372973

## Document status and date:

Published: 01/01/2001

## Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

## Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication


## General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

## Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

# A JACOBI-DAVIDSON TYPE SVD METHOD* 

MICHIEL E. HOCHSTENBACH ${ }^{\dagger}$


#### Abstract

We discuss a new method for the iterative computation of a portion of the singular values and vectors of a large sparse matrix. Similar to the Jacobi-Davidson method for the eigenvalue problem, we compute in each step a correction by (approximately) solving a correction equation. We give a few variants of this Jacobi-Davidson SVD (JDSVD) method with their theoretical properties. It is shown that the JDSVD can be seen as an accelerated (inexact) Newton scheme. We experimentally compare the method with some other iterative SVD methods.


Key words. Jacobi-Davidson, singular value decomposition (SVD), singular values, singular vectors, norm, augmented matrix, correction equation, (inexact) accelerated Newton, improving singular values

AMS subject classifications. 65F15 (65F35)
PII. S1064827500372973

1. Introduction. Suppose that we want to compute one or more singular values, and the corresponding singular vectors, of the real $m \times n$ matrix $A$. This subject has already been studied from a number of different viewpoints [5, 6, 1, 19, 20, 13], for example, to determine a few of the largest or smallest singular triples. This partial SVD can be computed in two different ways using equivalent eigenvalue decompositions.

The first is to compute some eigenvalues and eigenvectors of the $n \times n$ matrix $A^{T} A$ or the $m \times m$ matrix $A A^{T}$. For large (sparse) matrices, direct methods like the QR method are unattractive, but there exist several iterative methods. In [13], for example, (block) Lanczos [10] and Davidson [2] are applied to $A^{T} A$. Another candidate is Jacobi-Davidson [15]. Note that it is in general not advisable (or necessary) to explicitly form the product $A^{T} A$. The nonzero eigenvalues of $A^{T} A$ and $A A^{T}$ are the squares of the nonzero singular values of $A$. This works positively for the separation of large singular values, but it forces a clustering of small ones. Moreover, it can be hard to find very small singular values (relative to the largest singular value) accurately. Apart from this, the approaches via $A^{T} A$ or $A A^{T}$ are asymmetric: in the process we approximate only one of the two singular vectors. The second vector can be obtained from the first by a multiplication by $A$ or $A^{T}$, but this may introduce extra loss of accuracy. Besides, when we have approximations to both the left and right singular vector, we can use only one of them as a starting vector for an iterative method.

A second approach is to compute some eigenvalues and eigenvectors of the augmented matrix

$$
\left(\begin{array}{cc}
0 & A  \tag{1.1}\\
A^{T} & 0
\end{array}\right)
$$

This approach has its own advantages and disadvantages. The eigenvalues of the augmented matrix are plus and minus the singular values of $A$, and we can extract the left and right singular vectors from the eigenvectors by just taking the first and second part (see section 2). This makes an extra multiplication by $A$ or $A^{T}$ unnecessary. We

[^0]do not have the drawback of squaring small singular values. On the negative side, the augmented matrix is larger in size, and the smallest singular values are in the interior of the spectrum.

The Lanczos method for the augmented matrix has been studied by a number of authors $[5,6,1]$. The Lanczos process does not exploit the special (block or "twocyclic") structure of the matrix, unless the starting vector is of the form $(u, 0)$ or $(0, v)$. This is essentially Lanczos bidiagonalization of $A$; see [7, p. 495].

We can also consider the Jacobi-Davidson method [15] for the augmented matrix. This is an efficient method for the computation of a few eigenpairs, and it is of a different nature in comparison to Lanczos. The essence of Jacobi-Davidson is its correction equation, where the shifted operator is restricted to the subspace orthogonal to the current approximation to an eigenvector. When we solve this equation exactly, we can show that the updated vector is the same as the one we would get by one step of Rayleigh quotient iteration (RQI). But in practice one solves the JacobiDavidson correction equation only approximately, and one accelerates the convergence by projecting the matrix onto the subspace spanned by all iterates. Therefore, JacobiDavidson can also be viewed as an inexact accelerated RQI.
"Standard" Jacobi-Davidson does not make use of the structure of the augmented matrix. In this paper we propose a Jacobi-Davidson variant that does take advantage of the special structure of the matrix. Instead of searching the eigenvector in one subspace, we search the left and right singular vectors in separate subspaces. We still solve a correction equation for the augmented matrix, but we use different projections, and we split the approximate solution of this equation for the expansion of the two search spaces. More similarities and differences are discussed in section 7.3.

After some preparations in section 2, we introduce the new approach, which we call the Jacobi-Davidson SVD (JDSVD), in section 3. In section 4, a few variants of the algorithm with their properties are presented. In section 5, we show that the JDSVD process can be viewed as an (inexact) accelerated Newton scheme, and in section 6 we focus on convergence. Various aspects of the method are discussed in section 7, and after numerical examples in section 8, we finish with conclusions in section 9 .
2. Preparations. Let $A$ be a real $m \times n$ matrix with SVD $A=U_{*} \Sigma V_{*}^{T}$ and singular values

$$
0 \leq \sigma_{\min }=\sigma_{p} \leq \sigma_{p-1} \leq \cdots \leq \sigma_{2} \leq \sigma_{1}=\sigma_{\max }
$$

where $p:=\min \{m, n\}$. Denote the corresponding left and right singular vectors by $u_{*, j}(1 \leq j \leq m)$ and $v_{*, j}(1 \leq j \leq n)$.

Throughout the paper, $\|\cdot\|$ stands for $\|\cdot\|_{2}$, and we write $\sigma_{j}(B)$ for the $j$ th largest singular value of a real matrix $B$ and simply $\sigma_{j}$ for the $j$ th largest singular value of $A$. Furthermore, $\Lambda(B)$ is the spectrum of $B$, and $\Sigma(B)$ is the set of singular values of $B$. If $B$ is a real symmetric matrix, then $\lambda_{j}(B)$ denotes the $j$ th largest eigenvalue of $B$.

If $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, then, for convenience, we write $\binom{a}{b} \in \mathbb{R}^{m+n}$ also as $(a, b)$. If $X$ is a matrix, then we denote the subspace spanned by the columns of $X$ by $\mathcal{X}$. We use the notation $\mathcal{K}_{l}(B, x)$ for the Krylov subspace of dimension $l$ generated by $B$ and $x$.

Definition 2.1. Let $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}, \mathcal{X} \subset \mathbb{R}^{m}$, and $\mathcal{Y} \subset \mathbb{R}^{n}$. We say that $\binom{u}{v} \in \mathbb{R}^{m+n}$ is double-orthogonal to the pair of subspaces $(\mathcal{X}, \mathcal{Y})$ if both $u \perp \mathcal{X}$
and $v \perp \mathcal{Y}$, which is denoted by $\binom{u}{v} \perp \perp\binom{\mathcal{X}}{\mathcal{y}} . B y(u, v)^{\perp \perp}$ we denote the subspace $\left\{(a, b) \in \mathbb{R}^{m} \times \mathbb{R}^{n}: u^{T} a=v^{T} b=0\right\}$.

The following lemma gives a relation between the singular triples of $A$ and the eigenpairs of the augmented matrix.

Lemma 2.2 (Jordan-Wielandt; see Theorem I.4.2 of [18]). The augmented matrix (1.1) has eigenvalues

$$
-\sigma_{1}, \ldots,-\sigma_{p}, \underbrace{0, \ldots, 0}_{|m-n|}, \sigma_{p}, \ldots, \sigma_{1}
$$

and eigenvectors

$$
\binom{u_{*, j}}{ \pm v_{*, j}} \quad(1 \leq j \leq p)
$$

corresponding to the $\pm \sigma_{j}$ and, if $m \neq n$, additionally,

$$
\text { either }\binom{u_{*, j}}{0}(n+1 \leq j \leq m) \quad \text { or } \quad\binom{0}{v_{*, j}} \quad(m+1 \leq j \leq n)
$$

depending on whether $m>n$ or $n>m$.
The next definition is the natural analogue of the definition of a simple eigenvalue (see, e.g., [18, p. 15]).

Definition 2.3. We call $\sigma_{i}$ a simple singular value of $A$ if $\sigma_{i} \neq \sigma_{j}$ for all $j \neq i$.
The following lemma gives a link between a simple singular value of $A$ and a simple eigenvalue of $A^{T} A$ and $A A^{T}$.

Lemma 2.4. Let $\sigma>0$. Then $\sigma$ is a simple singular value of $A$ if and only if $\sigma^{2}$ is a simple eigenvalue of $A^{T} A$ and $A A^{T}$.

Proof. The nonzero eigenvalues of $A^{T} A$ and $A A^{T}$ are just the squares of the nonzero singular values of $A$ (see, for example, [18, p. 31]).

Note that the condition $\sigma>0$ in the previous lemma is necessary. For example, 0 is a simple singular value of the $1 \times 2$ matrix $A=\left(\begin{array}{l}0\end{array}\right)$, but it is not a simple eigenvalue of $A^{T} A$.

For future use, we mention the following well-known results.
Lemma 2.5 (Weyl; see pp. 101-102 of [21], Corollary IV.4.9 of [18], and Theorem 10.3.1 of [12]). Let $B$ and $E$ be real symmetric $n \times n$ matrices. Then for all $1 \leq j \leq n$

$$
\lambda_{j}(B)+\lambda_{n}(E) \leq \lambda_{j}(B+E) \leq \lambda_{j}(B)+\lambda_{1}(E)
$$

Lemma 2.6 (see (3.3.17) of [9]). If $B$ and $E$ are $m \times n$ matrices, then for $1 \leq i, j \leq p$, and $i+j \leq p+1$,

$$
\sigma_{i+j-1}(B+E) \leq \sigma_{i}(B)+\sigma_{j}(E)
$$

In particular, for $j=1$ this yields $\sigma_{i}(B+E) \leq \sigma_{i}(B)+\sigma_{1}(E)$ for $i=1, \ldots, p$.
Lemma 2.7 (see (7.3.8) of [8]). Let $B$ and $E$ be real $m \times n$ matrices. Then

$$
\sum_{j=1}^{p}\left(\sigma_{j}(B+E)-\sigma_{j}(B)\right)^{2} \leq\|E\|_{F}^{2}
$$

Lemma 2.8. If $U$ and $V$ are orthogonal $m \times m$ and $n \times n$ matrices, respectively, then for all $1 \leq j \leq p$ we have $\sigma_{j}\left(U^{T} A V\right)=\sigma_{j}(A)$. In particular, $\left\|U^{T} A V\right\|=\|A\|$.

Proof. The SVD of $U^{T} A V$ is just $\left(U^{T} U_{*}\right) \Sigma\left(V^{T} V_{*}\right)^{T}$. The final statement follows from the characterization of the matrix two-norm as the largest singular value.

Lemma 2.9 (see (3.1.3) of [9]). Let $B$ be an $m \times n$ matrix, and let $B_{l}$ denote a submatrix of $B$ obtained by deleting a total of $l$ rows and/or columns from $B$. Then

$$
\sigma_{j}(B) \geq \sigma_{j}\left(B_{l}\right) \geq \sigma_{j+l}(B)
$$

for $1 \leq j \leq p$, where for $a q \times r$ matrix $X$ we set $\sigma_{j}(X)=0$ if $j>\min \{q, r\}$.
3. The JDSVD correction equation. Suppose that we have $k$-dimensional search spaces $\mathcal{U} \subset \mathbb{R}^{m}$ and $\mathcal{V} \subset \mathbb{R}^{n}$ and test spaces $\mathcal{X} \subset \mathbb{R}^{m}$ and $\mathcal{Y} \subset \mathbb{R}^{n}$. To determine approximations $\theta, \eta$ to a singular value, and $u \in \mathcal{U}, v \in \mathcal{V}$ (of unit norm) to the corresponding left and right singular vectors, we impose the double Galerkin condition with respect to $\mathcal{X}$ and $\mathcal{Y}$ on the residual $r$ :

$$
\begin{equation*}
r=r(\theta, \eta):=\binom{A v-\theta u}{A^{T} u-\eta v} \perp \perp\binom{\mathcal{X}}{\mathcal{Y}} \tag{3.1}
\end{equation*}
$$

Because $u \in \mathcal{U}$ and $v \in \mathcal{V}$, we can write $u=U c$ and $v=V d$, where the columns of the $m \times k$ matrix $U$ and the columns of the $n \times k$ matrix $V$ form bases for $\mathcal{U}$ and $\mathcal{V}$, respectively, and $c, d \in \mathbb{R}^{k}$. Then we want to find $\theta, \eta, c$, and $d$ that are solutions of

$$
\left\{\begin{array}{l}
X^{T} A V d=\theta X^{T} U c  \tag{3.2}\\
Y^{T} A^{T} U c=\eta Y^{T} V d
\end{array}\right.
$$

where $X$ and $Y$ are matrices with columns that form bases for $\mathcal{X}$ and $\mathcal{Y}$. For test vectors $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, we have, in particular, that $r \perp \perp(x, y)$; so if $x^{T} u \neq 0$ and $y^{T} v \neq 0$,

$$
\begin{equation*}
\theta=\frac{x^{T} A v}{x^{T} u}, \quad \eta=\frac{y^{T} A^{T} u}{y^{T} v} \tag{3.3}
\end{equation*}
$$

This shows that the approximations $\theta$ and $\eta$ may differ. We discuss possible choices for $\mathcal{X}$ and $\mathcal{Y}$ and the resulting relations for $u$ and $v$ in the following section. For now, suppose that we have approximations $(u, v, \theta, \eta)$. We would like to have a doubleorthogonal correction $(s, t) \perp \perp(u, v)$ to $(u, v)$ such that

$$
\begin{cases}A(v+t) & =\sigma(u+s)  \tag{3.4}\\ A^{T}(u+s) & =\tau(v+t)\end{cases}
$$

where $\sigma>0$ and $\tau>0$ need not be equal because the vectors are not normalized. However, since $A^{T} A(v+t)=\sigma \tau(v+t)$, we have $\sigma \tau=\sigma_{i}^{2}$ for some $1 \leq i \leq p$. Equations (3.4) can be rearranged to obtain
$\left(\begin{array}{cc}-\sigma I_{m} & A \\ A^{T} & -\tau I_{n}\end{array}\right)\binom{s}{t}=-\binom{A v-\theta u}{A^{T} u-\eta v}+\binom{(\sigma-\theta) u}{(\tau-\eta) v}=-r+\binom{(\sigma-\theta) u}{(\tau-\eta) v}$.
Because $\sigma$ and $\tau$ are unknown, we do not know the differences $(\sigma-\theta) u$ and $(\tau-\eta) v$ either. Therefore, we can consider the projection of the last equation onto $(x, y)^{\perp \perp}$ along $(u, v)$. This projection is given by

$$
\left(\begin{array}{cc}
I_{m}-\frac{u x^{T}}{x^{T} u} & 0 \\
0 & I_{n}-\frac{v y^{T}}{y^{T} v}
\end{array}\right)
$$

and it fixes $r$. Projecting the previous equation, we get

$$
\begin{align*}
& \left(\begin{array}{cc}
I_{m}-\frac{u x^{T}}{x^{T} u} & 0 \\
0 & I_{n}-\frac{v y^{T}}{y^{T} v}
\end{array}\right)\left(\begin{array}{cc}
-\sigma I_{m} & A \\
A^{T} & -\tau I_{n}
\end{array}\right)\binom{s}{t}=-r  \tag{3.5}\\
& \quad \text { where }(s, t) \perp \perp(u, v) .
\end{align*}
$$

Since $\sigma$ and $\tau$ are unknown, an obvious choice is to replace them by $\theta$ and $\eta$. This can be considered as "throwing away second order terms" $(\sigma-\theta, \tau-\eta, s$, and $t$ will all be asymptotically small) and suggests that the JDSVD is in fact a Newton method, which is true indeed (see section 5). Furthermore, since for every $\widetilde{x} \in \mathbb{R}^{m}$ and $\widetilde{y} \in \mathbb{R}^{n}$ such that $u^{T} \widetilde{x} \neq 0$ and $v^{T} \widetilde{y} \neq 0$

$$
\left(\begin{array}{cc}
I_{m}-\frac{\widetilde{x} u^{T}}{u^{T} \widetilde{x}} & 0 \\
0 & I_{n}-\frac{\tilde{y} v^{T}}{v^{T} \tilde{y}}
\end{array}\right)\binom{s}{t}=\binom{s}{t}
$$

(3.5) leads to the $J D S V D$ correction equation
$\left(\begin{array}{cc}I_{m}-\frac{u x^{T}}{x^{T} u} & 0 \\ 0 & I_{n}-\frac{v y^{T}}{y^{T} v}\end{array}\right)\left(\begin{array}{cc}-\theta I_{m} & A \\ A^{T} & -\eta I_{n}\end{array}\right)\left(\begin{array}{cc}I_{m}-\frac{\widetilde{x} u^{T}}{u^{T} \widetilde{x}} & 0 \\ 0 & I_{n}-\frac{\tilde{y} v^{T}}{v^{T} \tilde{y}}\end{array}\right)\binom{s}{t}=-r$,
where $(s, t) \perp \perp(u, v)$. We see that the operator in (3.6) is symmetric if and only if $\widetilde{x}$ and $\widetilde{y}$ are a nonzero multiple of $x$ and $y$. It maps $(u, v)^{\perp \perp}$ to $(x, y)^{\perp \perp}$. In sections 5 and 6 we explain why this process may lead to fast convergence, and we meet a generalized version of the correction equation. In the next section we examine several choices for the Galerkin conditions (3.1).
4. Choices for the Galerkin conditions. Consider the eigenvalue problem for a symmetric matrix $B$, where we have one subspace $\mathcal{W}$ that is used both as search space and test space. If the columns of $W$ form an orthonormal basis for $\mathcal{W}$, then the projected matrix $W^{T} B W$ has some nice properties; see [12, section 11.4]. We will see that searching in two spaces, as in the JDSVD, spreads those properties over a few Galerkin choices. In this section we examine some obvious choices.
4.1. The standard choice $\mathcal{X}=\mathcal{U}$ and $\mathcal{Y}=\mathcal{V}$. Consider the situation where the search spaces $\mathcal{U}$ and $\mathcal{V}$ are of equal dimension $k$. Let us first take the test spaces $\mathcal{X}$ and $\mathcal{Y}$ equal to the search spaces $\mathcal{U}$ and $\mathcal{V}$.

If the columns of $U$ and $V$ form orthonormal bases for $\mathcal{U}$ and $\mathcal{V}$, then with the notation $H:=U^{T} A V$, (3.2) reduces to

$$
\begin{equation*}
H d=\theta c \quad \text { and } \quad H^{T} c=\eta d \tag{4.1}
\end{equation*}
$$

This gives approximations $u=U c$ and $v=V d$, where $c$ and $d$ are, respectively, left and right singular vectors of $H$. With the requirement $\|c\|=\|d\|=1$ and test vectors $x=u$ and $y=v$, we get

$$
\begin{equation*}
\theta=\eta=u^{T} A v \tag{4.2}
\end{equation*}
$$

For reasons of symmetry, we choose $\widetilde{x}=x(=u)$ and $\widetilde{y}=y(=v)$. The resulting algorithm for the computation of $\sigma_{\max }$ is given in Algorithm 4.1.

In step 2 of the algorithm, RMGS stands for repeated modified Gram-Schmidt (see, for example, [7, pp. 231-232]), used to make $s$ and $t$ orthogonal to $U_{k-1}$ and

```
Input: a device to compute \(A v\) and \(A^{T} u\) for arbitrary \(u\) and \(v\), starting vectors \(u_{1}\) and \(v_{1}\),
    and a tolerance \(\varepsilon\).
Output: the approximate singular triple \((\theta, u, v)\) for the largest singular value
    \(\sigma_{\text {max }}\) and its corresponding singular vectors satisfying \(\left\|\binom{A v-\theta u}{A^{T} u-\theta v}\right\| \leq \varepsilon\).
        \(s=u_{1}, t=v_{1}, U_{0}=[], V_{0}=[]\)
        for \(k=1, \ldots\).
            \(U_{k}=\operatorname{RMGS}\left(U_{k-1}, s\right)\)
            \(V_{k}=\operatorname{RMGS}\left(V_{k-1}, t\right)\)
            Compute \(k\) th column of \(W_{k}=A V_{k}\)
            Compute \(k\) th row and column of \(H_{k}=U_{k}^{T} A V_{k}=U_{k}^{T} W_{k}\)
            Compute largest singular triple \((\theta, c, d)\) of \(H_{k},(\|c\|=\|d\|=1)\)
            \(u=U_{k} c, v=V_{k} d\)
            \(r=\binom{A v-\theta u}{A^{T} u-\theta v}=\binom{W_{k} r^{d}-\theta u}{A_{u}-\theta v}\)
            Stop if \(\|r\| \leq \varepsilon\)
            Solve (approximately) an ( \(s, t) \perp \perp(u, v)\) from
        \(\left(\begin{array}{cc}I_{m}-u u^{T} & 0 \\ 0 & I_{n}-v v^{T}\end{array}\right)\left(\begin{array}{cc}-\theta I_{m} & A \\ A^{T} & -\theta I_{n}\end{array}\right)\left(\begin{array}{cc}I_{m}-u u^{T} & 0 \\ 0 & I_{n}-v v^{T}\end{array}\right)\binom{s}{t}=-r\)
```

Alg. 4.1. The JDSVD algorithm for the computation of $\sigma_{\max }(A)$ with Galerkin conditions $\mathcal{X}=\mathcal{U}, \mathcal{Y}=\mathcal{V}$. The approximations $(\theta, \eta, u, v)$ satisfy $\theta=\eta=u^{T} A v$.
$V_{k-1}$, and to expand the search spaces with the normalized vectors. Furthermore, [] stands for the empty matrix, and we omit the index $k$ of all variables that are overwritten in every step. If we are interested in another singular value, for example, the smallest, or the one closest to a specific target, we should adjust our choice in step 4 of the algorithm accordingly. The variant of Algorithm 4.1 is the only variant of the JDSVD for which the operator in (3.6) is symmetric and maps $(u, v)^{\perp \perp}$ in itself. Other choices imply that the operator is not symmetric or maps $(u, v)^{\perp \perp}$ to a different space. See also section 7.2.
4.2. Optimality of this choice. The following two results indicate that the method resulting from this standard Galerkin choice is optimal in some sense. Suppose we have an $m \times k$ matrix $U$ and an $n \times k$ matrix $V$. Then for any $k \times k$ matrices $K$ and $L$ there are associated an $m \times k$ residual matrix $R(K)$ and an $n \times k$ residual matrix $\widetilde{R}(L)$ :

$$
R(K):=A V-U K \quad \text { and } \quad \widetilde{R}(L):=A^{T} U-V L .
$$

If there exist $K$ and $L$ such that these residual matrices are zero, then we have found left and right singular subspaces, i.e., invariant subspaces of $A^{T} A$ and $A A^{T}$. The following theorem states that if both $U$ and $V$ have orthonormal columns, then $H:=U^{T} A V$ and $H^{T}=V^{T} A^{T} U$ minimize the norm of these residual matrices, which is a desirable property. It is a generalization of a result in the theory for eigenproblems (see [12, Theorem 11.4.2] and [18, Theorem IV.1.15]), which deals with residuals of the form $A V-V K$.

Theorem 4.1 (cf. Theorem 11.4.2 of [12]). For given $m \times k$ matrix $U$ and $n \times k$ matrix $V$, let $H=U^{T} A V$.
(a) If the columns of $U$ are orthonormal, then for all $k \times k$ matrices $K$ we have $\|R(H)\| \leq\|R(K)\|$. Moreover, $H$ is unique with respect to the Frobenius norm $\|R(H)\|_{F} \leq\|R(K)\|_{F}$ with equality only when $K=H$.
(b) If the columns of $V$ are orthonormal, then $H^{T}=V^{T} A^{T} U$ minimizes the norm of $\widetilde{R}(L)$, and $H^{T}$ is unique with respect to the Frobenius norm.
Proof. Suppose that the columns of $U$ are orthonormal; then $U^{T} U=I$, so

$$
\begin{aligned}
R(K)^{T} R(K) & =V^{T} A^{T} A V+K^{T} K-K^{T} H-H^{T} K \\
& =V^{T} A^{T} A V-H^{T} H+(K-H)^{T}(K-H) \\
& =R(H)^{T} R(H)+(K-H)^{T}(K-H) .
\end{aligned}
$$

Since $(K-H)^{T}(K-H)$ is positive semidefinite, it follows that

$$
\|R(K)\|^{2}=\lambda_{\max }\left(R(K)^{T} R(K)\right) \geq \lambda_{\max }\left(R(H)^{T} R(H)\right)=\|R(H)\|^{2}
$$

where we used Lemma 2.5 in the inequality. For uniqueness, we realize that $\|B\|_{F}^{2}=$ Trace $\left(B^{T} B\right)$ for every real matrix $B$. Part (b) can be proved using the same methods.

Proposition 4.2. Let $u$ and $v$ be approximations of unit norm. Then

$$
(\theta, \eta)=\left(u^{T} A v, u^{T} A v\right) \text { minimizes }\|r(\theta, \eta)\|
$$

Proof. This can be shown by differentiating $\|r(\theta, \eta)\|^{2}$ with respect to $\theta$ and $\eta$.

Because of these two results, it is a natural idea to take the $k$ singular values $\theta_{j}^{(k)}$ of $H_{k}$ as approximations to the singular values of $A$. When $U_{k}$ and $V_{k}$ have orthonormal columns, we see by Lemma 2.8 that these approximations converge in a finite number of steps to the singular values of $A$. In the following theorem we show that the approximations converge monotonically increasing.

THEOREM 4.3. Let $\theta_{k}^{(k)} \leq \cdots \leq \theta_{1}^{(k)}$ be the singular values of $H_{k}:=U_{k}^{T} A V_{k}$, where $U_{k}$ and $V_{k}$ have orthonormal columns. Then for all fixed $j$ and increasing $k$, the $\theta_{j}^{(k)}$ converge monotonically increasing to the $\sigma_{j}$.

Proof. $\quad H_{k}$ is a submatrix of $H_{k+1}$, so according to Lemma $2.9 \theta_{j}^{(k+1)} \geq \theta_{j}^{(k)}$ for $1 \leq j \leq k$. Because of the orthogonality of $U_{k}$ and $V_{k}$, the $\theta_{j}^{(k)}$ converge to the $\sigma_{j}$.

REMARK 4.4. In practice, one often observes that the $\theta_{j}^{(k)}$ converge strictly monotonically to the $\sigma_{j}$. With the aid of [21, pp. 94-98], conditions could be formulated under which the convergence is strict.

Note that the theorem does not say that the smallest approximations $\theta_{k}^{(k)}$ converge monotonically (decreasing) to $\sigma_{p}$, because Lemma 2.9 only gives us $\theta_{k+1}^{(k+1)} \leq \theta_{k-1}^{(k)}$. For example, if $u_{k} \approx u_{*, p}$ and $v_{k} \approx v_{*, p-1}$, then $\theta_{k}^{(k)} \approx 0$, so we see that the smallest approximation can in fact be (much) smaller than $\sigma_{p}$. Experiments show that the convergence of the $\theta_{k}^{(k)}$ can be irregular and slow (see section 8 ). This is a serious difficulty of working with the augmented matrix, because the smallest singular values are in the interior of its spectrum. We discuss this matter further in sections 4.3, 4.4, and 7.5. The following theorem gives some relations between the singular values of $H_{k}$ and those of $A$. For clarity, we leave out the index $k$ as much as possible.

Theorem 4.5 (cf. Theorems 11.5.1 and 11.5.2 of [12] and Corollary IV.4.15 of [18]). For $j=1, \ldots, k$, there exist singular values $\sigma_{j^{\prime}}$ of $A$ which can be put in one-one correspondence with the singular values $\theta_{j}$ of $H$ in such a way that

$$
\left|\sigma_{j^{\prime}}-\theta_{j}\right| \leq \max \left\{\|R(H)\|,\left\|\widetilde{R}\left(H^{T}\right)\right\|\right\} \quad(1 \leq j \leq k)
$$

Moreover,

$$
\sum_{j=1}^{k}\left(\sigma_{j^{\prime}}-\theta_{j}\right)^{2} \leq\|R(H)\|_{F}^{2}+\left\|\widetilde{R}\left(H^{T}\right)\right\|_{F}^{2}
$$

Proof. Let the columns of $\widetilde{U}$ and $\widetilde{V}$ be orthonormal bases for the orthogonal complements of $U$ and $V$, respectively. Then both $[U \widetilde{U}]$ and $[V \widetilde{V}]$ are orthogonal and

$$
[U \widetilde{U}]^{T} A\left[\begin{array}{ll}
V & \widetilde{V}
\end{array}\right]=\left(\begin{array}{cc}
H & 0  \tag{4.3}\\
0 & \widetilde{U}^{T} A \widetilde{V}
\end{array}\right)+\left(\begin{array}{cc}
0 & U^{T} A \widetilde{V} \\
\widetilde{U}^{T} A V & 0
\end{array}\right)
$$

Using Lemmas 2.8 and 2.6, respectively, we obtain for $1 \leq j \leq p=\min \{m, n\}$

$$
\sigma_{j}(A)=\sigma_{j}\left(\left[\begin{array}{ll}
U & \widetilde{U}
\end{array}\right]^{T} A[V \quad \widetilde{V}]\right) \leq \sigma_{j}\left(\begin{array}{cc}
H & 0 \\
0 & \widetilde{U}^{T} A \widetilde{V}
\end{array}\right)+\sigma_{\max }\left(\begin{array}{cc}
0 & U^{T} A \widetilde{V} \\
\widetilde{U}^{T} A V & 0
\end{array}\right)
$$

Now

$$
[U \widetilde{U}]^{T} R(H)=\binom{0}{\widetilde{U}^{T} A V} \quad \text { and } \quad[V \widetilde{V}]^{T} \widetilde{R}\left(H^{T}\right)=\binom{0}{\widetilde{V}^{T} A^{T} U}
$$

so, because of the orthogonal invariance of the norm (see Lemma 2.8), $\|R(H)\|=$ $\left\|\widetilde{U}^{T} A V\right\|$ and $\left\|\widetilde{R}\left(H^{T}\right)\right\|=\left\|\widetilde{V}^{T} A^{T} U\right\|=\left\|U^{T} A \widetilde{V}\right\|$. Because

$$
\Sigma\left(\begin{array}{cc}
H & 0 \\
0 & \widetilde{U}^{T} A \widetilde{V}
\end{array}\right)=\Sigma(H) \cup \Sigma\left(\widetilde{U}^{T} A \widetilde{V}\right)
$$

there exist indices $j^{\prime}$ such that

$$
\sigma_{j^{\prime}}\left(\begin{array}{cc}
H & 0 \\
0 & \widetilde{U}^{T} A \widetilde{V}
\end{array}\right)=\theta_{j}
$$

So the theorem's first inequality is obtained by

$$
\sigma_{\max }\left(\begin{array}{cc}
0 & U^{T} A \widetilde{V} \\
\widetilde{U}^{T} A V & 0
\end{array}\right)=\max \left\{\left\|\widetilde{U}^{T} A V\right\|,\left\|U^{T} A \widetilde{V}\right\|\right\}=\max \left\{\|R(H)\|,\left\|\widetilde{R}\left(H^{T}\right)\right\|\right\}
$$

For the second inequality, apply Lemma 2.7 to the splitting of (4.3).
For the following proposition, we need the minimax theorem for singular values [9, Theorem 3.1.2]

$$
\begin{equation*}
\sigma_{j}=\max _{\mathcal{X}^{j} \subset \mathbb{R}^{n}} \min _{0 \neq x \in \mathcal{X}} \frac{\|A x\|}{\|x\|}, \tag{4.4}
\end{equation*}
$$

where $\mathcal{X}^{j}$ ranges over all subspaces of $\mathbb{R}^{n}$ of dimension $j$.
The following proposition states that the singular values of $U_{k}^{T} A V_{k}$ are also not optimal in another sense.

Proposition 4.6. Let $U_{k}$ and $V_{k}$ have orthonormal columns. For $1 \leq j \leq k$,

$$
\sigma_{j}\left(U_{k}^{T} A V_{k}\right) \leq \sigma_{j}\left(A V_{k}\right) \quad \text { and } \quad \sigma_{j}\left(U_{k}^{T} A V_{k}\right) \leq \sigma_{j}\left(A^{T} U_{k}\right)
$$

Proof. This follows from (4.4) and the inequalities $\left\|U_{k}^{T} A V_{k} y\right\| \leq\left\|A V_{k} y\right\|$ and $\left\|V_{k}^{T} A^{T} U_{k} x\right\| \leq\left\|A^{T} U_{k} x\right\|$.

We have seen that the $\sigma_{j}\left(U_{k}^{T} A V_{k}\right)$ increase monotonically and that they are bounded above by both $\sigma_{j}\left(A V_{k}\right)=\lambda_{j}^{1 / 2}\left(V_{k}^{T} A^{T} A V_{k}\right)$ and $\sigma_{j}\left(A^{T} U_{k}\right)=\lambda_{j}^{1 / 2}\left(U_{k}^{T} A A^{T} U_{k}\right)$. This forms one motivation to study other Galerkin choices. A second is the possibly irregular convergence of the smallest singular value of $U_{k}^{T} A V_{k}$.
4.3. Other choices. Suppose that the columns of $V$ form an orthonormal basis for $\mathcal{V}$. By the Galerkin choice $\mathcal{X}=A \mathcal{V}, \mathcal{Y}=\mathcal{V}$, with test vectors $x=A v, y=v$, and $u=U c, v=V d$, and $\|v\|=1$, (3.2) reduces to

$$
\begin{cases}V^{T} A^{T} A V d & =\theta V^{T} A^{T} U c  \tag{4.5}\\ V^{T} A^{T} U c & =\eta d\end{cases}
$$

One can check that to satisfy the Galerkin conditions, $(\theta \eta, d)$ should be an eigenpair of $V^{T} A^{T} A V$. Now first suppose that $V^{T} A^{T} U$ is nonsingular. Note that in this case $\eta \neq 0$; otherwise, $V^{T} A^{T} U$ would be singular. It follows that $c=\eta\left(V^{T} A^{T} U\right)^{-1} d$, $\eta=v^{T} A^{T} u$, and $\theta=v^{T} A^{T} A v / v^{T} A u$. When $V^{T} A^{T} U$ is singular, then this construction is impossible, but in this case we can simply restart the process or add extra vectors to the search spaces (see section 7.6).

With this Galerkin choice, $\theta$ and $\eta$ do not converge monotonically in general, but we can apply well-known results from eigenvalue theory to ensure that their product does converge monotonically to the squares of the singular values and also to the smallest. In section 7.2 we discuss the resulting correction equation.

Likewise, if the columns of $U$ form an orthonormal basis for $\mathcal{U}$, the Galerkin choice $\mathcal{X}=\mathcal{U}, \mathcal{Y}=A^{T} \mathcal{U}$ leads to the determination of $(\theta \eta, c)$, an eigenpair of $U^{T} A A^{T} U$. These two approaches are natural with respect to minimax considerations, as we will see now.

Lemma 4.7. Let $\xi \in[0,1]$. Then we have the following minimax property for singular values:

$$
\begin{equation*}
\sigma_{j}=\max _{\substack{\mathcal{S}^{j} \subset \mathbb{R}^{m} \\ \mathcal{T}^{j} \subset \mathbb{R}^{n}}} \min _{\substack{0 \neq s \in \mathcal{S}^{j} \\ 0 \neq t \in \mathcal{T}^{j}}} \xi \frac{\|A t\|}{\|t\|}+(1-\xi) \frac{\left\|A^{T} s\right\|}{\|s\|} \quad(1 \leq j \leq p) \tag{4.6}
\end{equation*}
$$

Proof. This follows from (4.4) and the observation that $A$ and $A^{T}$ have the same singular values.

When we have search spaces $\mathcal{U}$ and $\mathcal{V}$, it is a natural idea to substitute $\mathcal{U}$ for $\mathbb{R}^{m}$ and $\mathcal{V}$ for $\mathbb{R}^{n}$ in (4.6), as a generalization of a similar idea in the theory of eigenproblems; see [12, p. 236]. This gives the following approximations for the singular values:

$$
\begin{equation*}
\tau_{j}=\max _{\substack{\mathcal{S}^{j} \subset \mathcal{U} \\ \mathcal{T}^{j} \subset \mathcal{U}}} \min _{\substack{0 \neq s \in \mathcal{S}^{j} \\ 0 \neq t \in \mathcal{T}^{j}}} \xi \frac{\|A t\|}{\|t\|}+(1-\xi) \frac{\left\|A^{T} s\right\|}{\|s\|} \tag{4.7}
\end{equation*}
$$

The following theorem relates these approximations to the Ritz values of $A^{T} A$ and $A A^{T}$.
Theorem 4.8. $\tau_{j}=\xi\left(\lambda_{j}^{1 / 2}\left(V^{T} A^{T} A V\right)\right)+(1-\xi)\left(\lambda_{j}^{1 / 2}\left(U^{T} A A^{T} U\right)\right)$.
Proof. We have that $\mathcal{T}^{j} \subset \mathcal{V}$ if and only if $\mathcal{T}^{j}=V \widetilde{\mathcal{T}}^{j}:=\left\{V t: t \in \widetilde{\mathcal{T}}^{j}\right\}$ and $\widetilde{\mathcal{T}}^{j} \subset \mathbb{R}^{k}$. So for the first term of the expression for the $\tau_{j}$ we have that

$$
\max _{\mathcal{T}^{j} \subset \mathcal{V}} \min _{0 \neq t \in \mathcal{T}^{j}} \frac{\|A t\|^{2}}{\|t\|^{2}}=\max _{\widetilde{\mathcal{T}}^{j} \subset \mathbb{R}^{k}} \min _{0 \neq t \in \widetilde{\mathcal{T}}^{j}} \frac{t^{T} V^{T} A^{T} A V t}{\|t\|^{2}}=\lambda_{j}\left(V^{T} A^{T} A V\right)
$$

For the second term we have a similar expression.
When we take $\xi=0$ and $\xi=1$ in Theorem 4.8, we recognize the Galerkin approaches described in (4.5) and the discussion after that. They can essentially be viewed as a two-sided approach to $A^{T} A$ or $A A^{T}$, in the sense that we have approximations to both the left and the right singular vector during the process.

As a generalization, we can consider the test spaces $\mathcal{X}$ and $\mathcal{Y}$ with bases $\alpha u_{i}+\beta A v_{i}$ and $\gamma v_{i}+\delta A^{T} u_{i}$, respectively, where $\alpha^{2}+\beta^{2}=\gamma^{2}+\delta^{2}=1$. Every choice other than $\alpha=\gamma=1$ (the standard Galerkin choice discussed in section 4.1) involves the computation of additional projected matrices and more work per iteration.

Another possibility is to take search spaces of unequal dimension, that is, $\mathcal{U}_{k}$ and $\mathcal{V}_{l}$, where $k \neq l$. However, in view of the symmetric role of $\mathcal{S}_{j}$ and $\mathcal{T}_{j}$ in (4.6), this is probably not very useful.
4.4. Harmonic singular triples. As observed in section 4.2, the standard Galerkin choice leads to monotone convergence for the largest singular value, but it can imply irregular behavior for the smallest singular value. A related problem is the selection of the best approximate vectors. Suppose that $u=\sum_{j=1}^{m} \gamma_{j} u_{*, j}$ and $v=\sum_{j=1}^{n} \delta_{j} v_{*, j}$ are approximate vectors; then $\theta=u^{T} A v=\sum_{j=1}^{p} \gamma_{j} \delta_{j} \sigma_{j}$. (We may assume $\theta$ is nonnegative; otherwise, take $-u$ instead of $u$.) Now suppose that $\theta \approx \sigma_{1}$, in the sense that $\sigma_{2}<\theta<\sigma_{1}$ and that $\sigma_{1}-\theta$ is (much) smaller than $\theta-\sigma_{2}$. Then we conclude that $\gamma_{1} \approx 1$ and $\delta_{1} \approx 1$, so $u$ and $v$ are good approximations to $u_{*, 1}$ and $v_{*, 1}$. But when $\theta \approx \sigma_{p}, u$ and $v$ are not necessarily good approximations to $u_{*, p}$ and $v_{*, p}$. For example, $u$ could have a large component of $u_{*, p-1}$ and a small component of $u_{*, 1}$, and $v$ could have a large component of $v_{*, p-2}$ and a small component of $v_{*, 1}$. In conclusion, when we search for the largest singular value, it is asymptotically safe to select the largest singular triple of $H$, but for the smallest singular value the situation is more subtle.

Suppose for the moment that $A$ is square and invertible. If the minimal singular value is the one of interest, the above discussion suggests to study the singular values of $A^{-1}$. Based on the SVD of $A^{-1}$

$$
A^{-1}=V_{*} \Sigma^{-1} U_{*}^{T},
$$

we try to find the largest singular values of $A^{-1}$ with respect to certain search spaces $\widehat{\mathcal{U}}, \widehat{\mathcal{V}}$ and test spaces $\widehat{\mathcal{X}}, \widehat{\mathcal{Y}}$. The new Galerkin conditions become (cf. (3.1))

$$
\binom{A^{-1} \widehat{u}-\widehat{\theta} \widehat{v}}{A^{-T} \widehat{v}-\widehat{\eta} \widehat{u}} \perp \perp\binom{\widehat{\mathcal{Y}}}{\widehat{\mathcal{X}}},
$$

where $\widehat{u} \in \widehat{\mathcal{U}}$ and $\widehat{v} \in \widehat{\mathcal{V}}$, say, $\widehat{u}=\widehat{U} \widehat{c}$ and $\widehat{v}=\widehat{V} \widehat{d}$. To avoid having to work with $A^{-1}$, we take for the search spaces $\widehat{\mathcal{U}}=A \mathcal{V}$ and $\widehat{\mathcal{V}}=A^{T} \mathcal{U}$ (cf. [15]). This gives the system

$$
\left\{\begin{array}{l}
\widehat{Y}^{T} V \widehat{c}=\widehat{\theta} \widehat{Y}^{T} A^{T} U \widehat{d}, \\
\widehat{X}^{T} U \widehat{d}=\widehat{\eta} \widehat{X}^{T} A V \widehat{c} .
\end{array}\right.
$$

Taking $\widehat{\mathcal{X}}=\mathcal{U}$ and $\widehat{\mathcal{Y}}=\mathcal{V}$ results in equivalent conditions as in the standard choice (4.1); only now ( $\widehat{\eta}, \widehat{\theta}$ ) and ( $\widehat{c}, \widehat{d})$ play the role of $\left(\theta^{-1}, \eta^{-1}\right)$ and $(d, c)$. The choices $(\widehat{\mathcal{X}}, \widehat{\mathcal{Y}})=(A \mathcal{V}, \mathcal{V}),\left(\mathcal{U}, A^{T} \mathcal{U}\right)$, and $\left(A \mathcal{V}, A^{T} \mathcal{U}\right)$ lead to different approximations: to (4.5) and other systems described in section 4.3, only the roles of the variables differ. We can call these approximations harmonic singular triples, in analogy to the harmonic

Ritz pairs in the eigenproblem [11]. So these harmonic approximations have two advantages: the monotone behavior of the approximations to the smallest singular value, and the selection of a good approximate "smallest" vector.

The conclusion is that the nondefault Galerkin choices, as presented in section 4.3, can also be seen as a "harmonic" approach to the problem. Finally, when $A$ is singular or even nonsquare, we can consider $A^{+}$with respect to the test and search spaces $A \mathcal{V}$ and $A^{T} \mathcal{U}$, exploiting the fact that $A A^{+} A=A$.
5. The JDSVD as an (inexact) accelerated Newton scheme. In [16], it is shown that the Jacobi-Davidson method can be interpreted as an inexact accelerated Newton scheme [4] for the eigenvalue problem. Here we show that the same is true for the JDSVD applied to the singular value problem. Define $F: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$ as

$$
F(u, v):=\binom{A v-\theta u}{A^{T} u-\eta v}
$$

where $\theta=\theta(u, v)$ and $\eta=\eta(u, v)$ are as in (3.3). Thus the function $F$ is nonlinear. Consider the singular value problem where we require the singular vectors $u_{*}, v_{*}$ to be scaled such that $u_{*}^{T} a=1$ and $v_{*}^{T} b=1$ for certain vectors $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$. So we look for solutions $u_{*}, v_{*}$ of the equation $F(u, v)=0$ in the "hyperplane"

$$
\left\{(u, v) \in \mathbb{R}^{m} \times \mathbb{R}^{n}: u^{T} a=1, v^{T} b=1\right\} .
$$

We introduce these $a$ and $b$ to derive a more general form of the correction equation (3.6). If ( $u_{k}, v_{k}$ ) are approximations to the singular vectors, then the next Newton approximations $\left(u_{k+1}, v_{k+1}\right)$ are given by $\left(u_{k+1}, v_{k+1}\right)=\left(u_{k}, v_{k}\right)+\left(s_{k}, t_{k}\right)$, where $\left(s_{k}, t_{k}\right) \perp \perp(a, b)$ satisfies

$$
D F\left(u_{k}, v_{k}\right)\left(s_{k}, t_{k}\right)=-F\left(u_{k}, v_{k}\right)=-r_{k} .
$$

Omitting the index $k$, one may check (remembering that $\theta=\theta(u, v)$ and $\eta=\eta(u, v)$ are as in (3.3)) that the Jacobian $D F(u, v)$ of $F$ is given by

$$
D F(u, v)=\left(\begin{array}{cc}
I_{m}-\frac{u x^{T}}{x^{T} u} & 0 \\
0 & I_{n}-\frac{v y^{T}}{y^{T} v}
\end{array}\right)\left(\begin{array}{cc}
-\theta I_{m} & A \\
A^{T} & -\eta I_{n}
\end{array}\right) .
$$

Hence the correction equation of the Newton step is given by

$$
\left(\begin{array}{cc}
I_{m}-\frac{u x^{T}}{x^{T} u} & 0 \\
0 & I_{n}-\frac{v y^{T}}{y^{T} v}
\end{array}\right)\left(\begin{array}{cc}
-\theta I_{m} & A \\
A^{T} & -\eta I_{n}
\end{array}\right)\binom{s}{t}=-r, \quad \text { where }(s, t) \perp \perp(a, b) .
$$

For every $\widetilde{x}, \widetilde{y}$ so that $a^{T} \widetilde{x} \neq 0$ and $b^{T} \widetilde{y} \neq 0$, this is equivalent to the slightly more general form of the JDSVD correction equation (in comparison with (3.6)),

$$
\left(\begin{array}{cc}
I_{m}-\frac{u x^{T}}{x^{T}} & 0  \tag{5.1}\\
0 & I_{n}-\frac{v y^{T}}{y^{T} v}
\end{array}\right)\left(\begin{array}{cc}
-\theta I_{m} & A \\
A^{T} & -\eta I_{n}
\end{array}\right)\left(\begin{array}{cc}
I_{m}-\frac{\tilde{\tilde{x}} a^{T}}{a^{T} \tilde{x}} & 0 \\
0 & I_{n}-\frac{\tilde{\tilde{}} b^{T}}{b^{T} \tilde{y}}
\end{array}\right)\binom{s}{t}=-r,
$$

where $(s, t) \perp \perp(a, b)$. Note that the substitution $a=u$ and $b=v$ gives (3.6).
If we keep $a, b, x, \widetilde{x}, y$, and $\widetilde{y}$ fixed during the process, and if $x^{T} u_{*}, y^{T} v_{*}, a^{T} \widetilde{x}$, and $b^{T} \widetilde{y}$ are nonzero, then Newton iteration produces a series ( $u_{k}, v_{k}$ ) that converges
asymptotically quadratically towards $\left(u_{*}, v_{*}\right)$ if the starting vector $\left(u_{1}, v_{1}\right)$ is sufficiently close to ( $u_{*}, v_{*}$ ).

But if we take $a, b, x, \widetilde{x}, y$, and $\widetilde{y}$ variable but converging to certain vectors, such that the denominators in (5.1) do not vanish, we get asymptotically quadratic convergence as well. The choice $a=x=\widetilde{x}=u_{k}$ and $b=y=\widetilde{y}=v_{k}$ leads to Algorithm 4.1. With other Galerkin choices described in section 4, the test vectors $(x, y)$ are, in general, not equal to the approximations $(u, v)$, and in this situation the vectors $a$ and $b$ can be useful; see sections 6 and 7.2.

We see that the JDSVD is a Newton scheme, accelerated by the usage of all previous iterates and the projection of $A$ on the subspace that they span. This subspace acceleration accelerates the "prequadratic" phase of the method and ensures that we find a singular triple in a finite number of steps. It may be expensive to solve the correction equation exactly. Instead we may solve (5.1) approximately (see section 7.1); the resulting method is an inexact accelerated Newton scheme.

In [14], it is proved that if the correction equation is solved exactly, then JacobiDavidson applied to a symmetric matrix has asymptotically cubic convergence. Because the augmented matrix (1.1) is symmetric, we expect that the JDSVD can also reach cubic convergence. The next section shows that this expectation is correct indeed.
6. Convergence. In the previous section we have already seen that the correction equation represents a Jacobian system in a Newton step. Now we focus on the convergence (see [14] for similar observations for Jacobi-Davidson applied to the eigenvalue problem).

In a mathematical sense, it is not meaningful to speak of asymptotic convergence, because we know that the process ends in a finite number of steps. However, in many practical situations a singular triple will be approximated well, long before the dimension of the search spaces reaches $p$. At that stage, these approximations display a behavior that looks like a converging infinite sequence close to its limit. When speaking of asymptotic convergence, we think of this situation. In other words, by the word "asymptotically" we mean the situation where we have a (very) good approximation to the singular triple, rather than the situation where $k \rightarrow \infty$.

In the correction equation (5.1), $u$ and $v$ are the current approximations and $x$ and $y$ are test vectors, but we have not said much about choosing $\widetilde{x}, \widetilde{y}, a$, and $b$. They can vary per step. The next lemma and proposition show that the exact JDSVD (that is, the JDSVD where we solve the correction equation exactly) has asymptotically cubic convergence for specific choices of the test vectors $x$ and $y$ and the vectors $a$ and $b$. To be precise, with $\varepsilon$ small enough, if

$$
\begin{equation*}
\left|\angle\left(u_{k}, u_{*}\right)\right|=\mathcal{O}(\varepsilon) \text { and }\left|\angle\left(v_{k}, v_{*}\right)\right|=\mathcal{O}(\varepsilon) \tag{6.1}
\end{equation*}
$$

and if

$$
\begin{equation*}
a=x \text { and } b=y \quad \text { and } \quad\left|\angle\left(x, u_{*}\right)\right|=\mathcal{O}(\varepsilon) \text { and }\left|\angle\left(y, v_{*}\right)\right|=\mathcal{O}(\varepsilon) \text {, } \tag{6.2}
\end{equation*}
$$

then $\left|\angle\left(u_{k+1}, u_{*}\right)\right|=\mathcal{O}\left(\varepsilon^{3}\right)$ and $\left|\angle\left(v_{k+1}, v_{*}\right)\right|=\mathcal{O}\left(\varepsilon^{3}\right)$. Then the approximate singular values (see (3.3)) converge cubically as well.

Lemma 6.1 (cf. Lemma 3.1 of [14]). Assume that $A v_{*}=\sigma u_{*}$ and $A^{T} u_{*}=\tau v_{*}$, where $\sigma, \tau>0$, and that $\sqrt{\sigma \tau}$ is a simple singular value of $A$. Let $a, b, x, \widetilde{x}, y$, and
$\widetilde{y}$ be such that $x^{T} u_{*}, y^{T} v_{*}, a^{T} \widetilde{x}, b^{T} \widetilde{y}, a^{T} u_{*}$, and $b^{T} v_{*}$ are all nonzero. Then the map

$$
G:=\left(\begin{array}{cc}
I_{m}-\frac{u_{*} x^{T}}{x^{T} u_{*}} & 0 \\
0 & I_{n}-\frac{v_{*} \psi^{T}}{y^{T} v_{*}}
\end{array}\right)\left(\begin{array}{cc}
-\sigma I_{m} & A \\
A^{T} & -\tau I_{n}
\end{array}\right)\left(\begin{array}{cc}
I_{m}-\frac{\tilde{a}^{T}}{a^{T} \tilde{x}} & 0 \\
0 & I_{n}-\frac{\tilde{y} b^{T}}{b^{T} \tilde{y}}
\end{array}\right)
$$

is a bijection from $(a, b)^{\perp \perp}$ onto $(x, y)^{\perp \perp}$.
Proof. Suppose $\left(z_{1}, z_{2}\right) \perp \perp(a, b)$ and $G\left(z_{1}, z_{2}\right)=0$. We show that $z_{1}=z_{2}=0$.
We have

$$
\left(\begin{array}{cc}
-\sigma I_{m} & A \\
A^{T} & -\tau I_{n}
\end{array}\right)\binom{z_{1}}{z_{2}}=\binom{\mu u_{*}}{\nu v_{*}}
$$

for certain $\mu, \nu$. Then

$$
\left\{\begin{array}{l}
A z_{2}=\sigma z_{1}+\mu u_{*}, \\
A^{T} z_{1}=\tau z_{2}+\nu v_{*} .
\end{array}\right.
$$

Multiplying the first equation by $A^{T}$ and the second by $A$, we find

$$
\left\{\begin{aligned}
\left(A^{T} A-\sigma \tau\right) z_{2} & =(\sigma \nu+\tau \mu) v_{*}, \\
\left(A A^{T}-\sigma \tau\right) z_{1} & =(\sigma \nu+\tau \mu) u_{*}
\end{aligned}\right.
$$

So both $z_{1}$ and $u_{*}$ belong to the kernel of $\left(A A^{T}-\sigma \tau\right)^{2}$, and both $z_{2}$ and $v_{*}$ belong to the kernel of $\left(A^{T} A-\sigma \tau\right)^{2}$. From the simplicity of $\sigma \tau$ using Lemma 2.4, we have that $z_{1}$ and $z_{2}$ are multiples of $u_{*}$ and $v_{*}$, respectively. Because $z_{1} \perp a, z_{2} \perp b$, and $a^{T} u_{*} \neq 0, b^{T} v_{*} \neq 0$, we conclude $z_{1}=z_{2}=0$. The bijectivity follows from comparing dimensions.

Proposition 6.2 (cf. Theorem 3.2 of [14]). With the assumptions of Lemma 6.1, if the initial vectors are close enough to the singular vectors corresponding to a simple nonzero singular value (i.e., if (6.1) holds), and if the correction equation is solved exactly, then for fixed vectors $x, y$, $a$, and $b$, the JDSVD process has quadratic convergence. Moreover, if (6.2) holds, then the JDSVD has even cubic convergence.

Proof. For convenience write
$P=\left(\begin{array}{cc}I_{m}-\frac{u x^{T}}{x^{T} u} & 0 \\ 0 & I_{n}-\frac{v y^{T}}{y^{T} v}\end{array}\right), B=\left(\begin{array}{cc}-\theta I_{m} & A \\ A^{T} & -\eta I_{n}\end{array}\right), Q=\left(\begin{array}{cc}I_{m}-\frac{\tilde{\mathfrak{x}}^{T} T^{T}}{a^{T} \tilde{x}} & 0 \\ 0 & I_{n}-\frac{\tilde{y}^{T}}{b^{T} \tilde{y}}\end{array}\right)$.
Then the correction equation (5.1) reads, for $(s, t) \perp \perp(a, b)$,

$$
P B Q(s, t)=P B(s, t)=-r=-B(u, v) .
$$

Suppose that $\widetilde{u}$ and $\widetilde{v}$ are scalar multiples of the singular vectors $u_{*}$ and $v_{*}$ and that $(\widetilde{u}, \widetilde{v})=(u, v)+(e, f)$, where $(e, f) \perp \perp(a, b)$, and $\|e\|=\mathcal{O}(\varepsilon),\|f\|=\mathcal{O}(\varepsilon)$. Our first goal is to show that $\|(e-s, f-t)\|=\mathcal{O}\left(\varepsilon^{2}\right)$. We know that there are $\sigma, \tau>0$ such that

$$
0=\left(\begin{array}{cc}
-\sigma I_{m} & A \\
A^{T} & -\tau I_{n}
\end{array}\right)\binom{\widetilde{u}}{\widetilde{v}}=\left(\begin{array}{cc}
-\theta I_{m} & A \\
A^{T} & -\eta I_{n}
\end{array}\right)\binom{\widetilde{u}}{\widetilde{v}}-\binom{(\sigma-\theta) \widetilde{u}}{(\tau-\eta) \widetilde{v}} .
$$

Therefore, we have

$$
\left(\begin{array}{cc}
-\theta I_{m} & A  \tag{6.3}\\
A^{T} & -\eta I_{n}
\end{array}\right)\binom{e}{f}=-\left(\begin{array}{cc}
-\theta I_{m} & A \\
A^{T} & -\eta I_{n}
\end{array}\right)\binom{u}{v}+\binom{(\sigma-\theta) \widetilde{u}}{(\tau-\eta) \widetilde{v}} .
$$

We multiply this on the left side by $P$ and use the fact that $P B(u, v)=B(u, v)$ :

$$
\begin{equation*}
P B(e, f)=-B(u, v)+P((\sigma-\theta) \widetilde{u},(\tau-\eta) \widetilde{v}) \tag{6.4}
\end{equation*}
$$

Subtracting $P B(s, t)=-B(u, v)$ from (6.4), and noting that $P(u, v)=0$, we get

$$
\begin{equation*}
P B(e-s, f-t)=P((\sigma-\theta) e,(\tau-\eta) f) \tag{6.5}
\end{equation*}
$$

Multiplying (6.3) on the left by $\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)^{T}$ leads to

$$
\binom{\sigma-\theta}{\tau-\eta}=\left(\begin{array}{cc}
\left(x^{T} \widetilde{u}\right)^{-1} & 0  \tag{6.6}\\
0 & \left(y^{T} \widetilde{v}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
-\theta x^{T} & x^{T} A \\
y^{T} A^{T} & -\eta y^{T}
\end{array}\right)\binom{e}{f}
$$

So for fixed $x, y, a$, and $b$ we have $\|P B(e-s, f-t)\|=\mathcal{O}\left(\varepsilon^{2}\right)$. Using Lemma 6.1 and the assumption that the initial vectors are close enough to the singular vectors, we see that $P B$ in (6.5) is invertible, so $\|(e-s, f-t)\|=\mathcal{O}\left(\varepsilon^{2}\right)$, which implies quadratic convergence. But, if additionally, (6.2) holds, then

$$
\left\|\left(\begin{array}{cc}
-\theta x^{T} & x^{T} A \\
y^{T} A^{T} & -\eta y^{T}
\end{array}\right)\binom{e}{f}\right\|=\left\|\binom{a^{T} A f}{b^{T} A^{T} e}\right\|=\sigma\left\|\binom{b^{T} f}{a^{T} e}\right\|+\mathcal{O}\left(\varepsilon^{2}\right)=\mathcal{O}\left(\varepsilon^{2}\right)
$$

so from (6.6) we see that $\|(\sigma-\theta, \tau-\eta)\|=\mathcal{O}\left(\varepsilon^{2}\right)$. We conclude that in this case the convergence is even cubic.

One may check that the hypotheses on $x$ and $y$ in the theorem are true if we choose $x_{k}=u_{k}$ or $x_{k}=A v_{k}$, and $y_{k}=v_{k}$ or $y_{k}=A^{T} u_{k}$ in the process. The cubic convergence can be observed in practice; see section 8 .

## 7. Various aspects of the method.

7.1. Solving the correction equation. We now translate a number of observations for Jacobi-Davidson in $[15,14]$ to the JDSVD context. Consider the situation after $k$ steps of the JDSVD algorithm. For easy reading, we again leave out the index $k$. In this section we take for simplicity the Galerkin spaces used in section 4.1, but most arguments carry over to other choices. First we rewrite the correction equation. Because of $(s, t) \perp \perp(u, v)$, we can eliminate the projections and write (3.6) as

$$
\left(\begin{array}{cc}
-\theta I_{m} & A  \tag{7.1}\\
A^{T} & -\theta I_{n}
\end{array}\right)\binom{s}{t}=-r+\binom{\alpha u}{\beta v}
$$

where $\alpha$ and $\beta$ are determined by the requirement that $(s, t) \perp \perp(u, v)$. If we have a nonsingular preconditioner $M \approx\left(\begin{array}{cc}-\theta I_{m} & A \\ A^{T} & \underset{-\theta I_{n}}{ }\end{array}\right)$, then we can take an approximation

$$
\begin{equation*}
(\widetilde{s}, \tilde{t})=-M^{-1} r+M^{-1}(\alpha u, \beta v) \tag{7.2}
\end{equation*}
$$

1 (cf. [15, p. 406, point 1]). If we approximate ( $s, t$ ) simply by $\pm r$ (by taking $M=\mp I$ and $\alpha=\beta=0$ ), then, because of the orthogonalization at step 2 of Algorithm 4.1, this is equivalent to taking $(\widetilde{s}, \widetilde{t})=\left(A v, A^{T} u\right)$. By induction one can prove that for the special case where we take this simple approximation in every step, we have
$\mathcal{U}_{2 k}=\mathcal{K}_{k}\left(A A^{T}, u_{1}\right) \oplus \mathcal{K}_{k}\left(A A^{T}, A v_{1}\right), \quad \mathcal{V}_{2 k}=\mathcal{K}_{k}\left(A^{T} A, v_{1}\right) \oplus \mathcal{K}_{k}\left(A^{T} A, A^{T} u_{1}\right)$,
as long as the Krylov subspaces have a trivial intersection. Compare this with bidiagonalization, where

$$
\mathcal{U}_{k}=\mathcal{K}_{k}\left(A A^{T}, A v_{1}\right), \quad \mathcal{V}_{k}=\mathcal{K}_{k}\left(A^{T} A, v_{1}\right)
$$

2 (cf. [15, p. 408, point 3]). If $\theta$ is not equal to a singular value, then $M=$ $\left(\begin{array}{cc}-\theta I_{m} & A \\ A^{T} & -\theta I_{n}\end{array}\right)$ is nonsingular and $M^{-1} r=(u, v)$. So for the updated vectors $\widetilde{u}, \widetilde{v}$ we have

$$
\binom{\widetilde{u}}{\widetilde{v}}=\binom{u+s}{v+t}=\left(\begin{array}{cc}
-\theta I_{m} & A  \tag{7.3}\\
A^{T} & -\theta I_{n}
\end{array}\right)^{-1}\binom{\alpha u}{\beta v} .
$$

We conclude that exact the JDSVD can be seen as an accelerated scaled RQI. 3 (cf. [15, p. 409, point 4]). If we take $M \neq\left(\begin{array}{cc}-\theta I_{m} \\ A^{T} & \left.\begin{array}{c}A \\ -\theta I_{n}\end{array}\right), M \text { nonsingular, then }\end{array}\right.$ with $(\widetilde{s}, \widetilde{t})=M^{-1}(\alpha u, \beta v)$ we obtain an inexact shift and invert method. This may be an attractive alternative if (7.3) is expensive.
4. When we are interested in a singular value close to a specific target $\tau$, we can replace this in the left-hand side of the correction equation (3.6):
$\left(\begin{array}{cc}I_{m}-u u^{T} & 0 \\ 0 & I_{n}-v v^{T}\end{array}\right)\left(\begin{array}{cc}-\tau I_{m} & A \\ A^{T} & -\tau I_{n}\end{array}\right)\left(\begin{array}{cc}I_{m}-u u^{T} & 0 \\ 0 & I_{n}-v v^{T}\end{array}\right)\binom{s}{t}=-r$.
The advantage of this approach is that we avoid misconvergence to some unwanted singular value "on the way." For example, if we want to compute the largest singular value, we can use a known approximation of $\sigma_{\max }$ as a target. In practice, $\tau \approx\|A\|_{\infty}$ may be a good guess (see section 8). For the minimal singular value, we can take $\tau=0$ or a small positive number as target. As soon as we notice that the process starts to converge, we may replace the target in the correction equation by the current approximation to the singular value again.
5. In practice we often solve (5.1) approximately by an iterative method: for example, a few steps of GMRES or MINRES if the operator is symmetric (in case of the standard Galerkin choice). We may use a (projected) preconditioner; see section 7.8.
7.2. The correction equation with nonstandard Galerkin choices. In the case of nonstandard Galerkin choices (see section 4.3), we may have the situation that $(x, y) \neq(u, v)$. Now we exploit the flexibility of $(a, b)$ in (5.1): by the choice

$$
\begin{equation*}
(a, b)=(x, y) \text { and }(\widetilde{x}, \widetilde{y})=(u, v) \tag{7.4}
\end{equation*}
$$

we ensure that the operator in (5.1) maps $(x, y)^{\perp \perp}$ onto itself, and that the asymptotic convergence is cubic according to Theorem 6.2 (if the correction equation is solved exactly). Another option is

$$
\begin{equation*}
(a, b)=(u, v) \text { and }(\widetilde{x}, \widetilde{y})=(x, y) \tag{7.5}
\end{equation*}
$$

to make the operator in (5.1) symmetric. In this case the operator maps $(u, v)^{\perp \perp}$ to $(x, y)^{\perp \perp}$. Therefore, we should use a left "preconditioner" that maps the image space $(x, y)^{\perp \perp}$ bijectively onto the domain space $(u, v)^{\perp \perp}$ (see also section 8 and $[14,17]$ ).
7.3. Comparison with Jacobi-Davidson on the augmented matrix. It is interesting to compare the JDSVD with Jacobi-Davidson on the augmented matrix, starting with the "same" starting vector $w_{1}=\left(u_{1}, v_{1}\right) / \sqrt{2}$.

There are some analogies between Jacobi-Davidson and the JDSVD. When their correction equations are solved exactly, both converge asymptotically cubically to a simple eigenvalue of the augmented matrix. Moreover, the costs per iteration are
almost the same; the only difference is that in each step the JDSVD needs a small SVD, while Jacobi-Davidson needs a small eigenvalue decomposition. The storage requirements are also comparable.

The main difference is the fact that the JDSVD, by construction, searches in two (smaller) subspaces, while Jacobi-Davidson has one search space. If Jacobi-Davidson solves its correction equation exactly, then in fact it solves (7.3) with $\alpha=\beta$ [15]. This suggests that the JDSVD can cope better with "unbalanced" vectors, that is, vectors $(u, v)$, where $\|u\| \neq\|v\|$. An extreme example of this can be seen by taking a starting vector of the form $\left(u_{*}, \delta v_{*}\right)$ for $0<\delta<1$. In contrast to Jacobi-Davidson, the JDSVD terminates after computing a zero residual.

Another (mostly theoretical) difference is the fact that the JDSVD terminates for every starting vector after at most $\max \{m, n\}$ iterations, and Jacobi-Davidson terminates on the augmented matrix after at most $m+n$ iterations. In section 8 , we compare the methods experimentally.
7.4. Refinement procedure. Suppose that we have found an approximate minimal right singular vector $v=\left(1-\varepsilon^{2}\right)^{1 / 2} v_{\min }+\varepsilon v_{\max }$ by an iterative method applied to $A^{T} A$, so that $\sin \angle\left(v, v_{\min }\right)=\varepsilon$. Then, in the absence of other information, $u=A v=\left(1-\varepsilon^{2}\right)^{1 / 2} \sigma_{\min } u_{\min }+\varepsilon \sigma_{\max } u_{\max }$ is the best approximation to the left singular vector we have to our disposal. But $\tan \angle\left(u, u_{\min }\right) \approx \varepsilon \frac{\sigma_{\max }}{\sigma_{\min }}=\kappa(A) \varepsilon$, and this can be large. Moreover, $\|u\|^{2}=\left(1-\varepsilon^{2}\right) \sigma_{\text {min }}^{2}+\varepsilon^{2} \sigma_{\max }^{2}$ can be an inaccurate approximation to $\sigma_{\min }^{2}$, and so may $\left\|A^{T} u\right\|^{2} /\|u\|^{2}$.

Hence the approximations to small singular values, resulting from working with $A^{T} A$, may be inaccurate. In this situation, we may try to improve the approximate singular triple by a two-sided approach like the JDSVD. The following lemma gives a link with [3], where a system with a matrix of the form

$$
\left(\begin{array}{cccc}
-\theta I_{m} & A & -u & 0  \tag{7.6}\\
A^{T} & -\theta I_{n} & 0 & -v \\
2 u^{T} & 0 & 0 & 0 \\
0 & 2 v^{T} & 0 & 0
\end{array}\right)
$$

is used for improving an approximate singular triple.
Lemma 7.1 (cf. Theorem 3.5 of [14]). The JDSVD correction equation (5.1) is equivalent to

$$
\left(\begin{array}{cccc}
-\theta I_{m} & A & -u & 0  \tag{7.7}\\
A^{T} & -\eta I_{n} & 0 & -v \\
a^{T} & 0 & 0 & 0 \\
0 & b^{T} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
s \\
t \\
\alpha \\
\beta
\end{array}\right)=\left(\begin{array}{c}
\theta u-A v \\
\eta v-A^{T} u \\
0 \\
0
\end{array}\right)
$$

that is, if $(s, t, \alpha, \beta)$ is a solution of (7.7), then $(s, t)$ is a solution of the correction equation (5.1), and if $(s, t)$ is a solution of (5.1), then there exist unique $\alpha, \beta$ such that $(s, t, \alpha, \beta)$ is a solution of (7.7).

Proof. We use the same notation as in the proof of Theorem 6.2. The system (7.7) is equivalent to

$$
B(s, t)-(\alpha u, \beta v)=-r \quad \text { and } \quad(s, t) \perp \perp(a, b)
$$

By splitting the first equation in $(x, y)^{\perp \perp}$ and its complement, we obtain

$$
\left\{\begin{array}{rll}
P B(s, t) & =-r \\
\binom{\alpha}{\beta} & =\left(\begin{array}{cc}
\left(x^{T} u\right)^{-1} & 0 \\
0 & \left(y^{T} v\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
x^{T} & 0 \\
0 & y^{T}
\end{array}\right) B\binom{s}{t} \\
(s, t) & \perp \perp & (a, b) .
\end{array}\right.
$$

Note that we have used $\operatorname{Pr}=r, P(\alpha u, \beta v)=0$, and $r \perp \perp(x, y)$. The first and third equation together are equivalent to the correction equation (5.1), and the second equation determines $\alpha, \beta$ uniquely.

REmARK 7.2. Of course, this equivalence is valid only when both (7.7) and (5.1) are solved exactly, not when we solve them approximately.

In particular, when we substitute $\eta=\theta$ and $(a, b)=2(u, v)$, the matrix in (7.7) becomes (7.6).
7.5. Smallest singular value. As mentioned in section 4.1, the standard variant of the JDSVD may have difficulties with finding the smallest singular value of a matrix. This is not surprising, because the small singular values of $A$ correspond to the interior eigenvalues of the augmented matrix. But in many applications, e.g., the computation of pseudospectra, the smallest singular value is just what we want to compute.

We can use the JDSVD with the nonstandard Galerkin (harmonic) variants, mentioned in sections 4.3 and 4.4, starting with zero, or a small positive number as a target, and solve the correction equation rather accurately, possibly with the aid of a preconditioner; see section 8. In this way the method is close to a shift and invert iteration but less expensive. Of course it is hereby advantageous to have a good initial triple (e.g., coming from an iterative method on $A^{T} A$ ); the JDSVD (with nonstandard Galerkin) can then be used as refinement procedure.
7.6. Restart. A nice property of Jacobi-Davidson is its flexibility in restarting. The JDSVD, too, has this advantage: we can restart at every moment in the process with any number of vectors, only keeping those parts of the search spaces that look promising, or possibly adding some extra vectors. All we have to do is compute the new resulting $H=U^{T} A V$ and continue. This is practical when the search spaces become large or to avoid a breakdown in case of the nonstandard Galerkin choices. Of course, the JDSVD can also be started with search spaces of dimension larger than one.
7.7. Deflation. We can compute multiple singular triples of $A$ by using a deflation technique. If we have found a singular triple of $A$, and we want to find another, we can deflate the augmented matrix to avoid finding the same triple again. For the JDSVD, this can be done as follows. Suppose that $U_{f}$ and $V_{f}$ contain the already found singular vectors. Then it can be checked that, if we found the exact vectors,

$$
\left(\begin{array}{cc}
I_{m}-U_{f} U_{f}^{T} & 0 \\
0 & I_{n}-V_{f} V_{f}^{T}
\end{array}\right)\left(\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right)\left(\begin{array}{cc}
I_{m}-U_{f} U_{f}^{T} & 0 \\
0 & I_{n}-V_{f} V_{f}^{T}
\end{array}\right)
$$

has the same eigenvalues as the original augmented matrix, except that the found eigenvalues are transformed to zeros. The method can then be restarted with another approximate triple.
7.8. Preconditioning the correction equation. The correction equation of the JDSVD can be preconditioned in a manner similar to Jacobi-Davidson (see, for example, [17]). We use the same notation as in the proof of Theorem 6.2 for the important case $Q=P$. Suppose that we have a preconditioner $M$ for $B$. For left preconditioning we are given $(s, t) \perp \perp(x, y)$, and we have to solve for $\left(z_{1}, z_{2}\right) \perp \perp$ $(x, y)$ from

$$
P M P\left(z_{1}, z_{2}\right)=P B P(s, t)
$$

Note that we project the preconditioner as well. Hence, for some $\alpha, \beta$,

$$
\left(z_{1}, z_{2}\right)=M^{-1} B(s, t)-M^{-1}(\alpha u, \beta v)
$$

and by using the test vectors we obtain

$$
\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)^{T} M^{-1}\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right)\binom{\alpha}{\beta}=\left(\begin{array}{cc}
x & 0 \\
0 & y
\end{array}\right)^{T} M^{-1} B\binom{s}{t} .
$$

A recipe for computing $\left(z_{1}, z_{2}\right)$ is given by the following four steps.
(1) Compute $\left(\widetilde{u}_{1}, \widetilde{u}_{2}\right)=M^{-1}(u, 0)$ and $\left(\widetilde{v}_{1}, \widetilde{v}_{2}\right)=M^{-1}(0, v)$.
(2) Compute $(\widetilde{s}, \widetilde{t})=M^{-1} B(s, t)$.
(3) Compute $(\alpha, \beta)$ from $\left(\begin{array}{ll}x^{T} \widetilde{u}_{1} & x^{T} \widetilde{v}_{1} \\ y^{T} \widetilde{u}_{2} & y^{T} \widetilde{v}_{2}\end{array}\right)\binom{\alpha}{\beta}=\binom{x^{T} \widetilde{s}}{y^{T} \widetilde{t}}$.
(4) Compute $\left(z_{1}, z_{2}\right)=(\widetilde{s}, \widetilde{t})-\alpha\left(\widetilde{u}_{1}, \widetilde{u}_{2}\right)-\beta\left(\widetilde{v}_{1}, \widetilde{v}_{2}\right)$.

An important observation is that step (1) and the computation of the $2 \times 2$ matrix in step (3) have to be performed only once at the start of the iterative solution process of the correction equation. The right-hand side of the correction equation, minus the residual, is handled similarly.
8. Numerical experiments. Our experiments are coded in MATLAB and are executed on a SUN workstation. The following lemma implies that up to rounding errors, it is not a loss of generality to consider (rectangular) diagonal matrices $A$.

LEMMA 8.1. If there are no rounding errors, and the JDSVD's correction equation (5.1) in step $k$ is solved by $l_{k}$ steps of GMRES, then the JDSVD applied to
(a) $A=U_{*} \Sigma V_{*}^{T}$, with starting vectors $u_{1}$ and $v_{1}$,
(b) $\Sigma$, with starting vectors $\widetilde{u}_{1}:=U_{*}^{T} u_{1}$ and $\widetilde{v}_{1}:=V_{*}^{T} v_{1}$,
gives "the same" results; that is,

$$
\widetilde{\theta}_{k}=\theta_{k} \quad \text { and } \quad\left\|\widetilde{r}_{k}\right\|=\left\|r_{k}\right\|
$$

Proof. Define

$$
Q=\left(\begin{array}{cc}
U_{*}^{T} & 0 \\
0 & V_{*}^{T}
\end{array}\right)
$$

then $Q$ is orthogonal, and one may verify that $\left(\widetilde{u}_{1}, \widetilde{v}_{1}\right)=Q\left(u_{1}, v_{1}\right), \widetilde{\theta}_{1}:=\widetilde{u}_{1}^{T} \Sigma \widetilde{v}_{1}=$ $u_{1}^{T} A v_{1}=: \theta_{1}$, and $\widetilde{r}_{1}=Q r_{1}$. A well-known property of Krylov subspaces ensures that (see [12, p. 264])
$Q^{T} \mathcal{K}_{l}\left(\left(\begin{array}{cc}0 & \Sigma \\ \Sigma^{T} & 0\end{array}\right), \widetilde{r}\right)=\mathcal{K}_{l}\left(Q^{T}\left(\begin{array}{cc}0 & \Sigma \\ \Sigma^{T} & 0\end{array}\right) Q, Q^{T} \widetilde{r}\right)=\mathcal{K}_{l}\left(\left(\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right), r\right)$.
With little extra work one can check that the same relation holds for the shifted and projected matrices that are present in the correction equation (5.1), where one


Fig. 8.1. (a) The convergence history of the exact JDSVD algorithm for $\operatorname{diag}(1 . .100)$ as in Algorithm 4.1: residual norm (solid line) and error in the approximations to $\sigma_{\max }$ (dots). The horizontal dotted line indicates the stopping tolerance. (b) Convergence for $\operatorname{diag}(1 . .1000)$ using, respectively, 5, 2, and a variable number of GMRES steps to solve the correction equation.
should bear in mind that all other vectors involved in the projectors $(a, b, x, y, \widetilde{x}$, and $\widetilde{y}$ ) must also be altered for the $\Sigma$-system in the obvious way. So the approximate solutions from the correction equations satisfy $\left(\widetilde{s}_{1}, \widetilde{t}_{1}\right)=Q\left(s_{1}, t_{1}\right)$. By induction we can prove that $\widetilde{U}_{k}=U_{*}^{T} U_{k}$ and $\widetilde{V}_{k}=V_{*}^{T} V_{k}$, so the projected matrices are the same in both cases: $\widetilde{H}_{k}:=\widetilde{U}_{k}^{T} \Sigma \widetilde{V}_{k}=U_{k}^{T} A V_{k}=H_{k}$. In particular, the approximations to the singular values are the same, and the approximations $\left(u_{k}, v_{k}\right)$ and ( $\left.\widetilde{u}_{k}, \widetilde{v}_{k}\right)$ are orthogonal transformations of each other: $\left(\widetilde{u}_{k}, \widetilde{v}_{k}\right)=Q\left(u_{k}, v_{k}\right)$ and $\widetilde{r}_{k}=Q r_{k}$, so $\left\|\widetilde{r}_{k}\right\|=\left\|r_{k}\right\|$.

For this reason, we first study some phenomena on $A=\operatorname{diag}([1: 100])$ and $A=\operatorname{diag}([1: 1000])$. In Figure $8.1(\mathrm{a})$, the solid line is the convergence history of (the standard variant of Algorithm 4.1 of) the JDSVD for the computation of the largest singular triple of $A=\operatorname{diag}([1: 100])$. The starting vectors are the normalized $v_{1}=v_{\max }+0.1 r$, where $r$ is a vector with random entries, chosen from a uniform distribution on the unit interval, and $u_{1}=A v_{1} /\left\|A v_{1}\right\|$. The dots represent the error in the approximation $\sigma_{\max }-\theta_{k}^{(k)}$. In all figures, a horizontal dotted line indicates the stopping tolerance. We solve the correction equation by 200 steps of GMRES. Because the (augmented) matrices in the correction equation (step 7 of Algorithm 4.1) are of size $200 \times 200$, this means (theoretically) exactly, so according to Theorem 6.2 we expect cubic convergence. In Figure $8.1(\mathrm{a})$ we see, for instance, that the error in the approximation in iteration number 5 decreases from $\approx 10^{-2}$ to $\approx 10^{-7}$.

In Figure $8.1(\mathrm{~b})$, we take $A=\operatorname{diag}([1: 1000])$, and $u_{1}$ and $v_{1}$ random vectors (as described above) with unit norm. We experiment with the number of GMRES steps. For the solid line, we solve the correction equation approximately by five steps of GMRES, which we denote by $\mathrm{GMRES}_{5}$, for the dashed line by $\mathrm{GMRES}_{2}$, and for the dotted line by a variable number equal to $\max \{2 \cdot(\lceil-\log \|r\|\rceil+1), 0\}$. Measured in terms of matrix-vector products (MVs), the variable choice is best, followed by GMRES $_{5}$. An explanation of this is that when the initial approximations are not good (as in this case), it is of no use to try hard to solve the correction equation in the beginning. When we are almost converging, it may make sense to solve it more


Fig. 8.2. (a) The JDSVD (solid) and Jacobi-Davidson (dashed) for the three largest $\sigma$ s of $\operatorname{diag}(1 . .1000)$. (b) The same as Figure 8.2(a), only with GMRES ${ }_{2}$ to solve the correction equation.
accurately to get fast convergence. See also [17].
In Figure $8.2(\mathrm{a})$ we compare, for $A=\operatorname{diag}([1: 1000])$, the standard JDSVD for the three largest singular triples (solid), with Jacobi-Davidson on the augmented matrix for the computation of the three largest eigenpairs (dashed), each with GMRES ${ }_{5}$. For the JDSVD, we take $v_{1}$ as a random vector, and $u_{1}=A v_{1} /\left\|A v_{1}\right\|$. For JacobiDavidson we take the "same" starting vector $\left(u_{1}, v_{1}\right) / \sqrt{2}$. We see that the JDSVD is faster for the first triple; for the second and third we restart with a good approximation, and then the histories are similar.

In Figure 8.2(b), we do the same, but now using GMRES . $_{2}$. For the first two triples, the JDSVD is somewhat faster than Jacobi-Davidson, for the third JDSVD in the first instance (mis)converges to the fourth largest singular value 997. Other experiments also suggest that the JDSVD is generally (somewhat) faster than JacobiDavidson on the augmented matrix.

Next, we take some examples from the Matrix Market (these matrices can be downloaded from http://math.nist.gov/MatrixMarket). For Figure 8.3(a), we apply different JDSVD variants to find the smallest singular triple of PDE225, using two random starting vectors and $\mathrm{GMRES}_{10}$ (no preconditioning). In all variants, we take initially target 0 , but when $\|r\|<10^{-3}$, we replace the target by the best approximations again (see section 7.1 , point 4 ). The solid line is the standard choice; we see an irregular convergence history, as could be expected (see section 4). The dashed line represents the Galerkin choice (4.5), where in the correction equation (5.1) we substitute (7.4). Finally, the dash-dotted line is (4.5) with (7.5) substituted in (5.1). In the last case, as seen in section 7.2 , the operator in (5.1) maps $(u, v)^{\perp \perp}$ to $(x, y)^{\perp \perp}$. Since in this case $v=y$ but $u \neq x$, we use a left "preconditioner" to handle the correction equation correctly. The preconditioned identity

$$
\left(\begin{array}{cc}
I_{m}-\frac{x u^{T}}{u^{T} x} & 0 \\
0 & I_{n}
\end{array}\right) I_{m+n}\left(\begin{array}{cc}
I_{m}-\frac{u x^{T}}{x^{T} u} & 0 \\
0 & I_{n}
\end{array}\right)
$$

maps $(x, y)^{\perp \perp}$ back to $(u, v)^{\perp \perp}$.
In Figure 8.3(b), the standard JDSVD's approximations to the singular values during this process are plotted. These are "regular," nonharmonic estimates. Note


Fig. 8.3. (a) Three different JDSVD variants for the computation of $\sigma_{\min }$ of PDE225: standard, $(4.5)+(5.1)+(7.4)$, and $(4.5)+(5.1)+(7.5)$. (b) (Nonharmonic) approximations to the singular values by the standard variant.
the monotone convergence of the approximations to the largest singular values but the irregular behavior of the approximations to the smallest singular value.

Next, we compare the JDSVD with Lanczos applied to $A^{T} A$ for the computation of $\sigma_{\max }$. These methods are of a different nature. The Lanczos method can be viewed as an accelerated power method, while the JDSVD can be seen as an accelerated inexact RQI. An advantage of the JDSVD is that we may use preconditioning for the correction equation. Therefore, we expect that if we have a reasonable preconditioner, and if preconditioning is relatively cheap in comparison to a multiplication by $A$ or $A^{T}$, then the JDSVD can be cheaper than Lanczos. On the other hand, if $m \gg n$, or if there is no good or cheap preconditioner available, then we expect that Lanczos will be better. Table 8.1 shows some test results. For the JDSVD, we take a target $\tau \approx\|A\|_{\infty}$, in the hope that $\tau \approx \sigma_{\max }$. We make an incomplete LU-decomposition (using a drop tolerance displayed in the table) of the augmented matrix (1.1) minus $\tau$ times the identity, and we use $M=L U$ as a preconditioner. The starting vector $v_{1}$ is the vector with all coordinates equal to one, and is then normalized, and $u_{1}$ is a random vector. We solve the correction equation by only preconditioning the residual (" 0 steps of GMRES"). The process is continued until $\|r\|<10^{-8}$. Lanczos's method uses $v_{1}$ as starting vector and continues until $\left\|\left(A^{T} A-\theta^{2}\right) v\right\|<10^{-8}$. The matrix $A_{1}$ stands for $\operatorname{diag}(1: 100)+0.1 \cdot \operatorname{rand}(n, n)$, where $\operatorname{rand}(n, n)$ denotes an $n \times n$-matrix with random entries, chosen from a uniform distribution on the unit interval. See [13] for more information on the origin and singular values of the other matrices. For the JDSVD, a pair is given, consisting of the number of MVs and the number of systems with $L$ or $U$. For Lanczos we show the number of MVs.

For HOR131, the target $\tau$ is relatively far from $\sigma_{\max } \approx 0.66$. We see that although the JDSVD uses fewer MVs than Lanczos, Lanczos is cheaper when we take the preconditioning into account. Although for PORES3 $\left(\sigma_{\max } \approx 1.5 \cdot 10^{5}\right)$ Lanczos finds a good approximate vector, its residual does not reach the required $10^{-8}$ due to the high condition number of the matrix. The JDSVD does converge, so this is an example of a situation where the JDSVD could be used as refinement. For SHERMAN1, the target is a reasonable approximation to $\sigma_{\max } \approx 5.05$. When we

Table 8.1
Some experiments with the JDSVD to compute $\sigma_{\max }$, using incomplete LU-factorizations of the shifted augmented matrix. The number of $M V s$, and the number of systems with $L$ or $U$ is displayed in the 5 th column. The shift (or target) $\tau$ ( 6 th column) for the preconditioning is roughly taken to be $\|A\|_{\infty}$. The last three columns give information on the incomplete $L U$-factorization: the drop tolerance of ILU, and the resulting number of nonzeros of $L$ and $U$. We compare the JDSVD's results with the MVs of Lanczos applied to $A^{T} A(4 t h$ column).

| Matrix | Size | $\mathrm{nnz}(A)$ | $\operatorname{Lan}\left(A^{T} A\right)$ | JDSVD | $\tau$ | tol | $\mathrm{nnz}(L)$ | $\mathrm{nnz}(U)$ |
| :--- | :--- | ---: | :---: | :---: | ---: | ---: | ---: | ---: |
| HOR131 | $434 \times 434$ | 4182 | 30 | $(28,65)$ | 0.90 | $10^{-2}$ | 1792 | 1792 |
| PORES3 | $532 \times 532$ | 3474 | - | $(72,175)$ | $2 \cdot 10^{5}$ | $10^{-1}$ | 1301 | 1300 |
| SHERMAN1 | $1000 \times 1000$ | 3750 | 74 | $(24,66)$ | 5 | $10^{-2}$ | 4805 | 4803 |
| $A_{1}$ | $100 \times 100$ | 10000 | 102 | $(38,108)$ | 106 | $10^{-2}$ | 299 | 299 |

take the preconditioning into account, Lanczos is cheaper than the JDSVD. The last row of the table is an example where preconditioning is relatively cheap. The reason for this is that we now take the diagonal of $A$, instead $A$ itself, to form an augmented matrix of the form (1.1) and to make an ILU-decomposition. Using far more MVs, Lanczos is (also counting the preconditioning) more expensive.

Finally, in Table 8.2, we compare the JDSVD for the computation of $\sigma_{\min }$ with Lanczos applied to $\left(A^{T} A\right)^{-1}$. We use the Galerkin choice (4.5) for the JDSVD. Note that the comparison with Lanczos is mainly meant to get an idea of how well the JDSVD performs. In practice, for large (sparse) $A$, it is too expensive to work with $A^{-1}$ and $A^{-T}$ or $\left(A^{T} A\right)^{-1}$. For the JDSVD, we take a small target $\tau=10^{-5}$, drop tolerance $10^{-3}$, and again we make an incomplete LU-decomposition based on this target. The starting vectors are the same as for Table 8.1. We solve the correction equation by preconditioning only the residual ("0 steps of GMRES"). Both processes are continued until $\|r\|<10^{-7}$.

Table 8.2
Some experiments with the JDSVD to compute $\sigma_{\min }$. The numbers of MVs and systems with $L$ or $U$ (3rd column), and the number of nonzeros of $L$ and $U$ are displayed. We compare the JDSVD's results with the number of MVs of Lanczos applied to $\left(A^{T} A\right)^{-1}$.

| Matrix | $\operatorname{Lan}\left(A^{T} A\right)^{-1}$ | JDSVD | $\mathrm{nnz}(L)$ | $\mathrm{nnz}(U)$ |
| :--- | :---: | :---: | ---: | ---: |
| HOR131 | - | $(26,72)$ | 20593 | 21167 |
| PORES3 | 12 | $(36,108)$ | 3683 | 5491 |
| SHERMAN1 | 20 | $(20,54)$ | 11575 | 11738 |
| $A_{1}$ | 14 | $(28,78)$ | 200 | 200 |

We see that although the JDSVD may in general use more MVs, it may be much cheaper than Lanczos, due to the sparsity of $A, L$, and $U$. For HOR131, Lanczos does not converge to the required $10^{-7}$. Again $A_{1}$ serves as an example for the situation where preconditioning is relatively cheap, which makes the JDSVD attractive. We also tried Lanczos applied to $A^{T} A$ for the computation of $\sigma_{\min }$, but the results were bad ( 262 MVs for $A_{1}$, and more than 500 MVs for the other matrices).
9. Conclusions. We have discussed an alternative approach for the computation of a few singular values and vectors of a matrix. The JDSVD method searches in two separate subspaces, and it can be interpreted as an inexact Newton method for the singular value problem. The JDSVD can also be seen as an inexact accelerated scaled RQI method. Therefore, the best results may be expected when we have a good initial starting triple (refinement), but we can start with any approximations. While the asymptotic convergence is cubic if the correction equation is solved exactly, in practice
we solve it approximately, and then the convergence typically looks (super)linear. Although we mainly discussed the application of the JDSVD for the largest and smallest singular value, the method is in principle suitable for all singular values. We may use preconditioning for the solution of the correction equation. This can be a decisive factor for fast convergence. Experiments indicate that the JDSVD is a good competitor to other iterative SVD methods, in particular when $A$ is (almost) square and we have a reasonable, relatively cheap preconditioner for the correction equation.

Acknowledgments. The author thanks Henk van der Vorst and Gerard Sleijpen for interesting discussions, and the referees for many helpful comments.

## REFERENCES

[1] J. Cullum, R. A. Willoughby, and M. Lake, A Lánczos algorithm for computing singular values and vectors of large matrices, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 197-215.
[2] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87-94.
[3] J. J. Dongarra, Improving the accuracy of computed singular values, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 712-719.
[4] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Accelerated inexact Newton schemes for large systems of nonlinear equations, SIAM J. Sci. Comput., 19 (1998), pp. 657-674.
[5] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), pp. 205-224.
[6] G. H. Golub, F. T. Luk, and M. L. Overton, A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix, ACM Trans. Math. Software, 7 (1981), pp. 149-169.
[7] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The John Hopkins University Press, Baltimore, London, 1996.
[8] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.
[9] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991.
[10] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, Journal of Research of the National Bureau of Standards, 45 (1950), pp. 255-282.
[11] C. C. Paige, B. N. Parlett, and H. A. van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115-133.
[12] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1997 (corrected reprint of the 1980 original).
[13] B. Philippe and M. Sadkane, Computation of the fundamental singular subspace of a large matrix, Linear Algebra Appl., 257 (1997), pp. 77-104.
[14] G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst, JacobiDavidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT, 36 (1996), pp. 595-633.
[15] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401-425.
[16] G. L. G. Sleijpen and H. A. van der Vorst, The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton schemes, in Iterative Methods in Linear Algebra II, IMACS Series in Computational and Applied Mathematics 3, S. D. Margenov and P. S. Vassilevski, eds., IMACS, New Brunswick, NJ, 1996, pp. 377-389.
[17] G. L. G. Sleijpen, H. A. van der Vorst, and E. Meijerink, Efficient expansion of subspaces in the Jacobi-Davidson method for standard and generalized eigenproblems, Electron. Trans. Numer. Anal., 7 (1998), pp. 75-89.
[18] G. W. Stewart and J.-G Sun, Matrix Perturbation Theory, Academic Press, San Diego, 1990.
[19] S. Van Huffel, Iterative algorithms for computing the singular subspace of a matrix associated with its smallest singular values, Linear Algebra Appl., 154/156 (1991), pp. 675-709.
[20] S. Varadhan, M. W. Berry, and G. H. Golub, Approximating dominant singular triplets of large sparse matrices via modified moments, Numer. Algorithms, 13 (1996), pp. 123-152.
[21] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.


[^0]:    *Received by the editors June 5, 2000; accepted for publication (in revised form) January 11, 2001; published electronically July 10, 2001.
    http://www.siam.org/journals/sisc/23-2/37297.html
    ${ }^{\dagger}$ Mathematical Institute, Utrecht University, P.O. Box 80.010, NL-3508 TA Utrecht, The Netherlands (hochstenbach@math.uu.nl, www.math.uu.nl/people/hochstenbach).

