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Abstract. We discuss a new method for the iterative computation of a portion of the sin-
gular values and vectors of a large sparse matrix. Similar to the Jacobi–Davidson method for the
eigenvalue problem, we compute in each step a correction by (approximately) solving a correction
equation. We give a few variants of this Jacobi–Davidson SVD (JDSVD) method with their theoret-
ical properties. It is shown that the JDSVD can be seen as an accelerated (inexact) Newton scheme.
We experimentally compare the method with some other iterative SVD methods.

Key words. Jacobi–Davidson, singular value decomposition (SVD), singular values, singular
vectors, norm, augmented matrix, correction equation, (inexact) accelerated Newton, improving
singular values
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1. Introduction. Suppose that we want to compute one or more singular values,
and the corresponding singular vectors, of the real m× n matrix A. This subject has
already been studied from a number of different viewpoints [5, 6, 1, 19, 20, 13], for ex-
ample, to determine a few of the largest or smallest singular triples. This partial SVD
can be computed in two different ways using equivalent eigenvalue decompositions.

The first is to compute some eigenvalues and eigenvectors of the n × n matrix
ATA or the m×m matrix AAT . For large (sparse) matrices, direct methods like the
QR method are unattractive, but there exist several iterative methods. In [13], for
example, (block) Lanczos [10] and Davidson [2] are applied toATA. Another candidate
is Jacobi–Davidson [15]. Note that it is in general not advisable (or necessary) to
explicitly form the product ATA. The nonzero eigenvalues of ATA and AAT are the
squares of the nonzero singular values of A. This works positively for the separation of
large singular values, but it forces a clustering of small ones. Moreover, it can be hard
to find very small singular values (relative to the largest singular value) accurately.
Apart from this, the approaches via ATA or AAT are asymmetric: in the process we
approximate only one of the two singular vectors. The second vector can be obtained
from the first by a multiplication by A or AT , but this may introduce extra loss of
accuracy. Besides, when we have approximations to both the left and right singular
vector, we can use only one of them as a starting vector for an iterative method.

A second approach is to compute some eigenvalues and eigenvectors of the aug-
mented matrix (

0 A
AT 0

)
.(1.1)

This approach has its own advantages and disadvantages. The eigenvalues of the
augmented matrix are plus and minus the singular values of A, and we can extract the
left and right singular vectors from the eigenvectors by just taking the first and second
part (see section 2). This makes an extra multiplication by A or AT unnecessary. We
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do not have the drawback of squaring small singular values. On the negative side, the
augmented matrix is larger in size, and the smallest singular values are in the interior
of the spectrum.

The Lanczos method for the augmented matrix has been studied by a number of
authors [5, 6, 1]. The Lanczos process does not exploit the special (block or “two-
cyclic”) structure of the matrix, unless the starting vector is of the form (u, 0) or
(0, v). This is essentially Lanczos bidiagonalization of A; see [7, p. 495].

We can also consider the Jacobi–Davidson method [15] for the augmented matrix.
This is an efficient method for the computation of a few eigenpairs, and it is of
a different nature in comparison to Lanczos. The essence of Jacobi–Davidson is its
correction equation, where the shifted operator is restricted to the subspace orthogonal
to the current approximation to an eigenvector. When we solve this equation exactly,
we can show that the updated vector is the same as the one we would get by one
step of Rayleigh quotient iteration (RQI). But in practice one solves the Jacobi–
Davidson correction equation only approximately, and one accelerates the convergence
by projecting the matrix onto the subspace spanned by all iterates. Therefore, Jacobi–
Davidson can also be viewed as an inexact accelerated RQI.

“Standard” Jacobi–Davidson does not make use of the structure of the augmented
matrix. In this paper we propose a Jacobi–Davidson variant that does take advantage
of the special structure of the matrix. Instead of searching the eigenvector in one
subspace, we search the left and right singular vectors in separate subspaces. We still
solve a correction equation for the augmented matrix, but we use different projections,
and we split the approximate solution of this equation for the expansion of the two
search spaces. More similarities and differences are discussed in section 7.3.

After some preparations in section 2, we introduce the new approach, which we
call the Jacobi–Davidson SVD (JDSVD), in section 3. In section 4, a few variants
of the algorithm with their properties are presented. In section 5, we show that the
JDSVD process can be viewed as an (inexact) accelerated Newton scheme, and in
section 6 we focus on convergence. Various aspects of the method are discussed in
section 7, and after numerical examples in section 8, we finish with conclusions in
section 9.

2. Preparations. Let A be a real m × n matrix with SVD A = U∗ΣV T
∗ and

singular values

0 ≤ σmin = σp ≤ σp−1 ≤ · · · ≤ σ2 ≤ σ1 = σmax,

where p := min{m,n}. Denote the corresponding left and right singular vectors by
u∗,j (1 ≤ j ≤ m) and v∗,j (1 ≤ j ≤ n).

Throughout the paper, ‖·‖ stands for ‖·‖2, and we write σj(B) for the jth largest
singular value of a real matrix B and simply σj for the jth largest singular value of
A. Furthermore, Λ(B) is the spectrum of B, and Σ(B) is the set of singular values
of B. If B is a real symmetric matrix, then λj(B) denotes the jth largest eigenvalue
of B.

If a ∈ R
m and b ∈ R

n, then, for convenience, we write (ab ) ∈ R
m+n also as (a, b).

If X is a matrix, then we denote the subspace spanned by the columns of X by X .
We use the notation Kl(B, x) for the Krylov subspace of dimension l generated by B
and x.

Definition 2.1. Let u ∈ R
m, v ∈ R

n, X ⊂ R
m, and Y ⊂ R

n. We say
that (uv ) ∈ R

m+n is double-orthogonal to the pair of subspaces (X ,Y) if both u ⊥ X
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and v ⊥ Y, which is denoted by (uv ) ⊥⊥ (XY ). By (u, v)⊥⊥ we denote the subspace{
(a, b) ∈ R

m × R
n : uTa = vTb = 0

}
.

The following lemma gives a relation between the singular triples of A and the
eigenpairs of the augmented matrix.

Lemma 2.2 (Jordan–Wielandt; see Theorem I.4.2 of [18]). The augmented matrix
(1.1) has eigenvalues

−σ1, . . . ,−σp, 0, . . . , 0︸ ︷︷ ︸
|m−n|

, σp, . . . , σ1

and eigenvectors (
u∗,j
±v∗,j

)
(1 ≤ j ≤ p)

corresponding to the ±σj and, if m �= n, additionally,

either

(
u∗,j
0

)
(n+ 1 ≤ j ≤ m) or

(
0

v∗,j

)
(m+ 1 ≤ j ≤ n),

depending on whether m > n or n > m.
The next definition is the natural analogue of the definition of a simple eigenvalue

(see, e.g., [18, p. 15]).
Definition 2.3. We call σi a simple singular value of A if σi �= σj for all j �= i.
The following lemma gives a link between a simple singular value of A and a

simple eigenvalue of ATA and AAT .
Lemma 2.4. Let σ > 0. Then σ is a simple singular value of A if and only if σ2

is a simple eigenvalue of ATA and AAT .
Proof. The nonzero eigenvalues of ATA and AAT are just the squares of the

nonzero singular values of A (see, for example, [18, p. 31]).
Note that the condition σ > 0 in the previous lemma is necessary. For example,

0 is a simple singular value of the 1 × 2 matrix A = (0 0), but it is not a simple
eigenvalue of ATA.

For future use, we mention the following well-known results.
Lemma 2.5 (Weyl; see pp. 101–102 of [21], Corollary IV.4.9 of [18], and Theorem

10.3.1 of [12]). Let B and E be real symmetric n×n matrices. Then for all 1 ≤ j ≤ n

λj(B) + λn(E) ≤ λj(B + E) ≤ λj(B) + λ1(E).

Lemma 2.6 (see (3.3.17) of [9]). If B and E are m × n matrices, then for
1 ≤ i, j ≤ p, and i+ j ≤ p+ 1,

σi+j−1(B + E) ≤ σi(B) + σj(E).

In particular, for j = 1 this yields σi(B + E) ≤ σi(B) + σ1(E) for i = 1, . . . , p.
Lemma 2.7 (see (7.3.8) of [8]). Let B and E be real m× n matrices. Then

p∑
j=1

(σj(B + E)− σj(B))2 ≤ ‖E‖2
F .

Lemma 2.8. If U and V are orthogonal m×m and n× n matrices, respectively,
then for all 1 ≤ j ≤ p we have σj(U

TAV ) = σj(A). In particular, ‖UTAV ‖ = ‖A‖.
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Proof. The SVD of UTAV is just (UTU∗)Σ(V TV∗)T . The final statement follows
from the characterization of the matrix two-norm as the largest singular value.

Lemma 2.9 (see (3.1.3) of [9]). Let B be an m × n matrix, and let Bl denote a
submatrix of B obtained by deleting a total of l rows and/or columns from B. Then

σj(B) ≥ σj(Bl) ≥ σj+l(B)

for 1 ≤ j ≤ p, where for a q × r matrix X we set σj(X) = 0 if j > min{q, r}.
3. The JDSVD correction equation. Suppose that we have k-dimensional

search spaces U ⊂ R
m and V ⊂ R

n and test spaces X ⊂ R
m and Y ⊂ R

n. To
determine approximations θ, η to a singular value, and u ∈ U , v ∈ V (of unit norm)
to the corresponding left and right singular vectors, we impose the double Galerkin
condition with respect to X and Y on the residual r:

r = r(θ, η) :=

(
Av − θu
ATu− ηv

)
⊥⊥

( X
Y
)
.(3.1)

Because u ∈ U and v ∈ V, we can write u = Uc and v = V d, where the columns of
the m× k matrix U and the columns of the n× k matrix V form bases for U and V,
respectively, and c, d ∈ R

k. Then we want to find θ, η, c, and d that are solutions of{
XTAV d = θXTUc,
Y TATUc = η Y TV d,

(3.2)

where X and Y are matrices with columns that form bases for X and Y. For test
vectors x ∈ X and y ∈ Y, we have, in particular, that r ⊥⊥ (x, y); so if xTu �= 0 and
yT v �= 0,

θ =
xTAv

xTu
, η =

yTATu

yT v
.(3.3)

This shows that the approximations θ and η may differ. We discuss possible choices
for X and Y and the resulting relations for u and v in the following section. For now,
suppose that we have approximations (u, v, θ, η). We would like to have a double-
orthogonal correction (s, t) ⊥⊥ (u, v) to (u, v) such that{

A(v + t) = σ(u+ s),
AT(u+ s) = τ(v + t),

(3.4)

where σ > 0 and τ > 0 need not be equal because the vectors are not normalized.
However, since ATA(v+t) = στ(v+t), we have στ = σ2

i for some 1 ≤ i ≤ p. Equations
(3.4) can be rearranged to obtain( −σIm A

AT −τIn

)(
s
t

)
= −

(
Av − θu
ATu− ηv

)
+

(
(σ − θ)u
(τ − η)v

)
= −r+

(
(σ − θ)u
(τ − η)v

)
.

Because σ and τ are unknown, we do not know the differences (σ − θ)u and (τ − η)v
either. Therefore, we can consider the projection of the last equation onto (x, y)⊥⊥

along (u, v). This projection is given by(
Im − uxT

xTu
0

0 In − vyT

yT v

)
,
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and it fixes r. Projecting the previous equation, we get(
Im − uxT

xTu
0

0 In − vyT

yT v

)( −σIm A
AT −τIn

)(
s
t

)
= −r,(3.5)

where (s, t) ⊥⊥ (u, v).

Since σ and τ are unknown, an obvious choice is to replace them by θ and η. This can
be considered as “throwing away second order terms” (σ − θ, τ − η, s, and t will all
be asymptotically small) and suggests that the JDSVD is in fact a Newton method,
which is true indeed (see section 5). Furthermore, since for every x̃ ∈ R

m and ỹ ∈ R
n

such that uTx̃ �= 0 and vTỹ �= 0(
Im − x̃uT

uT x̃
0

0 In − ỹvT

vT ỹ

)(
s
t

)
=

(
s
t

)
,

(3.5) leads to the JDSVD correction equation(
Im − uxT

xTu
0

0 In − vyT

yT v

)( −θIm A
AT −ηIn

)(
Im − x̃uT

uT x̃
0

0 In − ỹvT

vT ỹ

)(
s
t

)
= −r,

(3.6)

where (s, t) ⊥⊥ (u, v). We see that the operator in (3.6) is symmetric if and only if x̃
and ỹ are a nonzero multiple of x and y. It maps (u, v)⊥⊥ to (x, y)⊥⊥. In sections 5
and 6 we explain why this process may lead to fast convergence, and we meet a
generalized version of the correction equation. In the next section we examine several
choices for the Galerkin conditions (3.1).

4. Choices for the Galerkin conditions. Consider the eigenvalue problem
for a symmetric matrix B, where we have one subspace W that is used both as search
space and test space. If the columns of W form an orthonormal basis for W, then the
projected matrix WTBW has some nice properties; see [12, section 11.4]. We will see
that searching in two spaces, as in the JDSVD, spreads those properties over a few
Galerkin choices. In this section we examine some obvious choices.

4.1. The standard choice X = U and Y = V. Consider the situation where
the search spaces U and V are of equal dimension k. Let us first take the test spaces
X and Y equal to the search spaces U and V.

If the columns of U and V form orthonormal bases for U and V, then with the
notation H := UTAV , (3.2) reduces to

Hd = θc and HT c = ηd.(4.1)

This gives approximations u = Uc and v = V d, where c and d are, respectively, left
and right singular vectors of H. With the requirement ‖c‖ = ‖d‖ = 1 and test vectors
x = u and y = v, we get

θ = η = uTAv.(4.2)

For reasons of symmetry, we choose x̃ = x (= u) and ỹ = y (= v). The resulting
algorithm for the computation of σmax is given in Algorithm 4.1.

In step 2 of the algorithm, RMGS stands for repeated modified Gram–Schmidt
(see, for example, [7, pp. 231–232]), used to make s and t orthogonal to Uk−1 and
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Input: a device to compute Av and ATu for arbitrary u and v, starting vectors u1 and v1,
and a tolerance ε.

Output: the approximate singular triple (θ, u, v) for the largest singular value

σmax and its corresponding singular vectors satisfying ‖( Av − θu

ATu − θv
)‖ ≤ ε.

1. s = u1, t = v1, U0 = [ ], V0 = [ ]
for k = 1, . . .

2. Uk = RMGS(Uk−1, s)
Vk = RMGS(Vk−1, t)

3. Compute kth column of Wk = AVk

Compute kth row and column of Hk = UT
k AVk = UT

k Wk

4. Compute largest singular triple (θ, c, d) of Hk, (‖c‖ = ‖d‖ = 1)
u = Ukc, v = Vkd

5. r = ( Av − θu

ATu − θv
) = ( Wkd − θu

ATu − θv
)

6. Stop if ‖r‖ ≤ ε
7. Solve (approximately) an (s, t) ⊥⊥ (u, v) from(

Im − uuT 0
0 In − vvT

)( −θIm A
AT −θIn

)(
Im − uuT 0

0 In − vvT

)(
s
t

)
= −r

Alg. 4.1. The JDSVD algorithm for the computation of σmax(A) with Galerkin conditions

X = U , Y = V. The approximations (θ, η, u, v) satisfy θ = η = uTAv.

Vk−1, and to expand the search spaces with the normalized vectors. Furthermore,
[ ] stands for the empty matrix, and we omit the index k of all variables that are
overwritten in every step. If we are interested in another singular value, for example,
the smallest, or the one closest to a specific target, we should adjust our choice in
step 4 of the algorithm accordingly. The variant of Algorithm 4.1 is the only variant
of the JDSVD for which the operator in (3.6) is symmetric and maps (u, v)⊥⊥ in
itself. Other choices imply that the operator is not symmetric or maps (u, v)⊥⊥ to a
different space. See also section 7.2.

4.2. Optimality of this choice. The following two results indicate that the
method resulting from this standard Galerkin choice is optimal in some sense. Suppose
we have an m × k matrix U and an n × k matrix V . Then for any k × k matrices
K and L there are associated an m × k residual matrix R(K) and an n × k residual

matrix R̃(L):

R(K) := AV − UK and R̃(L) := ATU − V L.

If there exist K and L such that these residual matrices are zero, then we have
found left and right singular subspaces, i.e., invariant subspaces of ATA and AAT .
The following theorem states that if both U and V have orthonormal columns, then
H := UTAV and HT = V TATU minimize the norm of these residual matrices, which
is a desirable property. It is a generalization of a result in the theory for eigenproblems
(see [12, Theorem 11.4.2] and [18, Theorem IV.1.15]), which deals with residuals of
the form AV − V K.

Theorem 4.1 (cf. Theorem 11.4.2 of [12]). For given m× k matrix U and n× k
matrix V , let H = UTAV .

(a) If the columns of U are orthonormal, then for all k × k matrices K we have
‖R(H)‖ ≤ ‖R(K)‖. Moreover, H is unique with respect to the Frobenius
norm ‖R(H)‖F ≤ ‖R(K)‖F with equality only when K = H.



612 MICHIEL E. HOCHSTENBACH

(b) If the columns of V are orthonormal, then HT = V TATU minimizes the norm

of R̃(L), and HT is unique with respect to the Frobenius norm.
Proof. Suppose that the columns of U are orthonormal; then UTU = I, so

R(K)TR(K) = V TATAV +KTK −KTH −HTK
= V TATAV −HTH + (K −H)T (K −H)
= R(H)TR(H) + (K −H)T (K −H).

Since (K −H)T (K −H) is positive semidefinite, it follows that

‖R(K)‖2 = λmax(R(K)TR(K)) ≥ λmax(R(H)TR(H)) = ‖R(H)‖2,

where we used Lemma 2.5 in the inequality. For uniqueness, we realize that ‖B‖2
F =

Trace(BTB) for every real matrix B. Part (b) can be proved using the same
methods.

Proposition 4.2. Let u and v be approximations of unit norm. Then

(θ, η) = (uTAv, uTAv) minimizes ‖r(θ, η)‖.

Proof. This can be shown by differentiating ‖r(θ, η)‖2 with respect to θ
and η.

Because of these two results, it is a natural idea to take the k singular values

θ
(k)
j of Hk as approximations to the singular values of A. When Uk and Vk have
orthonormal columns, we see by Lemma 2.8 that these approximations converge in a
finite number of steps to the singular values of A. In the following theorem we show
that the approximations converge monotonically increasing.

Theorem 4.3. Let θ
(k)
k ≤ · · · ≤ θ

(k)
1 be the singular values of Hk := UT

k AVk,
where Uk and Vk have orthonormal columns. Then for all fixed j and increasing k,

the θ
(k)
j converge monotonically increasing to the σj.

Proof. Hk is a submatrix of Hk+1, so according to Lemma 2.9 θ
(k+1)
j ≥ θ

(k)
j

for 1 ≤ j ≤ k. Because of the orthogonality of Uk and Vk, the θ
(k)
j converge to the

σj .

Remark 4.4. In practice, one often observes that the θ
(k)
j converge strictly mono-

tonically to the σj. With the aid of [21, pp. 94–98], conditions could be formulated
under which the convergence is strict.

Note that the theorem does not say that the smallest approximations θ
(k)
k converge

monotonically (decreasing) to σp, because Lemma 2.9 only gives us θ
(k+1)
k+1 ≤ θ

(k)
k−1.

For example, if uk ≈ u∗,p and vk ≈ v∗,p−1, then θ
(k)
k ≈ 0, so we see that the smallest

approximation can in fact be (much) smaller than σp. Experiments show that the

convergence of the θ
(k)
k can be irregular and slow (see section 8). This is a serious

difficulty of working with the augmented matrix, because the smallest singular values
are in the interior of its spectrum. We discuss this matter further in sections 4.3, 4.4,
and 7.5. The following theorem gives some relations between the singular values of
Hk and those of A. For clarity, we leave out the index k as much as possible.

Theorem 4.5 (cf. Theorems 11.5.1 and 11.5.2 of [12] and Corollary IV.4.15 of
[18]). For j = 1, . . . , k, there exist singular values σj′ of A which can be put in one-one
correspondence with the singular values θj of H in such a way that

|σj′ − θj | ≤ max {‖R(H)‖, ‖R̃(HT )‖} (1 ≤ j ≤ k).
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Moreover,

k∑
j=1

(σj′ − θj)
2 ≤ ‖R(H)‖2

F + ‖R̃(HT )‖2
F .

Proof. Let the columns of Ũ and Ṽ be orthonormal bases for the orthogonal
complements of U and V , respectively. Then both [U Ũ ] and [V Ṽ ] are orthogonal
and

[U Ũ ]TA[V Ṽ ] =

(
H 0

0 ŨTAṼ

)
+

(
0 UTAṼ

ŨTAV 0

)
.(4.3)

Using Lemmas 2.8 and 2.6, respectively, we obtain for 1 ≤ j ≤ p = min{m,n}

σj(A) = σj

(
[U Ũ ]TA[V Ṽ ]

)
≤ σj

(
H 0

0 ŨTAṼ

)
+ σmax

(
0 UTAṼ

ŨTAV 0

)
.

Now

[U Ũ ]TR(H) =

(
0

ŨTAV

)
and [V Ṽ ]T R̃(HT ) =

(
0

Ṽ TATU

)
,

so, because of the orthogonal invariance of the norm (see Lemma 2.8), ‖R(H)‖ =

‖ŨTAV ‖ and ‖R̃(HT )‖ = ‖Ṽ TATU‖ = ‖UTAṼ ‖. Because

Σ

(
H 0

0 ŨTAṼ

)
= Σ(H) ∪ Σ(ŨTAṼ ),

there exist indices j′ such that

σj′

(
H 0

0 ŨTAṼ

)
= θj .

So the theorem’s first inequality is obtained by

σmax

(
0 UTAṼ

ŨTAV 0

)
= max {‖ŨTAV ‖, ‖UTAṼ ‖} = max {‖R(H)‖, ‖R̃(HT )‖}.

For the second inequality, apply Lemma 2.7 to the splitting of (4.3).
For the following proposition, we need the minimax theorem for singular values

[9, Theorem 3.1.2]

σj = max
X j⊂Rn

min
0 
=x∈X

‖Ax‖
‖x‖ ,(4.4)

where X j ranges over all subspaces of R
n of dimension j.

The following proposition states that the singular values of UT
kAVk are also not

optimal in another sense.
Proposition 4.6. Let Uk and Vk have orthonormal columns. For 1 ≤ j ≤ k,

σj(U
T
kAVk) ≤ σj(AVk) and σj(U

T
kAVk) ≤ σj(A

TUk).
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Proof. This follows from (4.4) and the inequalities ‖UT
kAVky‖ ≤ ‖AVky‖ and

‖V T
k ATUkx‖ ≤ ‖ATUkx‖.
We have seen that the σj(U

T
k AVk) increase monotonically and that they are

bounded above by both σj(AVk) = λ
1/2
j (V T

k ATAVk) and σj(A
TUk) = λ

1/2
j (UT

k AATUk).
This forms one motivation to study other Galerkin choices. A second is the possibly
irregular convergence of the smallest singular value of UT

k AVk.

4.3. Other choices. Suppose that the columns of V form an orthonormal basis
for V. By the Galerkin choice X = AV, Y = V, with test vectors x = Av, y = v, and
u = Uc, v = V d, and ‖v‖ = 1, (3.2) reduces to{

V TATAV d = θ V TATUc,
V TATUc = η d.

(4.5)

One can check that to satisfy the Galerkin conditions, (θη, d) should be an eigenpair
of V TATAV . Now first suppose that V TATU is nonsingular. Note that in this case
η �= 0; otherwise, V TATU would be singular. It follows that c = η(V TATU)−1d,
η = vTATu, and θ = vTATAv/vTAu. When V TATU is singular, then this construction
is impossible, but in this case we can simply restart the process or add extra vectors
to the search spaces (see section 7.6).

With this Galerkin choice, θ and η do not converge monotonically in general, but
we can apply well-known results from eigenvalue theory to ensure that their product
does converge monotonically to the squares of the singular values and also to the
smallest. In section 7.2 we discuss the resulting correction equation.

Likewise, if the columns of U form an orthonormal basis for U , the Galerkin choice
X = U , Y = ATU leads to the determination of (θη, c), an eigenpair of UTAATU .
These two approaches are natural with respect to minimax considerations, as we will
see now.

Lemma 4.7. Let ξ ∈ [0, 1]. Then we have the following minimax property for
singular values:

σj = max
Sj⊂Rm

T j⊂Rn

min
0�=s∈Sj

0�=t∈T j

ξ
‖At‖
‖t‖ + (1− ξ)

‖ATs‖
‖s‖ (1 ≤ j ≤ p).(4.6)

Proof. This follows from (4.4) and the observation that A and AT have the same
singular values.

When we have search spaces U and V, it is a natural idea to substitute U for R
m

and V for R
n in (4.6), as a generalization of a similar idea in the theory of eigen-

problems; see [12, p. 236]. This gives the following approximations for the singular
values:

τj = max
Sj⊂U
T j⊂V

min
0�=s∈Sj

0�=t∈T j

ξ
‖At‖
‖t‖ + (1− ξ)

‖ATs‖
‖s‖ .(4.7)

The following theorem relates these approximations to the Ritz values ofATA andAAT.

Theorem 4.8. τj = ξ(λ
1/2
j (V TATAV )) + (1− ξ)(λ

1/2
j (UTAATU)).

Proof. We have that T j ⊂ V if and only if T j = V T̃ j := {V t : t ∈ T̃ j} and

T̃ j ⊂ R
k. So for the first term of the expression for the τj we have that

max
T j⊂V

min
0 
=t∈T j

‖At‖2

‖t‖2
= max

T̃ j⊂Rk

min
0 
=t∈T̃ j

tTV TATAV t

‖t‖2
= λj(V

TATAV ).
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For the second term we have a similar expression.
When we take ξ = 0 and ξ = 1 in Theorem 4.8, we recognize the Galerkin ap-

proaches described in (4.5) and the discussion after that. They can essentially be
viewed as a two-sided approach to ATA or AAT , in the sense that we have approxi-
mations to both the left and the right singular vector during the process.

As a generalization, we can consider the test spaces X and Y with bases αui+βAvi
and γvi + δATui, respectively, where α2 + β2 = γ2 + δ2 = 1. Every choice other
than α = γ = 1 (the standard Galerkin choice discussed in section 4.1) involves the
computation of additional projected matrices and more work per iteration.

Another possibility is to take search spaces of unequal dimension, that is, Uk and
Vl, where k �= l. However, in view of the symmetric role of Sj and Tj in (4.6), this is
probably not very useful.

4.4. Harmonic singular triples. As observed in section 4.2, the standard
Galerkin choice leads to monotone convergence for the largest singular value, but
it can imply irregular behavior for the smallest singular value. A related problem is
the selection of the best approximate vectors. Suppose that u =

∑m
j=1 γju∗,j and

v =
∑n

j=1 δjv∗,j are approximate vectors; then θ = uTAv =
∑p

j=1 γjδjσj . (We may
assume θ is nonnegative; otherwise, take −u instead of u.) Now suppose that θ ≈ σ1,
in the sense that σ2 < θ < σ1 and that σ1 − θ is (much) smaller than θ−σ2. Then we
conclude that γ1 ≈ 1 and δ1 ≈ 1, so u and v are good approximations to u∗,1 and v∗,1.
But when θ ≈ σp, u and v are not necessarily good approximations to u∗,p and v∗,p.
For example, u could have a large component of u∗,p−1 and a small component of
u∗,1, and v could have a large component of v∗,p−2 and a small component of v∗,1. In
conclusion, when we search for the largest singular value, it is asymptotically safe to
select the largest singular triple of H, but for the smallest singular value the situation
is more subtle.

Suppose for the moment that A is square and invertible. If the minimal singular
value is the one of interest, the above discussion suggests to study the singular values
of A−1. Based on the SVD of A−1

A−1 = V∗Σ−1UT
∗ ,

we try to find the largest singular values of A−1 with respect to certain search spaces
Û , V̂ and test spaces X̂ , Ŷ. The new Galerkin conditions become (cf. (3.1))(

A−1û− θ̂v̂
A−T v̂ − η̂û

)
⊥⊥

(
Ŷ
X̂

)
,

where û ∈ Û and v̂ ∈ V̂, say, û = Û ĉ and v̂ = V̂ d̂. To avoid having to work with A−1,
we take for the search spaces Û = AV and V̂ = ATU (cf. [15]). This gives the system{

Ŷ TV ĉ = θ̂ Ŷ TATUd̂,

X̂TUd̂ = η̂ X̂TAV ĉ.

Taking X̂ = U and Ŷ = V results in equivalent conditions as in the standard choice
(4.1); only now (η̂, θ̂) and (ĉ, d̂) play the role of (θ−1, η−1) and (d, c). The choices

(X̂ , Ŷ) = (AV,V), (U , ATU), and (AV, ATU) lead to different approximations: to (4.5)
and other systems described in section 4.3, only the roles of the variables differ. We
can call these approximations harmonic singular triples, in analogy to the harmonic
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Ritz pairs in the eigenproblem [11]. So these harmonic approximations have two
advantages: the monotone behavior of the approximations to the smallest singular
value, and the selection of a good approximate “smallest” vector.

The conclusion is that the nondefault Galerkin choices, as presented in section 4.3,
can also be seen as a “harmonic” approach to the problem. Finally, when A is singular
or even nonsquare, we can consider A+ with respect to the test and search spaces AV
and ATU , exploiting the fact that AA+A = A.

5. The JDSVD as an (inexact) accelerated Newton scheme. In [16], it is
shown that the Jacobi–Davidson method can be interpreted as an inexact accelerated
Newton scheme [4] for the eigenvalue problem. Here we show that the same is true for
the JDSVD applied to the singular value problem. Define F : R

m×R
n → R

m×R
n as

F (u, v) :=

(
Av − θu
ATu− ηv

)
,

where θ = θ(u, v) and η = η(u, v) are as in (3.3). Thus the function F is nonlinear.
Consider the singular value problem where we require the singular vectors u∗, v∗ to
be scaled such that uT

∗ a = 1 and vT∗ b = 1 for certain vectors a ∈ R
m and b ∈ R

n. So
we look for solutions u∗, v∗ of the equation F (u, v) = 0 in the “hyperplane”{

(u, v) ∈ R
m × R

n : uTa = 1, vTb = 1
}
.

We introduce these a and b to derive a more general form of the correction equation
(3.6). If (uk, vk) are approximations to the singular vectors, then the next Newton
approximations (uk+1, vk+1) are given by (uk+1, vk+1) = (uk, vk) + (sk, tk), where
(sk, tk) ⊥⊥ (a, b) satisfies

DF (uk, vk)(sk, tk) = −F (uk, vk) = −rk.

Omitting the index k, one may check (remembering that θ = θ(u, v) and η = η(u, v)
are as in (3.3)) that the Jacobian DF (u, v) of F is given by

DF (u, v) =

(
Im − uxT

xTu
0

0 In − vyT

yT v

)( −θIm A
AT −ηIn

)
.

Hence the correction equation of the Newton step is given by(
Im − uxT

xTu
0

0 In − vyT

yT v

)( −θIm A
AT −ηIn

)(
s
t

)
= −r, where (s, t) ⊥⊥ (a, b).

For every x̃, ỹ so that aT x̃ �= 0 and bT ỹ �= 0, this is equivalent to the slightly more
general form of the JDSVD correction equation (in comparison with (3.6)),(

Im − uxT

xT u
0

0 In − vyT

yT v

)( −θIm A
AT −ηIn

)(
Im − x̃aT

aT x̃
0

0 In − ỹbT

bT ỹ

)(
s
t

)
= −r,

(5.1)

where (s, t) ⊥⊥ (a, b). Note that the substitution a = u and b = v gives (3.6).
If we keep a, b, x, x̃, y, and ỹ fixed during the process, and if xTu∗, yT v∗, aT x̃,

and bT ỹ are nonzero, then Newton iteration produces a series (uk, vk) that converges
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asymptotically quadratically towards (u∗, v∗) if the starting vector (u1, v1) is suffi-
ciently close to (u∗, v∗).

But if we take a, b, x, x̃, y, and ỹ variable but converging to certain vectors, such
that the denominators in (5.1) do not vanish, we get asymptotically quadratic conver-
gence as well. The choice a = x = x̃ = uk and b = y = ỹ = vk leads to Algorithm 4.1.
With other Galerkin choices described in section 4, the test vectors (x, y) are, in gen-
eral, not equal to the approximations (u, v), and in this situation the vectors a and b
can be useful; see sections 6 and 7.2.

We see that the JDSVD is a Newton scheme, accelerated by the usage of all
previous iterates and the projection of A on the subspace that they span. This
subspace acceleration accelerates the “prequadratic” phase of the method and ensures
that we find a singular triple in a finite number of steps. It may be expensive to
solve the correction equation exactly. Instead we may solve (5.1) approximately (see
section 7.1); the resulting method is an inexact accelerated Newton scheme.

In [14], it is proved that if the correction equation is solved exactly, then Jacobi–
Davidson applied to a symmetric matrix has asymptotically cubic convergence. Be-
cause the augmented matrix (1.1) is symmetric, we expect that the JDSVD can also
reach cubic convergence. The next section shows that this expectation is correct
indeed.

6. Convergence. In the previous section we have already seen that the cor-
rection equation represents a Jacobian system in a Newton step. Now we focus on
the convergence (see [14] for similar observations for Jacobi–Davidson applied to the
eigenvalue problem).

In a mathematical sense, it is not meaningful to speak of asymptotic convergence,
because we know that the process ends in a finite number of steps. However, in
many practical situations a singular triple will be approximated well, long before
the dimension of the search spaces reaches p. At that stage, these approximations
display a behavior that looks like a converging infinite sequence close to its limit.
When speaking of asymptotic convergence, we think of this situation. In other words,
by the word “asymptotically” we mean the situation where we have a (very) good
approximation to the singular triple, rather than the situation where k → ∞.

In the correction equation (5.1), u and v are the current approximations and x and
y are test vectors, but we have not said much about choosing x̃, ỹ, a, and b. They can
vary per step. The next lemma and proposition show that the exact JDSVD (that is,
the JDSVD where we solve the correction equation exactly) has asymptotically cubic
convergence for specific choices of the test vectors x and y and the vectors a and b.
To be precise, with ε small enough, if

|∠(uk, u∗)| = O(ε) and |∠(vk, v∗)| = O(ε)(6.1)

and if

a = x and b = y and |∠(x, u∗)| = O(ε) and |∠(y, v∗)| = O(ε),(6.2)

then |∠(uk+1, u∗)| = O(ε3) and |∠(vk+1, v∗)| = O(ε3). Then the approximate singular
values (see (3.3)) converge cubically as well.

Lemma 6.1 (cf. Lemma 3.1 of [14]). Assume that Av∗ = σu∗ and ATu∗ = τv∗,
where σ, τ > 0, and that

√
στ is a simple singular value of A. Let a, b, x, x̃, y, and
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ỹ be such that xTu∗, yT v∗, aT x̃, bT ỹ, aTu∗, and bT v∗ are all nonzero. Then the map

G :=

(
Im − u∗xT

xTu∗
0

0 In − v∗yT

yT v∗

)( −σIm A
AT −τIn

)(
Im − x̃aT

aT x̃
0

0 In − ỹbT

bT ỹ

)

is a bijection from (a, b)⊥⊥ onto (x, y)⊥⊥.
Proof. Suppose (z1, z2) ⊥⊥ (a, b) and G(z1, z2) = 0. We show that z1 = z2 = 0.

We have ( −σIm A
AT −τIn

)(
z1

z2

)
=

(
µu∗
νv∗

)
for certain µ, ν. Then {

Az2 = σz1 + µu∗,
ATz1 = τz2 + νv∗.

Multiplying the first equation by AT and the second by A, we find{
(ATA− στ)z2 = (σν + τµ)v∗,
(AAT − στ)z1 = (σν + τµ)u∗.

So both z1 and u∗ belong to the kernel of (AAT − στ)2, and both z2 and v∗ belong
to the kernel of (ATA − στ)2. From the simplicity of στ using Lemma 2.4, we have
that z1 and z2 are multiples of u∗ and v∗, respectively. Because z1 ⊥ a, z2 ⊥ b, and
aTu∗ �= 0, bT v∗ �= 0, we conclude z1 = z2 = 0. The bijectivity follows from comparing
dimensions.

Proposition 6.2 (cf. Theorem 3.2 of [14]). With the assumptions of Lemma
6.1, if the initial vectors are close enough to the singular vectors corresponding to a
simple nonzero singular value (i.e., if (6.1) holds), and if the correction equation is
solved exactly, then for fixed vectors x, y, a, and b, the JDSVD process has quadratic
convergence. Moreover, if (6.2) holds, then the JDSVD has even cubic convergence.

Proof. For convenience write

P =

(
Im − uxT

xT u
0

0 In − vyT

yT v

)
, B =

( −θIm A
AT −ηIn

)
, Q =

(
Im − x̃aT

aT x̃
0

0 In − ỹbT

bT ỹ

)
.

Then the correction equation (5.1) reads, for (s, t) ⊥⊥ (a, b),

PBQ(s, t) = PB(s, t) = −r = −B(u, v).

Suppose that ũ and ṽ are scalar multiples of the singular vectors u∗ and v∗ and that
(ũ, ṽ) = (u, v) + (e, f), where (e, f) ⊥⊥ (a, b), and ‖e‖ = O(ε), ‖f‖ = O(ε). Our first
goal is to show that ‖(e − s, f − t)‖ = O(ε2). We know that there are σ, τ > 0 such
that

0 =

( −σIm A
AT −τIn

)(
ũ
ṽ

)
=

( −θIm A
AT −ηIn

)(
ũ
ṽ

)
−
(

(σ − θ)ũ
(τ − η)ṽ

)
.

Therefore, we have( −θIm A
AT −ηIn

)(
e
f

)
= −

( −θIm A
AT −ηIn

)(
u
v

)
+

(
(σ − θ)ũ
(τ − η)ṽ

)
.(6.3)
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We multiply this on the left side by P and use the fact that PB(u, v) = B(u, v):

PB(e, f) = −B(u, v) + P ((σ − θ)ũ, (τ − η)ṽ).(6.4)

Subtracting PB(s, t) = −B(u, v) from (6.4), and noting that P (u, v) = 0, we get

PB(e− s, f − t) = P ((σ − θ)e, (τ − η)f).(6.5)

Multiplying (6.3) on the left by (x 0
0 y )

T leads to(
σ − θ
τ − η

)
=

(
(xT ũ)−1 0

0 (yT ṽ)−1

)( −θxT xTA
yTAT −ηyT

)(
e
f

)
.(6.6)

So for fixed x, y, a, and b we have ‖PB(e− s, f − t)‖ = O(ε2). Using Lemma 6.1 and
the assumption that the initial vectors are close enough to the singular vectors, we
see that PB in (6.5) is invertible, so ‖(e− s, f − t)‖ = O(ε2), which implies quadratic
convergence. But, if additionally, (6.2) holds, then∥∥∥∥( −θxT xTA

yTAT −ηyT

)(
e
f

)∥∥∥∥ =

∥∥∥∥( aTAf
bTATe

)∥∥∥∥ = σ

∥∥∥∥( bT f
aT e

)∥∥∥∥+O(ε2) = O(ε2),

so from (6.6) we see that ‖(σ − θ, τ − η)‖ = O(ε2). We conclude that in this case the
convergence is even cubic.

One may check that the hypotheses on x and y in the theorem are true if we
choose xk = uk or xk = Avk, and yk = vk or yk = ATuk in the process. The cubic
convergence can be observed in practice; see section 8.

7. Various aspects of the method.

7.1. Solving the correction equation. We now translate a number of obser-
vations for Jacobi–Davidson in [15, 14] to the JDSVD context. Consider the situation
after k steps of the JDSVD algorithm. For easy reading, we again leave out the index
k. In this section we take for simplicity the Galerkin spaces used in section 4.1, but
most arguments carry over to other choices. First we rewrite the correction equation.
Because of (s, t) ⊥⊥ (u, v), we can eliminate the projections and write (3.6) as( −θIm A

AT −θIn

)(
s
t

)
= −r +

(
αu
βv

)
,(7.1)

where α and β are determined by the requirement that (s, t) ⊥⊥ (u, v). If we have a
nonsingular preconditioner M ≈ ( −θIm A

AT −θIn
), then we can take an approximation

(s̃, t̃) = −M−1r +M−1(αu, βv).(7.2)

1 (cf. [15, p. 406, point 1]). If we approximate (s, t) simply by ±r (by taking
M = ∓I and α = β = 0), then, because of the orthogonalization at step
2 of Algorithm 4.1, this is equivalent to taking (s̃, t̃) = (Av,ATu). By in-
duction one can prove that for the special case where we take this simple
approximation in every step, we have

U2k = Kk(AAT, u1)⊕Kk(AAT, Av1), V2k = Kk(A
TA, v1)⊕Kk(A

TA,ATu1),

as long as the Krylov subspaces have a trivial intersection. Compare this
with bidiagonalization, where

Uk = Kk(AAT, Av1), Vk = Kk(A
TA, v1).
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2 (cf. [15, p. 408, point 3]). If θ is not equal to a singular value, then M =
( −θIm A

AT −θIn
) is nonsingular and M−1r = (u, v). So for the updated vectors

ũ, ṽ we have(
ũ
ṽ

)
=

(
u+ s
v + t

)
=

( −θIm A
AT −θIn

)−1(
αu
βv

)
.(7.3)

We conclude that exact the JDSVD can be seen as an accelerated scaled RQI.
3 (cf. [15, p. 409, point 4]). If we take M �= ( −θIm A

AT −θIn
), M nonsingular, then

with (s̃, t̃) = M−1(αu, βv) we obtain an inexact shift and invert method. This
may be an attractive alternative if (7.3) is expensive.

4. When we are interested in a singular value close to a specific target τ , we can
replace this in the left-hand side of the correction equation (3.6):(

Im − uuT 0
0 In − vvT

)( −τIm A
AT −τIn

)(
Im − uuT 0

0 In − vvT

)(
s
t

)
= −r.

The advantage of this approach is that we avoid misconvergence to some
unwanted singular value “on the way.” For example, if we want to compute
the largest singular value, we can use a known approximation of σmax as a
target. In practice, τ ≈ ‖A‖∞ may be a good guess (see section 8). For
the minimal singular value, we can take τ = 0 or a small positive number
as target. As soon as we notice that the process starts to converge, we may
replace the target in the correction equation by the current approximation to
the singular value again.

5. In practice we often solve (5.1) approximately by an iterative method: for
example, a few steps of GMRES or MINRES if the operator is symmetric (in
case of the standard Galerkin choice). We may use a (projected) precondi-
tioner; see section 7.8.

7.2. The correction equation with nonstandard Galerkin choices. In the
case of nonstandard Galerkin choices (see section 4.3), we may have the situation that
(x, y) �= (u, v). Now we exploit the flexibility of (a, b) in (5.1): by the choice

(a, b) = (x, y) and (x̃, ỹ) = (u, v),(7.4)

we ensure that the operator in (5.1) maps (x, y)⊥⊥ onto itself, and that the asymptotic
convergence is cubic according to Theorem 6.2 (if the correction equation is solved
exactly). Another option is

(a, b) = (u, v) and (x̃, ỹ) = (x, y)(7.5)

to make the operator in (5.1) symmetric. In this case the operator maps (u, v)⊥⊥ to
(x, y)⊥⊥. Therefore, we should use a left “preconditioner” that maps the image space
(x, y)⊥⊥ bijectively onto the domain space (u, v)⊥⊥ (see also section 8 and [14, 17]).

7.3. Comparison with Jacobi–Davidson on the augmented matrix. It is
interesting to compare the JDSVD with Jacobi–Davidson on the augmented matrix,
starting with the “same” starting vector w1 = (u1, v1)/

√
2.

There are some analogies between Jacobi–Davidson and the JDSVD. When their
correction equations are solved exactly, both converge asymptotically cubically to a
simple eigenvalue of the augmented matrix. Moreover, the costs per iteration are
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almost the same; the only difference is that in each step the JDSVD needs a small
SVD, while Jacobi–Davidson needs a small eigenvalue decomposition. The storage
requirements are also comparable.

The main difference is the fact that the JDSVD, by construction, searches in two
(smaller) subspaces, while Jacobi–Davidson has one search space. If Jacobi–Davidson
solves its correction equation exactly, then in fact it solves (7.3) with α = β [15].
This suggests that the JDSVD can cope better with “unbalanced” vectors, that is,
vectors (u, v), where ‖u‖ �= ‖v‖. An extreme example of this can be seen by taking a
starting vector of the form (u∗, δv∗) for 0 < δ < 1. In contrast to Jacobi–Davidson,
the JDSVD terminates after computing a zero residual.

Another (mostly theoretical) difference is the fact that the JDSVD terminates
for every starting vector after at most max{m,n} iterations, and Jacobi–Davidson
terminates on the augmented matrix after at most m+ n iterations. In section 8, we
compare the methods experimentally.

7.4. Refinement procedure. Suppose that we have found an approximate
minimal right singular vector v = (1 − ε2)1/2vmin + εvmax by an iterative method
applied to ATA, so that sin∠(v, vmin) = ε. Then, in the absence of other informa-
tion, u = Av = (1 − ε2)1/2σminumin + εσmaxumax is the best approximation to the
left singular vector we have to our disposal. But tan∠(u, umin) ≈ εσmax

σmin
= κ(A)ε,

and this can be large. Moreover, ‖u‖2 = (1− ε2)σ2
min + ε2σ2

max can be an inaccurate
approximation to σ2

min, and so may ‖ATu‖2/‖u‖2.

Hence the approximations to small singular values, resulting from working with
ATA, may be inaccurate. In this situation, we may try to improve the approximate
singular triple by a two-sided approach like the JDSVD. The following lemma gives
a link with [3], where a system with a matrix of the form

−θIm A −u 0
AT −θIn 0 −v
2uT 0 0 0
0 2vT 0 0

(7.6)

is used for improving an approximate singular triple.

Lemma 7.1 (cf. Theorem 3.5 of [14]). The JDSVD correction equation (5.1) is
equivalent to 

−θIm A −u 0
AT −ηIn 0 −v
aT 0 0 0
0 bT 0 0




s
t
α
β

 =


θu−Av
ηv −ATu

0
0

 ;(7.7)

that is, if (s, t, α, β) is a solution of (7.7), then (s, t) is a solution of the correction
equation (5.1), and if (s, t) is a solution of (5.1), then there exist unique α, β such
that (s, t, α, β) is a solution of (7.7).

Proof. We use the same notation as in the proof of Theorem 6.2. The system
(7.7) is equivalent to

B(s, t)− (αu, βv) = −r and (s, t) ⊥⊥ (a, b).
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By splitting the first equation in (x, y)⊥⊥ and its complement, we obtain
PB(s, t) = −r,(

α
β

)
=

(
(xTu)−1 0

0 (yT v)−1

)(
xT 0
0 yT

)
B

(
s
t

)
,

(s, t) ⊥⊥ (a, b).

Note that we have used Pr = r, P (αu, βv) = 0, and r ⊥⊥ (x, y). The first and third
equation together are equivalent to the correction equation (5.1), and the second
equation determines α, β uniquely.

Remark 7.2. Of course, this equivalence is valid only when both (7.7) and (5.1)
are solved exactly, not when we solve them approximately.

In particular, when we substitute η = θ and (a, b) = 2(u, v), the matrix in (7.7)
becomes (7.6).

7.5. Smallest singular value. As mentioned in section 4.1, the standard vari-
ant of the JDSVD may have difficulties with finding the smallest singular value of a
matrix. This is not surprising, because the small singular values of A correspond to
the interior eigenvalues of the augmented matrix. But in many applications, e.g., the
computation of pseudospectra, the smallest singular value is just what we want to
compute.

We can use the JDSVD with the nonstandard Galerkin (harmonic) variants, men-
tioned in sections 4.3 and 4.4, starting with zero, or a small positive number as a
target, and solve the correction equation rather accurately, possibly with the aid of
a preconditioner; see section 8. In this way the method is close to a shift and invert
iteration but less expensive. Of course it is hereby advantageous to have a good initial
triple (e.g., coming from an iterative method on ATA); the JDSVD (with nonstandard
Galerkin) can then be used as refinement procedure.

7.6. Restart. A nice property of Jacobi–Davidson is its flexibility in restarting.
The JDSVD, too, has this advantage: we can restart at every moment in the process
with any number of vectors, only keeping those parts of the search spaces that look
promising, or possibly adding some extra vectors. All we have to do is compute the
new resulting H = UTAV and continue. This is practical when the search spaces
become large or to avoid a breakdown in case of the nonstandard Galerkin choices.
Of course, the JDSVD can also be started with search spaces of dimension larger
than one.

7.7. Deflation. We can compute multiple singular triples of A by using a defla-
tion technique. If we have found a singular triple of A, and we want to find another,
we can deflate the augmented matrix to avoid finding the same triple again. For the
JDSVD, this can be done as follows. Suppose that Uf and Vf contain the already
found singular vectors. Then it can be checked that, if we found the exact vectors,(

Im − UfU
T
f 0

0 In − VfV
T
f

)(
0 A
AT 0

)(
Im − UfU

T
f 0

0 In − VfV
T
f

)
has the same eigenvalues as the original augmented matrix, except that the found
eigenvalues are transformed to zeros. The method can then be restarted with another
approximate triple.
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7.8. Preconditioning the correction equation. The correction equation of
the JDSVD can be preconditioned in a manner similar to Jacobi–Davidson (see, for
example, [17]). We use the same notation as in the proof of Theorem 6.2 for the
important case Q = P . Suppose that we have a preconditioner M for B. For left
preconditioning we are given (s, t) ⊥⊥ (x, y), and we have to solve for (z1, z2) ⊥⊥
(x, y) from

PMP (z1, z2) = PBP (s, t).

Note that we project the preconditioner as well. Hence, for some α, β,

(z1, z2) = M−1B(s, t)−M−1(αu, βv),

and by using the test vectors we obtain(
x 0
0 y

)T

M−1

(
u 0
0 v

)(
α
β

)
=

(
x 0
0 y

)T

M−1B

(
s
t

)
.

A recipe for computing (z1, z2) is given by the following four steps.
(1) Compute (ũ1, ũ2) = M−1(u, 0) and (ṽ1, ṽ2) = M−1(0, v).
(2) Compute (s̃, t̃) = M−1B(s, t).

(3) Compute (α, β) from (x
T ũ1 xT ṽ1

yT ũ2 yT ṽ2
)(αβ ) = (x

T s̃
yT t̃ ).

(4) Compute (z1, z2) = (s̃, t̃)− α(ũ1, ũ2)− β(ṽ1, ṽ2).
An important observation is that step (1) and the computation of the 2× 2 matrix in
step (3) have to be performed only once at the start of the iterative solution process
of the correction equation. The right-hand side of the correction equation, minus the
residual, is handled similarly.

8. Numerical experiments. Our experiments are coded in MATLAB and are
executed on a SUN workstation. The following lemma implies that up to rounding
errors, it is not a loss of generality to consider (rectangular) diagonal matrices A.

Lemma 8.1. If there are no rounding errors, and the JDSVD’s correction equation
(5.1) in step k is solved by lk steps of GMRES, then the JDSVD applied to

(a) A = U∗ΣV T
∗ , with starting vectors u1 and v1,

(b) Σ, with starting vectors ũ1 := UT
∗ u1 and ṽ1 := V T

∗ v1,
gives “the same” results; that is,

θ̃k = θk and ‖r̃k‖ = ‖rk‖.
Proof. Define

Q =

(
UT
∗ 0
0 V T

∗

)
;

then Q is orthogonal, and one may verify that (ũ1, ṽ1) = Q(u1, v1), θ̃1 := ũT
1 Σṽ1 =

uT
1 Av1 =: θ1, and r̃1 = Qr1. A well-known property of Krylov subspaces ensures that

(see [12, p. 264])

QTKl

((
0 Σ
ΣT 0

)
, r̃

)
= Kl

(
QT

(
0 Σ
ΣT 0

)
Q,QT r̃

)
= Kl

((
0 A
AT 0

)
, r

)
.

With little extra work one can check that the same relation holds for the shifted
and projected matrices that are present in the correction equation (5.1), where one
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Fig. 8.1. (a) The convergence history of the exact JDSVD algorithm for diag(1..100) as in
Algorithm 4.1: residual norm (solid line) and error in the approximations to σmax (dots). The
horizontal dotted line indicates the stopping tolerance. (b) Convergence for diag(1..1000) using,
respectively, 5, 2, and a variable number of GMRES steps to solve the correction equation.

should bear in mind that all other vectors involved in the projectors (a, b, x, y, x̃,
and ỹ) must also be altered for the Σ-system in the obvious way. So the approximate
solutions from the correction equations satisfy (s̃1, t̃1) = Q(s1, t1). By induction we

can prove that Ũk = UT
∗ Uk and Ṽk = V T

∗ Vk, so the projected matrices are the same

in both cases: H̃k := ŨT
k ΣṼk = UT

k AVk = Hk. In particular, the approximations
to the singular values are the same, and the approximations (uk, vk) and (ũk, ṽk) are
orthogonal transformations of each other: (ũk, ṽk) = Q(uk, vk) and r̃k = Qrk, so
‖r̃k‖ = ‖rk‖.

For this reason, we first study some phenomena on A = diag([1 : 100]) and
A = diag([1 : 1000]). In Figure 8.1(a), the solid line is the convergence history of
(the standard variant of Algorithm 4.1 of) the JDSVD for the computation of the
largest singular triple of A = diag([1 : 100]). The starting vectors are the normalized
v1 = vmax + 0.1r, where r is a vector with random entries, chosen from a uniform
distribution on the unit interval, and u1 = Av1/‖Av1‖. The dots represent the error

in the approximation σmax − θ
(k)
k . In all figures, a horizontal dotted line indicates

the stopping tolerance. We solve the correction equation by 200 steps of GMRES.
Because the (augmented) matrices in the correction equation (step 7 of Algorithm 4.1)
are of size 200× 200, this means (theoretically) exactly, so according to Theorem 6.2
we expect cubic convergence. In Figure 8.1(a) we see, for instance, that the error in
the approximation in iteration number 5 decreases from ≈ 10−2 to ≈ 10−7.

In Figure 8.1(b), we take A = diag([1 : 1000]), and u1 and v1 random vectors
(as described above) with unit norm. We experiment with the number of GMRES
steps. For the solid line, we solve the correction equation approximately by five steps
of GMRES, which we denote by GMRES5, for the dashed line by GMRES2, and for
the dotted line by a variable number equal to max{2 · (�− log ‖r‖ +1), 0}. Measured
in terms of matrix-vector products (MVs), the variable choice is best, followed by
GMRES5. An explanation of this is that when the initial approximations are not
good (as in this case), it is of no use to try hard to solve the correction equation in
the beginning. When we are almost converging, it may make sense to solve it more
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Fig. 8.2. (a) The JDSVD (solid) and Jacobi–Davidson (dashed) for the three largest σs of
diag(1..1000). (b) The same as Figure 8.2(a), only with GMRES2 to solve the correction equation.

accurately to get fast convergence. See also [17].
In Figure 8.2(a) we compare, for A = diag([1 : 1000]), the standard JDSVD for

the three largest singular triples (solid), with Jacobi–Davidson on the augmented ma-
trix for the computation of the three largest eigenpairs (dashed), each with GMRES5.
For the JDSVD, we take v1 as a random vector, and u1 = Av1/‖Av1‖. For Jacobi–
Davidson we take the “same” starting vector (u1, v1)/

√
2. We see that the JDSVD is

faster for the first triple; for the second and third we restart with a good approxima-
tion, and then the histories are similar.

In Figure 8.2(b), we do the same, but now using GMRES2. For the first two
triples, the JDSVD is somewhat faster than Jacobi–Davidson, for the third JDSVD
in the first instance (mis)converges to the fourth largest singular value 997. Other
experiments also suggest that the JDSVD is generally (somewhat) faster than Jacobi–
Davidson on the augmented matrix.

Next, we take some examples from the Matrix Market (these matrices can be
downloaded from http://math.nist.gov/MatrixMarket). For Figure 8.3(a), we ap-
ply different JDSVD variants to find the smallest singular triple of PDE225, using two
random starting vectors and GMRES10 (no preconditioning). In all variants, we take
initially target 0, but when ‖r‖ < 10−3, we replace the target by the best approxima-
tions again (see section 7.1, point 4). The solid line is the standard choice; we see an
irregular convergence history, as could be expected (see section 4). The dashed line
represents the Galerkin choice (4.5), where in the correction equation (5.1) we substi-
tute (7.4). Finally, the dash-dotted line is (4.5) with (7.5) substituted in (5.1). In the
last case, as seen in section 7.2, the operator in (5.1) maps (u, v)⊥⊥ to (x, y)⊥⊥. Since
in this case v = y but u �= x, we use a left “preconditioner” to handle the correction
equation correctly. The preconditioned identity(

Im − xuT

uT x
0

0 In

)
Im+n

(
Im − uxT

xTu
0

0 In

)
maps (x, y)⊥⊥ back to (u, v)⊥⊥.

In Figure 8.3(b), the standard JDSVD’s approximations to the singular values
during this process are plotted. These are “regular,” nonharmonic estimates. Note
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Fig. 8.3. (a) Three different JDSVD variants for the computation of σmin of PDE225: standard,
(4.5) + (5.1) + (7.4), and (4.5) + (5.1) + (7.5). (b) (Nonharmonic) approximations to the singular
values by the standard variant.

the monotone convergence of the approximations to the largest singular values but
the irregular behavior of the approximations to the smallest singular value.

Next, we compare the JDSVD with Lanczos applied to ATA for the computation
of σmax. These methods are of a different nature. The Lanczos method can be viewed
as an accelerated power method, while the JDSVD can be seen as an accelerated
inexact RQI. An advantage of the JDSVD is that we may use preconditioning for the
correction equation. Therefore, we expect that if we have a reasonable preconditioner,
and if preconditioning is relatively cheap in comparison to a multiplication by A or
AT , then the JDSVD can be cheaper than Lanczos. On the other hand, if m ! n,
or if there is no good or cheap preconditioner available, then we expect that Lanczos
will be better. Table 8.1 shows some test results. For the JDSVD, we take a target
τ ≈ ‖A‖∞, in the hope that τ ≈ σmax. We make an incomplete LU-decomposition
(using a drop tolerance displayed in the table) of the augmented matrix (1.1) minus
τ times the identity, and we use M = LU as a preconditioner. The starting vector
v1 is the vector with all coordinates equal to one, and is then normalized, and u1 is a
random vector. We solve the correction equation by only preconditioning the residual
(“0 steps of GMRES”). The process is continued until ‖r‖ < 10−8. Lanczos’s method
uses v1 as starting vector and continues until ‖(ATA− θ2)v‖ < 10−8. The matrix A1

stands for diag(1 : 100) + 0.1 · rand(n, n), where rand(n, n) denotes an n × n-matrix
with random entries, chosen from a uniform distribution on the unit interval. See [13]
for more information on the origin and singular values of the other matrices. For the
JDSVD, a pair is given, consisting of the number of MVs and the number of systems
with L or U . For Lanczos we show the number of MVs.

For HOR131, the target τ is relatively far from σmax ≈ 0.66. We see that although
the JDSVD uses fewer MVs than Lanczos, Lanczos is cheaper when we take the
preconditioning into account. Although for PORES3 (σmax ≈ 1.5 · 105) Lanczos
finds a good approximate vector, its residual does not reach the required 10−8 due
to the high condition number of the matrix. The JDSVD does converge, so this
is an example of a situation where the JDSVD could be used as refinement. For
SHERMAN1, the target is a reasonable approximation to σmax ≈ 5.05. When we
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Table 8.1
Some experiments with the JDSVD to compute σmax, using incomplete LU-factorizations of

the shifted augmented matrix. The number of MVs, and the number of systems with L or U is
displayed in the 5th column. The shift (or target) τ (6th column) for the preconditioning is roughly
taken to be ‖A‖∞. The last three columns give information on the incomplete LU-factorization: the
drop tolerance of ILU, and the resulting number of nonzeros of L and U . We compare the JDSVD’s
results with the MVs of Lanczos applied to ATA (4th column).

Matrix Size nnz(A) Lan(ATA) JDSVD τ tol nnz(L) nnz(U)
HOR131 434 × 434 4182 30 (28, 65) 0.90 10−2 1792 1792
PORES3 532 × 532 3474 – (72, 175) 2 · 105 10−1 1301 1300
SHERMAN1 1000 × 1000 3750 74 (24, 66) 5 10−2 4805 4803
A1 100 × 100 10000 102 (38, 108) 106 10−2 299 299

take the preconditioning into account, Lanczos is cheaper than the JDSVD. The last
row of the table is an example where preconditioning is relatively cheap. The reason
for this is that we now take the diagonal of A, instead A itself, to form an augmented
matrix of the form (1.1) and to make an ILU-decomposition. Using far more MVs,
Lanczos is (also counting the preconditioning) more expensive.

Finally, in Table 8.2, we compare the JDSVD for the computation of σmin with
Lanczos applied to (ATA)−1. We use the Galerkin choice (4.5) for the JDSVD. Note
that the comparison with Lanczos is mainly meant to get an idea of how well the
JDSVD performs. In practice, for large (sparse) A, it is too expensive to work with
A−1 and A−T or (ATA)−1. For the JDSVD, we take a small target τ = 10−5, drop
tolerance 10−3, and again we make an incomplete LU-decomposition based on this
target. The starting vectors are the same as for Table 8.1. We solve the correction
equation by preconditioning only the residual (“0 steps of GMRES”). Both processes
are continued until ‖r‖ < 10−7.

Table 8.2
Some experiments with the JDSVD to compute σmin. The numbers of MVs and systems with L

or U (3rd column), and the number of nonzeros of L and U are displayed. We compare the JDSVD’s
results with the number of MVs of Lanczos applied to (ATA)−1.

Matrix Lan(ATA)−1 JDSVD nnz(L) nnz(U)
HOR131 – (26, 72) 20593 21167
PORES3 12 (36, 108) 3683 5491
SHERMAN1 20 (20, 54) 11575 11738
A1 14 (28, 78) 200 200

We see that although the JDSVD may in general use more MVs, it may be much
cheaper than Lanczos, due to the sparsity of A, L, and U . For HOR131, Lanczos does
not converge to the required 10−7. Again A1 serves as an example for the situation
where preconditioning is relatively cheap, which makes the JDSVD attractive. We
also tried Lanczos applied to ATA for the computation of σmin, but the results were
bad (262 MVs for A1, and more than 500 MVs for the other matrices).

9. Conclusions. We have discussed an alternative approach for the computation
of a few singular values and vectors of a matrix. The JDSVD method searches in two
separate subspaces, and it can be interpreted as an inexact Newton method for the
singular value problem. The JDSVD can also be seen as an inexact accelerated scaled
RQI method. Therefore, the best results may be expected when we have a good initial
starting triple (refinement), but we can start with any approximations. While the
asymptotic convergence is cubic if the correction equation is solved exactly, in practice
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we solve it approximately, and then the convergence typically looks (super)linear.
Although we mainly discussed the application of the JDSVD for the largest and
smallest singular value, the method is in principle suitable for all singular values. We
may use preconditioning for the solution of the correction equation. This can be a
decisive factor for fast convergence. Experiments indicate that the JDSVD is a good
competitor to other iterative SVD methods, in particular when A is (almost) square
and we have a reasonable, relatively cheap preconditioner for the correction equation.
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