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We study the variational properties of the action functional appeared in the time-dependent 
Hartree·Bogoli1.lbov (TDHB) theory. Through the calculus of the second variation on the coset 
manifold SO(2N)/U(N), the Jacobi equation is obtained. Assuming the periodic Jacobi field, 
we derive in a natural way the equation for the quasi· particle random phase approximation 
(RPA) describing the collective excitation around certain static HB fields. The present method 
of obtaining the SO(2N) RPA may be useful to getthe SO(2N+1) RPA. 

§ 1. Introduction 

For the purpose of constructing a theory suitable for the description of 
collective motions with large amplitudes in soft nuclei, in the previous paper!) 
(referred to as I), we have proposed a quantized time-dependent Hartree
Bogoliubov (TDHB) theory of many fermion systems with pair correlations. In 
order to take account of the pair correlations, we were forced to enlarge the 
symmetry of the Lie group from the U (N) (the unitary group of N -dimension) 
to the 5 O(2N) (the special orthogonal group of 2N -dimension). Here N 
denotes the number of the single particle state of fermions. Our theory was 
obtained not by using a priori quantized method2

),3) but by using the path integrals 
on the coset space SO(2N)/ U(N ).4),5) Kleinert proposed some years ago a 
functional integral approach to a theory of collective excitations in the systems 
given above. He introduced, in a different way from our method, external 
sources represented in terms of the Grassmann variables adopting a simple 
schematic mode1.6

) 

As is well known, the path integral formalism provides the natural connec
tion between the classical problem and its quantized version. It is particularly 
useful for the semiclassical treatment of quantum systems. Recently Kuratsuji 
and Mizobuchi investigated the semiclassical analysis of a spin system taking 
account of effects arising from the second variation of the action functional 
around the classical path. They obtained a closed form of the semiclassical 
propagator and derived a semiclassical quantization condition.7

) On the other 
hand, Dewitt-Morette et a1. pointed out that there is a remarkable analogy 
between the role played by classical paths in the study of quantum systems and 
the role played by equilibrium points in the study of classical dynamical sys-
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A Jacobi Equation on the Coset Manifold SO(2N)/U(N) 101 

tems.B
) In our case, the classical path G( t) with the end points (Go, to) and (GI, 

tl) can be considered as an "equilibrium point" in the limit h=O. G(t) satisfies 
the variational principle oS[G(t)] =0 and the qualitative features of the quantum 
system whose classical limit is G( t) are determined by the second variation of the 
action functional 02S[G(t)]. Then it becomes necessary to study the small 
deviations from "equilibrium point" or the Jacobi equation in the corresponding 
classical system. 

The conventional approach to collective excitations starts with the random 
phase approximation (RPA). The quasi~particle SO(2N) RPA treats the col
lective states of many fermion systems with pair correlations. Its derivation is 
usually made by e.g. the well-known linearization method. Though quitely self
evident in a sense, we will stress it can be also given through the above-mentioned 
Jacobi equation. The SO(2N) RPA, however, is applicable only to even fermion 
systems. We know no extension of the SO(2N) RP A to the SO(2N + 1) one for 
odd systems to include both paired and unpaired modes. A way of solving an 
unknown problem of constructing the SO(2N+1) RPA may be found since 
embedding the SO(eN+ 1) group into the SO(2N+2) one4

).5) we can obtain the 
corresponding Jacobi equation. Then it becomes very meaningful to reproduce 
the SO(2N) RPA from the Jacobi equation on the coset manifold SO(2N)/U(N) 
in this paper. 

In the present paper, we first aim at studying the variational properties of the 
action functional 5 and obtaining the Jacobi equation through the calculus of the 
second variation on the coset manifold SO(2N)/U(N). Our second purpose is 
to show how the following treatment is possible: Assuming the periodic Jacobi 
fields, we derive the equation for the quasi-particle RPA describing the collective 
excitation around certain static HB fields. In § 2 from the calculus of the second 
variation of 5, we will give the exact Jacobi equation on the coset manifold 
SO(2N)/U(N). In § 3 assuming the form of the Jacobi fields to be the simple 
periodic form, we will derive the quasi-particle RPA equation in a natural way. 
Finally we will add some remarks. In Appendices, we give the detailed calculus 
of variations needed for our discussion. 

The notations used in this paper are the same as those in 1. 

§ 2. The second variation and the Jacobi equation 
on the coset manifold SO(2N)/ U(N) 

As was shown in I, the first variation of the action functional 5 leads to the 
following classical TDHB equation: 

(2· 1) 
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102 S. Nishiyama 

in which the classical path satisfies the end point conditions q(to)=qo, q(t1)=q1 
together with their complex conjugate (the Dirichlet data).9) The above equa
tion is easily rewritten in the conventional type of the TDHB equation as seen in 
Appendix I. 

Let us introduce the path variation from the classical path, ~(t) = (~ap(t )), 
which is a function on [t1, to] with e(t)= - ~(t) and is vanishing on the bound
ary, ~(to)= ~(t1 )=0. The second variation of the action functional 5 is readily 
found as follows: 

[t1 0 25= UJdt to ' 

J2L J2L J 2L J2L ~ 
JqJq JqJq* JqJrj JqJrj* 

J2L J2L J2L J2L e 
2.Q == (~, e, ~, ~ * ) 

Jq*Jq Jq*Jq* Jq*Jrj Jq*Jrj* 

J 2L J2L J 2L J2L 
JrjJq JrjJq~ JrjJrj JrjJrj* ~ 

J 2L J 2L J2L J2L 
~* Jrj*Jq Jrj *Jq* Jrj*Jrj Jrj*Jrj* 

(2·2) 

where J2L/JqapJqr8, etc., are evaluated along the classical path. It is seen that 
the second variation (2·2) is itself a functional with respect to the path variations 
~(t). The functional .Q =.Q (~, ~*, ~, ~ *) defined in the above is the so-called 
secondary Lagrangian. 

A necessary condition for the classical path q(t) to be a minimum of 5 is that 
the above second variation 0 25 should be nonnegative for all admissible func
tions ~(t). As is clear from the structure of Eq. (2·2), 0 25 is defined in the 
quadratic functional form of the functions ~(t). Then to assure the conditions 
025~0 with the Dirichlet data ~(tO)=~(t1)=0 together with their complex 
conjugate, we must set up the following well-known conditions as necessary 
ones: 10

) 

(I) Legendre's condition 

A matrix P( t) is nonnegative*) on [to, t1] where the matrix P( t) is defined as 

*) If the matrix PCt) defined by Eq. C2'3) on page 103 is positive definite, then the conditions I 
and II become necessary and sufficient conditions for 3 2 5>0. '0) 
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a2L 

P(t)=( aqaq 
a2L 

aq*aq 

(II) Jacobi's condition 

103 

(2-3) 

The path variations ~(t) are subjected to the following Euler-Lagrange 
equation for the secondary Lagrangian Q with the initial condition ~(to) = 0 
together with their complex conjugate: 

d (aQ) aQ dt at - a~ =0, 

d ( aQ) aQ dt e t * - ae = 0 , 
) (2-4) 

which is called the Jacobi equation.*) There exists no conjugate point **) to 
qo( = qUo» on [to, tl]. 

The explicit expression on the coset manifold SO(2N)!U(N) of the above 
Jacobi equation is given in the following form: 

=0. (2-5) 

Since our "Lagrangian" L is linear in q and q *, then we have 

aq*aq* 0, (2-6) 

and their complex conjugate which satisfies the so-called weak Legendre's condi
tion. 

*) Note that, though we use the same symbols, the path variations ~(t ) in Eq. (2·4) are not identical 
with the admissible functions ~(t) which must satisfy ~(to)=~(t,)=O. A nonzero solution ~(t) of the 
Jacobi equation does not always satisfy ~(t,)=O and is normalized through ~(to)=c (c being certain 
constant numbers).'O) 

**) Two points qo and q, are said to be conjugate along a stationary path q(t), if there exists a 
nonzero solution ~(t) of the Jacobi equation along q(t) vanishing at to and t,. 
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104 S. Nishiyama 

With the aid of the property a2 L/ aq * aq = a2 L/ aqaq *, etc., the equations given 
in Appendix II and the anti symmetry of ~, the Jacobi equation is rewritten in the 
following form: 

( 
a<H)G,G 

q aq q 
a<H)G,G) K 

aq* ar sp 

K ( 
a<H)G,G 

- ar q aq q a<H)G,G) } c* 
aq* SP <;rS 

( 
a<H)G,G 

q aq 
a<H)G,G *) (l-M) 

aq* q ar SP 

-(l-M*) (a<H)G,G - * a<H)G,G) }c =0 ar aq q q aq* sp <;rS . (2,7) 

Note that in the above equation the components ~;s automatically vanish. 
Further substituting the explicit expressions of the second derivatives 

a2 L/ aq* aq* and a2 L/ aq* aq calculated in Appendix III and using the anti symmetry 
of ~, the above equation is transformed into the following form: 

+ ih{(l- M* )ar(1- M )sp} ~ rS 

+ ~ {(1- M* )ar( q* a<Z:G,G ) sp + ( a<Z:G,G q*) ar (1- M )sp 

_l a2.<H)G'G}~ -0 
2 aq;paqrs rS - . (2'8) 

N ow multiplying (1- M* )-1 and (1- M)-1 on the left and right hand sides, 
respectively and using the relations q = (1- M*)-1 K = K(l- M )-t, we obtain 

~ [ qar{ a<Z:G,G (1- M)-I} SP + {(1- M* )-1 a<Z:G,G } ar qsp 

1(1 M*)-1 a
2
<H)G,G(1 M)-1 ]c*+'h i --2 - aa' ~ * a * - P'P <;rS 1 <;aP uqa'P' qrs 

+ ~ [ oar{ q* a<Z:G,G (1- M)-I} SP + {(1- M*)-1 a<Z~G'G q*} ar 0 SP 

-l(1-M*)-1 a
2
<H)G,G(1_M)-1 ]~ -0 

2 aa' aq;'p,aqrs P'P rS- . (2'9) 
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A Jacobi Equation on the Coset Manifold SO(2N)/U(N) 105 

Finally substituting the explicit forms of the Hessians into the above, we can 
get the following simple equation: 

ih~ap- A apr8 (t )~r8-Bam(t )~;8=0, 

A apr8( t) == (F + qD* )arO 8P + 0 ar(F* + D* q )8P 

- [a,'lo" ,"]qr'/J(1- M* )r"rKI8" 

- [e,'lo" ,"]qar,(l- M* )r"rKI8" 

+ 1 [ " '10"0'] K* K* 2 ' , qar'q8'P r"r 88" 

Bam(t ) == - [a,'1 ," o"]qr'/J(1- M )r"rKu" 

- [e,'I," O"]qar,(l- M )r"rK88" 

+ ~ [," ,'10" 0']Qar,q8'p(1- M )r"r(1- M*) 18" 

(2·10a) 

(2·10b) 

(2'10c) 

where we have used the antisymmetry of~. Up to the present stage, all the 
expressions are exact. Then the exact solution of the above equation becomes the 
Jacobi fields on the coset manifold SO(2N)/ U(N). Kuratsuji and Mizobuchi 
constructed the explicit form of the Jacobi fields in the case of a spin system and 
evaluated the value of the reduced propagator by using them.7

) It will be an 
interesting and future problem to construct explicitly the Jacobi fields on the 
coset manifold SO(2N)/U(N). 

§ 3. Derivation of the quasi-particle RPA equation 

In the preceding section, we have obtained the Jacobi equation through the 
calculus of the second variation on the coset manifold SO(2N)/U(N). We are 
now at a position to derive the quasi-particle RPA equation from the Jacobi fields. 
For this aim, we assume the form of the Jacobi fields to be the following simple 
periodic form: 

~ap(t)= ~(¢:pe-;wntlh+ rf>:P* eiwntlh), } 
(3'1) 

¢:P = - ¢JJa , rf>:p = - rf>JJa . . 

To include no conjugate point to Q~( = qUo», the period T( = 27[/ (j) of the 
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106 S. Nishiyama 

above periodic Jacobi fields is supposed to obey the following conditions: It is 
much longer than the period of the intrinsic motion in the stationary TDHB 
solution and also it is almost the same as that of the periodic solution of the 
TDHB equation. Substituting this periodic Jacobi field into Eq. (2·10a) and 
demanding the coefficients of eiwnt/h and e-iWnt/h to vanish, respectively, in each 
index n, we can get 

(j)n¢:Jp = Aaprs¢fs+ Baprs¢fs, 

(j)n¢:Jp= -B;prs¢fs- A~prs¢fs, } (3·2) 

where the matrices Aaprs and Baprs should be time-independent. Next we will 
transform the above equation into the one represented in the quasi-particle frame. 
To this end, it is very useful to bring to mind the group theoretical Tamm-Dancoff 
method developed by Fukutome. ll) 

Following Fukutome, let G', G and C be the SO(2N) matrices having the 
same form as that in I and suppose that the matrices G and C denote the 
stationary matrix and the fluctuating one, respectively. Then, they satisfy G' 
= CG. Further introducing the matrix variables q'( = b' a'-I), q( = ba-

1
) and 

ij ( = b a-I) they are shown to be governed by the following relation: 11) 

e=-q(l-q*q)-l. 

(3·3a) 

(3·3b) 

(3· 3c) 

Up to this time, in the calculus of variations, the differential %q has been 
understood as not the covariant differential but the ordinary one. This means 
that in the second term of the above equation (3· 3a), we take out only the first 
order term in P. So, this P corresponds to the path variation ~ used in the 
previous sections within our first order approximation. Due to this fact, from 
Eq. (3'3b) the path variation represented in the quasi-particle frame is expressed 
as 

(3,4) 

N ow we set up the time-dependence of the stationary TDHB solutions as 

a = a(O) e ie{O)t/h , 

b= b(Oleie{O)t/h , } (3'5) 

where e(O) = (0 ud)) is an N-dimensional diagonal matrix. Substituting the 
above solution into the well-known equation of TDHB, the TDHB equation leads 
to the following equation for the time-independent static matrices a(O) and b(O): 
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F~~)= hap+ [a.Blro ](b(O)* b(O)T )78, } 

D<J; = ~ [arl.Bo]( a(O)* b(O)T )87 , 

(not summed for i) 

107 

(3-6) 

(3-7) 

where we have used the relations M=b*V and K=-a*b T
• The above equa

tions (3-6) and (3-7) are nothing but the usual HB eigenvalue equation. 
According to the transformation (3-4) of the path variation to a quasi

particle frame, with the use ofthe static HB amplitude a(O), Eq. (3-2) is transform
ed into the following form represented in the quasi-particle frame: 

} (3-Sa) 

} (3-Sb) 

A <,0) .. = a(o)a 'a(O)P.A (a(OJ-l). 7( a(OJ-l). 8 
zjz'J'- 1 J afJr8 z' J' , 

} (3-Sc) 

With the aid of the HB eigenvalue equation, the matrices A(O) and B(O) are 
calculated to be 

(3-9) 

where the matrices CV(O)X and CV(O)V are defined as 

(3-10) 
+ 4a(0)a .b(O)* . a(O)8*. b(O) .} 

1. TJ' l' fJJ, 

CV<,O).V. =l[a,QI"~] a(o)a 'a(o)r .b(O) .,b(O) ., 
IJZ'J' 4 jJ ,v 1. J 8; pz. 
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108 s. Nishiyama 

In the above calculation, we have used the relations q = ba-\ 1- M = aa t and K 
= - a* bT together with Eq. (3·5). In Eq. (3·9), as is clearfrom the structures and 
the symmetry properties of the matrices A(O) and B(O), we can immediately see that 
the matrix fR defined as 

B(O) ) A (0) t = A (0) B(O)T = B(O) 
-A(O)* ' , , 

(3·11 ) 

become quite equivalent to the so-called HB stability matrix. Thus, assuming 
the periodic Jacobi fields, we obtain at the final stage the matrix equation written 
in a very compact form as 

(not summed for n) (3·12) 

This is just identical with the quasi-particle RPA equation to describe the 
collective excitation around certain static HB fields. 12

) In Eq. (3·4), if we replace 
the path variation { represented in the quasi-particle frame by the RP A bosons 
X n , 

{ij = '21 ( ¢}~)n X n + (p}~)n* X n t), (3·13) 
n 

the RP A orthogonality conditions are easily derived. 

§ 4. Concluding remarks 

In the pl'esent paper, we first have studied the variational properties of the 
action functional 5 and obtained the Jacobi equation through the calculus of the 
second variation on the coset manifold SO(2N)/U(N). Next, assuming the 
periodic Jacobi fields, we have been able to derive the quasi-particle RPA equa
tion describing the collective excitation around certain HB fields. 

Throughout this paper, the calculus of variation has been carried out by 
regarding the differential a/ aq as not the covariant differential but the ordinary 
one. This means that in Eq. (3·3) we take out only the first order term in P as 
an approximated path variation~. However, for the path variation ~, if we will 
hope to take into account effects of the higher order terms in P, we must 
inevitably use the covariant differential. Then under this treatment, it is expect
ed to get an interesting equation beyond the RP A one.ll) 

Very recently we have shown that the extension of the formalism in I to the 
SO(2N + 1) group is possible. Embedding the SO(2N + 1) group into the 
SO(2N +2) group and performing the calculus of the first variation on the coset 
manifold SO(2N+2)/U(N+I), we got the classical form of the SO(2N+1) 
TDHB theory which is applicable to both even and odd fermion systems.13

) As 
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A Jacobi Equation on the Coset Manifold SO(2N)/U(N) 109 

was pointed out in the preceding section, we know no extension of the SO(2N) 
RPA to the SO(2N + 1) one for odd fermion systems to include both the paired 
and unpaired modes. Then we have an interesting problem to obtain the quasi
particle SO(2N + 1) RP A equation along the same line as the present work. As 
the first step, we can easily obtain the Jacobi equation on the coset manifold 
SO(2N +2)/ U(N + 1) in a manner quite similar to the present one. If it is 
possible to solve the static SO(2N + 1) HB equation, we will get the SO(2N + 1) 
RP A equation which leads to a new information of collective excitations of the 
unpaired modes coupled to those of the paired ones. The detailed discussion will 
be given elsewhere. 
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Appendix I 

Throughout this paper, the following formulae are very available: 

Mt=M KT=-K, } 
q(l-M)=(l-M*)q=K, 

q*K=K*q=-M, 

aa'Mr8 = - Kia(1- M)P8+ Kip(l- M)a8, 
qaP 

~M:a = - (1- M )raK p8+ (1- M )rpKa8 , 
uqaP 

aaKr8 = (1- M*)ra(1- M )P8- (1- M* )rp(l- M)a8 , 
qaP 

aKr8_K KKK 
aq~p - ra P8- rP a8. 

(AI ·la) 

(AI ·lb) 

The above formulae are fully utilized to execute the calculus of variations in the 
following Appendices. 

With the use of the formulae (AI'l), we can get the following relation: 

a<H)G,G aMr8 + a<H)G,G aMi8 
aMr8 aqaP aMi8 aqap 
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110 S. Nishiyama 

= 2{ K* a<:~G'G (1- M*)+ (1- M) a<;]*G,G K* 

+ (1- M) a<:iG,G (1-M*)+ K* a<:;;*G,G K*} afJ • (AI· 2) 

Substituting Eq. (AI ·2) into the TDHB equation (2'1) and using the relation q 

=(1-M*t1K=K(1-Mt1, we obtain 

. _ a<H)G,G + a<H)G,G + a<H)G,G + a<H)G,G 
q - q aM* aM q aK* q aK q . 

On the other hand, from the definition of q, rj is given as 

rj = ba-1- ba-1 tia-1 . 

(AI· 3) 

(AI· 4) 

Further substituting Eq. (AI· 4) into the left-hand side of Eq. (AI· 3) and right 
multiplying by a for both sides of the equation, we can get 

ihb- Fb- Da- ba-1(ihti + F* a+ D* b )=0, (AI ·5) 

where we have used the well-known forms of Hartree-Bogoliubov matrices F and 
D. 

Now our HB amplitudes a and b satisfy the orthogonality conditions G r G 
= GG t = 1 in terms of the SO(2N) matrix G defined in I. In order that the 
TDHB equation (2'1) is compatible with the above orthogonality conditions, we 
require the relation 

(ihti+ D*b+ F* a)a t = a( - ihtit - b t D+a r F*) (AI '6) 

does hold. 
Making good use of the indeterminancy of the unitary matrix appeared in a 

decomposition of the matrix G, we may adopt the conventional type of the TDHB 
equation which of course satisfies both Eqs. (AI· 5) and (AI· 6). 

Appendix II 

With the use of the "Lagrangian" L given in I, we get the relation 

;;* =ih{(l-M*)rj(l-M)-Krj*K} 

:;* =-ihK. 

Further using the TDHB equation (2·1), we obtain 

(All· 1) 
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A Jacobi Equation on the Coset Manifold SO(2N)/U(N) 111 

oL -l( o<H>G,G 
Oq* - 2 q oq q 

o<H>G,G) 
Oq* , 

ihK = _-.!L oL = _l( o<H>G,G _ o<H>G,G ) 
dt oiJ * 2 q oq q oq* , (AII'2) 

ih(1~M)=_l(o<H>G'G _ *o<H>G,G) 
2 Oq q q oq* , 

where we have used the relation q=(I-M*)-lK=K(I-M)-l. 

Appendix III 

With the help of the formulae (AI·l) and Eq. (All, 2), the second derivative 
oZL/oq*oq* is calculated to be 

= ih[Ka7{(I- M*)iJ (1- M)}8p- K a8 {(1- M*)q (1- M)}7p 

+ K p8 {(I- M*)iJ (1- M )}7a- K p7 {(I- M*)iJ (1- M)ha 

- K a7 (K iJ * K )813 + Ka8(K iJ * K )713 

- K/38(K iJ * K )7a+ K/37(K iJ * K )8a] 

oZ<H>G,G 
Oq;pOq;8 . (AIIl'I) 

Further putting the TDHB equation (2'1) into the above, we can get the following 
expression: 

1 [K {o<H>G,G + o<H>G,G } 
2 a7 Oq* q Oq q 813 

-K {o<H>G,G + o<H>G,G } 
a8 Oq* q oq q 713 

+ { o<H>G,G + o<H>G,G } K 
Oq* q Oq q a7 813 

_{ o<H>G,G + o<H>G,G q} K ] 
Oq* q Oq a8 713 

oZ<H>G,G 
Oq;pOq;8 . (AIIl'2) 
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112 S. Nishiyama 

Similarly, the second derivative a2 L/ aq* aq can be calculated easily. Finally the 
Hessians a2<H)c,G/aq*aq*; etc., are given by a tedious but straightforward cal
culation, though we omit to express their explicit forms here. 

References 

1) S. Nishiyama, Prog. Theor. Phys. 66 (1981), 348. 
2) M. Yamamura and S. Nishiyama, Prog. Theor. Phys. 56 (1.976), 124. 
3) H. Fukutome, M. Yamamura and S. Nishiyama, Prog. Theor. Phys. 57 (1977), 1554. 
4) H. Fukutome, Prog. Theor. Phys. 58 (1977), 1692. 
5) H. Fukutome, Prog. Theor. Phys. 65 (1981), 809. 
6) H. Kleinert, Phys. Letters 69B (1979),9. 
7) H. Kuratsuji and Y. Mizobuchi, J. Math. Phys. 22 (1981), 757. 

H. Kuratsuji and Y. Mizobuchi, Phys. Letters 82A (1981), 279. 
8) C. Dewitt-Morette, A. Maheshwari and B. Nelson, Phys. Reports 50 (1979), 255. 
9) H. Kuratsuji and T. Suzuki, Phys. Letters 92B (1980), 19. 

10) 1. M. Gelfand and S. V. Formin, Calculus of Variations (Prentice-Hall, New Jersey, USA, 
1963). 

11) H. Fukutome, Prog. Theor. Phys. 60 (1978), 1624. 
12) Y. Mizobuchi, S. Nishiyama and M. Yamamura, Prog. Theor. Phys. 57 (1977),96, 1797. 
13) S. Nishiyama, Prog. Theor. Phys. 68 (1982),680. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/69/1/100/1833990 by guest on 20 August 2022


