A JAMES-STEIN TYPE OF DETQUR OF U-STATISTICS
by
Pranab Kumar Sen

Department of Biostatistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 1434

March 1983
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SUMMARY, For a vector of estimable parameters, a modified version of the
James-Stein rule (incorporating the idea of preliminary test estimators)
is utilized in formulating some estimators based on U-statistics and their
jackknifed estimator of dispersion matrix. Asymptotic admissibility proper-
ties of the classical U-statistics, their preliminary test version and the

proposed estimators are studied,

1. INTRODUCTION

For the multivariate normal mean (vector) estimation problem, Stein (1956)
was able to establish the inadmissibility of the sample mean vector, the
maximum likelihood estimator (MLE), under a total squared error risk measure,
Later, James and Stein (1961) were able to specify a simple non-linear esti-
mator which dominates the MLE for the case of three or more dimensional vectors.
This work has generated a lot of interest , and the multinormal distributional
problems have been studied in greater generality by a number of workers. An
excellent account of these works is given in Berger(1980b). For some related
non-normal problems, we may refer to Ghosh (1983) and Ghosh, Hwang and Tsui (1983),

The object of the present investigation is to take a detour of the non-
parametric estimation problem (in the vector case) based on Hoeffding's(1948)
U-statistics and to consider some smooth shrinkage estimators along the lines

of James and Stein (1961), with adaptations from the preliminary test estimation
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(PTE) theory. Whereas in the multinormal distributional problems, the (exact) .
normality of the distribution of the sample mean vector and the Wishart pro- -
perty of the sample dispersion matrix provide some unique facilities in the
study of the finite sample admissibility results, for U-statistics and its
jackknifed estimator of dispersion matrix, such exact distributional properties
are , in general, not available, Further, in the nonparametric case, the form
of the underlying distribution is also not assumed to be specified., In view
of these, a direct adaptation of the James-~Stein rule for the case of a
vector of U-statistics may generally stumble into problems with the study of
the finite sample admissibility results; there are problems too with the
asymptotic case, We may remark that the James-Stein estimator may be regarded
as a smoother version of some PTE, In a PTE rule, under some conditional
specifications, both the unconstrained and the constrained estimators are
®
formulated, and a preliminary test (on the constraints) dictates the final :
choice of the estimator, In the current context, we incorporate the idea of
PTE, but, not to the fuller extent, so that we do not have a fully smooth
shrinkage estimator, but a PTE version quite close to it, This adaptation
makes it possible to study the desired asymptotic admissibility properties
with the help of the existing results on U-statistics and its jackknifed
estimator of dispersion matrix (which are extensively available in the
literature),

Along with the preliminary netions, the U-statistics, their jackknifed
estimator of dispersion matix and the propsed estimators are all introduced
in Section 2, Some general properties of the estimators are considered in
Section 3., The principal results on the admissibility of the estimators are

presented in Section 4, Some general remarks are made in the last section. .



2. THE PROPOSED ESTIMATORS

Let {Xi,ii}} be a sequence of independent and identically distributed
random vectors (i.i.d.r,v.) with a distribution function (d.f.) F, defined on
the Euclidean space Eq, for some q > 1, LetEF-be the space of all d.f,'s
belonging to a class, and for every F 8‘33, consider a vector of functionals

8 =8(F) = (0,(F),..., ep(p))', for some p > I, 2.1)
whose domain is 37 » If there exists a kernel ¢j(x1,...,xm.), symmetric in
its arguments, of ggggggzmj(‘i 1), such that

0,(F) = Eglo, (X, 00X )Y, YEe F, j=1,...,p, (2.2)

then, 9 is an estimable parameter (vector). For n > m*= max(ml,..o,mp), we

1

may then define the vector of U-statistics U = (Unl""’Unp) by letting
-1
u_. =(m‘) z ¢-(X ).'O,X ) ,...,p. (2,3)
nJ J 1<i <,..<i_ <n J *m
1 mj—

Un is a symmetric and unbiased estimator of © and it possesses some other
optimality properties too [see Halmos(1946)]. In fact, for any unbiased
estimator Tn of 6 , the corresponding Un has a risk (using any convex loss

function ) smaller than or equal to that of Tn .

We assume that the kernels ¢j are all square integrable , Let then

¢j,c(xl"'°’xc) = E¢j(Xl""’xc’xc+l’°'°’xmj) s C=O;'°':mj 5 (2.4)
JQ,C(F) {¢j,c(X1""’Xc) ¢£,c(x1""’xc)} - ej(F)GR(F) s (2.5)
for j, %= 1,...,p and c¢=0,.,.,min( mj, my ). Then [see Hoeffding(1948)]

nE[(U, - 9) U, - '] = n(C ¢ )7t Clcﬂn g () D)

J
=T +0@™h (2.6)
where

o= gy 1) = (Cmgmy gy 3 () D). (2.7)

N ! . U .
For an estimator §n = (8 Snp) of 0, we consider a quadratic loss function

nl,ooo,

L(8,8)=n(s -8 ) q( 8§ - 6)/Tr(Q), (2.8)

where Qis a given positive definite matrix and the denominator Tr(Qr ) is a



convenient standardization factor. Then, according to the loss functuon in (2.8),

the risk (expected loss) for Un is given by

1

EL_(U.,8) = nE[(U_-8) 'QU_-6)]/Tr(Ql)

1+0m™Yy, by (2.6). (2.9)

P, (U ,0)

it

Note that Un will be termed an inadmissible estimator of 6 , if there exists

an alternative estimator Tn . such that

<
0,(Ts8) < e (U, 8) forall Fe v, (2.10)
with strict inequality holding for some F ¢ (33 . If instead of (2.10) holding
for every n, we have

lim {pncgn,g)} < limnﬁw{ 0,8 i= 1, F e &, (2.1

with strict inequality for some F € 1, then, Un is termed asymptotically

inadmissible . Our main concern is to study the asymptotic inadmissibility

of Un in a meaningful context,
Towards this study, we motivate the estimators(to be proposed) through the
special case of the multivariate mean vector problem where the Xi are all

p-vectors, ml=...=mp=1 and ¢j(Xi) is the jth coordinate of Xi’ for j=1,...,p.
_ v _ .-lan _ -1lon T F oo
Then, gn = En = n Zi=l §i . If §n = (n-1) zi=l(§i - Kn)(gi_ﬁn) be the sample

covariance matrix, then for normal F with an unknown dispersion matrix I ,
Berger, Bock, Brown, Casella and Gleser (1977) considered the James-Stein type

estimator

x

—— ot omle \~1 =1 -1 | =
K= (L= e X s X)) T (2.12)

where dn = chp(Q§n),_the minimum "characteristic root of an’ and c(Qiqicn p)

3

is a positive constant., For some computed values of <, b they have shown that
’

_* —
pn(Xn,e) f_pn(xn,e). In this context, it may be remarked [see Berger(1980a,
" : —
p.125)] that for any pu = EX # 0, as n » « , pn(xn;e) > 1= pn(Xn,e). Thus, the
James~Stein type estimator in (2,12), for normal F, is only of practical

importance when either n is not very large or when the noncentrality parameter

np'Z “p is not very large. As a matter of fact, to emphasize the last point,

~

if we consider a scquence {Kn} of local translation alternatives , where

»




i, i i H=H = A, for
under Kn’ an""’xnn are i,i.d.,r.v. with mean vector H=H =n ,
some fixed A ,and dispersion matrix I . Note that under {Kn} , the non-

' - - . 0
centrality parameter nunZ lun = AL lk = A , say, is a finite number.

Then, it can be shown that for every (fixed) é € Ep,

.
limn+w{pn(§n,gn) Kn} < 1, for every ¢ € (0,2(p-2)), p >2. (2.13)

This may be interpreted as the asymptotic inadmissibility of the MLE Yh under

local alternatives. Our main objective is to generalize this asymptotic

inadmissibility result under local alternatives to the general class of
U-statistics under consideration, without making any explicit assumption
on the form of the underlying d.f. F,

For U-statistics, a convenient estimator of E is obtained through the
jackknifing technique [ see Sen(1960, 1981)]. For this, we write En =
g(Xl,...,Xn), and, for every i(=1,...,n), we let

g 2 UK ,eee,X

- (1)
U1 X),U .= ngn - (n-l)gn_1 . (2.14)

i—l’xi+1""’ n
Then, the jackknifed estimator of T is given by

-1 on !
T = (n- - - e
~n (n-1) z:i=l[ gn,i gn Il gn,i EnJ ¢ (2.15)

By comparison with (2.12), we now introduce the James-Stein type U-statistics as

Js ra-1. -1
Uy = L ed oy Tty

-1%-1
L

U, (2.16)

where ¢ is a positive constant and dn = chp(gfn). Whereas in the normal F case,
the Wishart property of §n and the stochastic independence of X; and §n enable
one to compute the negative moments of ‘:; = ngigglzh , needed for the risk
computation of the estimator in (2.12), for possibly non-normal F and for
general kernels, though‘J:n = ngéf;lgn may converge in distribution to a
non-degenerate random variable, the convergence of its negative moments is not
generally insured., Indeed, when gn may assume the null value (9) with a positive
probability, however small, EI:;t =+ % , for every t > 0, This may create some

difficulties in the computation of the risk of the estimator in (2.16), In this

context, we may also remark that a natural competing estimator is the preliminary
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. PT .
test estimator (PTE) Hn given by .

ST 9n1f£n3£a°

n

~n 0, if &,n < sﬁn’a ;

where o is the level of significance of the preliminary test (for 6 = 0) based

(2,17)

on J:n . j:n . is the critical level of 4:n , and for large n, one may also
2

replace J:n o by xﬁ(a)! the upper 1000% point of the central chi square
2

d.f, with p degrees of freedom. Of course, if 0 # 0 . then, by virtue of the

consistency of the test based on izn ’ i:n goes to +* , gs n >«  with proba-

JS

bility one, so that both Un

and UiT become asymptotically equivalent to Un,
JS PT \ C s JS .

Thus, both Un and Un may be regarded as adjusted U-statistics, Un being a

smoother version than UiT » and both are designed to yield smaller risk when

0 is close to 0, First, we propose an estimator which combines the feature

of the smoothness of UJS and the stochastic smallness of UPT for small values .
<n ~n
of Un . We define
S S e L e,
v = ~ n (2.18)

where € (> 0) is some arbitrarily small number., This may be termed an adaptive

version of the James-Stein type estimator. We also propose a second estimator

<)
which is a smoother version of (2,18),where for small values of Jon , We

have a non-null counterpart, This is defined by

JS .
o v, e > e,

n
U 1 1
~N _ -1 -1 ~15-1 . <
@ - el iy e L< e,

n

(2.19)

where ¢, dn etc, are all defined as in after (2,16). Note that in this way,
the discontinuity of the function at é:n = € is avoided,and also, for Jjn <€,

instead of taking the estimator as 0 , we have a non-trivial estimator, OQur

main interest centers around the study of the (in-)admissibility results of .
. . . . - JS PT S
the classical estimator Un with respect to the estimators Un s gn . Qn

Tk
and g; . In this respect, both the fixed and local alternative asymptotic



setups will be considered. In passing, we may remark that for local alternatives,
we have considered the pivot 6 = 0 ., This may be taken as 6 = 90, for any
specified 90, and then, working with the adjusted kernels as ¢- 60 , we may

always reduce the case to the null pivot.
3. ASYMPTOTIC ADMISSIBILITY RESULTS FOR FIXED ALTERNATIVES

Note that by (2.17), we have
PT B
Uy, - En B -gnl( iln < oC’n,oc ). (3.1)
Therefore, by (3.1), we have
PT ' PT _ '
L I(J:n < j:n,u )ny QU
: . 1 L. |
S S NTRL WL TN NN
- I(‘ﬁn <‘Ln,OL L’Cn Chl(gzn)
= Ln,al(‘gn <‘Ln,a )Chl(gzn)
< A
Lty <Ly o 1@l (3.2)

1}

A

Let us now assume that for some r > 1, ¢ € LZr , 1.€.,

EFH?HZr < o  for some r >1 (not necessarily an integer). (3.3)

Then, using the Holder inequality, we have
v 2 . 3 1/s 5 \rel/r

EFI(J:n <j;n,a)Tr(g£n) h {hFI(é;n <S:n,a)} { EF(TTCQEn)) } » (3.4
where 1/s + 1/r = 1. Note that Tr(QFn) is a linear combination of the elements
of Fn which are expressible as a linear combination of U-statistics of degree
2m* (or less) and whose moments of order r( >1) exist under (3.3) [see Sen
and Ghosh(1981) in this respect]., Therefore, under (3.3), E(Tr(an))r exists
and converges to a finite limit as n ~ ® , Also, E_.I(L_ <L ) = P{_C <

F n n,o n
J: ) where ij converges to a finite limit xz(u), as n > o~ , Finally, under
n,o n,o P

(3.3}, Fn converges a,s. toI , as n +» « , and Un converges a.,s. to 6, as n -
© , so that n—{ljn converges a.s. to o't 1o = A as n > @ , Therefore, for
every 6 # 0, i.e., A > 0, P{j:n <‘£n a} + 0, as n > o , Hence, the right

~ ~ ’

hand side of (3.2) converges to 0 as n + « , This leads us to the following,



Theorem 3.1, Under (3.3), for every fixed 6 # 0 , with respect to the loss

function in (2.8), Un and UiT are asymptotically risk equivalent,

Let us next consider the estimator Uis in (2.16). Then, we have

JS -1 -1 $~1 LRay |
- = F N = 11
gn En ¢ dnS:n g ~T gn ? izn ngn~n gn * (3.5)
so that

JS ' JS 2,24 -2 1Al -15-1
- - = { T
n(gn gn) Q(Hn E-In) ¢ dné:n n!n~n g En gn

2 a 12 ( 18=1 ~14-1 2
T
¢ V{Chp (ggp)} )y g _51:?1 YU

17-1 -15-1 7 ' a-l
(U L QT T l g, LU

~N ~11  ~N

A

2 12 ~1%-1.72, v 8-1.-1 a-1 -1

c {chp(ggn)} {chlcg L )} (u T Q" T "u)

2 1a-1.-18-1, . ~1

=c ngnzn g En gn) * (3.6)

1

* n-1.-170~
Let us denote by iln = nHHEn Q En gn . Then, by the a.s. convergence of Hn
and Fn (as were discussed earlier), we have for any fixed F,
-1 * -1 -1.~1
iy 7 9T = b e asmo e (3.7)
: .
Hence, for every (fixed) 6 # 0, as n » >, (é:n) Lo 0 a.s., but this does
~
not necessarily imply that (S:n) 1, 0 in the first moment too. In fact,
*
the behaviour of 1:n for Un close to 0 may negate this moment convergence,
However, if we assume that for every (fixed) 0 # 0,
¥ -1
3 - >
B ) 0 as n , (3.8)

then, the right hand side of (3.6) converges to 0 in the first mean when n

+ o _ This leads us to the following.

Theorem 3.2, Under (3.8), for every fixed 6 # 0, with respect to the loss

function in (2.8), Un and Uis are asymptotically risk equivalent,

Let us next note that by (2.16) and (2.18),

S - . JS
Ul - U= U I <e) v 1§ 2 ) (U - U ), (3.9)

so that



vy - uy =g < ouu ¢ 1, 2 ot/ L]
ni(, < UL+ 1 2 oy L L]

€ L < elen @l « L7 2 ecfal en @7

S
U
n(~n

1A 1

£.1CL, < eeh (@) + chp(ggn)czo(,;ll(ocni € )

i

[Tz QL)L e 1(L < e + °2£;11(-Cn3.€ ) ). (3.10)
Since n-lj:n > A a,s, asn >, where A> 0 for every 6 # 0, and
§:;II(§:n > €) is bounded (by e"l), proceeding as in (3.4), it follows that
under (3.3), the right hand side of (3.10) converges in the first mean to 0
as n > ©, whenever 9 # 0. This leads us to the following,

Theorem 3,3. Under (3.3), for every (fixed) 6 # 0, with respect to the loss

function (2.8), Hn and Hi are asymptotically risk equivalent.

Note that (3.8) in general needs more stringent regularity conditions than
(3.3), so that the asymptotic risk equivalence in Theorems 3,1 and 3.3 holds
under less stringent regularity conditions than in Theorem 3.2,

*
Finally, we consider the case of Ui . Note that by (2,18) and (2.19),
S* 8., S* 5 . 1 - v L -1 2. 2%
- - = < -
n(yn gn) g(yn gn) I(°("‘n 8){ngnggn 2€ Cdng"n TEoc dn‘S:n/'S:'n }

< 1 <elen@)g, - 28'1/2cdn£2n . e'lczdi‘,C;/oCn }
<t <ol )L+ 2ed 4 s'lczdn }
< Tr(Ql) 1(£n <e)l e+ 2c+ e le? )
= 1@ )1, < ee c/e)’. (3.11)
Under (3.3), proceeding as in (3.4), for every (fixed) g # 9, the right hand

side of (3.11) converges to 0 in the first mean, as n =+ ©, Hence, we have

the following,

Theorem 3.4, Under (3.3), for every (fixed) © # 0, with respect to the loss

S *
function in (2.8), Un, Ui and Ui are all asymptotically risk equivalent,

As we shall see in the next section, the situation is different for the

case of local alternatives,
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4, INADMISSIBILITY OF Un FOR LOCAL (PITMAN) ALTERNATIVES .

We are mainly interested here in extending (2.13) to the class of U-statistics

under consideration. Thus, we conceive of a triangular array { an""’xnn;

n z_l} of r.v,'s , where, for each n, the Xni are i,i,d, with a common d,f,
F(n) converging to a limit F as n »> © , in such a way that

_1
Qn = O(F(n)) = n 6& , for some (fixed) A € Ep, (4.1)

oo G(F(n)) = 0, We denote this sequence of alternatives in

so that g(F) = limn
(4.1) by {Kn} . With respect to this sequence of local (Pitman type) alternatives,
we would like to study the asymptotic risk for the different estimators consi-
dered in Section 2 , and this would provide information on the asymptotic
(in-)admissibility results for these estimators, In this context, whenever

needed, we shall assume that (3.3) holds uniformly in n{( 3_no).

First, consider the case of the PTE UET in (2.17). Note that under (4.1),

n(HiT~9n)'g(giT_9n) = (é!gé)l(lzn <‘£;!a) +

] H
1L, 2L, P, - 00'acy, - el (4.2)
1/\_1 2
where ;: = nU _I'""U_ and £3 converges to ¥ (o), as n > » , Therefore, by
n ~f~D <N n,o p
(2.8), (2.9) and (4.2), we have
PT _ . -1
o8, = @R L < L

SCICTODRHETA GE U EYCIRE IR TR IO I S O
Now, under (3.3), V x £ [0,%)

Lim p{£n < x|k} o= H(x 5 ) 5 A= y;"lé = TrA'Q), (4.4)
where Hq(x;é) stands for the nohcentral chi square d.f, with q degrees of
freedom and noncentrality parameter § ., Note that Hq(xi(a};O) = 1- 0,
Hq(x;@) is ¥+ in § (> 0) and it converges to 0 as § » = ; further, Hq(x;é)
is a nonincreasing function of g when § is held fixed. We may also note that

if Gp(x;O,E) stands for the p-variate normal d.f, with mean 0 and dispersion .

matrix X, and if B is a positive semi-definite matrix of rank q, then, for
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for every a € Ep, c >0,

4{{-(x+a)'3(x+a) > ¢} XX'G (x50, 2) = {l-Hq(C;5)}§+ (4.5)

[Hq(c;é) - Hq+2(c;6)]§§§ - [Hq(c;@)-ZHq+2(c;6)+Hq+4(c;6)]ZBaa'BZ ,

~

where § = a'Ba, Further, note that under {K } and (3.3), T_ converges to

in the rth mean and n(gnmgn) g(gn—gn) is uniformly (in n) integrable [see

for example, Sen and Ghosh (1981)]. Also, n%(gn— gn) is asymptotically normal
with null mean vector and dispersion matrix E . Hence, noting that here E = E,
B = E-l, a=A,q=pand § = A, we obtain from (4.5) and some standard

manipulations that the second term on the right hand side of (4.3) converges to

[T @) 17H (-1 0 ()4 TR (Q) + (B, 00 (40 5) -H ) (X2 (038)) T (QD)
- 00 @028 0 (@301, 0 (@)38)1'Qh ) (4.6)
2
= - <Ay - ! . - . .
L, 00 ©058) = [ Q)/Tr Q)] (H, 0 () 3)-2H ) 0 (@) 30 +H L, (1 (@)30)).

Therefore, from (4.3) through (4.6), we obtain that

PT o PT
o) = tim Lo ", 0] K ] (4.7)

~

= {1 H G0 ©@50)) +[QIQ)/Tr @D 1H2H, ) 06 @)30)-H b O (@583

Note that at & = 0, (4.7) reduces to 1-Hp+2(Xp(a);0) = QO hp+2(xp(a)), where

~

h (x) stands for the density function corresponding to Hq(x;O), and hence,

at 5 = 0, (4.7) is strictly less than 1 for every o €(0,1) and p > 1, Also, note
that 2Hp+2(x;A)—Hp+4(x;A) is a positive finite quantity (bounded by 1) which
converges to 0 if x or A goes to +» , Hence, there exists a closed elliptical
region E* with centre 9, such that for every é € E*, pPT(é) < 1. Further,

as A moves away from 0 (i.e., A+ « ), (4,7) converges to 1, Finally, for

*
A ¢ E , though (4.7) may be greater than 1, it is, nevertheless, bounded and

sup PT
AeE P

quite close to 1l.Some numerical values tabulated in Sen and Saleh (1979), in

depending on p, Q and I' , this upper bound (i.e., (k) ) is usually

a different context , may throw additional light on this for specific values of p.



However, it may be noted that for all A such that § =A'QX > Tr(Ql), pPT()\) .
2 2 2 2

> - M M - M = . -

> L 0G58) + (2, 00,(@)38) = Hy O8] = 1+ H o, 06 (0)30)

Hp+2(x§(a);A) > 1, though the excess over 1 may be quite small for moderate

values of K'Q& . Hence, we may conclude from the above discussion that

PT

o) ; 1 according as A'QA 8° , (4.8)

VILA

where 0 < §° < Tr(QL). On the other hand, by (2.9),
. ) P
o) = tim , Lo, 6) [ K} =1,¥x ¢, (4.9)

Hence, we conclude that for local alternatives in (4.1), with respect to the

PTE , Un is not asymptotically inadmissible in the light of the criterion in

(2.13). Each one performs better than the other for a subspace of EP for X o
Let us next consider the estimator Uis in (2.16), where we may need a more
stringent regularity condition for the valid computation of the asymptotic risk.

Note that under {Kn} ,

Js v S 3 8 vinc
A - 80 - 8 = my, - 0,090, - 9)

-1 ta-l 2.2 -2p%
~2cd +2ed LU T+t L0007 (4.10)
*
where an is defined in (3.5) and £n after (3.6), Therefore, whenever the

expectations on the right hand side exist , we would have

JS

P = 1im L oS, 8 | k)

P\ - 2¢[Tr(Q)]  E( a | K)o+ 2[Tr(gg)]"lE(dniiglnfggiglé | k)

i

IO IR A VIV AR I (4.11)

n
Now, under (3,3) and (4.1),

ECd | K ) = E( chp(ggn) | K ) = chp(gg) , asn o (4.12)

Also, by the Cauchy-Schwarz inequality

-1 %
(dn£ n UE

1 2 2p-2 10-1 el
APUTA T <l 007 U T QT

n
_ -1 a-1 ‘ -1
N dnszn [(éwzn é)/{é'g&)]dn(é'gé) f-dn(é'g&)”‘n * (4.13)
Finally,

a,(£0/ L) < ten @ ireh @y = 1 (4.14)
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We may note that under (3.3) and {Kn} in (4.1), by virtue of the asymptotic

1 ~
normality of n/z(Un - en) and consistency of Tn ,

-1 : 2, |
dnS:n conveeges in law to chp(gz) Xp,A ; A é E 5 s (4.15)
where X; A is a random variable having the noncentral chi square d.f., with p
?
degrees of freedom and noncentrality parameter A ,i.,e., P{ x; A2 x}=
, ,

Hp(x; A) for every x € [0,*), We now make a more stringent assumption that

under {K },
n

-2
1 p,A

Under (3.3) and (4.16), we obtain from (4.11) through (4.14) that

-1 .
- r . .
dngln converges in L. -norm to chp(g~) X (4.16)

o) = 1 - 2e[Tr (@] eh (@) + 2e[ch, (Q)/Tr(@)IELNH) W' ]

e c’[en @17 [Tr @1 TEC (W AN T (4.17)

-k
where W has the normal distribution with mean vector w = I' “A and dispersion

~

Lo 1
matrix I, and A = T ﬁQ 1F 3, Using the Stein-type results in Section 2 of

~

Sclove, Morris and Radhakrishnan (1972), we may simplify (4,17) as

67 = 1 - 2efeh @QD)/Tr(@D)] + 2e[ch (QD)/Tr@D] EGGS, ) 4.18)

+ < len, @I DI @ TBGY, ¢ ABGL L
where A and A* are defined in (3.7) and (4.4). Now, from the results of
Berger et al (1977), it follows that the right hand side of (4.18) is smaller
than one whenever 0 < ¢ < 2(p-2), p > 2. Therefore, we conclude that for p > 2,

under (3.3) and (4.16), for local alternatives in (4.1), Un is_asymptotically

inadmissible whenever in (2,16), c is contained in (0, 2(p-2)).

In the above context, the Ll-donvergence résult in (4516) plays a vital
role, This may, however, be not really needed if we consider the other estimators
S S* . R s i
v, and U, - Basically, we would like to establish the asymptotic inadmissibility

of U for local alternatives under (3.3) alone. Towards this, we may note that

by (2.16) and (2.18),



o

n(UxSl ”Qn)'g(lji- 60 = AL <o+ (4.19) @
1L, 2 0 n(,-0)'9W -8 ) ~2¢d_ + 20d £ 1% T+ P20 1

so that by (2,.8) and (4.19), under (3.3) and {Kn} in (4.1),

i

S . S
e (M) 11mnﬁ_w{p(gn, 6 | K }

[cg'gg)/Tr(gz)]H (£38) + Tl- B, (50 1-Q Q) /Tr @01 H (€50) -
-1 L Al
p2 (S0 B (&50)] w26 Lim E{ ICﬁzﬂiAE)dnilnlnzynfnlﬁl K_}/Tr(Q)
+ c2 lim ., h{ dgx(glnz L7200 Ik} /reD), (4.20)
where results similar to the ones in (4.6) were used for gn . Note that for
j:n_i g,ﬁl;l is bounded from above by e”l(< ©), while (4.15) continues to
hold (without requiring (4.16) ) for this region too, Hence, we obtain that

under (3.3) and {Kn} in (4.1),
e HICG, 2 90, CED 1k s °
= [eh (QD)/Te (@D EOGS, o) - ECON <) (') " Hw) ) (4.21)

and

me BOICE, 20 207207 |k /e

= Lehy @D Ter@D] T @I [EOGH, 1% AT BOGY, )
- ECI(W'W <€) (W)~ H'éw ) 3 (4.22)
where W, w and A are all defined as in (4.17). Therefore, from (4.20), (4.21)

and (4.22), we obtain that

) = 00 ¢ QIR (50 B (e30] +
2e[eh, (QD)/Tr(@IL H)(38) ~ ECLCHN< &) 00 Wi )]
- Leh, (Q0)/Tr (@D TE LW <€) (HW) "2 1aw ), (4.23)
where p”°(\) is defined by (4.18). Also, note that
A'Q/Tr(@) =[Q'Q/ QT ITEEDIT T < aTTho = Al a2

Further, for every q > 1, € >0 and § >0,



8H, (€56) se™%/2 z:=0 (G/Z)r(l/r!)HQ+2r(€;0)

< 56072 R G/ /e /Y (g2 + 77
5(e/2)Y 2.8 exp(-6/2)/ (7). (4.25)

iA

Also,

1
-5

- 1
|E[I(W'W <€) (W'W) Yyrw 1 < E[I(W'W< €) (W'W) (w'w) 7]

L L
< e‘zAZHp(e;A) (4.26)
and
ELIO <) e AN ] < et (et = o¢ P27, (4.27)

uniformly in w ( i.e., inA ), Hence, from (4.23) through (4.27), we conclude
that for Uis with ¢ € (0, 2(p~2)), for every n >0, there exists a § > 0, such

that for Ui with 0 < € < §,

ps(é) < pJSQ) +n < 1, uniformly in & e EP, (4.28)
This proves the asymptotic inadmissibility of gn for local alternatives {Kn}
in (4.1), and this does not need the Ll-convergence in (4.16). This also
illustrate the applicability and utility of the adaptive estimator Hi 5
which may not need the stringent condition (4.16))needed for Eis.

Finally, we may note that by definition in (2,19)

w6 yruS -6 ) - nu® -8 )rqu'-6 )]
~N ~11 ~ ~N ~N ~N ~N ~ ~N ~N

- 1L <ol cze"ldi(XLZ/ijn) S 2c e dniff ] (4.29)

and this is bounded by
c(eler 2 a 1L, <o, (4.30)

Therefore, we obtain that under (3.3) and {Kn} in (4.1)

o 0y = tim L, Lo L0 | K )
< 0% + ot ler) im B A TCL, <) | K 1/Tr@D. (4.3
<05 + e (e300 = pSQ) + 0P Eh, (4.31)

*
uniformly in X . Thus, for p > 2, choosing € sufficiently small, Ui and gi

~

can be made asymptotically risk equivalent for local alternatives,



5. SOME GENERAL REMARKS

The results on U-statistics treated here apply equally well to sample
mean vectors., In that case, the jackknife estimator gn reduces to the sample
covariance matrix §n’ Hence, for the James-Stein type estimator in (2,12),
the asymptotic = admissibility results apply for pessibly nonnormal F as well,
provided (4.16) holds. For normal F, this condition may easily be verified by
using the Wishart property of §n and the stochastic independence of Xﬁ and §n .
For non-normal F, this may be quite involved, Also, if Xﬁ assumes the null
value 0 with a positive probability, however small it may be, then (4,16)
may not hold. This is particularly true for lattice distributions, Thus,
the proposed estimators gi and gi* can not only be used to establish the
inadmissibility of gn for local alternatives, but also they stand as robust
estimators,where (4,16) is not needed, In this context, a natural question
may arise : What is an optimal or desiragble choice of ¢ for gi or HS* ?
Ideally, we need to choose € so small that (4.28) remains in tact. As such,
this choice may also depend on the value of c( > 0) used in gis .Also, for
very small values of €(> 0), the convergence rates to the asymptotic limits
may be slow, The ideal choice depends on ¢, F as well as the kernel @ o
However, for moderately large sample sizes, € can be chosen so small that
{4.28) is attained upto a certain margin of difference,and, at the same time,
the estimator remains robust against the contribution of the small values of
the statistics to the risk function, It is clear that the basic requirement
of p > 2 (in the normal theory models) remains in tact in the nonparametric
case as well, However, for very local alternatives [ i.e., in (4.8) é'g& 5_60]
the PTE EET may render gn as inadmissible , even for p=1,2, However, in

general, the PTE is not admissible (even for local alternatives) whereas the

proposed ones are so.
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