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ABSTRACT
In this paper we consider the problem of designing a medium ac-
cess control (MAC) protocol for single-hop wireless networks that
is provably robust against adaptive adversarial jamming. The wire-
less network consists of a set of honest and reliable nodes that are
within the transmission range of each other. In addition to these
nodes there is an adversary. The adversary may know the protocol
and its entire history and use this knowledge to jam the wireless
channel at will at any time. It is allowed to jam a (1 − ε)-fraction
of the time steps, for an arbitrary constant ε > 0, but it has to make
a jamming decision before it knows the actions of the nodes at the
current step. The nodes cannot distinguish between the adversar-
ial jamming or a collision of two or more messages that are sent
at the same time. We demonstrate, for the first time, that there is
a local-control MAC protocol requiring only very limited knowl-
edge about the adversary and the network that achieves a constant
throughput for the non-jammed time steps under any adversarial
strategy above. We also show that our protocol is very energy ef-
ficient and that it can be extended to obtain a robust and efficient
protocol for leader election and the fair use of the wireless channel.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Access schemes; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Sequencing and scheduling

General Terms
Algorithms, Reliability, Theory
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1. INTRODUCTION
Jamming can disrupt wireless transmission and can occur either

unintentionally in the form of interference, noise or collision at the
receiver side or in the context of an attack. A jamming attack is
easy to perform since (i) no special hardware is needed for it to
be launched, (ii) it can be implemented by simply listening to the
open medium and broadcasting in the same frequency band as the
network, and (iii) if launched wisely, it can lead to significant dis-
ruptions with small incurred cost for the attacker. Jamming attacks
usually aim at the physical layer and are realized by means of a
high transmission power signal that corrupts a communication link
or an area, but they may also occur at the medium access control
(MAC) layer; an adversary may either corrupt control packets or
reserve the channel for the maximum allowable number of slots,
so that other nodes experience low throughput by not being able to
access the channel.

Traditional defenses against jamming focus on the design of phy-
sical layer technologies, such as spread spectrum (e.g., [24, 19,
18]). Spread spectrum techniques are useful because if signals are
widely spread, it becomes harder for the jammer to detect the start
of a packet quickly enough in order to jam it. Unfortunately, pro-
tocols such as 802.11b use relatively narrow spreading [11]. The
spreading factor for 1Mbps 802.11 is only a factor of 11. Other ver-
sions and rates in 802.11 spread signals by equal or smaller factors
[4]. Hence, a jammer that can simultaneously block a relatively
small number of frequencies would render spread spectrum tech-
niques useless in these scenarios.

Besides defenses at the physical layer, it is also interesting to
study defenses at the MAC layer since in contrast to the physical
layer, the MAC layer is usually in software and can be changed,
so that even wireless devices that do not have a built-in protection
against jammers can be made robust against them. However, the
802.11 MAC protocol does not offer much protection here since
recent results show that the 802.11 MAC protocol cannot efficiently
handle even simple, oblivious jammers [2].

1.1 Our model
In this paper we consider the problem of designing a MAC proto-

col for single-hop wireless networks that is provably robust against
adaptive adversarial jamming at the physical layer. The wireless
network consists of a set of n honest and reliable nodes that are
within the transmission range of each other. All of the nodes are
continuously contending for sending a packet on the wireless chan-
nel. We assume that time proceeds in synchronous time steps and
in each time step any node may decide to transmit a packet. A node
may either transmit a message or sense the channel at a time step,
but it cannot do both, and there is no immediate feedback mech-
anism telling a node whether its transmission was successful. A



node who is sensing the channel may either (i) sense an idle chan-
nel (in case no other node is transmitting at that time), (ii) sense a
busy channel (in case two or more nodes transmit at the time step),
or (iii) receive a packet (in case exactly one node transmits at the
time step). In addition to these nodes there is an adversary. We
allow the adversary to know the protocol and its entire history and
to use this knowledge in order to jam the wireless channel at will
at any time (i.e, the adversary is adaptive). Whenever it jams the
channel, all nodes will notice a busy channel. However, the nodes
cannot distinguish between the adversarial jamming or a collision
of two or more messages that are sent at the same time. We assume
that the adversary is only allowed to jam a (1 − ε)-fraction of the
time steps, for an arbitrary constant ε > 0, and it has to make a
jamming decision before it knows the actions of the nodes at the
current step.

We allow the adversary to perform bursty jamming. More for-
mally, an adversary is called (T, λ)-bounded for some T ∈ N and
0 < λ < 1 if for any time window of size w ≥ T the adversary
can jam at most λw of the time steps in that window. A MAC
protocol is called c-competitive against some (T, λ)-bounded ad-
versary (with high probability or on expectation) if, for any suffi-
ciently large number of time steps, the nodes manage to perform
successful message transmissions in at least a c-fraction of the time
steps not jammed by the adversary (with high probability or on ex-
pectation).

Our goal is to design a symmetric local-control MAC protocol
that is constant competitive against any (T, 1− ε)-bounded adver-
sary, i.e., there is no central authority controlling the nodes, and the
nodes have symmetric roles at any point in time. The nodes do not
know ε, but we do allow them to have a very rough upper bound of
their number n and T . More specifically, we will assume that the
nodes have a common parameter γ = O(1/(log T + log logn)).
Such an estimate leaves room for a superpolynomial change in n
and a polynomial change in T over time, so it does not make the
problem trivial (as would be the case if the nodes knew constant
factor approximations of n or T ). Next, we formally state our con-
tributions before we go on discussing related work.

1.2 Our contribution
Suppose that n ≥ 2, i.e., we have at least two honest nodes

in the system. Let N = max{T, n}. In this paper, we present
the first MAC protocol that is constant competitive w.h.p. under
any (T, 1 − ε)-bounded adversary if the protocol is executed for
Ω( 1

ε
logN max{T, 1

ε
(log3N)(log T + log logn)2}) many time

steps. It does not need to know ε, so ε can be an arbitrarily small
constant (as long as ε = Ω(1/ log3N)). The only information
it needs to be constant competitive is that the nodes have a com-
mon parameter γ = O(1/(log T + log logn)). In practice, log T
and log logn are reasonably small so that this is not a serious con-
straint. Also, as mentioned earlier, such an estimate leaves room
for a superpolynomial change in n and a polynomial change in
T over time. The MAC protocol is very simple and symmetric,
and it can recover quickly from any state. We also show that the
MAC protocol is very energy efficient. In fact, it converges to a
bounded amount of energy consumption under continuous adver-
sarial jamming. In addition to this, we will show how to extend
the MAC protocol in order to obtain a robust and efficient pro-
tocol for leader election and the fair use of the wireless channel.
More specifically, our leader election protocol needs O( 1

ε
logN

max{T, 1
ε
(log3N)(log T + log logn)2}) steps until a leader is

selected and all nodes are aware of that, and our fair channel use
protocol essentially needs O(n/ε) many steps until a fair channel
use is guaranteed. All runtime bounds hold with high probability.

1.3 Related Work
Wireless network jamming has been extensively studied in the

applied networking domain (e.g., [28, 27, 17, 16, 5, 1, 26, 4, 19,
18, 20, 25]). Mechanisms for launching jamming attacks (e.g., [28,
17, 16, 5]) as well as defense mechanisms against these attacks
(e.g., [17, 28, 1, 26, 5, 4, 19, 18]) have been proposed and validated
through simulations and experiments.

There are many different forms of jammers, and detecting so-
phisticated jammers is not easy. Xu et al. [17], for example, ob-
serve that simple methods based on signal strength and carrier sens-
ing are unable to conclusively detect the presence of a jammer.
Also the packet delivery ratio cannot be used to clearly distinguish
between link problems due to mobility, congestion or jamming.
Hence, enhanced detection schemes are necessary. To address this
need, the authors propose two enhanced detection protocols that
employ consistency checking. While being more effective than the
prior detection schemes, these protocols still leave room for ambi-
guities.

Traditional defenses against jamming primarily focus on the de-
sign of physical layer technologies, such as spread spectrum [24,
19, 18]. As argued in the introduction, while widely spread fre-
quencies could potentially help in guarding against physical layer
jamming, spread spectrum techniques cannot be used effectively in
the relatively narrow frequency bands used by the 802.11 standard.

More recent work has also focused on various MAC layer strate-
gies in order to handle jamming, including coding strategies [5],
channel surfing and spatial retreat [29, 1], or mechanisms to hide
messages from a jammer, evade its search, and reduce the impact of
corrupted messages [26]. Most of these strategies have only been
evaluated experimentally and would not help against the jammers
considered in this paper.

A recent study [2] shows both theoretically and experimentally
that an adaptive jammer, such as the one proposed here, can dramat-
ically reduce the throughput of the standard random backoff MAC
protocol of the IEEE802.11 standard with only limited energy cost
on the adversary side (please also refer to [2] for other references
on jamming in 802.11).

Adversarial jamming has also been studied theoretically. There
are two basic approaches in the literature. The first assumes that
messages may be corrupted at random (e.g. [21]), and the second
bounds the number of messages that the adversary can transmit or
disrupt due to, for example, a limited energy budget (e.g. [12, 8]).
In a single hop wireless network (like ours), messages will not be
corrupted independently at random (every time the jammer trans-
mits, all messages in that time step will be corrupted); moreover,
an adaptive adversary seems more powerful than one that jams uni-
formly at random [2]. Hence, we focus on the second line of theo-
retical work since it is more relevant to the results in this paper.

The latest results in [8, 12] address adversarial jamming at both
the MAC and network layers, where the adversary may not only
be jamming the channel but also introducing malicious (fake) mes-
sages (possibly with address spoofing). The results in [8] only con-
sider the scenario that the nodes have one message to transmit (e.g.,
a broadcast operation). When translated to our continuous data
stream scenario, the protocol presented in [8] would not be able
to sustain a constant-competitive ratio if the adversary is allowed
to jam more than half of the time steps (i.e., if ε < 1/2), given
the fact that their single message broadcast algorithm takes at least
twice as many steps as the number of time steps utilized by the
jammer. Moreover, [8] assumes that the nodes have knowledge of
n and of the fact that the adversary has a bounded number of mes-
sages it can transmit (in contrast, we only need the nodes to have
an estimate on log log n and log T ).



In [12], the authors consider a wireless network in which node
positions form a grid where multiple (at most t) adversarial nodes
are allowed in the direct neighborhood of a node. If t is at most a
suitably small constant, then they give a protocol for reliable broad-
cast of a single message given that there is a fixed bound on the
number of time steps the adversary is disrupting communication (if
t is large, no broadcast protocol is guaranteed to terminate). The
authors only show that eventually the broadcast operation will be
completed, but give no bounds on how long that will take. More-
over, their algorithms will clearly deplete the energy of the non-
faulty nodes at a higher rate than that of the faulty nodes.

Most of the theoretical work on the design of efficient MAC pro-
tocols has focused on random backoff protocols (e.g., [3, 6, 10, 9,
15, 22]) that do not take jamming activity into account and there-
fore are not robust against it. MAC protocols have also been de-
signed in the context of broadcasting (e.g., [7]) and clustering (e.g.,
[14]). Most of them use random backoff or tournaments in order to
handle interference and thereby achieve a fast runtime.

In general terms, in a random backoff protocol, each node pe-
riodically attempts to transmit a message starting with a certain
probability p. In case the message transmission is unsuccessful
(due to interference), the node will retry sending the message in
the next time steps with monotonically decreasing probabilities (for
example, p2, p4, p8, . . .) until the message is successfully transmit-
ted or the minimum allowable probability is reached. In a dense
network (as in our single-hop scenario), an adversary with knowl-
edge of the MAC protocol would simply wait until the nodes have
reached transmission probabilities that are inversely proportional to
the number of close-by nodes to start jamming the channel, forc-
ing the nodes to lower their transmission probabilities by so much
that a constant throughput is not achievable. In tournaments, local
leader election is used to determine the node that is allowed to use
the wireless medium for its message transmission. If the adversary
jams the channel whenever a local leader is about to be selected,
most protocols will fail and start all over, so that only rarely a mes-
sage will get through. Also any work that relies on physical carrier
sensing in order to adjust the transmission probabilities of the nodes
(e.g., [13]) would fail in the presence of jamming as a blocked chan-
nel would be interpreted as a message collision. Hence, no solution
is currently available that can provably handle the jammers consid-
ered here.

1.4 Structure of the paper
In Section 2 we will present and analyze our MAC protocol, and

in Section 3 we will show how to extend it to robust leader election
and the fair use of the wireless channel.

2. THE ROBUST MAC PROTOCOL
In this section we present and analyze our MAC protocol. We

start with a description of our basic ideas behind the protocol then
we formally describe the protocol and analyze its competitiveness.
At the end of the section, we also study its energy efficiency.

2.1 Basic approach
Our MAC protocol is based on a simple idea. Suppose that each

node v decides to send a message at the current time step with
probability pv with pv ≤ p̂ for some small constant 0 < p̂ < 1.
Let p =

∑
v pv , q0 be the probability that the channel is idle and

q1 be the probability that exactly one node is sending a message.
Then the following claim holds.

CLAIM 2.1. q0 · p ≤ q1 ≤ q0
1−p̂ · p.

PROOF. It holds that q0 =
∏
v(1− pv) and

q1 =
∑
v pv

∏
w 6=v(1− pw). Hence,

q1 ≤
∑
v

pv
1

1− p̂
∏
w

(1− pw) =
q0 · p
1− p̂ and

q1 ≥
∑
v

pv
∏
w

(1− pw) = q0 · p

which implies the claim.

Hence, if the nodes observe that the number of time steps in
which the channel is idle is essentially equal to the number of time
steps in which exactly one message is sent, then p =

∑
v pv is

likely to be around 1. Otherwise, they know that they need to adapt
their probabilities. Therefore, if we had sufficiently many cases in
which an idle channel or exactly one message transmission is ob-
served (which is the case if the adversary does not heavily jam the
channel and p is not too large), then one can adapt the probabilities
pv just based on these two events and ignore all cases in which the
wireless channel is blocked (either because the adversary is jam-
ming it or at least two messages interfere with each other). Essen-
tially, the following strategy could be used at every node for some
small enough γ > 0:

In each time step, every node v is sending a message with probabil-
ity pv . If it decides not to send a message, it checks the following
two cases:

• If the wireless channel is idle, then pv := (1 + γ)pv .

• If exactly one message is sent, then pv := (1 + γ)−1pv .

The beauty of the algorithm is that it ignores blocked time steps,
which makes it more robust against adversarial jamming. However,
there is a catch to this strategy because it only works well as long as
p does not get too high. If p is initially very high or by chance gets
very high, it will be extremely unlikely for the nodes to observe one
of the two cases above. Hence, further ideas are necessary.

Our idea is to use a threshold Tv for each node v that cuts its
time into time intervals. If v does not observe a successful message
transmission for Tv many steps, then pv is decreased. In this way,
eventually pwill become small. However, since the algorithm is not
aware of T , the time window of the adversary, p may be decreased
too quickly or too slowly in this way. Hence, we need proper rules
for adapting Tv over time. It turns out that the following rules work:
whenever v senses a successful transmission, Tv is decreased by
1, and whenever v does not sense a successful transmission for Tv
time steps, Tv is increased by 1 for the next time interval considered
by v. One may ask why Tv should not be decreased as well if an
idle channel is sensed, but interestingly this is not a good rule, as
will come out in the analysis. Next, we give a formal description of
our MAC protocol.

2.2 Description of the MAC protocol
In our MAC protocol, each node v maintains a probability value

pv , a threshold Tv and a counter cv . The parameter γ is the same for
every node and is set to some sufficiently small value inO(1/(log T
+ log logn)). Thus, we assume that the nodes have some poly-
nomial estimate of T and even rougher estimate of n. Let p̂ be
any constant so that 0 < p̂ ≤ 1/24. Initially, every node v sets
Tv := 1, cv := 1 and pv := p̂. Afterwards, the protocol works
in synchronized time steps. We assume synchronized time steps
for the analysis, but a non-synchronized execution of the protocol
would also work as long as all nodes operate at roughly the same
speed.



In each step, each node v does the following. v decides with
probability pv to send a message. If it decides not to send a mes-
sage, it checks the following two conditions:

1. If v senses an idle channel, then pv := min{(1 + γ)pv, p̂}.

2. If v successfully receives a message, then pv := (1+γ)−1pv
and Tv := max{1, Tv − 1}.

Afterwards, v sets cv := cv + 1. If cv > Tv then it does the
following: v sets cv := 1, and if there was no step among the past
Tv time steps in which v sensed a successful message transmission,
then pv := (1 + γ)−1pv and Tv := Tv + 1.

2.3 Robustness
Let N = max{T, n}. In this section, we will prove the follow-

ing theorem.

THEOREM 2.2. For n ≥ 2 the MAC protocol is constant com-
petitive w.h.p. under any (T, 1−ε)-bounded adversary if the proto-
col is executed for at least Θ( 1

ε
logN max{T, 1

εγ2 log3N}) many
time steps.

Notice that for n = 1 a node will never experience a time step
with a successful transmission. Hence, it would just keep reducing
its access probability in our protocol, thereby reaching a dormant
state, which is the best it can do in this case as there is no one else
to communicate with. Thus, it only makes sense to consider the
case n ≥ 2. More on energy efficiency will be discussed later.

The proof of the theorem will frequently use the following gen-
eral form of the well-known Chernoff bounds, which may be of
independent interest. They are derived from Chernoff bounds pre-
sented in [23].

LEMMA 2.3. Consider any set of binary random variables X1,
. . . , Xn. Suppose that there are values p1, . . . , pn ∈ [0, 1] with
E[
∏
i∈S Xi] ≤

∏
i∈S pi for every set S ⊆ {1, . . . , n}. Then it

holds for X =
∑n
i=1Xi and µ =

∑n
i=1 pi and any δ > 0 that

P[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e−

δ2µ
2(1+δ/3)

If, on the other hand, it holds that E[
∏
i∈S Xi] ≥

∏
i∈S pi for

every set S ⊆ {1, . . . , n}, then it holds for any 0 < δ < 1 that

P[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
≤ e−δ

2µ/2

Let V be the set of all nodes. For the proof of the theorem we will
consider all possible decompositions of V into a single node v0 and
U = V \ {v0}. Let pt(v) be node v’s access probability pv at the
beginning of the t-th time step. Furthermore, let pt =

∑
v∈U pt(v)

(i.e., without node v0) and L = Ω( 1
ε

logN max{T, 1
εγ2 log3N})

be the number of time steps for which we study the competitive-
ness of the protocol. If L ≥ N , we will redefine N to N =
max{T, n, L} in order to cover long runtimes. If we can prove
a constant competitiveness for any such L, Theorem 2.2 follows.

We prove the theorem by induction over sufficiently large time
frames. Let I be a time frame consisting of α

ε
logN subframes I ′

of size f = max{T, αβ
2

εγ2 log3N}, where α and β are sufficiently
large constants. Let F = α

ε
logN · f denote the size of I . We

assume that at the beginning of I , pt ≥ 1/(f2(1 + γ)2
√
f ) and

Tv ≤
√
F/2 for every node v. Our goal is to show that in this

case the MAC protocol is constant competitive for I w.r.t. every
subset U = V \ {v0} and at the end of I , pt ≥ 1/(f2(1 + γ)2

√
f )

and Tv ≤
√
F/2 for every node v with probability at least 1 −

1/Nc for any constant c > 0 (which we will also call with high
probability or w.h.p. in the following). Since initially Tv = 1 and
pv = p̂ for every v, this implies that the MAC protocol achieves a
constant competitiveness in the first time frame, w.h.p., and due to
the properties on Tv and pv , this also holds for polynomially many
time frames, w.h.p.

The proof for time frame I proceeds as follows. Consider some
fixed subset U = V \ {v0}. A time step t or subframe I ′ of I
with starting time t is called good if pt ≤ 9. Otherwise, it is called
bad. First, we show that for any subframe I ′ in which initially
pt ≥ 1/(f2(1 + γ)2

√
f ), also afterwards pt ≥ 1/(f2(1 + γ)2

√
f ),

w.h.p. (Lemma 2.4). Then we show that for any subframe I ′ with
Tv ≤ (3/4)

√
F for every node v ∈ U at the beginning of I ′, the

subsequent subframe is good with probability at least 1− 1/fc for
any constant c > 0 (which we will call with moderate probability
or w.m.p.) (Lemma 2.7). Based on the insights gained in the proof,
we show that in a good subframe I ′, all non-jammed time steps
in I ′ are good w.m.p. (Corollary 2.11). After that, we prove that
a constant fraction of the time steps in such a subframe also have
probabilities lower bounded by a constant (Lemma 2.12), w.h.p.,
which implies that the MAC protocol is constant competitive for I ′

w.m.p. (Lemma 2.13). If at the beginning of frame I , Tv ≤
√
F/2

for every node v ∈ U , then during the first eighth of I , called J ,
Tv ≤ (3/4)

√
F , no matter what happens to the nodes in J . This

allows us to show that a constant fraction of the subframes of J
are constant competitive w.h.p., which implies that the MAC pro-
tocol is constant competitive for J w.h.p. (Lemma 2.14). With that
insight we can show that if at the beginning of J , Tv ≤

√
F/2

for every node v ∈ U , then this also holds at the end of J w.h.p.
(Lemma 2.15). Hence, all eighths of I have a constant competitive-
ness, w.h.p., which implies that I has a constant competitiveness
and at the end of I , Tv ≤

√
F/2 for every node v, w.h.p. Applying

these results inductively over all time frames I yields Theorem 2.2.
At the end of this subsection, we also study the recovery prop-

erties of our MAC protocol (Theorem 2.16). It turns out that the
MAC protocol can get quickly out of any set of (pv, cv, Tv)-values,
which implies that it also works well if the nodes enter the network
at arbitrary times and with arbitrary values instead of starting the
protocol at the same time and with the same values, which is not
realistic in practice.

LEMMA 2.4. For any subframe I ′ in which initially pt0 ≥ 1/

(f2(1 + γ)2
√
f ), the last time step t of I ′ satisfies pt ≥ 1/(f2(1 +

γ)2
√
f ), w.h.p.

PROOF. We start with the following claim about the maximum
number of times nodes decrease their probabilities in I ′ due to cv >
Tv .

CLAIM 2.5. If in subframe I ′ the number of successful message
transmissions is at most k, then every node v increases Tv at most
k +
√

2f many times.

PROOF. Only successful message transmissions reduce Tv . If
there is no successful message transmission within Tv many steps,
Tv is increased. Suppose that k = 0. Then the number of times
a node v increases Tv is upper bounded by the largest possible `

so that
∑T0

v+`

i=T0
v
i ≤ f , where T 0

v is the initial size of Tv . For any

T 0
v ≥ 1, ` ≤

√
2f , so the claim is true for k = 0. At best, each

additional successful transmission allows us to reduce all thresh-
olds for v by 1, so we are searching for the maximum ` so that∑T0

v−k+`
i=T0

v−k
max{i, 1} ≤ f . This ` is upper bounded by k +

√
2f ,

which proves our claim.



This claim allows us to show the following claim.

CLAIM 2.6. Suppose that for the first time step t0 in I ′, pt0 ∈
[1/(f2(1 + γ)2

√
f ), 1/f2]. Then there is a time step t in I ′ with

pt ≥ 1/f2, w.h.p.

PROOF. Suppose that there are g non-jammed time steps in I ′.
Let k0 be the number of these steps with an idle channel and k1 be
the number of these steps with a successful message transmission.
Furthermore, let k2 be the maximum number of times a node v
increases Tv in I ′. If all time steps t in I ′ satisfy pt < 1/f2, then
it must hold that

k0 − log1+γ(1/pt0) ≤ k1 + k2

This is because no v has reached a point with pt(v) = p̂ in this
case, which implies that for each time step t′ with an idle channel,
pt′+1 = (1+γ)pt′ . Furthermore, at most log1+γ(1/pt0) increases
of pt due to an idle channel would be needed to get pt to 1/f2, and
then there would have to be a balance between further increases
and decreases of pt in order to avoid the case pt ≥ 1/f2. We know
from Claim 2.5 that k2 ≤ k1 +

√
2f . Hence,

k0 ≤ 2 log1+γ f + 2
√
f + 2k1 +

√
2f

Suppose that 2 log1+γ f + 4
√
f ≤ εf/2, which is true if f =

Ω(1/ε2) is sufficiently large (resp. ε = Ω(1/ log3N)). Since
g ≥ εf due to our adversarial model, it follows that we must satisfy
k0 ≤ 2k1 + g/2.

For any time step t with pt ≤ 1/f2,

P[≥ 1 message transmitted at t] ≤
∑
v

pv(t) = pt + p̂

≤ 1/f2 + p̂

where p̂ is due to node v0 not considered in pt. Hence, E[k0] ≥
(1−1/f2−p̂)g and E[k1] ≤ (1/f2+p̂)g. In order to prove bounds
on k0 and k1 that hold w.h.p., we can use the general Chernoff
bounds stated above. For any step t, let the binary random variable
Xt be 1 if and only if the channel is idle at step t or pt ≥ 1/f2.
Then

P[Xt = 1] = P[channel idle and pt ≤ 1/f2] + P[pt > 1/f2]

= P[pt ≤ 1/f2] · P[channel idle | pt ≤ 1/f2] +

P[pt > 1/f2]

≥ P[pt ≤ 1/f2](1− 1/f2 − p̂) + P[pt > 1/f2]

≥ 1− 1/f2 − p̂

and since this probability bound holds irrespective of prior steps
and is independent of the adversarial jamming decision at time t, it
follows for any set S of time steps prior to some time step t that

P[Xt = 1 |
∏
s∈S

Xs = 1] ≥ 1− 1/f2 − p̂

Thus, for any set of time steps S it holds that E[
∏
s∈S Xs] ≥ (1−

1/f2 − p̂)|S|. Together with the fact that g ≥ εf ≥ α logN , the
Chernoff bounds imply that, w.h.p., either k0 > 3g/4 (given that
p̂ ≤ 1/24) or we have a time step t with pt ≥ 1/f2.

On the other hand, let the binary random variable Yt be 1 if and
only if exactly one message is sent at time t and pt ≤ 1/f2. Then

P[Yt = 1] = P[pt ≤ 1/f2] · P[one msg sent | pt ≤ 1/f2]

≤ 1/f2 + p̂

and it holds for any set S of time steps prior to some time step t
that

P[Yt = 1 |
∏
s∈S

Ys = 1] ≤ 1/f2 + p̂

Thus, the Chernoff bounds imply that k1 < g/8, w.h.p. (given
that p̂ ≤ 1/24). That, however, would violate the condition that
k0 ≤ 2k1 + g/2.

Note that the choice of g is not oblivious as the adversary may
adaptively decide to set g based on the history of events. Hence,
we need to sum up the probabilities over all adversarial strategies
of selecting g in order to show that none of them succeeds, but
since there are only f many, and for each the claimed property
holds w.h.p., the claim follows.

So suppose that there is a time step t in I ′ with pt ≥ 1/f2. If t
belongs to one of the last β logN non-jammed steps in I ′, then it
follows for the probability pt′ at the end of I ′ that

pt′ ≥
1

f2
· (1 + γ)−2β logN+

√
2f ≥ 1

f2(1 + γ)2
√
f

given that ε = Ω(1/ log3N) as at most β logN decreases of pt
can happen due to a successful transmission and at most β logN +√

2f decreases of pt can happen due to exceeding Tv .
Suppose, on the other hand, that there is no time step t among the

last β logN non-jammed steps in I ′ with pt ≥ 1/f2. In this case,
we assume that a specific step t in I ′ outside of these last steps is
the last time step with pt ≥ 1/f2. When defining k0, k1 and k2 as
above but from that point on it follows that pt′ at the end of I ′ is
still bounded from below by 1/(f2(1+γ)2

√
f ) as long as k0 ≥ k1.

Our analysis above implies that this is true w.h.p. (see Claim 2.8 for
similar arguments in the other direction), which finishes the proof
of Lemma 2.4.

LEMMA 2.7. For any subframe I ′ with Tv ≤ (3/4)
√
F for all

nodes v at the beginning of I ′, the last time step t of I ′ satisfies
pt ≤ 9 w.m.p.

PROOF. We first show that there is a time step t in I ′ with pt ≤
6, w.h.p. Let the time steps in which the adversary does not jam
the channel and at most one message is sent by the nodes be called
useful. Suppose that there are g useful time steps in I ′. Let k0

be the number of these steps with an idle channel and k1 be the
number of these steps with a successful message transmission. In
order to establish a relationship between k0 and k1 we need the
following claims.

CLAIM 2.8. If all time steps t ∈ I ′ satisfy pt > 6, then it holds
for any g ≥ δ logN for a sufficiently large constant δ that k1 ≥ k0

w.h.p.

PROOF. Let q0(t) be the probability of an idle channel and q1(t)
be the probability of a successful message transmission at a useful
step t. If pt > 6, then it follows from Claim 2.1 that

P[channel idle] =
q0(t)

q0(t) + q1(t)
≤ q0(t)

q0(t) + pt · q0(t)

≤ 1

1 + 6
=

1

7

irrespective of what happened at previous time steps. Hence, E[k0]
≤ g/7 under the assumption that all useful time steps t satisfy pt >
6. Thus, our Chernoff bounds yield k0 ≤ g/2 w.h.p. (given that δ
is a sufficiently large constant), which implies that k1 ≥ k0.

Now we are ready for the following claim.



CLAIM 2.9. If all time steps in I ′ satisfy pt > 6, then it must
hold w.h.p. that

k1 − 2 log1+γ N ≤ (5/4)k0

PROOF. If exactly one message is sent at a step t, then pt+1 ≥
(1 + γ)−1pt and

pt+1 ≤ (1 + γ)−1(pt − p̂) + p̂ ≤ (1 + γ)−1pt + γ(1 + γ)−1p̂

because only the sending node does not decrease its probability,
and for this node the maximum probability is p̂. For pt > 6 it fol-
lows that pt+1 ∈ [(1 + γ)−1pt, (1 + γ)−4/5pt]. From Claim 2.8
we now that after the first δ logN useful steps, there must have
been more steps with a successful transmission than with an idle
channel for any one of the remaining useful steps, w.h.p, which im-
plies that for each of them, pv < p̂ for all nodes v. Thus, whenever
there is an idle channel for these steps, pt+1 = (1 + γ)pt. Hence,
if we start with pt = 6 after the first δ logN useful steps, then
in order to avoid a step t′ with pt′ ≤ 6 in I ′ we must have that
k1 ≤ (5/4)k0. Since pt might be as high as p̂n initially, we can al-
low at most (5/4) log1+γ N further events of a successful message
transmission without having a step t′ with pt′ ≤ 6.

Since log1+γ N = ω(logN), it holds that

δ logN + (5/4) log1+γ N ≤ 2 log1+γ N

for a sufficiently large N , which implies the claim.

Also, k0 + k1 = g. Suppose that g ≥ δ log1+γ N for a suffi-
ciently large constant δ. It holds that

(g − k0)− 2g/δ ≤ (5/4)k0 ⇔ k0 ≥ (4/9)(1− 2/δ)g

We know from the proof of Claim 2.8 that for any useful step twith
pt > 6, P[channel idle] ≤ 1

7
. Hence, E[k0] ≤ g/7. Since ran-

dom decisions are made independently in each step, our Chernoff
bounds imply that k0 < (4/9)(1− 2/δ)g w.h.p. if δ is sufficiently
large.

Thus, if I ′ contains at least δ log1+γ N useful steps, we are done.
Otherwise, notice that for every node v it follows from the MAC
protocol and the choice of f and F that if initially Tv ≤ (3/4)

√
F ,

then Tv can be at most
√
F during I ′. Let us cut I ′ intom intervals

of size 2
√
F each. It is easy to check that if β in the definition of f

is sufficiently large compared to δ, thenm ≥ 3δ log1+γ N . If there
are less than δ log1+γ N useful steps, then at least 2δ log1+γ N of
these intervals do not contain any useful step, which implies that pv
is reduced by at least (1+γ)−1 by each v in each of these intervals.

Hence, altogether, every pv gets reduced by a factor of at least
(1 +γ)−2δ log1+γ N during I ′. The useful time steps can only raise
that by (1 + γ)δ log1+γ N , so altogether we must have pt ≤ 6 at
some time point during I ′, w.h.p.

In the following, let t0 denote any time in I ′ with pt0 ≤ 6. We
finally prove the following claim.

CLAIM 2.10. For any useful time step t after a step t0 in I ′ with
pt0 ≤ φ for some φ ≥ 6 and any constant δ > 0 it holds that

P[pt ≥ (1 + δ)φ] ≤ 8 · (1 + δ)−1/(6γ)

PROOF. Suppose that t0 be the last useful time step before step
t in I ′ with pt0 ≤ φ. Let g be the number of useful time steps from
t0 to t. Then g ≥ ln(1 + δ)/ ln(1 + γ) because otherwise it is not
possible that pt ≥ (1 + δ)φ. Recall that for any useful step r with
pr ≥ 6, P[pr+1 = (1 + γ)pr] ≤ 1/7. If exactly one message is
sent at a useful step, then pr+1 ∈ [(1 + γ)−1pr, (1 + γ)−4/5pr].
Let k0 be the number of useful steps with an idle channel and k1 be

the number of useful steps with a successful message transmission.
It must hold that k0 ≥ (4/5)k1 + ln(1 + δ)/ ln(1 + γ) so that
pt ≥ (1 + δ)φ. Also, k0 + k1 = g. Hence, k0 ≥ (4/9)g +
(5/9) ln(1+δ)/ ln(1+γ) ≥ max{(4/9)g, ln(1+δ)/ ln(1+γ)}.
It holds that E[k0] ≤ g/7, so the Chernoff bounds imply that

P[k0 ≥ (4/9)g] ≤ P[k0 ≥ (1 + 2)g/7]

≤ e−[22/(2(1+2/3))](g/7) = e−g/6

Hence,

P[pt ≥ (1 + δ)φ] ≤
∑

g≥ ln(1+δ)
ln(1+γ)

P[k0 ≥ (4/9)g] ≤
∑

g≥ ln(1+δ)
ln(1+γ)

e−g/6

≤ 8(1 + δ)
− 1

6 ln(1+γ) ≤ 8(1 + δ)−1/(6γ)

Since we assume that γ = O(1/ log f), it follows that w.m.p.,
pt ≤ (1 + δ)6 for any particular time step t after t0, resulting in
the lemma with δ = 1/2.

Claim 2.10 with φ = 9 and δ = 1/3 implies the following result.

COROLLARY 2.11. For any good subframe I ′, all non-jammed
time steps t of I ′ satisfy pt ≤ 12 w.m.p.

We also need to show that for a constant fraction of the non-
jammed time steps in a good subframe, pt is also lower bounded
by a constant. Recall that p̂ ≤ 1/24.

LEMMA 2.12. For any subframe I ′ in which initially pt ≥ 1/

(f2(1 + γ)2
√
f ), at least 1/8 of the non-jammed steps t satisfy

pt ≥ p̂, w.h.p.

PROOF. Let G be the set of all non-jammed time steps in I ′ and
S be the set of all steps t in G with pt < p̂. Let g = |G| and
s = |S|. If s ≤ 7g/8, we are done. Hence, consider the case that
s ≥ 7g/8.

Suppose that pt must be increased k0 many times to get from its
initial value up to a value of p̂ and that pt is decreased k1 many
times in S due a successful message transmission. Furthermore,
let k2 be the maximum number of times a node v decreases pv
due to cv > Tv in the MAC protocol. For S to be feasible (i.e.,
probabilities can be assigned to each t ∈ S so that pt < p̂) it must
hold for the number ` of times in S in which the channel is idle that

` ≤ k0 + k1 + k2

For the special case that k0 = k2 = 0 this follows from the fact that
whenever there is a successful message transmission, pt is reduced
to pt+1 ≥ (1 + γ)−1pt. On the other hand, whenever there is an
idle channel, it holds that pt+1 = (1 + γ)pt because of pt < p̂.
Thus, if ` > k1, then one of the steps in S would have to have a
probability of at least p̂, violating the definition of S. k0 comes into
the formula due to the startup cost of getting to a value of p̂, and k2

comes into the formula since the reductions of the pt(v) values due
to cv > Tv in the MAC protocol allow up to k2 additional increases
of pt for S to stay feasible.

First, we bound `. If pt < p̂, then P[idle channel at step t] ≥
1−p̂−p̂ (where the second p̂ is due to node v0), irrespective of prior
time steps, Hence, E[`] ≥ (1 − 2p̂)s. For p̂ ≤ 1/24 our Chernoff
bounds imply because of s ≥ 7g/8 ≥ (7/8)εf that ` ≥ s/2

w.h.p. If at the beginning of I ′, pt ≥ 1/(f2(1 + γ)2
√
f ) then

k0 ≤ 2 log1+γ f+2
√
f . Moreover, k2 ≤ g/8+k1+

√
2f because

of Claim 2.5. Hence, k0 + k1 + k2 ≤ 2 log1+γ f + 2
√
f + 2k1 +



g/8 +
√

2f , which must be at least s/2 so that ` ≤ k0 + k1 + k2

(given that ` ≥ s/2). Suppose that 2 log1+γ f + 4
√
f ≤ εf/16

(which is true if f = Ω(1/ε2) is large enough). Then for this to be
true it must hold that

2k1 + g/8 + g/16 ≥ (7g/8)/2 ⇔ k1 ≥ g/8

If k1 ≥ g/8 then also k1 ≥ s/8, so our goal will be to show that
k1 < s/8 w.h.p.

If pt < p̂, then P[successful message transmission at step t] ≤
2p̂, irrespective of prior time steps. Hence, E[k1] ≤ 2p̂s. Fur-
thermore, for p̂ ≤ 1/24 our Chernoff bounds imply because of
s ≥ 7g/8 ≥ (7/8)εf that k1 < s/8 w.h.p. Since there are at most
f2 ways (for the adversary) of choosing g and s, this holds for any
combination of g and s, which yields the lemma.

Combining the results above, we get:

LEMMA 2.13. For any good subframe I ′ the MAC protocol is
constant competitive in I ′ w.m.p.

PROOF. From Corollary 2.11 and Lemma 2.12 we know that in
a good subframe at least 1/8 of the non-jammed time steps t have
a constant probability value pt w.m.p. For these steps there is a
constant probability that a message is successfully sent. Using the
Chernoff bounds results in the lemma.

Consider now the first eighth of frame I , called J .

LEMMA 2.14. If at the beginning of J , pv ≥ 1/(f2(1+γ)2
√
f )

and Tv ≤
√
F/2 for all nodes v, then we also have pv ≥ 1/(f2(1+

γ)2
√
f ) at the end of J for every v and the MAC protocol is constant

competitive for J , w.h.p.

PROOF. The bound for pv at the end of J directly follows from
Lemma 2.4.

Suppose, as a worst case, that initially Tv =
√
F/2 for some

v. Clearly, Tv assumes the maximum possible value at the end
of J if Tv is never decreased in J . Since Tv can be increased at
most (F/8)/(

√
F/2) =

√
F/4 many times in J , Tv can reach a

maximum value of at most (3/4)
√
F inside of J , so we can apply

Lemma 2.7.
Recall that J consists of k = α

8ε
logN many subframes, num-

bered I1, . . . , Ik. For each Ii, let the binary random variableXi be
1 if and only if Ii is good. From Lemma 2.7 it follows that for any
i ≥ 1 and any set S ⊆ {1, . . . , i− 1},

P[Xi = 1 |
∏
j∈S

Xj = 1] ≥ 1− 1/fc

for some constant c that can be made arbitrarily large. Hence, for
any set S ⊆ {1, . . . , k}, E[

∏
i∈S Xi] ≥ (1− 1/fc)|S|. Our Cher-

noff bounds therefore imply that at most (α/24ε) logN of the sub-
frames in J are bad, w.h.p, if α is sufficiently large. According
to Lemma 2.13, each of the good subframes is constant competi-
tive w.m.p., where the probability bounds are only based on events
in the subframes themselves and therefore hold irrespective of the
other subframes (given that each of them is good). So the Chernoff
bounds imply that at most (α/24ε) logN of them do not result in a
constant competitiveness of the MAC protocol, w.h.p. The remain-
ing (α/24ε) logN subframes in J achieve constant competitive-
ness, which implies that the MAC protocol is constant competitive
on J , w.h.p.

We finally need the following lemma that bounds Tv . The proof
of this lemma requires considering all possible decompositions of
V into a node v0 and U = V \{v0} so that every node experiences
many successful transmissions.

LEMMA 2.15. If at the beginning of J , Tv ≤
√
F/2 for all v,

then it holds that also Tv ≤
√
F/2 at the end of J , w.h.p.

PROOF. We know from Lemma 2.14 that for any node v our
protocol is constant competitive for V \ {v} w.h.p. Hence, ev-
ery node v notices Ω(ε|J |) successful message transmissions in J
w.h.p. Tv is maximized at the end of J if all of these successful
transmissions happen at the beginning of J , which would get Tv
down to 1. Afterwards, Tv can raise to a value of at most t for the
maximum t with

∑t
i=1 i ≤ |J |. Since such a t can be at most√

2|J |, it follows that Tv can be at most
√

2F/8 =
√
F/2 at the

end of J , w.h.p.

Inductively using Lemmas 2.13 and 2.15 on the eighths of frame
I implies that our MAC protocol is constant competitive on I and
at the end of I , pv ≥ 1/(f2(1 + γ)2

√
f ) and Tv ≤

√
F/2 for

all v w.h.p. Hence, our MAC protocol is constant competitive for
L many time steps, w.h.p., for any L = Ω( 1

ε
logN max{T, 1

εγ2

log3N}), which implies Theorem 2.2.
Finally, we show that our protocol can quickly recover from any

setting of the (Tv, cv, pv)-values.

THEOREM 2.16. For any pt0 and T̂ = maxv Tv it takes at
most O( 1

ε
log1+γ(1/pt0) + T̂ 2) many time steps, w.h.p., until the

MAC protocol satisfies again pt ≥ 1/(f2(1+γ)2
√
f ) and maxv Tv

≤
√
F/2 for the original definitions of F and f above.

PROOF. Suppose that pt0 < 1/(f2(1 + γ)2
√
f ) for some time

point t0. Then it follows from the constraints of the adversary and
the Chernoff bounds that it takes at most δ

ε
log1+γ(1/pt0) steps

for some sufficiently large constant δ to get the system from pt0 up
to p1/2

t0
, w.h.p. (in fact, with a probability of at least 1 − pct0 for

any constant c, irrespective of T̂ ). Another δ
2ε

log1+γ(1/pt0) steps
will then get the system from p

1/2
t0

to p1/4
t0

, w.h.p. (in fact, with
probability at least 1 − (p

1/2
t0

)c for any constant c). Continuing

these arguments in order to get from p
1/2i

t0
to p1/2i+1

t0
it follows

that altogether at most 2δ
ε

log1+γ(1/pt0) steps are needed to get
the system from pt0 to a probability pt ≥ 1

f2(1+γ)2
√
f

, w.h.p. (or

more precisely, with probability at least 1− 1/Nc).
It remains to bound the time to get Tv down to

√
F/2 for every v.

It holds that T̂ ≤
√
F/2 if and only if F ≥ 4T̂ 2. Hence, consider a

time frame I of size F ′ = max{F, 4T̂ 2} for the old definition of F
above, where I starts at the point at which the probabilities pv have
recovered to pt ≥ 1/(f2(1+γ)2

√
f ). Then all the proofs above go

through and imply that I is constant competitive. Moreover, when
cutting I into pieces of size |I|/32 instead of |I|/8, the proof of
Lemma 2.15 implies that at the end of the first 1/32-piece J of I ,
Tv ≤

√
F ′/4, w.h.p. Hence, the time frames of the nodes shrank

by a factor of at least 2 in J . Inductively using this bound, it follows
that also at the end of I , Tv ≤

√
F ′/4 for all v, w.h.p. This allows

us to reduce F ′ by a factor of 2 for the next frame I . Also for this
F ′, we get Tv ≤

√
F ′/4 for all v, w.h.p., so we can keep shrinking

I by a factor of 2 until |I| = F for the original F considered in
our proofs above. Altogether, the recovery to T̂ ≤

√
F/2 for all v

takes at most O(T̂ 2) time.
Combining the two upper bounds for the recovery time yields

the theorem.

2.4 Energy efficiency
Next, we show that our MAC protocol is very energy-efficient

under adversarial attacks. The first lemma follows directly from
our insights gained in the previous subsection.



LEMMA 2.17. For any time frame I of size F as defined above,
the total energy spent by all the nodes together on sending out mes-
sages is bounded by O(F ) w.h.p.

If the adversary performs permanent jamming, the energy spent
on message transmissions even converges, i.e., our MAC protocol
reaches a dormant stage.

LEMMA 2.18. Consider any time step t0 with
∑
v pv ≤ p and

maxv Tv ≤ T̂ for some values p > 0 and T̂ ≥ 1/γ. Then for any
continuous jamming attack starting at t0 the total energy consump-
tion of the nodes during the entire attack is at most O(p · T̂ /γ +
logN) w.h.p.

PROOF. First, we determine the expected energy consumption
of a single node v. Let pv(t) be the probability that v transmits
a message in round t0 + t. Due to our MAC protocol, pv(t) de-
creases by (1 + γ)−1 at latest for t = T̂ , then another time after
T̂ + 1 further steps, another time after T̂ + 2 further steps, and
so on. Hence, the total expected energy consumption of v for any
continuous jamming attack is at most∑

Tv≥T̂

Tv · pv(t0)(1 + γ)Tv−T̂

= pv(t0)
∑
i≥0

(T̂ + i)(1 + γ)−i

≤ 1 + γ

γ
· T̂ · pv(t0) +

(
1 + γ

γ

)2

· pv(t0)

= O(pv(t0)T̂ /γ)

Summing up over all nodes, we obtain a total expected energy con-
sumption of O(p · T̂ /γ). Since all transmission decisions are done
independently at random, the Chernoff bounds imply a total energy
consumption of at most O(p · T̂ /γ + logN) w.h.p.

In our MAC protocol, beyond f steps after any initial choice of
the access probabilities, p = O(logN), w.h.p. This is due to the
proof of Lemma 2.7 and the fact that for p ≥ c logN , the probabil-
ity that an idle channel is experienced is at most 1/Nc, so further
increasing p has a polynomially small probability. Furthermore,
T̂ = O(log2N/γ) w.h.p. for any constant ε given that all nodes
v start with Tv = 1. Hence, the total energy consumption of our
MAC protocol under a permanent attack that starts after f steps
would be bounded by O(log3N/γ2) w.h.p.

3. APPLICATIONS OF THE MAC PROTO-
COL

In this section we will demonstrate how our robust MAC proto-
col can be extended to perform robust leader election or to select
fair access probabilities for the nodes.

3.1 Leader election
Consider the following adaptation of the MAC protocol. In ad-

dition to cv , Tv and pv , every node v maintains a counter sv for
successful transmissions. v also stores one of the states {unknown,
leader, follower}. Initially, every node v sets Tv := 1, cv := 1 and
pv := p̂. Also, v sets sv to 0 and its state to “unknown”. After-
wards, v does the following in each step.

v decides with probability pv to send a message. If it does so,
its message is piggy-backed with sv . If it decides not to send a
message, it checks the following two conditions:

1. If v senses an idle channel, then pv := min{(1 + γ)pv, p̂}.

2. If v successfully receives a message with some counter sw,
then pv := (1 + γ)−1pv and Tv := max{1, Tv − 1}. If
v is still in the state “unknown”, then v checks the follow-
ing two cases: If sv ≥ sw then v becomes a “follower”,
otherwise v becomes a “leader”. In any case, v sets sv :=
max{sv, sw}+ 1.

Afterwards, v sets cv := cv + 1. If cv > Tv then it does the
following: v sets cv := 1, and if there was no step among the past
Tv time steps in which v sensed a successful message transmission,
then pv := (1 + γ)−1pv and Tv := Tv + 1.

This protocol has the following performance.

THEOREM 3.1. WithinO( 1
ε

logN max{T, 1
εγ2 log3N}) many

steps, the leader election protocol reaches a state in which there is
exactly one leader and the other nodes are followers, w.h.p.

PROOF. At the beginning, all counters sv are set to 0. Once the
first node, say v, is able to successfully transmit a message, then all
nodes w 6= v will become a follower and set sw to 1. v may then
go on being successful for k more steps until the first node w 6= v
successfully transmits a message. When w transmits its message, it
also sends sw = k+1 which is greater than sv since sv is still set to
0. Hence, v will become a leader. According to the analysis of our
original MAC protocol, which is embedded in our leader election
protocol, it takes at most O( 1

ε
logN max{T, 1

εγ2 log3N}) many
steps until at least two nodes successfully transmit a message (as
constant competitiveness is ensured for any set U = V \ {v0}),
w.h.p., which yields the theorem.

Once a node becomes a leader, it may then select a fixed access
probability of p̂ (which, as we know from our analysis, does not
cause problems for the competitiveness of the follower nodes) so
that an effective coordination of the follower nodes is possible.

3.2 Establishing fairness
In our original MAC protocol, some probabilities may eventually

dominate the others. This is due to the fact that whenever there is a
successful message transmission, all nodes sensing the successful
transmission are lowering their access probabilities while the ac-
cess probability of the sending node stays the same. Since nodes
with a larger access probability are more likely to transmit a mes-
sage, there is a tendency towards preserving access probabilities of
those nodes that already have large access probabilities so that the
gap between large and small probabilities will increase over time.
This would result in an unfair use of the channel among the nodes.
In order to ensure fairness, we slightly modify our MAC protocol.
In the new protocol, each node v maintains a counter sv for suc-
cessful transmissions and a countermv of the different nodes it has
seen so far. It also maintains a state in {covered, uncovered} and
memorizes in olds the last counter it has seen so far. Initially, ev-
ery node v sets Tv := 1, cv := 1 and pv := p̂. Also, sv and mv

are set to 0, olds is set to -1, and the state is set to “uncovered”.
Afterwards, every node v does the following in each step.
v decides with probability pv to send a message. If it does so, its

message is piggy-backed with sv and its state. If it decides not to
send a message, it checks the following two conditions:

1. If v senses an idle channel, and v is still uncovered then
pv := max{(1 + γ)pv, p̂}.

2. If v successfully receives a message with some counter sw,
then v considers the following cases.



• If w is uncovered and sw 6= olds then mv := mv + 1.
If v is covered then it sets pv := p̂/mv .

• If v is uncovered and sw > sv then v changes its state
to “covered”, sets mv := mv + 1 and pv := p̂/mv .

• If v is uncovered and sw ≤ sv then v sets pv := (1 +
γ)−1pv and Tv := max{1, Tv − 1}.

olds := sw and sv := max{sv, sw}+ 1.

Afterwards, v sets cv := cv + 1. If cv > Tv then it does the
following: v sets cv := 1, and if there was no step among the past
Tv time steps in which v sensed a successful message transmission,
then pv := (1 + γ)−1pv and Tv := Tv + 1.

We will prove the following result for this protocol:

THEOREM 3.2. If T ≤ nδ for some constant δ < 1 and p̂ ≤
1/48, then it takes at most O(n/ε) time steps until all nodes have
an access probability of Θ(1/n), w.h.p.

We first state some properties of sv and mv .

LEMMA 3.3. At any time, sv is equal to the number of suc-
cessful transmissions performed so far, except for the most recent
transmissions of v without a transmission of a node w 6= v after-
wards.

PROOF. We prove the lemma by induction over the number of
successful transmissions. Initially, the lemma is certainly true. So
consider the situation that it is still true after the first k successful
transmissions. Let v be the origin of the last message transmission.
Then sw = k for all w 6= v and sv = k − rv where rv is the
number of most recent transmissions of v without a transmission
of a node w 6= v afterwards.

If the next node successfully transmitting a message is v, then
all other nodes w receive a message with sv ≤ sw and therefore
increase sw by 1, which satisfies the lemma. If, on the other hand,
some node u 6= v transmits a message, then v receives a message
with su > sv , so it updates sv to su + 1 = k + 1. All nodes
w 6∈ {u, v} satisfy su ≤ sw, so they increase sw by 1. In both
cases, the lemma holds again, which completes the proof.

LEMMA 3.4. A node is in the state “covered” if and only if it
has already successfully sent a message and received a message
from a node afterwards.

PROOF. According to the protocol, a node v only becomes cov-
ered if sw > sv , so the lemma follows from Lemma 3.3.

LEMMA 3.5. mv counts the number of different nodes that have
successfully sent a message, except v itself if v has successfully sent
messages without receiving a message from another node so far.

PROOF. We prove the lemma above by induction over the num-
ber of successful transmissions. Initially, the lemma is certainly
true. So suppose that it is true after the first k successful transmis-
sions. Let v be the origin of the last message transmission. We
distinguish between several cases for the k + 1th message trans-
mission.

Suppose that the next node successfully transmitting a message
is v. Then sv = olds and sv ≤ sw for every other node w
according to Lemma 3.3. Hence, no changes will happen to the
mw’s. So suppose that the next node transmitting is u 6= v. Then
su > olds = sv according to Lemma 3.3. Thus, if v was still un-
covered, then v changes to “covered” and increasesmv by 1, which
satisfies the lemma. Otherwise, v does nothing, which also satisfies

our lemma as well. For all other nodes w, we consider the follow-
ing cases. If u is uncovered, then each of these nodes increases
mw by 1 (because of su > olds), and otherwise, they leave mw

as before, which satisfies our claim. Putting all pieces together, the
lemma follows.

Lemmas 3.4 and 3.5 and the way the covered nodes set their
access probabilities immediately yield the following result.

COROLLARY 3.6. At any time, the set of covered nodes together
have an access probability in [(1 − 1/(m + 1))p̂, p̂], where m is
the number of nodes with successful transmissions so far, and this
probability is shared evenly among them.

Hence, once all nodes are covered, fairness is established among
all nodes. The following lemma bounds the time necessary to cover
all nodes.

LEMMA 3.7. If T ≤ nδ for some constant δ < 1 and p̂ ≤
1/48, then it takes at most O(n/ε) time steps until until all nodes
are covered, w.h.p.

PROOF. First, we establish the following claim.

CLAIM 3.8. All nodes that have not been able to successfully
send a message so far have the same access probabilities.

PROOF. Notice that all nodes that have not been able to suc-
cessfully send a message so far have the property that whenever
there was an idle channel or a successful message transmission, all
of them noticed that. Since all of them start with cv := 1 and
Tv := 1, this implies that their time frames are in synchrony and
any changes in the access probabilities due to a channel condition
or the case cv > Tv are done in synchrony as well. As all nodes
initially start with pv = p̂, the claim follows.

Notice that even if the nodes do not initialize pv , cv and Tv with
the same values, the analysis of our original MAC protocol implies
that as long as all nodes v initially satisfy Tv ≤

√
F (for the param-

eter F in the previous section), it takes at most F steps until a point
is reached at which all Tv = 1 for all v, so the non-successful nodes
will operate in synchrony from that point on (though with different
probability offsets). For simplicity, however, we will consider the
case of Claim 3.8.

Now, it follows from the analysis of the original MAC protocol
that the time needed for the first node to be covered is polylog-
arithmic in N w.h.p. Once the first node has been covered, the
remaining nodes quickly become covered as well, as shown next.

CLAIM 3.9. Consider any consecutive sequence of logn nodes
that become covered during the algorithm after at least one node
has been covered. The number of successful transmissions they
need for that is O(logn) w.h.p.

PROOF. Let C be the set of covered nodes andm = |C|. More-
over, let p0 =

∏
v(1 − pv) be the probability that the channel is

idle at a given time step. Since the covered nodes together have an
access probability of at least (1− 1/(m+ 1))p̂ at any time (Corol-
lary 3.6) and the least recently successful but not yet covered node,
v, has an access probability of at most p̂, it holds that

P[node in C successful] =
∑
u∈C

pu
∏
w 6=v

(1− pw) ≥ p0 ·m
m+ 1

· p̂

and

P[node v successful] = pv
∏
w 6=v

(1− pw) ≤ p0

1− p̂ · p̂



Thus,

P[node in C successful] ≥ (1− p̂)m
m+ 1

· P[node v successful]

which implies that the probability that k consecutive successful
transmissions are due to v is at most (1/(1 + c))k with c = (1 −
p̂)m/(m + 1). This is polynomially small if k = Ω(logn). Fur-
thermore, when considering a consecutive sequence of O(logn)
nodes that become covered, it follows from the independence of
the transmission attempts of the nodes that altogether the number of
successful transmissions they need for that is O(logn) w.h.p.

It remains to bound the time until the uncovered nodes (at the
time of the transmission) have had Ω(n) successful transmissions.
Let v1, v2, . . . , vn be the order in which the nodes become cov-
ered, i.e., vi is the ith node with a successful transmission. Let
Ui = {v1, . . . , vi} for all i ≥ 1. Once vi has had its first suc-
cessful transmission, we consider the partition (Ui, V \ Ui). For
Ui we know that

∑
u∈Ui pu ≤ 2p̂ ≤ 1/24 and at the time vi had

its first success, pvi is a 1/|V \ Ui−1| = 1/(n − i + 1)-fraction
of
∑
v∈V \Ui pv . Hence, when switching from (Ui, V \ Ui) to

(Ui+1, V \ Ui+1), only a small fraction of the probability gets lost
in the uncovered nodes, and the probability in Ui stays bounded
by 1/24. In fact, as long as there are still at least f uncovered
nodes left, then the total reduction in the access probability over a
subframe is at most

∏2f
g=f (1 − 1/g) ≥ 1/e. This is low enough

so that the analysis of the original MAC protocol still applies, i.e.
the protocol is constant competitive w.r.t. the still uncovered nodes
within time frames of size F , w.h.p. Once there are less than f
uncovered nodes, the analysis implies that at least one uncovered
node gets covered within a time frame of size F , w.h.p. Combining
that with Claim 3.9, it takes at most O(n/ε + f · F ) steps, w.h.p.,
for all nodes to become covered. When assuming that T ≤ nδ for
some constant δ < 1, the lemma follows.

4. CONCLUSIONS
In this paper we presented the first MAC protocol that is prov-

ably robust against adversarial jammers. In fact, our protocol can
even handle adaptive jammers. Many open questions remain. Can
the MAC protocol be extended to multi-hop networks? How can we
adapt to join and leave behavior or mobility of the nodes, and which
rate is sustainable without losing a constant competitiveness? Can
the MAC protocol be modified so that no knowledge about T and
n is required any more? We have tried several variants of our pro-
tocol that all had counterexamples. A constant γ appears to work
fine under stochastic jammers, but it does not seem to work under
adaptive jammers. What other applications than leader election and
a fair use of the wireless channel can be considered?
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