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ABSTRACT 
The smallest complete Java™ virtual machine implementations in 
use today are based on the CLDC standard and are deployed in 
mobile phones and PDAs.  These implementations require several 
tens of kilobytes.  Smaller Java-like implementations also exist, 
but these involve compromises in Java semantics. This paper 
describes a JVM™ architecture designed for very small devices.  
It supports all the CLDC Java platform semantics, including exact 
garbage collection, dynamic class loading, and verification.  For 
portability and ease of debugging, the entire system is written in 
the Java language, with key components automatically translated 
into C and compiled for the target device. The resulting system 
will run on the next generation of smart cards, and has 
performance comparable to the reference CLDC implementation 
available from Sun™. 

Categories and Subject Descriptors 
D.3.4 Programming Languages: Processors – Interpreters, 
Optimization, Preprocessors, Run-time environments. 

General Terms: Languages. 

Keywords: Java, CLDC, JVM, next generation smart cards, 
limited-memory devices. 

1. INTRODUCTION 
The work described here is a continuation in spirit of the Spotless 
project [7], begun in 1998. The goal then was to build a small but 
complete Java virtual machine, with the Palm Pilot the target 
platform. The resulting artifact turned into the KVM, which 
became the basis of the CLDC standard [10]. 
The main goal of the present effort was once again to build a 
small Java virtual machine, but one that is smaller and more 

mature (CLDC compliant, with verification and exact garbage 
collection). The target platform is the next generation of smart 
cards, which have 32-bit processors, but may have no more than 8 
KB of RAM, 32 KB of non-volatile memory (NVM, typically 
EEPROM), and 160 KB of ROM. Such a VM would obviously 
also be suitable for other embedded devices with similar 
characteristics. 
A secondary goal was to write the system as much as possible in 
the Java language, for both portability and ease of debugging. The 
system is therefore called Squawk, in homage to the Squeak 
Smalltalk system [12]. 

2. BACKGROUND 
The size of Java classfiles has long been recognized as an issue, 
especially for embedded devices. A number of efforts have been 
made to reduce the size, both as a transmission format and as an 
execution format. Pugh [4] developed techniques for compressing 
classfile components for transmission, and achieved sizes ranging 
from 17% to 49% of the comparable JAR files. Rayside et al. [5], 
in contrast, focused on execution format, specifically reducing 
constant pool size and code size. Reductions in JAR file size of 
roughly 50% were obtained through optimizations of the constant 
pool, and smaller improvements were realized through code 
optimizations. Clausen et al. [2] developed a compressed 
bytecode scheme using macros, achieving space savings of 
around 30%, but at a runtime cost of up to 30%. Tip et al. [8] 
developed techniques for extracting only the components 
necessary for a particular application from a set of classfiles, with 
the resulting archives reduced to 37.5% of their original size. 
A primary goal of the above techniques was to perturb the Java 
execution engine as little as possible. In contrast, the Java Card 
paradigm introduces a muscular transformer between classfiles 
and interpreter, which enables a different, space-optimized 
interpreter. 
Efforts have been made to implement Java in the Java language: 
The JavaInJava system [6] was an early effort that encountered 
performance issues and ran roughly 3 orders of magnitude slower 
than a native implementation. The Jalapeno/Jikes [1][15] system 
has extensively explored the optimization technology needed to 
produce a high-performance system. The Joeq system [16], an 
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open source effort, is also focusing on performance. Both Jikes 
and Joeq are relatively large. 
There are a number of commercial Java implementations targeted 
for small devices. Information on the size characteristics of some 
of these implementations is available: Waba [17] requires less 
than 64 KB of RAM to run (although it is not Java-compliant); 
Esmertec’s JBED ME [13] has a footprint of 210 KB; and Aplix’s 
JBlend [14] can run in less than 30 KB of RAM, but 256 KB is 
recommended. IBM’s WebSphere Micro Environment [18] has 
interesting characteristics, but its size characteristics are 
unknown. 

3. DESIGN 
The project’s main goal of building a CLDC-compliant system on 
a small device led to a few straightforward consequent goals, 
namely minimizing the size of transmitted classfiles, the RAM 
needed for classfile loading, the size of loaded classfiles, the 
RAM required during execution, and the size of the interpreter 
and memory system. In addition, the system had to effectively 
deal with NVM. 
These goals were in turn realized through a few clear design 
choices. 
• Standard CLDC classfiles are too large and complex to 

process on a device with 8K of RAM. Employing a Java 
Card™ technique [11], they are instead preprocessed off-
device and packaged into a smaller representation, called a 
suite, which then can be verified and loaded on-device in 8 
KB. 

• Certain types of code make verification and garbage 
collection substantially more complicated. The classfile 
preprocessor, called the translator, identifies these problems 
and produces simple, semantically equivalent suite code. 

• The standard bytecode set is not as space efficient as it could 
be. The translator transforms the bytecodes into a more 
compact form. 

• The standard classfile contains symbolic information for 
resolving references to various entities. This feature makes 
classfiles larger, slows down initial execution (when these 
symbolic references are resolved), and precludes the efficient 
execution of classfiles in NVM. The Squawk system resolves 
the references before execution, either during off-device 
translation or during the installation of suites on the device 
(which is allowed by the CLDC standard) into NVM. 

• The standard mechanism for constructing and initializing 
objects complicates verification, which as a result requires 
too much space on a small device. The Squawk translator 
recasts object creation into an equivalent form that can be 
verified more efficiently. 

• As with other small devices, the next generation Java Card 
has three memory spaces with distinct characteristics. The 
Squawk system uses a region-aware memory manager and 
uses NVM whenever reasonable for persistent data (such as 
classes and methods). 

The resulting design is not only small enough to run on a small 
device, but is relatively fast and portable because of its simplicity. 
The rest of this section presents details of the above features. 
More information can be found in the Squawk specification [9]. 

3.1 Code Structure 
Bytecode verification and exact garbage collection are made 
substantially more complex, and thus more difficult on a small 
device, due to the code allowed on a standard JVM. The general 
problem is that pointers are hard to find and track. Specifically: 
• Local variables are allowed to change from holding values of 

one type to values of another at arbitrary places in a method.  
• The evaluation stack may contain an arbitrary number of 

entries at a basic block boundary.  
• Methods can be called when there are arbitrary entries on the 

evaluation stack.  
The CLDC specification addressed these issues by introducing a 
classfile attribute, called a stackmap, that identifies the types of 
local variables and stack entries in a method. However, this 
mechanism is still too complex and memory intensive for the 
devices intended for Squawk. 
These problems are solved in Squawk by placing concomitant 
restrictions on the code executed by the interpreter. These are: 
• A local variable can only hold one type. This restriction 

simplifies both verification and garbage collection. Pointers 
held in local variables can always be found unambiguously. 

• The evaluation stack must be empty at the end of a basic 
block. This restriction simplifies verification because no 
stack merging analysis needs to be done. 

• Bytecodes that can trigger a garbage collection may only be 
executed when the evaluation stack contains only the 
operands for those bytecodes. This restriction (in conjunction 
with the first two) saves space by requiring only a single bit 
vector to locate all the pointers in a method’s activation 
record (essentially requiring only a stackmap per method 
instead of a stackmap per basic block). 

The Squawk system implements these restrictions in the translator 
that converts classfiles to suites. The translator (a) creates extra 
local variables for existing local variables that are reused and (b) 
creates extra local variables to hold stack values that need to be 
stored at basic block boundaries and at instructions that can 
trigger a garbage collection. It also inserts additional load and 
store instructions to manage the values put in these extra 
variables. 
The first transformation proved to be more complex than 
anticipated because it relied on the liveness information implicit 
in the CLDC stackmaps to identify reuse of local variables. 
However, the stackmaps produced by the current version of the 
CLDC are not completely accurate; they are occasionally describe 
a local variable as live at a basic block boundary even though the 
variable is never used from that point on. The translator therefore 
performs its own liveness analysis. 
These transformations can in theory substantially increase the 
number of variables required for a method. However, the 
translator also includes an aggressive register allocation algorithm 
to reduce the final number of local variables required by a 
method. In practice, the increase in the number of local variables 
is relatively small. For the current Java Card 2.0 core API there 
was a 6% increase in local variables. Due to the compact 
bytecode instruction set used in suites, the average size of 
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methods decreased even with the added load and store 
instructions. 

3.2 The Compact Bytecode Set 
The Squawk bytecodes are based on the standard Java bytecodes, 
with changes made to simplify execution and to save space. The 
complete Squawk bytecode set supports full CLDC functionality; 
a minimized subset has additionally been defined, with reduced 
operand field sizes appropriate for small devices (for example, 
with the minimized subset a class cannot have more than 256 
static fields). This paper focuses on the minimized subset. 
Many common bytecode sequences in standard Java require three 
bytes. In Squawk these sequences are reduced when possible to 
two bytes. For example, most branch instructions are two bytes in 
length, the branch bytecode being one and an 8-bit offset being 
the other. 
The concept of the wide prefix in standard Java is enhanced in 
Squawk, so that an operand can be extended from 8 bits to 12, 16, 
or 32 bits. Returning to the branch example, occasionally the 
branch offset will exceed the 8-bit offset field and a wide prefix 
will be needed. Often a further 4-bits will be sufficient and this 
can be supplied using one of sixteen 4-bit wide prefix bytecodes. 
Thus a 12-bit offset is realized using a three byte sequence. In the 
rare case that this is insufficient, the offset can be extended to 16 
or 32 bits using two more bytecodes called wide_half and 
wide_full. In these two cases the example branch would be 4 and 
6 bytes in length respectively. 
Local variables are explicitly typed in Squawk, eliminating the 
need for the type specific load and store bytecodes of the standard 
bytecode set. These bytecodes have been replaced with more load 
and store instructions that include the local variable number as 
part of the bytecode, increasing the number of such bytecodes 
from four each for loads and stores to sixteen. Many methods 
have more than four local variables, but relatively few have more 
than sixteen. 

3.3 Bytecode Resolution 
The standard bytecodes reference class members (fields and 
methods) symbolically via a name string rather than with an index 
or pointer. These symbolic references must be resolved sooner or 
later through some lookup process. In many Java interpreters this 
is done as the bytecodes are executed, and a common 
optimization is to then patch the bytecode stream with special 
resolved bytecodes that are often termed quick or fast bytecodes. 
This optimization is not suitable for systems that execute 
bytecodes in read-only or slow-to-write memory. Instead, in the 
Squawk system the bytecodes are resolved, as much as possible, 
when they are written into the memory of the target device during 
loading. At this time a field access can be resolved to an absolute 
offset within an object, and a method invocation can be resolved 
to a offset within a vtable. As a result the Squawk system does not 
need the symbolic constant pool found in standard Java systems, 
which saves a great deal of space. 

3.4 Bytecode Verification 
The restrictions placed on code structure, described above, make 
possible a simple two-pass verification process. The first pass 
reads the bytecodes one by one from an input stream, verifies that 
they are correct in terms of type safety, resolves class member 
references as described in the previous section, and writes them 

into their final location in NVM. A second pass is required to 
check that all branch targets are valid. The main advantages of 
this process are that only a few bytes of a method need be in 
RAM at one time, and that NVM (typically EEPROM) is written 
serially. 

3.5 Object Construction 
The standard protocol for constructing a Java object considerably 
complicates verification: the result of the new bytecode is an 
uninitialized object that must be regarded as a different type. This 
in turn entails creating a separate type for each new bytecode 
executed in each method. The overhead of maintaining these extra 
types is simply too high for Squawk, given the small amount of 
RAM available. 
Squawk therefore handles object construction differently. Figure 
1 shows a simple Java expression. When compiled with javac 
this expression becomes the bytecode sequence shown in Figure 
2. This shows the new bytecode being used to create a prototype 
object. A copy of this object is made on the stack and the object 
constructor is called with this parameter. When the constructor 
returns the copy of the uninitialized object (which is now 
initialized) is stored into a local variable. 
 

Integer one = new Integer(1); 

 
Figure 1. An example of creating an Integer object 

 
new java.lang.Integer 

dup 

iconst_1 

invokespecial <init>(int) 

astore_3 

 

Figure 2. The corresponding bytecode for Figure 1 
 
Our solution to the verification problem is not to expose 
uninitialized object references to the bytecode environment. 
Instead of having the new bytecode create the object, the object 
constructor method can do this, and return the address of the 
newly created object. Because object constructors are also called 
from other object constructors, a null object pointer must be 
passed to the outermost constructor to indicate this case, acting as 
a flag to indicate that a real object must be created. Constructors 
further up the class hierarchy must also be called and will be 
passed the reference to the original object in place of the null. 
Thus a constructor will allocate an object and replace the first 
parameter only if that parameter is a null. 
Object construction is complicated by the fact that it must cause 
the initialization of the class of the object being created if it is not 
yet initialized. One of the less intuitive parts of the Java platform 
is that an expression such as: 
 
     new Foo(new Bar());  
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causes the Foo class to be initialized before the Bar class, yet the 
Bar object  is created before the Foo object. It is essential that 
Java semantics be preserved in this respect. In order to satisfy the 
requirement that class initialization occurs at the correct time, the 
Squawk system uses the new clinit bytecode. This bytecode 
initializes the class as necessary. 
Figure 3 shows the Squawk bytecode sequence for the example in 
Figure 1. The Integer class is initialized if necessary, and then 
the constructor is invoked (with a null receiver). This method 
returns the newly created object, which is then stored in a local 
variable. 
 

clinit java.lang.Integer 

const_null 

iconst_1 

invokeinit <init>(int) 

store_3 

 

Figure 3. The Squawk bytecode sequence for Figure 1 
 
This different way of handling object construction does in fact 
lead to one small difference in the semantics of execution with 
respect to the Java standard. Out-of-memory errors can occur at 
slightly different times. In the standard case, where the object is 
allocated before the constructor is called, the error is thrown 
before the parameters for the constructor are evaluated. In the 
Squawk system execution occurs the other way around, so the 
evaluation of the parameters for the constructor can cause the 
memory error to be thrown before the object is allocated. 
Although this is a clear difference at the virtual machine code 
level it is less clear from the language specification that there is a 
correct order of allocation. This is made less clear still when one 
considers that calling the constructor may also fail due to inability 
to allocate an activation record.  

3.6 The Format of Suites 
The suite was specifically designed so that it could be read 
serially, with the information in the best order for installation 
using very little temporary (RAM) memory. The primary 
difference between a suite and a classfile is that in a suite all the 
class metadata for all classes comes before any of the methods for 
those classes. This means that by the time the bytecodes need to 
be verified all the class definitions have been processed. 
A suite defines a collection of classes. The classes defined in the 
suite are called Real Classes. Classes external to the suite but 
used by classes in it are represented by Proxy Classes. Proxy 
classes contain much of the symbolic information found in the 
constant pool of a standard classfile. Proxy classes allow the 
fields and methods of classes external to the suite to be treated in 
the same way as the real classes defined in the suite. 

3.7 Memory Issues 
Getting Squawk to run on devices with small, tripartite memories 
raised some issues with respect to minimizing memory and 
placing data 

3.7.1 Inter-region pointers 
Squawk supports separate memories in three areas, RAM, NVM, 
and ROM. Objects in less permanent memory are allowed to 
contain references to objects in more permanent memory but not 
vice versa. Thus objects in NVM can refer to objects in ROM and 
objects in RAM can refer to objects in NVM or ROM. 

3.7.2 The stack 
The Squawk system uses a chunky stack, a stack composed of 
chunks allocated in the RAM heap and linked together. Each 
chunk is a Java object and thus can be garbage collected. 
Activation records are allocated from within a chunk. 

3.7.3 Class definitions 
Class definition information is divided into two types, immutable 
and mutable. For example, method bytecode arrays are 
immutable, while static variables are mutable. All objects have a 
one-word header that points to the immutable class information 
for that object type. The mutable state is held in an associative 
memory in RAM that is addressed using an internal class number. 
The bulk of the class definition is thus stored in NVM or ROM. 

3.7.4 Monitors 
Object monitors are used to implement synchronization. The 
monitors are placed in a LRU queue in RAM with the most 
recently used monitor at the head of the queue. All monitors hold 
a reference to their corresponding object. The garbage collector 
keeps monitors for live but unlocked objects (that is, the monitors 
are not currently being used) in the queue in case they are needed 
in the future. The act of allocating a monitor will cull unused 
monitors from the queue in order to prevent searching the queue 
from being a performance issue. Currently only six unused 
monitors are allowed in the queue. 

4. IMPLEMENTATION 
The Squawk system is implemented almost entirely in the Java 
language. As much as possible of it is implemented in standard 
Java code that is executed by the interpreter itself. This makes the 
system easy to develop and maintain. Such features as thread 
management, class initialization, object synchronization, and class 
loading are implemented this way. The remaining parts of the VM 
-- the interpreter, garbage collector, and native methods – are 
almost completely written in a Java subset that is also a subset of 
C. The VM thus is tested as a Java program before being 
compiled and debugged as a C program. The intersection of the 
Java and C languages is not feature rich; nonetheless, despite 
lacking such features as C structures and Java objects for 
describing runtime data structures, the interpreter is compact and 
readable. There are a few unavoidable syntactic differences 
between Java and C. A very simple Java-to-C converter (written 
in Java) performs these minor syntactic translations. 

4.1 System data structures 
All the data structures in the VM are implemented as Java objects, 
or as objects with a format compatible with the memory 
management system (stack chunks, for example, are implemented 
as a special form of integer array). 

4.1.1 Methods 
Methods are implemented as byte arrays. The first few bytes of 
these arrays contain some specially encoded method data that 
eliminates the need for a method object, which saves a significant 
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amount of space. The method header includes an object pointer 
map for the method’s activation record (used by the garbage 
collector) and an exception handler table. Each class object has a 
pair of vtables that are used for the static and virtual methods for 
the class. These are normal Java arrays of byte arrays (byte[][]). 
Interfaces are handled using lookup tables that translate a method 
offset defined within an interface to a method offset in the virtual 
methods of the class. 

4.1.2 Object pointer maps 
Every class contains a reference to a byte array that contains an 
object pointer map used by the garbage collector to identify 
pointers in instances of the class. The translator, when it defines 
the internal representation of an instance, makes sure that pointer 
fields appear first. This canonicalization of representations greatly 
reduces the number of object pointer maps. Squawk has six 
predefined pointer maps that cover 92% (110 of 120) of all the 
classes in the CLDC runtime library.  

4.1.3 Class state and initialization records 
A class state record is the mutable part of a class definition. It 
contains the object reference fields and the integer fields used to 
hold the static variables of the class. The initialization state of the 
class is maintained in a separate data structure (also in RAM). A 
class can be in one of four states: 
• It is not initialized. It has neither a class state record nor a 

class initialization record. 
• It is being initialized. It has an initialization record. 
• It is initialized. It has a state record. 
• It cannot be initialized. It has an initialization record 

indicating this. 
The class state records are associatively referenced and are kept in 
an LRU queue, which reduces access time. 
The class initialization code is written in Java and is an exact 
transcription of the procedure described on page 53 of the Java 
Virtual Machine Specification, Second Edition[3]. The code uses 
the standard Java synchronization and object notification 
mechanisms. An optimization is employed to avoid this procedure 
in some cases. When a class has no <clinit> method and none 
of its super classes have one then the class is defined as not 
requiring initialization. Classes of this kind are immediately 
marked as initialized when initialization is required. This 
optimization is used when the system is started, so that the classes 
java.lang.Class and java.lang.Thread and the 
Monitor class do not require full initialization. 

4.1.4 Threads, Monitors, and Activation records 
Threads are implemented using a java.lang.Thread object 
and a logical chain of activation records. The thread object points 
to the youngest stack chunk when the thread is not running, and 
the stack chunk itself has a pointer to the youngest activation 
record it contains. Activation records are not objects in the heap 
because if they were the frequency of their allocation and 
deallocation would make the system slow. Instead, activation 
records are areas within a chunk and are allocated by moving a 
stack pointer within the chunk. When a stack chunk becomes too 
full to hold another activation record a new chunk is chained onto 
the old one and the new activation record is placed there. Old 
chunks are retained so that they may be reused. This can be a 

significant performance benefit in the case where a leaf routine is 
called frequently in a tight loop and its activation record cannot 
be allocated in the current stack chunk. The garbage collector 
must check chunks to see if they are truly unused (as it must also 
check unused monitor objects). 

4.2 Garbage collection 
The transformer makes garbage collection relatively simple. 
Objects and activation records have simple object pointer maps 
that identify object references, which make exact garbage 
collection possible. 
Squawk guarantees that there are no C local variables in (the C 
version of) the interpreter by not invoking the garbage collector 
from the interpreter. Instead, the main control loop of the system 
is: 
 for(;;) { 

  interpret(result); 

  result = gc(); 

} 

The interpreter only exits when memory allocation fails. The 
amount of memory required is recorded in a global variable when 
this occurs. When the collector is finished it compares the 
available memory with the amount needed, and returns false if 
there is still not enough. This flag is passed to the interpreter, 
which will then throw an OutOfMemoryError if the collector 
could not recover enough memory for the program. 
This simple system works because the entire state of the virtual 
machine is represented using only objects in the object memory. 
There are certain special roots in the object memory, but these are 
known to the collector and interpreter and are referenced through 
accessor methods. 
There are only three events in the interpreter that can cause a 
garbage collection: explicit invocation of the method 
System.gc(), the failure to allocate a stack chunk, and the 
failure to allocate an object. All three of these events occur on 
method entry. This is true for stack chunk allocation because 
when a method starts running it attempts to extend a preallocated 
minimal activation record to include the memory needed for its 
local variables and evaluation stack. It is true for object allocation 
because that is done as a side effect of entering an object 
constructor. 

4.3 Thread scheduling 
Thread scheduling is done in the class java.lang.Thread. A 
very small native method called from this class causes the virtual 
machine to stop running one thread and start running another one. 
Thus the thread scheduling code is factored out of the core VM, 
which makes it easy to change the scheduling algorithm. Thread 
preemption is achieved by decrementing a counter every time the 
interpreter executes a branch. When the counter reaches zero the 
interpreter automatically invokes the method 
Thread.yield(), which allows another thread to execute. 

It is possible for the virtual machine to run out of active threads. 
This will occur when all the live threads are either waiting for I/O 
to complete or for a thread sleep operation to terminate. In this 
case a native method is called that causes the virtual machine to 
wait for a specified time or wait until the completion of an I/O 
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operation. When this native method returns the VM will find a 
thread to execute. 

4.4 Native Methods and I/O 
Native code that is used for I/O is modularized into components 
called channels. A channel has an API that must be adhered to in 
order for blocking I/O operations to correctly interoperate with 
the thread scheduling system. 
The main principle by which the I/O system operates is that 
thread switching cannot occur while executing native code. This 
is an obvious consequence of the way thread scheduling is done 
(by Java code in the thread class). There is however a mechanism 
by which thread switching can occur when a long I/O operation 
takes place. This relies on close cooperation between the Java 
code and native code. When a channel is asked to perform I/O it 
can return an event number. The thread must then be blocked 
until the event occurs; there is a method in the thread library that 
does this. When the I/O event completes the native code will 
record the completed event number in a queue. The Java 
scheduling code in the thread library will periodically examine 
this queue and restart the blocked thread. 

5. RESULTS 
A prototype implementation of the Squawk system is complete, 
including the translator and the virtual machine. Enough Java API 
library support has been written to support the CLDC TCK 
compatibility tests and a few demos. 
All 4628 TCK tests have been run on the system, and 4537 (98%) 
pass. The translator fails 43 due to the inability to handle esoteric 
or border case constructs. The VM fails 37 because of limits 
imposed by the minimized bytecode set, and the system fails 11 
due to the current absence of complete runtime access control (the 
verifier currently ignores private, protected, and public access 
modifiers). 
The static footprint of the core system, compiled from C, which 
includes the interpreter, a RAM garbage collector, and an NVM 
garbage collector, is 25918 bytes of x86 instructions (this does  
not include C libraries). 
The minimum runtime footprint in RAM (the memory needed for 
the null program) is 520 bytes for the Java heap and 532 bytes for 
native stack and data (on the x86). 
The runtime performance of the Squawk system is close to that of 
the KVM, ranging from 84% to 107% of the KVM for four 
benchmark programs. 

Table 1. Execution times for Squawk and KVM 

 Squawk KVM Squawk/KVM 
delta blue 2864 2624 0.92 
mpeg 8282 7020 0.84 
cubes 4927 4226 0.86 
hanoi 3556 3805 1.07 

Note: times are in milliseconds; delta blue is a constraint based 
equation solver; mpeg is an mpeg decoder program, cubes is a 3-
D rotation and display program; and hanoi is the tower of Hanoi 
program. 
Both the KVM and Squawk interpreters are implemented as a 
switch statement in a loop written in C. The most likely reason for 
the Squawk system’s slightly slower performance is that a number 

of bytecodes are implemented with Java functions (instanceof, 
checkcast,  and monitor operations, for example), and although 
they are not being called often they are enough to cause these 
small reductions in performance. 
Uncompressed, suites are on average 38% the size of JAR files. 
Compressed, they are 32%. (Uncompressed JARs are classes run 
through the JAR tool without compression, uncompressed suites 
are as emitted by the translator, compressed JARs are classes run 
through the JAR tool with compression, and compressed suites 
are suites that have been run through the JAR tool with 
compression.) 

Table 2. Comparison of Uncompressed JAR and Suite Sizes 

uncompressed JAR suite suite/JAR 

CLDC 458291 149542 0.33 

cubes 38904 16687 0.42 

hanoi 1805 835 0.46 

delta blue 30623  8144 0.27 

mpeg 100917 54888 0.54 

manyballs 12017 6100 0.51 

pong 17993 7567 0.42 

spaceinvaders 50854 25953 0.51 

tilepuzzle 18516 7438 0.40 

wormgame 23985 9131 0.38 

total 753905 286285 0.38 

Table 3. Comparison of Compressed JAR and Suite Sizes 

compressed JAR suite suite/JAR 

CLDC 238570 66109 0.28 

cubes 21087 8548 0.40 

hanoi 1259 934 0.74 

delta blue 17011 4306 0.25 

mpeg 42716 16713 0.39 

manyballs 6786 3485 0.51 

pong 9789 4120 0.42 

spaceinvaders 21854 9064 0.41 

tilepuzzle 10107 4124 0.41 

wormgame 13253 4738 0.36 

total 382432 122141 0.32 

Note: manyballs is a simple thread demo; tilepuzzle and 
wormgame are simple games; and pong and spaceinvaders are 
Java versions of the popular games. 
The hanoi benchmark is smaller as an uncompressed suite than as 
a compressed one because the suite version is small and already 
compact, so that running it through the JAR tool simply adds the 
overhead of the JAR file structure. 
Leaving aside hanoi, the variance in size relative to the JAR 
format is explained by the ratio of large methods to small ones. 
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The per-method overhead is larger in a classfile than a suite, with 
the result that suites with many small methods will compare more 
favorably to their corresponding JAR files than suites with a few 
big methods. 

Table 4. Comparison of Suite and NVM Image Sizes 

 suite image 

cubes 16687 16400 

hanoi 835 576 

delta blue 8144 10152 

mpeg 100917 52896 

manyballs 6100 3700 

pong 7567 5524 

spaceinvaders 25953 22116 

tilepuzzle 7438 7344 

wormgame 9131 6952 

Table 4 shows a comparison of the size of applications in their 
uncompressed suite formats versus their in-memory image 
formats. The sizes are all smaller for the image format except for 
delta blue. This is due to the way that String objects are currently 
set up in an image: they are converted from UTF8 encoding in the 
suite to 16-bit unicode encoding in the image. The delta blue suite 
contains a number of strings. An optimization is planned that will 
represent strings as byte arrays, which will solve this problem. 
 
The above results are preliminary. A number of issues remain 
relating to the generation of translated bytecodes. For example, 
there is no “dup” bytecode in Squawk; it must instead be 
emulated using an additional local variable. As a result the 
translator does not always generate the best Squawk code. For 
example: 
 count++ 
is compiled by javac into the following 6 Java bytecodes: 
 aload_0 
 dup 
 getfield #17 <Field int count> 
 iconst_1 
 iadd 
 putfield #17 <Field int count> 
which in turn is translated into 10 Squawk bytecodes: 
 load_0 
 store_5 
 load_5 
 getfield .ubyte 0 
 const_1 
 iadd 
 store_6 
 load_5 
 load_6 
 putfield .ubyte 0 
In contrast, the logical equivalent: 
 count = count + 1 
compiles to the following 6 Java bytecodes: 
 aload_0 
 aload_0 
 getfield #17 <Field int count> 
 iconst_1 
 iadd 
 putfield #17 <Field int count> 
which in turn is translated into 4 Squawk bytecodes: 

 this_getfield .ubyte 0 
 const_1 
 iadd 
 this_putfield .ubyte 0 

6. CONCLUSIONS AND FUTURE WORK 
The Squawk system is a CLDC-compliant Java implementation 
for small devices. Preliminary results show it to achieve classfile 
compaction roughly comparable to other techniques. It does this, 
however, with considerably smaller on-device memory 
requirements, both in terms of the static system footprint and the 
RAM required to verify, load, and run applications. It does this at 
no speed penalty, compared to a reference interpreter. 
It was successfully implemented completely in the Java language, 
including the core interpreter and garbage collector. Key 
components have been automatically converted to C and 
compiled, and the system runs natively on the x86 and SPARC 
platforms. 
Anticipated future work includes: various improvements that will 
decrease size (addressing such issues as the string and dup 
problems) and increase speed; developing functionality related 
specifically to the Java Card platform (supporting, for example, 
NVM object storage and transactions); and porting the system to 
interesting small devices. 

7. REFERENCES 
[1] Alpern, B., et alia; "The Jalapeno virtual machine", 

IBM Systems Journal, Vol. 39, No. 1, 2000, pp. 211-
238. 

[2] Clausen, L.R., Schultz, U.P., Consel, C., Muller, G.; 
“Java Bytecode Compression for Low-End Embedded 
Systems”; ACM Transactions on Programming 
Languages and Systems, Vol. 22, No. 3, May 2000, 
pp. 471-489. 

[3] Lindholm, T, Yellin, F; The Java Virtual Machine 
Specification, Second Edition; Addison-Wesley, April 
1999. 

[4] Pugh, W.; “Compressing Java Class Files”; 
Proceedings of the ACM SIGPLAN Conference on 
Programming Language Design and Implementation 
(PLDI ‘99), 1999, pp 247-258. 

[5] Rayside, D., Mamas, E., Hons, E.; “Compact Java 
Binaries for Embedded Systems”; Proceedings of the 
9th NRC|IBM Centre for Advanced Studies Conference 
(CASCON ‘99), 1999, pp. 1-14. 

[6] Taivalsaari, A; Implementing a Java Virtual Machine 
in the Java Programming Language; Sun 
Microsystems Laboratories Technical Report TR-98-
64, March 1998. 

[7] Taivalsaari, A, Bush, B, and Simon, D; The Spotless 
System: Implementing a Java System for the Palm 
Connected Organizer; Sun Microsystems Laboratories 
Technical Report TR-99-73, February 1999. 

[8] Tip, F., Sweeney, P.F., Laffra, C., Eisma, A., Streeter, 
D.; “Practical Extraction Techniques for Java”; ACM 

40



Transactions on Programming Languages and 
Systems, Vol. 24, No. 5, November 2002, pp. 625-666. 

[9] The Squawk System, Preliminary Draft Specification 
2.1; Sun Microsystems Laboratories; 16 September 
2002. 

[10] Connected Limited Device Configuration: 
http://java.sun.com/products/cldc/ 

[11] Java Card: http://wireless.java.sun.com/javacard/ 
[12] Squeak Smalltalk implementation: 

http://www.squeak.org 
[13] Esmertec’s JBED ME: 

http://www.esmertec.com/technology/articles.shtm 
[14] Aplix’s JBlend: 

http://www.aplixcorp.com/products/jblend.html. 

[15] Jikes Research Virtual Machine: 
http://www.ibm.com/developerworks/oss/jikesrvm/ 

[16] joeq virtual machine: 
http://sourceforge.net/projects/joeq 
http://www.stanford.edu/~jwhaley/ 

[17] Waba programming platform: www.wabasoft.com. 
[18] IBM’s WebSphere Micro Environment: 

http://www.ibm.com/software/wireless/wme/ 
 
 
Sun, Sun Microsystems, Java, Java Card, Java Virtual 

Machine, and JVM are trademarks or registered 
trademarks of Sun Microsystems, Inc. in the United 
States and other countries. 

 

 

41


