
A Java Virtual Machine Architecture for Very Small
Devices

Nik Shaylor

Sun Microsystems Research
Laboratories

2600 Casey Avenue
Mountain View, CA 94043

USA

nik.shaylor@sun.com

Douglas N. Simon
Sun Microsystems Research

Laboratories
2600 Casey Avenue

Mountain View, CA 94043
USA

doug.simon@sun.com

William R. Bush
Sun Microsystems Research

Laboratories
2600 Casey Avenue

Mountain View, CA 94043
USA

bill.bush@sun.com

ABSTRACT
The smallest complete Java™ virtual machine implementations in
use today are based on the CLDC standard and are deployed in
mobile phones and PDAs. These implementations require several
tens of kilobytes. Smaller Java-like implementations also exist,
but these involve compromises in Java semantics. This paper
describes a JVM™ architecture designed for very small devices.
It supports all the CLDC Java platform semantics, including exact
garbage collection, dynamic class loading, and verification. For
portability and ease of debugging, the entire system is written in
the Java language, with key components automatically translated
into C and compiled for the target device. The resulting system
will run on the next generation of smart cards, and has
performance comparable to the reference CLDC implementation
available from Sun™.

Categories and Subject Descriptors
D.3.4 Programming Languages: Processors – Interpreters,
Optimization, Preprocessors, Run-time environments.

General Terms: Languages.

Keywords: Java, CLDC, JVM, next generation smart cards,
limited-memory devices.

1. INTRODUCTION
The work described here is a continuation in spirit of the Spotless
project [7], begun in 1998. The goal then was to build a small but
complete Java virtual machine, with the Palm Pilot the target
platform. The resulting artifact turned into the KVM, which
became the basis of the CLDC standard [10].
The main goal of the present effort was once again to build a
small Java virtual machine, but one that is smaller and more

mature (CLDC compliant, with verification and exact garbage
collection). The target platform is the next generation of smart
cards, which have 32-bit processors, but may have no more than 8
KB of RAM, 32 KB of non-volatile memory (NVM, typically
EEPROM), and 160 KB of ROM. Such a VM would obviously
also be suitable for other embedded devices with similar
characteristics.
A secondary goal was to write the system as much as possible in
the Java language, for both portability and ease of debugging. The
system is therefore called Squawk, in homage to the Squeak
Smalltalk system [12].

2. BACKGROUND
The size of Java classfiles has long been recognized as an issue,
especially for embedded devices. A number of efforts have been
made to reduce the size, both as a transmission format and as an
execution format. Pugh [4] developed techniques for compressing
classfile components for transmission, and achieved sizes ranging
from 17% to 49% of the comparable JAR files. Rayside et al. [5],
in contrast, focused on execution format, specifically reducing
constant pool size and code size. Reductions in JAR file size of
roughly 50% were obtained through optimizations of the constant
pool, and smaller improvements were realized through code
optimizations. Clausen et al. [2] developed a compressed
bytecode scheme using macros, achieving space savings of
around 30%, but at a runtime cost of up to 30%. Tip et al. [8]
developed techniques for extracting only the components
necessary for a particular application from a set of classfiles, with
the resulting archives reduced to 37.5% of their original size.
A primary goal of the above techniques was to perturb the Java
execution engine as little as possible. In contrast, the Java Card
paradigm introduces a muscular transformer between classfiles
and interpreter, which enables a different, space-optimized
interpreter.
Efforts have been made to implement Java in the Java language:
The JavaInJava system [6] was an early effort that encountered
performance issues and ran roughly 3 orders of magnitude slower
than a native implementation. The Jalapeno/Jikes [1][15] system
has extensively explored the optimization technology needed to
produce a high-performance system. The Joeq system [16], an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
LCTES’03, June 11-13, 2003, San Diego, California, USA
Copyright 2003 ACM 1-58113-647-1/03/0006…$5.00.

34

open source effort, is also focusing on performance. Both Jikes
and Joeq are relatively large.
There are a number of commercial Java implementations targeted
for small devices. Information on the size characteristics of some
of these implementations is available: Waba [17] requires less
than 64 KB of RAM to run (although it is not Java-compliant);
Esmertec’s JBED ME [13] has a footprint of 210 KB; and Aplix’s
JBlend [14] can run in less than 30 KB of RAM, but 256 KB is
recommended. IBM’s WebSphere Micro Environment [18] has
interesting characteristics, but its size characteristics are
unknown.

3. DESIGN
The project’s main goal of building a CLDC-compliant system on
a small device led to a few straightforward consequent goals,
namely minimizing the size of transmitted classfiles, the RAM
needed for classfile loading, the size of loaded classfiles, the
RAM required during execution, and the size of the interpreter
and memory system. In addition, the system had to effectively
deal with NVM.
These goals were in turn realized through a few clear design
choices.
• Standard CLDC classfiles are too large and complex to

process on a device with 8K of RAM. Employing a Java
Card™ technique [11], they are instead preprocessed off-
device and packaged into a smaller representation, called a
suite, which then can be verified and loaded on-device in 8
KB.

• Certain types of code make verification and garbage
collection substantially more complicated. The classfile
preprocessor, called the translator, identifies these problems
and produces simple, semantically equivalent suite code.

• The standard bytecode set is not as space efficient as it could
be. The translator transforms the bytecodes into a more
compact form.

• The standard classfile contains symbolic information for
resolving references to various entities. This feature makes
classfiles larger, slows down initial execution (when these
symbolic references are resolved), and precludes the efficient
execution of classfiles in NVM. The Squawk system resolves
the references before execution, either during off-device
translation or during the installation of suites on the device
(which is allowed by the CLDC standard) into NVM.

• The standard mechanism for constructing and initializing
objects complicates verification, which as a result requires
too much space on a small device. The Squawk translator
recasts object creation into an equivalent form that can be
verified more efficiently.

• As with other small devices, the next generation Java Card
has three memory spaces with distinct characteristics. The
Squawk system uses a region-aware memory manager and
uses NVM whenever reasonable for persistent data (such as
classes and methods).

The resulting design is not only small enough to run on a small
device, but is relatively fast and portable because of its simplicity.
The rest of this section presents details of the above features.
More information can be found in the Squawk specification [9].

3.1 Code Structure
Bytecode verification and exact garbage collection are made
substantially more complex, and thus more difficult on a small
device, due to the code allowed on a standard JVM. The general
problem is that pointers are hard to find and track. Specifically:
• Local variables are allowed to change from holding values of

one type to values of another at arbitrary places in a method.
• The evaluation stack may contain an arbitrary number of

entries at a basic block boundary.
• Methods can be called when there are arbitrary entries on the

evaluation stack.
The CLDC specification addressed these issues by introducing a
classfile attribute, called a stackmap, that identifies the types of
local variables and stack entries in a method. However, this
mechanism is still too complex and memory intensive for the
devices intended for Squawk.
These problems are solved in Squawk by placing concomitant
restrictions on the code executed by the interpreter. These are:
• A local variable can only hold one type. This restriction

simplifies both verification and garbage collection. Pointers
held in local variables can always be found unambiguously.

• The evaluation stack must be empty at the end of a basic
block. This restriction simplifies verification because no
stack merging analysis needs to be done.

• Bytecodes that can trigger a garbage collection may only be
executed when the evaluation stack contains only the
operands for those bytecodes. This restriction (in conjunction
with the first two) saves space by requiring only a single bit
vector to locate all the pointers in a method’s activation
record (essentially requiring only a stackmap per method
instead of a stackmap per basic block).

The Squawk system implements these restrictions in the translator
that converts classfiles to suites. The translator (a) creates extra
local variables for existing local variables that are reused and (b)
creates extra local variables to hold stack values that need to be
stored at basic block boundaries and at instructions that can
trigger a garbage collection. It also inserts additional load and
store instructions to manage the values put in these extra
variables.
The first transformation proved to be more complex than
anticipated because it relied on the liveness information implicit
in the CLDC stackmaps to identify reuse of local variables.
However, the stackmaps produced by the current version of the
CLDC are not completely accurate; they are occasionally describe
a local variable as live at a basic block boundary even though the
variable is never used from that point on. The translator therefore
performs its own liveness analysis.
These transformations can in theory substantially increase the
number of variables required for a method. However, the
translator also includes an aggressive register allocation algorithm
to reduce the final number of local variables required by a
method. In practice, the increase in the number of local variables
is relatively small. For the current Java Card 2.0 core API there
was a 6% increase in local variables. Due to the compact
bytecode instruction set used in suites, the average size of

35

methods decreased even with the added load and store
instructions.

3.2 The Compact Bytecode Set
The Squawk bytecodes are based on the standard Java bytecodes,
with changes made to simplify execution and to save space. The
complete Squawk bytecode set supports full CLDC functionality;
a minimized subset has additionally been defined, with reduced
operand field sizes appropriate for small devices (for example,
with the minimized subset a class cannot have more than 256
static fields). This paper focuses on the minimized subset.
Many common bytecode sequences in standard Java require three
bytes. In Squawk these sequences are reduced when possible to
two bytes. For example, most branch instructions are two bytes in
length, the branch bytecode being one and an 8-bit offset being
the other.
The concept of the wide prefix in standard Java is enhanced in
Squawk, so that an operand can be extended from 8 bits to 12, 16,
or 32 bits. Returning to the branch example, occasionally the
branch offset will exceed the 8-bit offset field and a wide prefix
will be needed. Often a further 4-bits will be sufficient and this
can be supplied using one of sixteen 4-bit wide prefix bytecodes.
Thus a 12-bit offset is realized using a three byte sequence. In the
rare case that this is insufficient, the offset can be extended to 16
or 32 bits using two more bytecodes called wide_half and
wide_full. In these two cases the example branch would be 4 and
6 bytes in length respectively.
Local variables are explicitly typed in Squawk, eliminating the
need for the type specific load and store bytecodes of the standard
bytecode set. These bytecodes have been replaced with more load
and store instructions that include the local variable number as
part of the bytecode, increasing the number of such bytecodes
from four each for loads and stores to sixteen. Many methods
have more than four local variables, but relatively few have more
than sixteen.

3.3 Bytecode Resolution
The standard bytecodes reference class members (fields and
methods) symbolically via a name string rather than with an index
or pointer. These symbolic references must be resolved sooner or
later through some lookup process. In many Java interpreters this
is done as the bytecodes are executed, and a common
optimization is to then patch the bytecode stream with special
resolved bytecodes that are often termed quick or fast bytecodes.
This optimization is not suitable for systems that execute
bytecodes in read-only or slow-to-write memory. Instead, in the
Squawk system the bytecodes are resolved, as much as possible,
when they are written into the memory of the target device during
loading. At this time a field access can be resolved to an absolute
offset within an object, and a method invocation can be resolved
to a offset within a vtable. As a result the Squawk system does not
need the symbolic constant pool found in standard Java systems,
which saves a great deal of space.

3.4 Bytecode Verification
The restrictions placed on code structure, described above, make
possible a simple two-pass verification process. The first pass
reads the bytecodes one by one from an input stream, verifies that
they are correct in terms of type safety, resolves class member
references as described in the previous section, and writes them

into their final location in NVM. A second pass is required to
check that all branch targets are valid. The main advantages of
this process are that only a few bytes of a method need be in
RAM at one time, and that NVM (typically EEPROM) is written
serially.

3.5 Object Construction
The standard protocol for constructing a Java object considerably
complicates verification: the result of the new bytecode is an
uninitialized object that must be regarded as a different type. This
in turn entails creating a separate type for each new bytecode
executed in each method. The overhead of maintaining these extra
types is simply too high for Squawk, given the small amount of
RAM available.
Squawk therefore handles object construction differently. Figure
1 shows a simple Java expression. When compiled with javac
this expression becomes the bytecode sequence shown in Figure
2. This shows the new bytecode being used to create a prototype
object. A copy of this object is made on the stack and the object
constructor is called with this parameter. When the constructor
returns the copy of the uninitialized object (which is now
initialized) is stored into a local variable.

Integer one = new Integer(1);

Figure 1. An example of creating an Integer object

new java.lang.Integer

dup

iconst_1

invokespecial <init>(int)

astore_3

Figure 2. The corresponding bytecode for Figure 1

Our solution to the verification problem is not to expose
uninitialized object references to the bytecode environment.
Instead of having the new bytecode create the object, the object
constructor method can do this, and return the address of the
newly created object. Because object constructors are also called
from other object constructors, a null object pointer must be
passed to the outermost constructor to indicate this case, acting as
a flag to indicate that a real object must be created. Constructors
further up the class hierarchy must also be called and will be
passed the reference to the original object in place of the null.
Thus a constructor will allocate an object and replace the first
parameter only if that parameter is a null.
Object construction is complicated by the fact that it must cause
the initialization of the class of the object being created if it is not
yet initialized. One of the less intuitive parts of the Java platform
is that an expression such as:

 new Foo(new Bar());

36

causes the Foo class to be initialized before the Bar class, yet the
Bar object is created before the Foo object. It is essential that
Java semantics be preserved in this respect. In order to satisfy the
requirement that class initialization occurs at the correct time, the
Squawk system uses the new clinit bytecode. This bytecode
initializes the class as necessary.
Figure 3 shows the Squawk bytecode sequence for the example in
Figure 1. The Integer class is initialized if necessary, and then
the constructor is invoked (with a null receiver). This method
returns the newly created object, which is then stored in a local
variable.

clinit java.lang.Integer

const_null

iconst_1

invokeinit <init>(int)

store_3

Figure 3. The Squawk bytecode sequence for Figure 1

This different way of handling object construction does in fact
lead to one small difference in the semantics of execution with
respect to the Java standard. Out-of-memory errors can occur at
slightly different times. In the standard case, where the object is
allocated before the constructor is called, the error is thrown
before the parameters for the constructor are evaluated. In the
Squawk system execution occurs the other way around, so the
evaluation of the parameters for the constructor can cause the
memory error to be thrown before the object is allocated.
Although this is a clear difference at the virtual machine code
level it is less clear from the language specification that there is a
correct order of allocation. This is made less clear still when one
considers that calling the constructor may also fail due to inability
to allocate an activation record.

3.6 The Format of Suites
The suite was specifically designed so that it could be read
serially, with the information in the best order for installation
using very little temporary (RAM) memory. The primary
difference between a suite and a classfile is that in a suite all the
class metadata for all classes comes before any of the methods for
those classes. This means that by the time the bytecodes need to
be verified all the class definitions have been processed.
A suite defines a collection of classes. The classes defined in the
suite are called Real Classes. Classes external to the suite but
used by classes in it are represented by Proxy Classes. Proxy
classes contain much of the symbolic information found in the
constant pool of a standard classfile. Proxy classes allow the
fields and methods of classes external to the suite to be treated in
the same way as the real classes defined in the suite.

3.7 Memory Issues
Getting Squawk to run on devices with small, tripartite memories
raised some issues with respect to minimizing memory and
placing data

3.7.1 Inter-region pointers
Squawk supports separate memories in three areas, RAM, NVM,
and ROM. Objects in less permanent memory are allowed to
contain references to objects in more permanent memory but not
vice versa. Thus objects in NVM can refer to objects in ROM and
objects in RAM can refer to objects in NVM or ROM.

3.7.2 The stack
The Squawk system uses a chunky stack, a stack composed of
chunks allocated in the RAM heap and linked together. Each
chunk is a Java object and thus can be garbage collected.
Activation records are allocated from within a chunk.

3.7.3 Class definitions
Class definition information is divided into two types, immutable
and mutable. For example, method bytecode arrays are
immutable, while static variables are mutable. All objects have a
one-word header that points to the immutable class information
for that object type. The mutable state is held in an associative
memory in RAM that is addressed using an internal class number.
The bulk of the class definition is thus stored in NVM or ROM.

3.7.4 Monitors
Object monitors are used to implement synchronization. The
monitors are placed in a LRU queue in RAM with the most
recently used monitor at the head of the queue. All monitors hold
a reference to their corresponding object. The garbage collector
keeps monitors for live but unlocked objects (that is, the monitors
are not currently being used) in the queue in case they are needed
in the future. The act of allocating a monitor will cull unused
monitors from the queue in order to prevent searching the queue
from being a performance issue. Currently only six unused
monitors are allowed in the queue.

4. IMPLEMENTATION
The Squawk system is implemented almost entirely in the Java
language. As much as possible of it is implemented in standard
Java code that is executed by the interpreter itself. This makes the
system easy to develop and maintain. Such features as thread
management, class initialization, object synchronization, and class
loading are implemented this way. The remaining parts of the VM
-- the interpreter, garbage collector, and native methods – are
almost completely written in a Java subset that is also a subset of
C. The VM thus is tested as a Java program before being
compiled and debugged as a C program. The intersection of the
Java and C languages is not feature rich; nonetheless, despite
lacking such features as C structures and Java objects for
describing runtime data structures, the interpreter is compact and
readable. There are a few unavoidable syntactic differences
between Java and C. A very simple Java-to-C converter (written
in Java) performs these minor syntactic translations.

4.1 System data structures
All the data structures in the VM are implemented as Java objects,
or as objects with a format compatible with the memory
management system (stack chunks, for example, are implemented
as a special form of integer array).

4.1.1 Methods
Methods are implemented as byte arrays. The first few bytes of
these arrays contain some specially encoded method data that
eliminates the need for a method object, which saves a significant

37

amount of space. The method header includes an object pointer
map for the method’s activation record (used by the garbage
collector) and an exception handler table. Each class object has a
pair of vtables that are used for the static and virtual methods for
the class. These are normal Java arrays of byte arrays (byte[][]).
Interfaces are handled using lookup tables that translate a method
offset defined within an interface to a method offset in the virtual
methods of the class.

4.1.2 Object pointer maps
Every class contains a reference to a byte array that contains an
object pointer map used by the garbage collector to identify
pointers in instances of the class. The translator, when it defines
the internal representation of an instance, makes sure that pointer
fields appear first. This canonicalization of representations greatly
reduces the number of object pointer maps. Squawk has six
predefined pointer maps that cover 92% (110 of 120) of all the
classes in the CLDC runtime library.

4.1.3 Class state and initialization records
A class state record is the mutable part of a class definition. It
contains the object reference fields and the integer fields used to
hold the static variables of the class. The initialization state of the
class is maintained in a separate data structure (also in RAM). A
class can be in one of four states:
• It is not initialized. It has neither a class state record nor a

class initialization record.
• It is being initialized. It has an initialization record.
• It is initialized. It has a state record.
• It cannot be initialized. It has an initialization record

indicating this.
The class state records are associatively referenced and are kept in
an LRU queue, which reduces access time.
The class initialization code is written in Java and is an exact
transcription of the procedure described on page 53 of the Java
Virtual Machine Specification, Second Edition[3]. The code uses
the standard Java synchronization and object notification
mechanisms. An optimization is employed to avoid this procedure
in some cases. When a class has no <clinit> method and none
of its super classes have one then the class is defined as not
requiring initialization. Classes of this kind are immediately
marked as initialized when initialization is required. This
optimization is used when the system is started, so that the classes
java.lang.Class and java.lang.Thread and the
Monitor class do not require full initialization.

4.1.4 Threads, Monitors, and Activation records
Threads are implemented using a java.lang.Thread object
and a logical chain of activation records. The thread object points
to the youngest stack chunk when the thread is not running, and
the stack chunk itself has a pointer to the youngest activation
record it contains. Activation records are not objects in the heap
because if they were the frequency of their allocation and
deallocation would make the system slow. Instead, activation
records are areas within a chunk and are allocated by moving a
stack pointer within the chunk. When a stack chunk becomes too
full to hold another activation record a new chunk is chained onto
the old one and the new activation record is placed there. Old
chunks are retained so that they may be reused. This can be a

significant performance benefit in the case where a leaf routine is
called frequently in a tight loop and its activation record cannot
be allocated in the current stack chunk. The garbage collector
must check chunks to see if they are truly unused (as it must also
check unused monitor objects).

4.2 Garbage collection
The transformer makes garbage collection relatively simple.
Objects and activation records have simple object pointer maps
that identify object references, which make exact garbage
collection possible.
Squawk guarantees that there are no C local variables in (the C
version of) the interpreter by not invoking the garbage collector
from the interpreter. Instead, the main control loop of the system
is:
 for(;;) {

 interpret(result);

 result = gc();

}

The interpreter only exits when memory allocation fails. The
amount of memory required is recorded in a global variable when
this occurs. When the collector is finished it compares the
available memory with the amount needed, and returns false if
there is still not enough. This flag is passed to the interpreter,
which will then throw an OutOfMemoryError if the collector
could not recover enough memory for the program.
This simple system works because the entire state of the virtual
machine is represented using only objects in the object memory.
There are certain special roots in the object memory, but these are
known to the collector and interpreter and are referenced through
accessor methods.
There are only three events in the interpreter that can cause a
garbage collection: explicit invocation of the method
System.gc(), the failure to allocate a stack chunk, and the
failure to allocate an object. All three of these events occur on
method entry. This is true for stack chunk allocation because
when a method starts running it attempts to extend a preallocated
minimal activation record to include the memory needed for its
local variables and evaluation stack. It is true for object allocation
because that is done as a side effect of entering an object
constructor.

4.3 Thread scheduling
Thread scheduling is done in the class java.lang.Thread. A
very small native method called from this class causes the virtual
machine to stop running one thread and start running another one.
Thus the thread scheduling code is factored out of the core VM,
which makes it easy to change the scheduling algorithm. Thread
preemption is achieved by decrementing a counter every time the
interpreter executes a branch. When the counter reaches zero the
interpreter automatically invokes the method
Thread.yield(), which allows another thread to execute.

It is possible for the virtual machine to run out of active threads.
This will occur when all the live threads are either waiting for I/O
to complete or for a thread sleep operation to terminate. In this
case a native method is called that causes the virtual machine to
wait for a specified time or wait until the completion of an I/O

38

operation. When this native method returns the VM will find a
thread to execute.

4.4 Native Methods and I/O
Native code that is used for I/O is modularized into components
called channels. A channel has an API that must be adhered to in
order for blocking I/O operations to correctly interoperate with
the thread scheduling system.
The main principle by which the I/O system operates is that
thread switching cannot occur while executing native code. This
is an obvious consequence of the way thread scheduling is done
(by Java code in the thread class). There is however a mechanism
by which thread switching can occur when a long I/O operation
takes place. This relies on close cooperation between the Java
code and native code. When a channel is asked to perform I/O it
can return an event number. The thread must then be blocked
until the event occurs; there is a method in the thread library that
does this. When the I/O event completes the native code will
record the completed event number in a queue. The Java
scheduling code in the thread library will periodically examine
this queue and restart the blocked thread.

5. RESULTS
A prototype implementation of the Squawk system is complete,
including the translator and the virtual machine. Enough Java API
library support has been written to support the CLDC TCK
compatibility tests and a few demos.
All 4628 TCK tests have been run on the system, and 4537 (98%)
pass. The translator fails 43 due to the inability to handle esoteric
or border case constructs. The VM fails 37 because of limits
imposed by the minimized bytecode set, and the system fails 11
due to the current absence of complete runtime access control (the
verifier currently ignores private, protected, and public access
modifiers).
The static footprint of the core system, compiled from C, which
includes the interpreter, a RAM garbage collector, and an NVM
garbage collector, is 25918 bytes of x86 instructions (this does
not include C libraries).
The minimum runtime footprint in RAM (the memory needed for
the null program) is 520 bytes for the Java heap and 532 bytes for
native stack and data (on the x86).
The runtime performance of the Squawk system is close to that of
the KVM, ranging from 84% to 107% of the KVM for four
benchmark programs.

Table 1. Execution times for Squawk and KVM

 Squawk KVM Squawk/KVM
delta blue 2864 2624 0.92
mpeg 8282 7020 0.84
cubes 4927 4226 0.86
hanoi 3556 3805 1.07

Note: times are in milliseconds; delta blue is a constraint based
equation solver; mpeg is an mpeg decoder program, cubes is a 3-
D rotation and display program; and hanoi is the tower of Hanoi
program.
Both the KVM and Squawk interpreters are implemented as a
switch statement in a loop written in C. The most likely reason for
the Squawk system’s slightly slower performance is that a number

of bytecodes are implemented with Java functions (instanceof,
checkcast, and monitor operations, for example), and although
they are not being called often they are enough to cause these
small reductions in performance.
Uncompressed, suites are on average 38% the size of JAR files.
Compressed, they are 32%. (Uncompressed JARs are classes run
through the JAR tool without compression, uncompressed suites
are as emitted by the translator, compressed JARs are classes run
through the JAR tool with compression, and compressed suites
are suites that have been run through the JAR tool with
compression.)

Table 2. Comparison of Uncompressed JAR and Suite Sizes

uncompressed JAR suite suite/JAR

CLDC 458291 149542 0.33

cubes 38904 16687 0.42

hanoi 1805 835 0.46

delta blue 30623 8144 0.27

mpeg 100917 54888 0.54

manyballs 12017 6100 0.51

pong 17993 7567 0.42

spaceinvaders 50854 25953 0.51

tilepuzzle 18516 7438 0.40

wormgame 23985 9131 0.38

total 753905 286285 0.38

Table 3. Comparison of Compressed JAR and Suite Sizes

compressed JAR suite suite/JAR

CLDC 238570 66109 0.28

cubes 21087 8548 0.40

hanoi 1259 934 0.74

delta blue 17011 4306 0.25

mpeg 42716 16713 0.39

manyballs 6786 3485 0.51

pong 9789 4120 0.42

spaceinvaders 21854 9064 0.41

tilepuzzle 10107 4124 0.41

wormgame 13253 4738 0.36

total 382432 122141 0.32

Note: manyballs is a simple thread demo; tilepuzzle and
wormgame are simple games; and pong and spaceinvaders are
Java versions of the popular games.
The hanoi benchmark is smaller as an uncompressed suite than as
a compressed one because the suite version is small and already
compact, so that running it through the JAR tool simply adds the
overhead of the JAR file structure.
Leaving aside hanoi, the variance in size relative to the JAR
format is explained by the ratio of large methods to small ones.

39

The per-method overhead is larger in a classfile than a suite, with
the result that suites with many small methods will compare more
favorably to their corresponding JAR files than suites with a few
big methods.

Table 4. Comparison of Suite and NVM Image Sizes

 suite image

cubes 16687 16400

hanoi 835 576

delta blue 8144 10152

mpeg 100917 52896

manyballs 6100 3700

pong 7567 5524

spaceinvaders 25953 22116

tilepuzzle 7438 7344

wormgame 9131 6952

Table 4 shows a comparison of the size of applications in their
uncompressed suite formats versus their in-memory image
formats. The sizes are all smaller for the image format except for
delta blue. This is due to the way that String objects are currently
set up in an image: they are converted from UTF8 encoding in the
suite to 16-bit unicode encoding in the image. The delta blue suite
contains a number of strings. An optimization is planned that will
represent strings as byte arrays, which will solve this problem.

The above results are preliminary. A number of issues remain
relating to the generation of translated bytecodes. For example,
there is no “dup” bytecode in Squawk; it must instead be
emulated using an additional local variable. As a result the
translator does not always generate the best Squawk code. For
example:
 count++
is compiled by javac into the following 6 Java bytecodes:
 aload_0
 dup
 getfield #17 <Field int count>
 iconst_1
 iadd
 putfield #17 <Field int count>
which in turn is translated into 10 Squawk bytecodes:
 load_0
 store_5
 load_5
 getfield .ubyte 0
 const_1
 iadd
 store_6
 load_5
 load_6
 putfield .ubyte 0
In contrast, the logical equivalent:
 count = count + 1
compiles to the following 6 Java bytecodes:
 aload_0
 aload_0
 getfield #17 <Field int count>
 iconst_1
 iadd
 putfield #17 <Field int count>
which in turn is translated into 4 Squawk bytecodes:

 this_getfield .ubyte 0
 const_1
 iadd
 this_putfield .ubyte 0

6. CONCLUSIONS AND FUTURE WORK
The Squawk system is a CLDC-compliant Java implementation
for small devices. Preliminary results show it to achieve classfile
compaction roughly comparable to other techniques. It does this,
however, with considerably smaller on-device memory
requirements, both in terms of the static system footprint and the
RAM required to verify, load, and run applications. It does this at
no speed penalty, compared to a reference interpreter.
It was successfully implemented completely in the Java language,
including the core interpreter and garbage collector. Key
components have been automatically converted to C and
compiled, and the system runs natively on the x86 and SPARC
platforms.
Anticipated future work includes: various improvements that will
decrease size (addressing such issues as the string and dup
problems) and increase speed; developing functionality related
specifically to the Java Card platform (supporting, for example,
NVM object storage and transactions); and porting the system to
interesting small devices.

7. REFERENCES
[1] Alpern, B., et alia; "The Jalapeno virtual machine",

IBM Systems Journal, Vol. 39, No. 1, 2000, pp. 211-
238.

[2] Clausen, L.R., Schultz, U.P., Consel, C., Muller, G.;
“Java Bytecode Compression for Low-End Embedded
Systems”; ACM Transactions on Programming
Languages and Systems, Vol. 22, No. 3, May 2000,
pp. 471-489.

[3] Lindholm, T, Yellin, F; The Java Virtual Machine
Specification, Second Edition; Addison-Wesley, April
1999.

[4] Pugh, W.; “Compressing Java Class Files”;
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI ‘99), 1999, pp 247-258.

[5] Rayside, D., Mamas, E., Hons, E.; “Compact Java
Binaries for Embedded Systems”; Proceedings of the
9th NRC|IBM Centre for Advanced Studies Conference
(CASCON ‘99), 1999, pp. 1-14.

[6] Taivalsaari, A; Implementing a Java Virtual Machine
in the Java Programming Language; Sun
Microsystems Laboratories Technical Report TR-98-
64, March 1998.

[7] Taivalsaari, A, Bush, B, and Simon, D; The Spotless
System: Implementing a Java System for the Palm
Connected Organizer; Sun Microsystems Laboratories
Technical Report TR-99-73, February 1999.

[8] Tip, F., Sweeney, P.F., Laffra, C., Eisma, A., Streeter,
D.; “Practical Extraction Techniques for Java”; ACM

40

Transactions on Programming Languages and
Systems, Vol. 24, No. 5, November 2002, pp. 625-666.

[9] The Squawk System, Preliminary Draft Specification
2.1; Sun Microsystems Laboratories; 16 September
2002.

[10] Connected Limited Device Configuration:
http://java.sun.com/products/cldc/

[11] Java Card: http://wireless.java.sun.com/javacard/
[12] Squeak Smalltalk implementation:

http://www.squeak.org
[13] Esmertec’s JBED ME:

http://www.esmertec.com/technology/articles.shtm
[14] Aplix’s JBlend:

http://www.aplixcorp.com/products/jblend.html.

[15] Jikes Research Virtual Machine:
http://www.ibm.com/developerworks/oss/jikesrvm/

[16] joeq virtual machine:
http://sourceforge.net/projects/joeq
http://www.stanford.edu/~jwhaley/

[17] Waba programming platform: www.wabasoft.com.
[18] IBM’s WebSphere Micro Environment:

http://www.ibm.com/software/wireless/wme/

Sun, Sun Microsystems, Java, Java Card, Java Virtual

Machine, and JVM are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United
States and other countries.

41

