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Mathematical modeling of the target tracking 
process has been a topic of extensive study. The 
alpha-beta and the alpha-beta-gamma trackers [ 1-31 
represent the classical approaches to this problem. 
Since the early sixties the Kalman filter and its 
variants have emerged as the preferred filters for 
tracking applications. In this approach the state of 
the tracked object consists of its position and the 
time-derivatives of displacement. The displacement 
of an arbitrarily maneuvering target would, in general, 
have a number of non-zero derivatives. An accurate 
model of the target motion should ideally include 
all these derivatives. However, since a large number 
of derivatives make a model difficult to implement, 
commonly used target models take into account only a 
few derivatives of the target displacement. The target 
motion models of the highest order currently available 
in open literature include terms up to the target 
acceleration, i.e., the second derivative of the target 
position. Such models are referred to as acceleration 

models in this work. 

are assumed to be the result of a forcing function. 
Unfortunately, there is no direct and unique way 
of obtaining the forcing function, and frequent 
recourse has been taken to an intuitive approach 
towards modeling this function. This has led to a wide 
diversity of analytical formulations of the tracking 
problem (e.g. [4-81). Particular mention may be made 
of the model by Singer [5]  which is quite successful 
in modeling the tracking of maneuvering targets in 
a wide variety of situations involving different types 
of filters. A different approach by Bar-Shalom and 
Birmiwal [9] does not rely on a statistical description 
of the maneuver as a random process, but introduces 
extra state components in the state model when 
maneuver is detected. 

those involving the modern generation of highly 
maneuvering aerospace vehicles, which call for 
better tracking performance than what is provided by 
acceleration models. The reason for the inadequate 
tracking performance of current models is that the 
higher order derivatives in the case of very highly 
maneuvering targets are not insignificant, leading to 
model inaccuracies when terms only up to the second 
order are included. 

In this work, a solution to the problem of model 
order insufficiency is sought by including one more 
derivative in the target model. Ther term is the third 
derivative of the target position, i.e., the acceleration 
rate or jerk of the target. Accordingly, the model 
developed here is referred to as a jerk model of the 
target motion. Recently jerk models have been used in 
the context of fixed-gain alpha-beta-gamma trackers 
[lo, 111. The current paper provides a full 4-state 

In modern tracking analysis, the target kinematics 

There are many types of target motion, especially 
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Kalman filter tracking analysis employing the jerk 
model. 

II. GAUSS-MARKOV MODELING OF TARGET 

MOTION INCLUDING JERK 

Following Singer [5] ,  we start with the target jerk 
as a process which is correlated in time. This means 
that if a target experiences a certain acceleration rate 
at a time t then it is likely to be experiencing the same 
jerk also at the time instant t + T for sufficiently small 
T.  Relatively slow or lazy maneuvers will give rise 
to correlated jerk inputs for longer time scales than 
fast and evasive ones which correspond to a faster 
decay of jerk correlation. An exponential correlation 
function is assumed to represent the target jerk: 

where U: is the variance of the target jerk and Q is the 
reciprocal of the jerk time constant, and E{.}  denotes 
expectation. 

The Wiener-Kolmogorov whitening procedure is 
used on rj(.) to represent the jerk j ( t )  as a function of 
time, driven by a white noise input w(t).  The Laplace 
transform of the jerk correlation function rj(7)  is 

= H(s)H(-s)W(s) (2) 

H ( s )  = l/(S+Q) (3) 
where 

and 
W ( s )  = 2 Q 4 .  (4) 

The quantity H ( s )  is the transfer function of the 
whitening filter for the jerk j ( t ) ,  and W ( s )  is the 
transform of the white noise w(t) that drives j ( t ) .  The 
differential equation that results from (3) is 

j ( t )  = -aj(t) + w(t).  (5 )  

The autocorrelation function Y,(T) of the white noise 
input is found by taking the inverse Laplace transform 
of (4) as 

r,(T) = 2f20;6(7) 

= Q, 6(~) (6)  

where S ( T )  is the unit impulse function or "delta 
function" located at the origin, and Q,  = 2au; is the 
variance of w(t).  

A brief discussion of the parameters of the jerk 
description ( 5 )  is in order. As discussed in the first 
paragraph of this section, the correlation parameter Q 

permits the modeling of different classes of targets: 

small Q for targets with sustained jerk levels, and 
high Q for targets with rapidly fluctuating jerk. The 
white noise component of the jerk model permits the 
target to superimpose random jerk components over 

its sustained jerk capabilities. In effect, the value of Q 

serves to adjust the model order to fractional values, 
with a very low Q corresponding to the third-order 
uerk) model, and a very high Q making the model 
behave like a second-order (constant acceleration) 
model. 

model can be written in a state space framework as 
The state equation ( 5 )  for the continuous-time jerk 

where x, i, i, and x denote, respectively, the position, 
velocity, acceleration, and jerk of the target. The 
equation is of the standard form 

X = AX + Bw(t) (8) 

where the meanings of the vector and matrix symbols 
are clear by comparison with (7). The measurement 
vector at the ( k  + 1)th instant is 

Z(k + 1 )  = HX(k + 1) + V(k + 1) (9) 

where H is the system measurement or observation 
matrix, and V is the measurement noise vector, 
assumed uncorrelated to the process noise. 

this section, we now proceed to analyze the tracking 
problem using a compatible Kalman filter. 

Using the jerk model for target motion evolved in 

I l l .  TARGET TRACKING IN ONE DIMENSION 

We first consider target motion in one dimension 
to help visualize the tracking process better. Equations 
for tracking in three dimensions follow in a later 
section. A discrete Kalman filter is used for tracking 
a target with motion modeled as per (7). Discretization 
of (7) yields 

X(k + 1) = F(k + 1, k)X(k) + u(k) (10) 

F(k + 1,k) = e A ( f k + l - f k )  (1 1) 
where 

is the state transition matrix of the linear time- 
invariant system between the instants k and k + 1, and 
u(k) is a discrete white noise vector defined as 

~ ( k )  = .I,'"" F(tk+l,T)B(T)W(T)dT. (12) 

The variance Q ( k )  of the process noise u(k) is 

Q(k)  = E{u(k)ur(k))  

x B T ( ~ ) F T ( t k + l , ~ ) d r d ~ .  (13) 
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The state transition matrix is obtained through a 
series expansion of the right-hand side of (1 l), and 
substitution of the matrix A. This yields 

T T 2 / 2  PI1 

0 1  T 41 

0 0  1 Y1 

F(T) = 

t o  0 0 s1 

where 

T3 aT4 a2T5 
p1 =31-4!+--"' 

5! 

= ( 2  - 2aT + a2T2 - 2 ~ " ~ ) / ( 2 a ~ )  

T 2  aT3 a2T4 
q1 = 2r - - + - -. 

3! 4! 

= (PT - 1 + aT)/a2 (15) 

aT2 a2T3 a3T4 

2! 3! 4! 
y = T  --+---+... 

1 

= (1 - e-"')/a 

a2T2 a3T3 a4T4 

2! 3! 4! 
$1 = 1 - a T  + - - - + - 

- - e - ~ T  

For the special case in which the product aT is small, 
the following simpler form of F(T) results 

r l  T T2/2 T3/61 

limF(T) = 1: A T2/2 I (16) 
a-0 T 

t o o  o 1 1  

which means that the filter assumes the jerk to be 
constant between the sampling instants. 

In (13), the expectation E { W ( T ) W ~ ( V ) }  is the same 
as the autocorrelation I-,(T) in (6). Also, for the linear 
time-invariant system, F(tk+l,T) = F(tk+l - 7). Using 
these facts in (13), 

Q ( k )  = Q, J'"' F(tk+l - T)B(T)BT(T)FT(tk+l - T ) ~ T .  

(17) 
tk  

Substituting the expanded form of B, and the matrix F 
from (14), 

r J P V T  JP141dT JPlrldT JPlSldT] 

LJ'PlsldT J41sld7 JrlsldT J s W  1 
(18) 

where each of the quantities pl,  q l ,  rl and s1 is 
evaluated at the instant ( t k + l  - 7). Substituting the 

value of Q, from (6), 

Q(k) = 2aa; 

where the elements of the symmetric matrix are 

411 = J'P:(t,+, - u)du 

4a3T3 2Cu2T2+2aT-3 +-- 
3 

1 a4T4 
= - ( 1  -2aT + 2a2T2 -a3T3 + - 

2a6 4 

3 - e-2aT 
= - 1 (2aT - a2T2 + - a3T3 - 

2a5 3 
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When aT is sufficiently small the covariance matrix 
Q(k)  reduces to 

rT7/252 T6/72 T5/30 T4/241 

T5/30 T4/8  T3 /3  T 2 / 2  

T6/72 T5/20 T4/8  
lim Q(k)  = 2 a 4  

aT-0 

LT4/24 T3 /6  T 2 / 2  T 1 
(21) 

which can be used in conjunction with the expression 
(16) for F(T) to simplify computations. 

For a fixed sampling rate, as a 4 00 the jerk 
model is reduced to a constant acceleration filter: the 
state transition matrix becomes 

r l  T T 2 / 2  01 

lim F(T) = 
a-im 

to  0 0 01 

and the process noise covariance matrix is 

r0  0 0 0 1  

0 0 0 0  

a-Kc lim Q(k)  = l o o 0  0 1 .  

l o  0 0 $1 

IV. INITIALIZATION OF TRACKING FILTER 

The Kalman filter is initialized by using the 
first three measurements to determine the position, 
velocity, and acceleration estimates. The initial jerk 
estimate is taken to be equal to zero. The relations 
utilized to initialize the state variables are 

i ( 3 )  = MJ3) 

2 3 )  = [M..(3) - 4 ( 2 ) 1 / T  

i ( 3 )  = [Mx(3) - 2Mx(2) + Mx(1)]/T2 

and A 

%(3) = 0. 

The first three measurements Mx(l) ,  Mx(2), and MJ3) 
are the samples of the true positions of the target, 
corrupted by measurement noise, 

Mx( 1 )  = x(  1 )  + v( 1) 

Mx(2) = x(2) + 4 2 )  

MJ3) = x(3) + 243). 
(23) 

We now derive the expressions for the covariance 
components which are initialized by (22). Let u1 ( k ) ,  

u2(k), u3(k),  and u4(k) be the components of process 
noise driving the state equation in the discrete model 
as given in (10). Let the errors in position, velocity, 
acceleration, and jerk estimates be denoted by E , ,  E ~ ,  

E ~ ,  and E~ respectively. Then, using the relations (22) 
and (23), 

E1(3 I 3)  = x(3) - $3 I 3)  

= x(3) - x(3) - 4 3 )  

= - 4 3 )  (24) 

= $3) - [Mx(3) - Mx(2)l/T 

= $3) - [x(3)  + 243) - 4 2 )  - v(2)1/T 

= 43)  - [x(2) + TX(2) + (T2/2)X(2) + p1X(2) 

= X(2) + TX(2) + q,R(2) + u2(2) 

E2(3 I 3)  = 4 3 )  - 2(3 1 3 )  

+ 4 3 )  - x(2) - v(2)  + u,(2)]/T 

- [Ti (2)  + (T2/2)i(2) + p , f ( 2 )  

+ u , W  + 4 3 )  - 42)1/T  

= (T /2 ) i (2 )  + (ql - p , /T ) I (2 )  + u2(2) 

- u,(2)/T - v(3)/T + v(2)/T 

+ ( 4 ,  - p , / T ) [ s , ~ ( 1 )  + u‘$(l)l 

+ u2(2) - u,(2)/T - v(3)/T + v(2)/T 

= (T/2)X(l)  + (q,s, -p,s , /T + r1T/2)X(l)  

= (T/2)[X(1) + r , x ( l )  + u3(1)] 

+ (41 -p{ /T)u4(1)  + ( T / 2 ) u 3 ( 1 )  +’2(2)-ul(2)/T 

- v(3)/T + v(2)/T (25) 

E 3 ( 3  I 3)  = Z(3) - i ( 3  I 3)  

= X(3) - [Mx(3) - 2Mx(2) + Mx(1)1/T2 

=X(3)-[x(3)+v(3)-2x(2)-2v(2)+x(1)+v(l)1/T2 

x(2 )  + TX(2) + (T2/2)X(2) + p , W  + u,(2) 

= x(2) + rlx(2) + u3(2) 

- [  +u(3) - 2.42) - 2 4 2 )  + x(1) + v(1) I/. 
= i ( 2 ) / 2  + (r,  - p l / T 2 ) i ( 2 )  - X ( ~ ) / T  

+ [x(2) -x(1)I/T2 + u3(2) - Ul(2)/TZ 

- v(3>/T2 + 2.l42y7-2 - v(l>/T2 

= [ i ( 1 )  + r l i ( l )  + u3(1)]/2 + (r, - p , / ~ ’ )  

x [s,X(l) + u4(l)l 

- [$I) + TX(1) + q lX( l )  + u2(1)1/T 

+ [x( 1) + TX( 1) + (T2/2)X( 1 )  

+p,X( l )  + u l ( l ) - x (1 ) l /T2  

+ u,(2) - UI(2)/T2 - v(3) /T2 + 2v(2)/T2 - v(l) /T2 

+ u,(1)/2 + u3(2) + (rl -p l /T2)U4(1)  

-u1(2)/T2 + U1(1)/T2- u,(l)/T 

- v( 1)/T2 - v(3)/T2 + 2v(2)/T2 

= ( r l / 2  + rIsl + P,/T’ ~ q , / T  - p,s,/T”)x(l) 

(26) 
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E4(3 I 3) = x(3) - x(3 I 3) In the above set of equations, the term E{i2(1)} 
equals CJ;, the standard deviation of the target 

acceleration, and E{x2(1)} equals uj, the standard 

deviation of the target jerk. Further, the terms of the 
type E{u,u2}, E{u2~3}, etc. are the elements of the 

= s1x(2) + u4(2) - 0 

= S1[Slx(l> + Uq(l)I + u4(2) 

= STX(1) + s,u4(l) + u4(2). (27) matrix Q ( k )  in (19). 
When cuT is small the covariance matrix 

Now, using the basic definitions, the elements of the 
covariance matrix corresponding to these errors are 

initialization simplifies to 

IT," /T c," /T2 

V. TRACKING IN THREE DIMENSIONS 

We now proceed to analyze the more complex but 
realistic problem of tracking in 3-dimensional space. 
The measurements are assumed to be available in 
range, azimuth, and elevation (Y, 0, cp) dimensions. A 
4-state filter having jerk as the highest order state 
variable is developed. For comparison purposes, a 
3-state filter with terms up to acceleration is also 
developed here. 

The model equations for the 3-dimensional 
Kalman filter are written by generalizing the basic 
1-dimensional equations. This is done here for 
the acceleration model (denoted by the subscript 
a) as well as the jerk model (subscript j ) .  The 
equations for the acceleration and jerk models are, 
respectively, 

(28) 

X,(k + 1) = F,X,(k) + W,(k) (30) 

(31) Z,(k + 1) = H,X,(k + 1) + V,(k + 1) 

and 

X j ( k  + 1)  = FjXj(k) + Wj(k)  (32) 

(33) Z j ( k  + 1) = H j X j ( k  + 1) + Vj(k  + 1) 

where 

.. T X , = [ x  x i y y y z 2 z ]  
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In (36) and (37) u ~ ~ , u ~ ~ ,  etc. are the driving noise 
components for the acceleration model, and u l j ,  yz j ,  
etc. are those for the jerk model. Other symbols in 
(31) and (33) are 

1 0 0 0 0 0 0 0 0  

0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 1 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

H , j = O O O O  1 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 1 0 0 0  

(39) 

(40) 

1 
Z,=  [M, My M,lT 

Z j  = [M, My M,IT (41) 

and 

V, = [Noise in M, Noise in My Noise in MZlT 

(42) 

(43) 

V j  = [Noise in M, Noise in My Noise in MZlT. 

The measurements R,, em, and 'p, in spherical 
coordinates are transformed to Cartesian coordinates 
using 

~ , ( k )  = R,(Q cos cp,(k) cos e,(k) 

M,,(k) = R,(k) coscp,(k) sin Om&) (44) 

M,(k) = R,(k)sincp,(k). 

Because of the transformation of measurements from 
spherical to Cartesian coordinates, the measurement 
noise covariance components in the Cartesian 

Pa = 

coordinates become correlated and are updated every 
iteration using the following relations: 

- ~ ~ ( k ) o ~ s i n 2 p , ( k )  sine,(k)} 

(45) 

where g!, a;, and r ~ ;  denote the variances of the 

measurement noise in r ,  8, and 'p dimensions, 
respectively. 

filter is 
The state transition matrix for the acceleration 

I 
0 0 0  0 

0 0 0  0 

0 0 0  0 

0 0  0 1 T [PT + a T -  1]/a 0 0 0 

0 0  0 o 1 [ I  - c a T I / a ,  0 0 0 

0 0 0  e-aT 0 0  0 0  0 

0 0  0 0 0  

0 0  0 0 0  0 o 1 [I - e - a T ~ / a  

1 T [e-aT + aT - l l / ~  0 

0 0  0 0 0  0 0 0  e-aT 
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Fj = 

where the elements of the symmetric matrix are 

qil = (1/2a5)[1 - e-2aT + 2aT + 2a3T3/3 - 1  T T2 /2  p ,  0 0 0 0 0 0 0 0 -  

0 1  T q , o o  0 0 0 0  0 0 

0 0  0 s , o o  0 0 0 0  0 0 

0 0  0 0 0 1  T q , o o  0 0 

0 0  0 0 0 0  0 S l 0 O  0 0 

0 0  1 r , 0 0  0 0 0 0  0 0 

0 0  0 0 1 T T 2 / 2 p 1 0 0  0 0 

0 0  0 0 0 0  1 r l O O  0 0 

0 0  0 0 0 0  0 0 1 T T 2 / 2 p ,  

0 0  0 0 0 0  0 0 0 1  T q1 

0 0  0 0 0 0  0 0 0 0  1 r,  

- 0 0  0 0 0 0  0 0 0 0  0 sl- 

- 2a2T2 - 4aTePT] 

q;2 = (l/2a4)(e-2aT + 1 - 2e-aT - 2uT + a2T2) 

qi2 = (1 / 2 ~ ~ ) ( 4 e - " ~  - 3 - e-2aT + 2aT) 

and 
q& = (1/2a)(1 - e-2aT). 

Similarly, the process noise covariance for the jerk 
model is 

Q j ( k )  = 2 a 4  

where the elements have the same expression as 
defined in (20) for the one-dimensional case. In 
(48) and (49), Q is the correlation parameter for 
acceleration or jerk depending on the model, 

three dimensions is now complete, along with an 
acceleration model for comparison. 

The derivation of the jerk model for tracking in 

VI. SIMULATION RESULTS AND DISCUSSION 

The enhancement of tracking performance in 
three-dimensional space by the use of the jerk model 
with a 4-state filter over the acceleration model 
used with a 3-state filter is illustrated here through 
numerical simulation. Fig. 1 shows the kinematic 
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Fig. 1 .  Target maneuver parameters as functions of time. 
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Fig. 2. Evolution of tracking errors in range, azimuth, and 

elevation. Solid lines show jerk filter behavior and dots show 
acceleration filter behavior. 

parameters of the target as functions of time (is., 
sample number, with sample interval T = 0.5 s). 

Along the x axis, the target starts with a constant 
velocity of -1000 d s ,  and a step jerk of 0.09 m/s3 

is applied at 50 s (100th sample), resulting in a ramp 
acceleration, parabolic velocity variation, and cubic 
position variation. The y-velocity component is kept 
constant at 10 m / s ,  and the z position is held constant 
at 1000 m. The following statistical parameter values 
are chosen for the simulation. 

Measurement noise covariance 

22,500 m2 (range) 

25 x lop6 rad2 (azimuth). i 25 x lop6 rad2 (elevation) 

Correlation parameter CY = 0.006 (for both 

Process noise variance for acceleration model, 

Process noise variance for jerk model, Q j  = 2cro-j, 

= 

acceleration and jerk models). 

Q,  = 2ao-,, 2 o-,,, = 18 d s 2 .  

aj = 0.09 d s 3 .  

correlation parameter a has been chosen for both 
the models. The two motion models are physically 
different in the sense that in one case the target 
acceleration is correlated while in the other it is 

It is to be noted here that a common value of the 

a 0- 

100 200 300 400 500 

- x 10" 
M 5  

m 
=4 

I! 
$ 3  
m 

. 
U 

L 

I 

;2 

,2 0 

5 
a 1  
E .- 

100 200 300 400 500 

4 5  

e 
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22 
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u 

I 

c 

% 
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w -  

Time (Sample Number) 

Fig. 3. Evolution of tracking errors in rates of range, azimuth, 

and elevation. Solid lines show jerk filter behavior and dots show 
acceleration filter behavior. 

the target jerk that is correlated. Thus, using these 
two models it is not possible to describe a common 
physical type of target motion when a! is the only 
control variable in each model. The best that can be 
done, therefore, is to maintain a degree of analytical 
similarity by assuming a common a, and using a 
common target trajectory for comparing the two 
tracking filters, as done here. 

The three-dimensional jerk filter is initialized 
in each of the three orthogonal axes in a manner 
similar to the one-dimensional case discussed earlier, 
using the first three measurements. Thus, equations 
analogous to (22) are written for the y and z axes 
also. The P matrix is now 12 x 12, consisting of three 
diagonal submatrices, each of which is similar to the 
4 x 4 P matrix for the one-dimensional case. The 
small value of a permits the use of the simpler form 

(29) here for each of the submatrices. An analogous 
procedure is employed to initialize the acceleration 
filter using the first two measurements. 

Following initialization, the matrices (46) and 
(47) are used for updating states (prediction) in the 
acceleration and jerk models, respectively. Next, the 
predicted covariance and Kalman gain matrices are 
found using standard Kalman filter equations. The 
measurements are simulated by adding zero-mean 
Gaussian random numbers of known covariances 
to the r,O,cp values at corresponding points in the 

1102 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 4 OCTOBER 1997 



100 I" I 30 
I 

(D . 
E - 

20 
b 

Lu 

E 

m 
> 

.- 
- : lo  

A 
" 

100 200 300 400 500  

E 
L 300 
e 
r; 
g 2 0 0  

p 100 

- 

.- .- I 
(D 

I * 
n 

100 200  300 400 500  

400 I I 

0 '  I 

100 200 300 400 5 0 0  
Time (Sample Number) 

Fig. 4. Evolution of tracking errors in x ,  y ,  and z components of 
target position. Solid lines show jerk filter behavior and dots show 

acceleration filter behavior. 

trajectory, and these are transformed to the Cartesian 
frame using (44). 

The results of simulation are shown in Figs. 2-6. 
The plots in these figures are the rms value of 20 
random runs, with the same set of random numbers 
used in each case. In Fig. 2 are shown the errors 
in range, azimuth, and elevation for both jerk and 
acceleration models. The errors in range rate, azimuth 
rate, and elevation rate are shown in the plots of 
Fig. 3. Fig. 4 shows the errors in the Cartesian 
position variables x,  y ,  and z. To conserve space, 
the errors in velocity estimates along the x and 
y coordinates only are plotted in Fig. 5 ,  and the 
acceleration errors along these axes are shown in 
Fig. 6. It is clear from the simulation results that the 
jerk model provides superior tracking performance 
compared with the acceleration model in respect of all 
the tracking variables. The margin of improvement is 
modest but clear for position variables themselves (in 
both polar and Cartesian coordinates), and increases 
with the order of the derivatives of position. As seen 
from Fig. 6, the steady-state errors in the acceleration 
estimates are much higher for the acceleration model 
than for the jerk model. 

It is to be noted that a relatively slow maneuver 
(as indicated by the highest acceleration value) has 
been used in the simulation example shown in this 

0 '  I 
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Time (Sample Number) 

Fig. 5. Evolution of tracking errors in velocities along x and y 
directions. Solid lines show jerk filter behavior and dots show 

acceleration filter behavior. 
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Fig. 6.  Evolution of tracking errors in accelerations along x and 
y directions. Solid lines show jerk filter behavior and dots show 

acceleration filter behavior. 

section. Even for such a target, the jerk filter comes 
out much better than the acceleration filter, primarily 
because of the presence of jerk in the maneuver. We 
have experimented with more vigorous maneuvers, 
for which the jerk filter still provides good tracking 
behavior while the acceleration filter fails to converge 
and/or develops large biases. These problems may 
be obviated by using very large values of Q, but this 
leads to large variance in the estimates. 

Based on the limited simulation reported here, it 
cannot be claimed that the jerk filter is better than the 
acceleration filter under all conditions. However, in 
generalized maneuvers such as dog-fights, where the 
target acceleration is not necessarily constant, jerk will 
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Fig. 7. Evolution of tracking error in the position, velocity, and 
acceleration along x direction under model-filter mismatch 

condition. Solid lines show jerk filter behavior and dots show 
acceleration filter behavior. 

most often be present, and it will be fair to expect the 
jerk filter to provide a higher tracking accuracy than 
the acceleration filter. As the example in this section 
shows, this is true even when the jerk and acceleration 
values are rather low. With higher jerk levels in the 
maneuver the advantage of the jerk filter will be even 
more strikingly apparent. 

VII. EFFECT OF MODEL-FILTER MISMATCH 

Sophisticated tracking filters often suffer from the 
drawback that their performance degrades significantly 
when the actual target maneuver departs from the 
assumed model for the maneuver. Such a situation 
is known as model-filter mismatch or plant-filter 

mismatch. It is therefore necessary to comment on the 
robustness of the jerk filter, presented in this work, 
with respect to such mismatch. A full study of the 
mismatch phenomenon in all its aspects is beyond 
the scope of this work due to length constraints. 
However, results concerning one important type of 
mismatch are presented in Fig. 7 (only the x axis 
variables are shown for brevity) wherein the value 
of the correlation parameter a is assumed to be 
widely different between the maneuver model and 
the tracking filter. Thus, against of the assumed value 

of 0.006 for a the actual value of this parameter is 
set at a much higher value of 0.6. Even with such 
a high level of mismatch, Fig. 7 shows that the jerk 
filter continues to perform significantly better than the 
acceleration filter. 

VIII. SUMMARY 

A higher order model for target tracking in three 
dimensions than what is available hitherto has been 
presented. It consists of a jerk model of target motion, 
and a tracking filter of compatible order. The model 
and filter structures have been explicitly derived, and 
the initialization process clearly enunciated. 

The motivation for introducing a higher order 
model is that more agile target maneuvers are likely 
to have more significant higher order derivatives 
which a lower order tracking model, such as the 
velocity or acceleration models currently in use, 
cannot adequately handle. The premise that the jerk 
model can track more nimble maneuvers better is 
validated by numerical simulations, of which one 
example has been given in the paper. The jerk filter 
shows much better performance than the acceleration 
filter when both are able to track the target, and the 
jerk filter continues to track well in cases of high 
target maneuver where the acceleration filter fails. 
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