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We introduce a theory of jeu de taquin for increasing tableaux, extending fun-

damental work of Schützenberger (1977) for standard Young tableaux. We ap-

ply this to give a new combinatorial rule for the K-theory Schubert calculus

of Grassmannians via K-theoretic jeu de taquin, providing an alternative to the

rules of Buch and others. This rule naturally generalizes to give a conjectural

root-system uniform rule for any minuscule flag variety G/P , extending recent

work of Thomas and Yong. We also present analogues of results of Fomin,

Haiman, Schensted and Schützenberger.
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1. Introduction

In this paper, we introduce a jeu de taquin type theory for increasing tableaux,

extending Schützenberger’s fundamental framework [1977] to the (K -theoretic)

Grothendieck polynomial context introduced a few years later by Lascoux and

Schützenberger [1982].
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One motivation and application for this work comes from Schubert calculus.

Let X = Gr(k, Cn) be the Grassmannian of k-planes in Cn and let K (X) be the

Grothendieck ring of algebraic vector bundles over X ; see, for example, the expo-

sitions [Brion 2005; Buch 2005b] for definitions and discussion. To each partition,

as identified with its Young shape λ ⊆ 3 := k × (n − k), let Xλ be the associated

Schubert variety and OXλ
its structure sheaf. The classes {[OXλ

]} ⊆ K (X) form an

additive Z-basis of K (X). The (K-theoretic) Schubert structure constants Cν
λ,µ are

defined by

[OXλ
] · [OXµ

] =
∑

ν⊆3

Cν
λ,µ[OXν

].

Buch’s rule [2002b] established alternation of sign, that is,

(−1)|ν|−|λ|−|µ|Cν
λ,µ ∈ N.

In the cohomology case |λ| + |µ| = |ν| where |λ| =
∑

i λi is the size of λ,

the numbers Cν
λ,µ are the classical Littlewood–Richardson coefficients. Here, Cν

λ,µ

counts points in the intersection of three general Schubert varieties. These num-

bers determine the ring structure of the cohomology H ⋆(X, Q). Combinatorially,

they are governed by the tableau theory of Schur polynomials. Schützenberger’s

jeu de taquin theory [1977], by which the first modern statement and proof of a

Littlewood–Richardson rule was constructed, has had a central impact here.

While H ⋆(X, Q) contains important geometric data about X , this is even more

true of K (X). The combinatorics of K (X) is encoded by the Grothendieck poly-

nomials of Lascoux and Schützenberger [1982] (for more details, see Appendix).

This richer environment parallels the Schur polynomial setting, as demonstrated

by, for example, [Lenart 2000; Buch 2002b; Buch et al. 2008]. However, basic

gaps in this comparison remain. In particular, one lacks an analogue of the jeu de

taquin theory. This also raises questions of intrinsic combinatorial interest.

Indeed, there has been significant interest in the Grothendieck ring of X and of

related varieties; see work on, for example, quiver loci [Buch 2002a; 2005a; Miller

2005; Buch et al. 2008], Hilbert series of determinantal ideals [Knutson and Miller

2005; Knutson et al. 2008; 2009], applications to invariants of matroids [Speyer

2006], and in relation to representation theory [Griffeth and Ram 2004; Lenart and

Postnikov 2007; Willems 2006]. See also work of Lam and Pylyavskyy [2007]

concerning combinatorial Hopf algebras.

Consequently, we aim to provide unifying foundational combinatorics in support

of further such developments. Evidence of the efficacy of this approach is provided

through our study of minuscule Schubert calculus; other uses are also suggested. In

particular, as a non-algebraic geometric application, in a followup paper [Thomas

and Yong 2008b], we relate the ideas in this paper to [Buch et al. 2008] and the

study of longest strictly increasing subsequences in random words.
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Specifically, we introduce a jeu de taquin construction, thereby allowing for

K-theoretic generalizations of a number of results from algebraic combinatorics. In

particular, we give an analogue of Schützenberger’s Littlewood–Richardson rule.

In addition, we extend Fomin’s growth diagrams, allowing for, for example, a

generalization of Schützenberger’s evacuation involution. On the other hand, it is

interesting that natural generalizations of some results from the classical theory are

not true, underlining some basic combinatorial obstructions.

One feature of our rule is that it has a natural conjectural generalization to any

minuscule flag variety G/P , extending our earlier work [Thomas and Yong 2006;

2007]; this provides the first generalized Littlewood–Richardson formula (even

conjectural) for K-theory, outside of the Grassmannians. (There are already a

number of more specialized K-theoretic Schubert calculus formulas proven for any

G/P , such as the Pieri-type formulas of [Lenart and Postnikov 2007] and others.)

Main definitions. An increasing tableau T of shape ν/λ is a filling of the skew

shape

shape(T ) = ν/λ

with {1, 2, . . . , q} where q ≤ |ν/λ| such that the entries of T strictly increase along

each row and column. We write max T for the maximum entry in T . In particular,

when max T = |ν/λ| and each label appears exactly once, T is a standard Young

tableau. Let INC(ν/λ) be the set of these increasing tableaux and SYT(ν/λ) be the

set of standard Young tableaux for ν/λ. Below we give an example of an increasing

tableau and a standard Young tableau, each of shape ν/λ = (5, 3, 1)/(2, 1):

1 2 3

1 3

2

∈ INC((5, 3, 1)/(2, 1)), 1 4 6

2 5

3

∈ SYT((5, 3, 1)/(2, 1)).

We also need to define the superstandard Young tableau Sλ of shape λ to be

the standard Young tableau that fills the first row with 1, 2, . . . , λ1, the second row

with λ1+1, λ1+2, . . . , λ1+λ2, and so on. For example,

S(5,3,3,1) = 1 2 3 4 5

6 7 8

9 1011

12

.

A short ribbon R is a connected skew shape that does not contain a 2 × 2 sub-

shape and where each row and column contains at most two boxes. A alternating

ribbon is a filling of a short ribbon R with two symbols where adjacent boxes are

filled differently. We define switch(R) to be the alternating ribbon of the same

shape as R but where each box is instead filled with the other symbol. For example,
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we have

R = ◦ •

◦ •

◦ •

•

and switch(R) = • ◦

• ◦

• ◦

◦

.

By definition, if R is a ribbon consisting of a single box, switch does nothing

to it. We define switch to act on a skew shape consisting of multiple connected

components, each of which is an alternating ribbon, by acting on each separately.

Our starting point is the following new idea. Given T ∈ INC(ν/λ), an inner

corner is any maximally southeast box x ∈ λ. Now fix a set {x1, . . . , xs} of inner

corners and let each of these boxes is filled with a •. Consider the union of short

ribbons R1 which is made of boxes with entries • or 1. Apply switch to R1. Now

let R2 be the union of short ribbons consisting of boxes with entries • or 2, and

proceed as before. Repeat this process max T times, in other words, until the •’s

have been switched past all the entries of T . The final placement of the numerical

entries gives Kjdt{xi }
(T ).

Example 1.1. Let T = 1 2 3

2 3

2

be as above and {xi } as indicated below:

• 1 2 3

• 2 3

2

7→ 1 • 2 3

• 2 3

2

7→ 1 2 • 3

2 • 3

•

7→ 1 2 3 •

2 3 •

•

and therefore

Kjdt{xi }
= 1 2 3

2 3
.

It is easy to see that Kjdt{xi }
(T ) is an increasing tableau also. Moreover, if

T is a standard Young tableau, and only one corner x is selected, the result is an

ordinary jeu de taquin slide jdtx(T ). Given T ∈ INC(ν/λ) we can iterate applying

Kjdt-slides until no such moves are possible. The result Krect(T ), which we call

a K-rectification of T , is an increasing tableau of straight shape, that is, one whose

shape is given by some partition λ. We will refer to the choice of intermediate

Kjdt slides as a rectification order.

Theorem 1.2. Let T ∈ INC(ν/λ). If Krect(T ) is a superstandard tableau Sµ for

some rectification order, then Krect(T ) = Sµ for any rectification order.

It will also be convenient to define reverse slides

Krevjdt{xi }
(T )

of T ∈ INC(ν/λ), where now each xi is an outer corner, that is, a maximally north-

west box x ∈ 3 \ ν. We can similarly define reverse rectification Krevrect(T ).
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Clearly, Theorem 1.2 also implies the “reverse version”. When we refer to slides,

we mean either Kjdt or Krevjdt operations.

Theorem 1.2 may be compared to what is often called the “confluence theorem”

or the “First Fundamental Theorem” in the original setting of [Schützenberger

1977]. There, the superstandard assumption is unnecessary and so rectification

is always well-defined. However this is not true in our more general context.

Example 1.3. Consider the following two K-rectifications of the same skew tab-

leau T :

T = • 2

2

1 3 4

7→ 2

• 4

1 3

7→ 2

• 3 4

1

7→ • 2

1 3 4
7→ • 2 4

1 3
7→ 1 2 4

3

and

T = 2

• 2

1 3 4

7→ • 2

2 4

1 3

7→ 2

• 2 4

1 3

7→ • 2

1 2 4

3

7→ • 2 4

1 4

3

7→ 1 2 4

3 4
.

The two results (rightmost tableaux) are different. However, neither rectification

is superstandard.

We need Theorem 1.2 to state our new combinatorial rule for Cν
λ,µ:

Theorem 1.4. (−1)|ν|−|λ|−|µ|Cν
λ,µ counts the number of T ∈ INC(ν/λ) where

Krect(T ) = Sµ.

Example 1.5. The computation C
(3,2,2,1)
(2,2),(2,1) = −2 is witnessed by the increasing

tableaux
2

1 3

3

and 2

1 2

3

,

which both rectify to 1 2

3
.

One can replace the superstandard assumption by some other classes {Cµ} of

tableau (most obviously the one where we consecutively number columns rather

than rows), but we focus on the superstandard choice in this paper.

We will give a self-contained proof of Theorem 1.4, once granted Lenart’s Pieri

rule [2000].

A short review of past work on K-theoretic Littlewood–Richardson rules is in

order: The first rule for Cν
λ,µ was given by Buch [2002b], who gave a generalization

of the reverse lattice word formulation of the classical Littlewood–Richardson rule.
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That formula utilized the new idea of set-valued tableaux (see the Appendix). Af-

terwards, another formula was given by Lascoux [2001] in terms of counting paths

in a certain tree (generalizing the Lascoux–Schützenberger tree; see, for example,

[Manivel 1998]). In [Knutson and Yong 2004], Lascoux’s rule was reformulated

in terms of diagram marching moves, and it was also extended to compute a wider

class of K-theoretic Schubert structure constants. More recently, in [Buch et al.

2008], a rule was given for another class of combinatorial numbers generalizing

Cν
λ,µ. This rule specializes to a new formula for Cν

λ,µ and in fact gives an indepen-

dent proof of Buch’s rule.

Organization of this paper. In Section 2, we introduce an analogue of Fomin’s

growth diagrams, which compute K-rectifications; their symmetries make it possi-

ble to give a simple proof of the infusion involution of Section 3. In Section 4, we

again exploit growth diagrams to give an analogue of Schützenberger’s evacuation

involution. In Section 5, we use the infusion involution to show that if Theorem 1.2

holds, then Theorem 1.4 indeed computes Schubert calculus. Theorem 1.2 itself is

actually proved in Section 6, where we also need a connection to longest strictly

increasing subsequences of reading words of tableaux. In Section 7, we describe

a conjectural minuscule Schubert calculus rule, that generalizes our results for the

Grassmannian, together with an example. In Section 8, we give counterexamples to

natural analogues of various results that are true for classical Young tableau theory.

Finally, in Section 9 we give some concluding remarks and further conjectures. In

order to be self-contained, we give background about Grothendieck polynomials in

the Appendix so that our results can be given a completely elementary and concrete

origin.

2. Growth diagrams

A construction that is important to this paper is a generalization of Fomin’s growth

diagram ideas to the K-theory context.

Let Y be the Young lattice and ⊆ the partial order on all shapes where λ ⊆ µ

when λ is contained inside µ. The covering relations on Y are λ ⊆ µ such that

µ/λ is a single box.

Each increasing tableau T can be viewed as a shape sequence of increasing

shapes in Y where each successive shape is grown from the previous one by adding

some number of boxes, no two in the same row or column.

Example 2.1.

T = 2

1 3

1 2

1 2 4

↔ − − − − .
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(3, 2, 1) (3, 3, 2, 1) (4, 3, 3, 2) (4, 4, 3, 2) (4, 4, 3, 3)

(2, 2) (3, 2, 1) (4, 3, 2, 1) (4, 4, 2, 1) (4, 4, 3, 2)

(2, 1) (3, 1, 1) (4, 2, 1, 1) (4, 3, 1, 1) (4, 3, 2, 1)

(1) (2, 1) (3, 2, 1) (3, 3, 1) (3, 3, 2)

∅ (1) (2, 1) (3, 2) (3, 2, 1)

Table 1. A K-theory growth diagram: the leftmost column de-

scribes the rectification order of the skew tableau represented by

the top row. The bottom row gives the resulting K-rectification.

Now, consider the following choice of rectification order:

T = • 2

1 3

• 1 2

1 2 4

→ 1 2

• 2 3

1 2 4

2 4

→ • 1 2

• 2 3

1 4

2

→ • 1 2

1 2 3

2 4

→ 1 2 3

2 3

4

,

where the •’s indicate the set of boxes to use in each Kjdt step. Each of these

increasing tableaux also has a shape sequence, which we put one atop of another

so the shapes increase moving up and to the right. The result is a K-theory growth

diagram; in our example, we have Table 1.

Consider the following local conditions on any 2 × 2 subsquare

α β

γ δ

of such a grid of shapes, where by assumption γ ⊆ α ⊆ β and γ ⊆ δ ⊆ β, as in the

example above:

(G1) α/γ is a collection of boxes no two in the same row or column, and similarly

for β/α, β/δ, and δ/γ .

(G2) δ is the shape α∪shape(Kjdtα/γ (T )), where T is the skew tableau of shape

β/α filled with 1’s. This uniquely determines δ from γ , α and β. Similarly,

α is uniquely determined by γ , δ and β.

Proposition 2.2. If

α β

γ δ

is a 2 × 2 square in a K-theory growth diagram, then (G1) and (G2) hold. Also, if

G is a growth diagram, then so is G reflected about its antidiagonal.

Proof. These are straightforward verifications. The second statement uses the fact

that (G1) and (G2) are symmetric in α and δ. �

Let KGROWTH(λ, µ; ν) be the set of K-theory growth diagrams such that
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• the leftmost column encodes the superstandard tableau of shape λ,

• the bottom-most row encodes the superstandard tableau of shape µ, and

• the top right corner is the shape ν.

The following fact is immediate from Theorem 1.4, and amounts to an alterna-

tive formulation for it:

Corollary 2.3 (of Theorem 1.4). (−1)|ν|−|λ|−|µ|Cν
λ,µ = #KGROWTH(λ, µ; ν).

By the symmetry of growth diagrams, the roles of the λ and µ can be inter-

changed, resulting in the same growth diagram (up to reflection). Therefore, the

rule of Corollary 2.3 manifests the Z2 commutation symmetry

Cν
λ,µ = Cν

µ,λ

coming from [OXλ
][OXµ

] = [OXµ
][OXλ

].

Growth diagrams corresponding to the classical rectifications of a standard tab-

leau (using only jdt moves) were first introduced by Fomin; see [Stanley 1999,

Appendix 1] and the references therein. In that case, Proposition 2.2 simplifies.

Specifically,

(F1) shapes increase by precisely one box in the “up” and “right” directions.

(F2) if α is the unique shape containing γ and contained in β, then δ=α; otherwise

there is a unique such shape different than α, and this shape is δ.

(Similarly, α is uniquely determined by β, γ and δ.)

Fomin’s growth diagrams provide further useful combinatorial ideas that we

extend below to the K-theory setting. These diagrams also arise (along with other

classical tableaux algorithms we generalize) in an elegant geometric context, due

to work of van Leeuwen [2000]; there are reasons to hope that one can extend his

work to the setting of this paper.

3. The infusion involution

Given T ∈ INC(λ/α) and U ∈ INC(ν/λ), define

Kinfusion(T, U )

=
(

Kinfusion1(T, U ), Kinfusion2(T, U )
)

∈ INC(γ /α) × INC(ν/γ )

(for some straight shape γ ) as follows: consider the largest label “m” that appears

in T , appearing at x1, . . . , xk . Apply the slide Kjdt{xi }
(U ), leaving some “holes”

at the other side of ν/λ. Place “m” in these holes and repeat, moving the labels

originally from U until all labels of T are exhausted. The resulting tableau of shape



Jeu de taquin, increasing tableaux and K-theoretic Schubert calculus 129

γ /α and skew tableau of shape ν/γ are the outputted tableaux. To define

Krevinfusion(T, U )

=
(

Krevinfusion1(T, U ),Krevinfusion2(T, U )
)

∈ INC(γ /α) × INC(ν/γ ),

we apply Krevjdt moves to T , moving into boxes of U . We begin by removing

the labels “1” appearing in U at boxes {xi } ∈ ν/λ, apply revjdt{xi }
(T ), and place

the “1” in the vacated holes of λ and continuing with higher labels of U .

It is easy to show that

Kinfusion and Krevinfusion

are inverses of one another, by inductively applying the observation that if {yi } are

the boxes vacated by Kjdt{xi }
(T ) then

Krevjdt{yi }
(Kjdt{xi }

(T )) = T .

We will need the following fact (the “infusion involution”); compare [Haiman

1992; Benkart et al. 1996].

Theorem 3.1. For any increasing tableaux T and U such that shape(U ) extends

(the possibly skew shape) shape(T ) then

Kinfusion(T, U ) = Krevinfusion(T, U ).

That is, Kinfusion(Kinfusion(T, U )) = (T, U ).

Example 3.2. If

T = 1 2 3

2 3

4

and U = 2

1 3

1 3

2 3 4

then we compute Kinfusion as follows:

1 2 3 2

2 3 1 3

4 1 3

2 3 4

7→ 1 2 3 2

2 3 1 3

1 4 3

2 3 4

7→ 1 2 3 2

2 3 1 3

1 3 4

2 4 4

7→ 1 2 3 2

2 3 1 3

1 3 4

2 4 4

7→ 1 2 1 2

2 1 3 3

1 3 4

2 4 4

7→ 1 2 1 2

2 1 3 3

1 3 4

2 4 4

7→ 1 1 2 2

1 2 3 3

2 3 4

2 4 4

7→ 1 1 2 2

1 2 3 3

2 3 4

2 4 4

7→ 1 1 2 2

1 3 2 3

2 2 4

2 4 4

7→ 1 1 2 2

1 3 4 3

2 4 2

4 2 4

7→ 1 1 2 2

1 3 4 3

2 4 2

4 2 4

7→ 1 2 1 2

2 3 4 3

1 4 2

4 2 4

7→ 1 2 4 2

2 3 1 3

4 1 2

1 2 4
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Hence

Kinfusion(T, U ) =









1 2 4

2 3

4

,

2

1 3

1 2

1 2 4









.

The reader can check that applying Kinfusion to this pair returns (T, U ), in

agreement with Theorem 3.1.

Proof. Construct the growth diagram for K rect(U ) using the slides suggested by

the entries of T . It is straightforward to check from the definitions that the bot-

tom row represents Kinfusion1(T, U ) and the right column Kinfusion2(T, U ).

However, by the antidiagonal symmetry of growth diagrams (see Proposition 2.2),

the growth diagram computing Kinfusion applied to Kinfusion(T, U ) is sim-

ply the one for Kinfusion(T, U ) reflected about the antidiagonal. �

Finally, the growth diagram formalism makes it straightforward to observe facts

such as the following, which we will need in Section 6:

Lemma 3.3. Let T ∈ INC(ν/λ), R ∈ INC(λ) and fix a ∈ N. If A is the increasing

tableau consisting of entries from 1 to a of T , and B = T \ A is the remaining

tableau, then

Kinfusion1(R, T )

= Kinfusion1(R, A) ∪ Kinfusion1(Kinfusion2(R, A), B).

Proof. Draw the growth diagram for Kinfusion(R, T ), encoding R on the left

and T on the top. The shape shape(R)∪shape(A) appears on the top row. Draw

a vertical line through the growth diagram at that point. The diagram to the left of

this line encodes the rectification of A by R. The diagram to the right of the line

encodes the infusion of B = T \ A with the tableau encoded along the dividing

line, which is Kinfusion2(R, A). �

4. A generalization of Schützenberger’s evacuation involution

While on the topic of growth diagrams, we take this opportunity to introduce a

generalization of another classical result from tableau theory. This section will not

be needed in the remainder of the paper.

For T ∈ INC(λ), let ◦T be obtained by erasing the (unique) entry 1 in the north-

west corner c of T and subtracting 1 from the remaining entries. Let

1(T ) = Kjdt{c}(
◦T ).

The K-evacuation Kevac(T ) ∈ INC(λ) is defined by the shape sequence

∅ = shape(1max T (T )) − shape(1max T −1(T )) − . . . − shape(11(T )) − T .
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∅ (1) (2, 1) (3, 2) (3, 3, 1) (4, 3, 2)

∅ (1) (2, 1) (3, 2, 1) (4, 2, 2)

∅ (1) (2, 1) (3, 2, 1)

∅ (1) (2, 1)

∅ (1)

∅

Table 2. A triangular growth diagram for Example 4.2.

The following result extends Schützenberger’s classical theorem for T ∈ SYT(λ).

Theorem 4.1. Kevac : INC(λ) → INC(λ) is an involution, that is,

Kevac(Kevac(T )) = T .

Example 4.2. Let

T = 1 2 3 5

2 3 4

4 5

∈ INC((4, 3, 2)).

Then the K-evacuation is computed by

11(T ) = 1 2 3 4

2 3

3 4

7→ 12(T ) = 1 2 3

2 3

3

7→ 13(T ) = 1 2

2
7→ 14(T ) = 1

7→ 15(T ) 7→ ∅.

Thus

Kevac(T ) = 1 2 3 4

2 3 5

3 4

.

One checks that applying Kevac to this tableau returns T .

Proof of Theorem 4.1. Express each of the increasing tableaux

T, 11(T ), . . . ,1max T −1(T ), 1max T (T ) = ∅

as a shape sequence and place them right justified in a triangular growth diagram.

In the example above, we have Table 2. Note that each “minor” of the table whose

southwest corner contains a “∅” is in fact a growth diagram. It follows that the

triangular growth diagram can be reconstructed using (G1) and (G2), by Proposi-

tion 2.2. Observe that the right column encodes Kevac(T ). By the symmetry of

growth diagrams, it follows that applying the above procedure to Kevac(T ) would

give the same triangular growth diagram, after a reflection across the antidiagonal.

Thus the result follows. �
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5. Proof of the Kjdt rule

The strategy of our proof is based on the following fact. In the cohomological

context, this approach was utilized in [Knutson et al. 2004; Buch et al. 2004].

Lemma 5.1. Let {dν
λ,µ} be integers indexed by shapes λ, µ, ν ⊆ 3 that

(A) define a commutative and associative ring (R, ◦) by

aλ ◦ aµ =
∑

ν⊆3

dν
λ,µaν

with Z-basis {aλ} indexed by shapes λ ⊆ 3, and such that

(B) dν
λ,ρ = cν

λ,ρ whenever ρ = (t) for 0 ≤ t ≤ n − k.

Then dν
λ,µ = cν

λ,µ.

Proof. The class [OXλ
] can be expressed as a polynomial in [OX(1)

], . . . , [OX(n−k)
].

This follows by an easy downward induction on |λ| using the fact that such an

expression exists in cohomology for [Xλ] ∈ H ⋆(X, Q) as a polynomial in the

classes [X(t)] (the Jacobi–Trudi identity) and the lowest order term in K-theory

agrees with cohomology under the Chern isomorphism. Let this polynomial be

Pλ(X1, . . . , Xn−k) (where above X t = [OX(t)
]). Now (A) and (B) imply

aλ = Pλ(a(1), . . . , a(t)).

Using (B) again, we see that the map from (R, ◦) to K (X) sending aλ 7→ [OXλ
] is

a ring isomorphism, so the desired conclusion follows. �

To apply the lemma, let dν
λ,µ be the integers computed by the rule given in the

statement of the theorem. It remains to check associativity and agreement with

Pieri’s rule, which we do below. In our proof of associativity we assume that

Theorem 1.2 is true — this latter result is actually proved in the following section,

using some of the elements introduced in the proof of agreement with Pieri’s rule,

which of course, do not use this assumption. We will also use the commutation

symmetry, proved in Section 2 (see after Corollary 2.3), that is, dν
λ,µ = dν

µ,λ.

Associativity. Let α, β, γ , ν be straight shapes and fix superstandard tableaux Sα,

Sβ , Sγ and Sν .

Associativity is the assertion that
∑

σ

dσ
α,β dν

σ,γ =
∑

τ

dν
α,τ dτ

β,γ . (5-1)

The left-hand side of (5-1) counts pairs of tableaux (B, C) where B is of shape

σ/α such that Krect(B) = Sβ , and C is of shape ν/σ such that Krect(C) = Sγ .

Let Kinfusion(Sα, B) = (Sβ, A) where A is of shape σ/β, and Krect(A) =

Sα. Next compute Kinfusion(A, C) = (D, E). We have that Krect(E) = Sα
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(since this was the case with A) and that shape(E)= ν/τ for some τ , and similarly

Krect(D) = Sγ (since this was the case for C) and shape(D) = τ/β.

By Theorem 3.1 it follows that the above process establishes a bijection

(B, C) 7→ (E, D)

into the set of pairs of tableaux counted by the right-hand side of (5-1). (More

precisely, for pairs counted by
∑

τ

dν
τ,α dτ

β,γ =
∑

τ

dν
α,τ dτ

β,γ

where the equality dν
τ,α = dν

α,τ is the commutation symmetry.) Associativity fol-

lows.

Agreement with Pieri’s rule. We prove our rule agrees with the following formula,

due to Lenart [2000]:

Theorem 5.2. Let r(ν/λ) be the number of rows of ν/λ. Then

[OXλ
][OX(t)

] =
∑

ν

(−1)|ν|−|λ|−t

(

r(ν/λ) − 1

|ν/λ| − t

)

[OXν
],

where the sum ranges over all ν ⊆ 3 obtained by adding a horizontal strip (no two

added boxes are in the same column) to λ of size at least t .

Our task is to show that

dν
λ,(t) =

(

r(ν/λ) − 1

|ν/λ| − t

)

when ν is of the form in the statement of Theorem 5.2 and is zero otherwise.

First assume ν is of the desired form and that |ν/λ|−t ≤ r(ν/λ)−1. We proceed

to construct the required number of increasing tableaux on ν/λ, as follows. Select

|ν/λ| − t of the non-bottom-most r(ν/λ) − 1 rows of ν/λ. Now fill the bottom

row with consecutive entries 1, 2, . . . , k where k is the number of boxes in that

bottom row of ν/λ. Proceed to fill the remaining boxes of ν/λ from southwest to

northeast. If the current row to be filled was one of the |ν/λ|− t selected rows then

begin with the last entry e used in the previously filled row. Otherwise use e + 1.

Call these fillings t-Pieri fillings.

Example 5.3. Suppose λ = (5, 3, 2), ν = (6, 5, 2, 2) and t = 4. Then r(ν/λ) = 3

and |ν/λ| − t = 1. Hence the two 4-Pieri fillings we construct are

4

2 3

1 2

and 4

3 4

1 2

,
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which both rectify to 1 2 3 4 . (In the first tableau we selected the second row

and in the second we selected the top row.)

Lemma 5.4. For any rectification order, a t-Pieri filling K-rectifies to S(t). No

other increasing tableau K-rectifies to S(t) for any choice of rectification order.

Proof. That the t-Pieri fillings all K-rectify (under any rectification order) to S(t)

follows from a straightforward induction on |λ| ≥ 0 where we show in fact that any

Kjdt slide applied to a t-Pieri filling results in a t-Pieri filling.

A similar induction shows that no other increasing tableau from INC(ν/λ) K-rec-

tifies to S(t) (noting that any such tableau with entries in {1, . . . , t} has a pair of

entries i < j where j is southwest of i). Separately, but for similar reasons, when

ν/λ is not a horizontal strip, one more induction on |λ| proves no increasing tableau

can K-rectify to S(t).

Finally, if |ν/λ| − t > r(ν/λ) − 1, then we similarly see that no t-Pieri fillings

are possible and dν
λ,µ = 0 as desired. �

This completes the proof of Theorem 1.4, assuming Theorem 1.2.

6. Proof of the Krect theorem

We now prove Theorem 1.2. First define the reading word of a tableau T to be

the word obtained by reading the rows of T from left to right, starting from the

bottom and moving up. Let LIS(T ) be the length of the longest strictly increasing

subsequence of the reading word of T .

The following result is crucial to our proof of Theorem 1.2.

Theorem 6.1. LIS(K jdt{xi }
(T )) = LIS(T ). In particular, any rectification order

applied to T results in a straight shape whose first row has length equal to LIS(T ).

Example 6.2. Consider the two (different) rectifications of the same tableau T

performed in Example 1.3. The reading word of T is 1 3 4 2 2 (where the unique

longest strictly increasing subsequence has been underlined) so LIS(T ) = 3. Note

that also LIS(T1) = LIS(T2) = 3, that is, the lengths of the first rows of T1 and T2

agree, although T1 6= T2.

Proof of Theorem 6.1. We will show that if I is a set of boxes of T which forms

a strictly increasing subsequence of the reading word of T , then there is a string

of boxes of equal length in Kjdt{xi }
(T ) which also forms a strictly increasing

subsequence of the reading word. A symmetric argument using reverse slides gives

the other desired inequality, thereby implying the theorem.

Fix I as above. We will analyze the slide K jdt{xi }
(T ), switch by switch. Set

T0 := T , and let Ti be the result of switching the •’s and the i’s of Ti−1. Initially

set I0 := I . In a moment, we will describe Ii as a collection of some of the boxes
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of Ti . We emphasize that in what follows Ii does not refer to the actual contents

of the boxes.

We will show that, at each step, Ii has the following properties:

(P1) The labels of Ii are strictly increasing in the reading word order, except for

perhaps one • box.

(P2) If Ii contains a • box, then the labels in Ii preceding the • box in the reading

word order are weakly less than i , while the labels of boxes following the •

box are strictly greater than i .

(P3) If there is a • box yi in Ii , then there must be some box zi in Ii , in the same

row as yi and weakly to the right, such that the entry in the box ai immediately

below zi contains a numerical label. Moreover, if there is a next box bi in Ii

after zi , in the reading order, then it contains a numerical label strictly larger

than the one in ai .

Example 6.3. (P1) and (P2) are self explanatory. For (P3), a possible configuration

that can arise in our discussion below is

1 • 2 4 5 7 9

• 2 3 6 8 9
,

where the underlined labels indicate members of I1. Here the role of z1 is played

by the 5, so a1 is the 8 and bi is the 9. Note that bi need not be immediately to

the right of the zi . Also, we could have set zi to be the box containing the 2, but

not the • nor 9. We emphasize that while it isn’t true in the present example, one

could have yi = zi .

Example 6.4. Note that in (P3), bi need not exist. For example, this is the case in

1 •

• 2

which satisfies (P1)–(P3) with zi = yi .

We now proceed to define Ii inductively for i ≥ 1. Assume that Ii−1 satisfies

(P1)–(P3). After performing the slide interchanging • boxes with i’s we define Ii

as follows:

(i) If Ii−1 has no box containing i , then Ii := Ii−1.

(ii) If Ii−1 has a box containing i and a • box, then Ii := Ii−1.

(iii) If Ii−1 has a box containing i , but does not have a • box, and the i in Ii−1

does not move, then Ii := Ii−1.

(iv) If Ii−1 has a box containing i , but does not have a • box, and there is a • box

(not in Ii−1) immediately to the left of the i in Ii−1, then let Ii be Ii−1 with
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the box containing i in Ii−1 replaced by the box to its left (into which i has

moved).

(v) If Ii−1 has a box containing i , but does not have a • box, there is a • box (not

in Ii−1) immediately above the i , and we are not in case (iv), then let Ii be

Ii−1 with the box containing i in Ii−1 and all the other boxes in Ii−1 to the

right of it in the same row, replaced by the boxes immediately above them.

Clearly (i)–(v) indeed enumerate all of the intermediate possibilities during a

Kjdt slide.

We now prove that Ii satisfies (P1)–(P3).

Case (i): We split this case up into three subcases. First, we consider the case

that Ii−1 has no • box. In this case, (P1) is trivially satisfied (since it held for Ii−1),

and (P2) and (P3) are vacuously true.

Next, we consider the subcase that Ii−1 has a • box into which an i (not in Ii−1)

moves. Since (P1) and (P2) are satisfied for Ii−1, (P1) will be satisfied after this,

and (P2) and (P3) are vacuous since Ii has no • box.

Finally, we consider the subcase where Ii−1 has a • box which stays as such in

Ii . Since the contents of Ii−1 and Ii are the same, (P1) and (P2) are satisfied. To

show (P3) is satisfied, observe that the label in the box below zi−1 is strictly greater

than i (otherwise zi−1 has a label weakly smaller than i − 1 and is southeast of a

•, a contradiction), so it does not move, and thus we can take zi := zi−1.

For case (ii), we need the following:

Lemma 6.5. If Ii−1 satisfies (P1)–(P3) and contains a • box and a box labelled i

then the i is immediately to the right of the • box.

Proof. By (P2), the next box in Ii−1 after the • box yi−1 must be the box containing

i . Suppose that that box is not in the same row as yi−1. Then yi−1 is the last box in

Ii−1 in its row, so we must have zi−1 = yi−1, and bi−1 must be the box from Ii−1

containing i .

Observe that in Ti−1, there is no label ℓ < i which is weakly southeast of a •.

Thus the entry in ai−1 is at least i , violating (P3). It follows that the box containing

i is in the same row as yi−1. Using the same observation again, we see that there are

no possible labels for a box between yi−1 and the box containing i , and therefore,

they are adjacent. �

Now, using Lemma 6.5, it is clear that case (ii) preserves (P1) and (P2). To

check (P3), as in the previous case, we can take zi := zi−1. This would not work if

zi−1 = yi−1, but this is impossible, because the entry in the box below zi−1 should

be less than the next entry in Ii−1 after zi−1, which is i . So the • box is immediately

above a box which is at most i − 1, and this can’t happen in Ti−1.

Cases (iii) and (iv) are trivial: (P1) holds since the contents of Ii−1 and Ii are

the same, and (P2) and (P3) are vacuously true since Ii contains no • box.
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Now we consider case (v). (P1) is trivial, so if Ii has no • box, then we are done.

So assume it does. The only way a • box could appear in Ii is in the following

situation:
• i

i k
7→ i •

• k
,

where the box containing k is also in Ii−1.

In this situation the top two boxes will be in Ii , and so we will have introduced

a • box into Ii . (P2) is clearly satisfied. Set zi to be the rightmost of the boxes that

are in Ii but not in Ii−1. Now (P3) is satisfied because (P1) was satisfied for Ii−1.

This completes the proof that Ii satisfies (P1)–(P3). Thus after iteration, we

eventually terminate with a set of boxes Im in Tm := Kjdt{xi }
(T ) which satisfies

(P1)–(P3). We wish to show that Im contains no • box. Suppose that it did. This

• box of Im must be an outer corner of T (by the way Kjdt is defined). This

contradicts (P3), since the square below zi is southeast of the • box, and thus

contains no label. Thus Im contains no • box, so (P1) implies that there is a strictly

increasing subsequence of the reading word of Kjdt{xi }
(T ) whose length equals

the length of I , as desired. �

Remark 6.6. Theorem 6.1 may be regarded as a generalization of the classical

result of Schensted which asserts that the longest increasing subsequence of a per-

mutation w =w1w2 . . . wn in the symmetric group Sn (written in one-line notation)

is equal to the first row of the common shape of the corresponding insertion and

recording tableaux under the Robinson–Schensted algorithm; see, for example,

[Stanley 1999]. To see this, one needs to use the well-known fact that the insertion

tableau of w is equal to the (classical) rectification of the “permutation tableau”

Tw of skew shape

(n, n − 1, n − 2, . . . , 3, 2, 1)/(n − 1, n − 2, . . . , 3, 2, 1),

where w1 occupies the southwest-most box, followed by w2 in the box to its im-

mediate northeast, and so on. In [Thomas and Yong 2008b] we further explore this

observation, and connect K rect to the Hecke algorithm of [Buch et al. 2008].

Recall the definition of t-Pieri filling given in Section 5.

Lemma 6.7. If an increasing tableau T rectifies (with respect to any rectification

order) to a tableau V which has precisely 1, 2, . . . , t in the first row and no labels

weakly smaller than t elsewhere, then

(1) the labels 1, 2, . . . , t form a subtableau of T that is a t-Pieri filling, and

(2) LIS(T ) = t .

Proof. By Lemma 3.3, V contains the rectification of the subtableau of T consisting

of the entries between 1 and t ; by results of the previous section, it follows that

these entries must form a t-Pieri filling; this proves that (1) holds.
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By Theorem 6.1, LIS(T ) = LIS(V ) = t , proving (2). �

Proof of Theorem 1.2. Let R ∈ INC(λ) encode a rectification where

Kinfusion1(R, T ) = Sµ.

Let us suppose that the first row of Sµ is S(t). By Theorem 6.1, LIS(T ) = t . By

Lemma 6.7, the subtableau P of T , consisting of the boxes containing one of the

labels 1, 2, . . . , t , is a t-Pieri filling.

Suppose Q ∈ INC(λ) is another rectification order. Since the labels of P are

weakly smaller than t and those of T \ P are strictly larger than t , by Lemma 3.3,

we can compute V := Kinfusion1(Q, T ) in two stages. First, by Lemma 5.4,

Kinfusion1(Q, P) is simply S(t), because P is a t-Pieri filling. Secondly, we use

Kinfusion2(Q, P) to (partially) rectify T \P . A priori, this could contribute extra

boxes to first row of V but since, by Theorem 6.1, LIS(V ) = LIS(T ) = t , it does

not. Thus the rectification of T by Q consists of the row S(t) with a rectification

of T \ P to a straight shape underneath it.

Now, by assumption T \P has a (partial) rectification to a superstandard tableaux

(using labels starting from t +1), namely Sµ \ S(t). So by induction on the number

of boxes of the starting shape, we can conclude that T \ P will (partially) rectify

to Sµ \ S(t) under any rectification order. Therefore V = Sµ, as desired. �

7. Minuscule Schubert calculus conjectures: example and discussion

In earlier work [Thomas and Yong 2006; 2007], we introduced root-system uniform

combinatorial rules for minuscule Schubert calculus. Theorem 1.4 has the advan-

tage that it admits a straightforward conjectural generalization to the minuscule

setting. We state one form of our conjecture below; more details will appear in

forthcoming work.

Let G be a complex, connected reductive Lie group with root system 8, positive

roots 8+ and base of simple roots 1. To each subset of 1 is associated a parabolic

subgroup P . The generalized flag variety G/P has Schubert varieties

Xw := B−wP/P

for wWP ∈ W/WP , where W is the Weyl group of G and WP is the parabolic

subgroup of W corresponding to P . Let K (G/P) be the Grothendieck ring of

G/P , with a basis of Schubert structure sheaves {[OXw
]}. Define Schubert structure

constants Cw
u,v(G/P) as before, by

[OXu
] · [OXv

] =
∑

wWP∈W/WP

Cw
u,v(G/P)[OXw

].
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Brion [2005] has established that

(−1)ℓ(w)−ℓ(u)−ℓ(v)Cw
u,v(G/P) ∈ N,

where ℓ(w) is the Coxeter length of the minimal length coset representative of

wWP .

A maximal parabolic subgroup P is said to be minuscule if the associated fun-

damental weight ωP satisfies 〈ωP , α∨〉 ≤ 1 for all α ∈ 8+ under the usual pairing

between weights and coroots. The minuscule flag varieties G/P are classified

into five infinite families and two exceptional cases (the type An−1 cases are the

Grassmannians Gr(k, Cn)).

Associated to each minuscule G/P is a planar poset (3G/P , ≺), obtained as a

subposet of the poset of positive roots �G∨ for the dual root system of G; this fact

has been known for some time, and recently has been exploited by various authors;

see, for example, [Perrin 2007; Purbhoo and Sottile 2008] among others. In this

context, shapes λ are lower order ideals in this poset. These shapes are in bijection

with the cosets wWP indexing the Schubert varieties; in particular, if wWP ↔ ν

under this bijection, ℓ(w) = |ν|. Define a skew shape ν/λ := ν \ λ to be a set

theoretic difference of two shapes. Define an increasing tableau of shape ν/λ to

be an assignment

label : ν/λ → {1, 2, . . . , q}

such that label(x) < label(y) whenever x ≺ y, and where each label appears at

least once. An inner corner of ν/λ is a maximal element x ∈ 3G/P that is below

some element in ν/λ. With these definitions, we define notions of INCG/P(ν/λ),

KjdtG/P;{xi }
, KrectG/P , superstandard Sµ, and so on, in a manner analogous

to those we have given for the Grassmannian. The following rule is new for all

minuscule G/P:

Conjecture 7.1. For any minuscule G/P , (−1)|ν|−|λ|−|µ|Cν
λ,µ(G/P) equals the

number of T ∈ INCG/P(ν/λ) such that KrectG/P(T ) = Sµ.

Implicit in this conjecture is the conjecture that an analogue of Theorem 1.2

holds. A weaker form of these conjectures is that there is a tableau Cµ for each

shape µ such that the aforementioned conjectures hold after replacing Sµ by Cµ.

Briefly, using the ideas contained in this paper, together with those in [Thomas

and Yong 2006; 2007] it is not hard to show that KjdtG/P;{xi }
is well-defined. The

next aim is to establish the analogue of Theorem 1.2. Once this is achieved we can

prove that our conjectural rule defines an associative, commutative ring with an

additive Z-basis indexed by shapes. It would then remain to show that such rules

compute the correct geometric numbers.

The interested reader may find details compatible with the notation used here

in [Thomas and Yong 2006]; in particular, there we concretely describe 3G/P in
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each of these cases. Thus, for brevity, we content ourselves with an example to

illustrate our conjecture.

Example 7.2. Let G/P = OP2 be the Cayley plane. Here we have

3OP2 : .

We conjecturally compute Cν
λ,µ(OP2) where

λ = µ =

⋆

⋆ ⋆ ⋆ ⋆

and ν = ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

,

where the southwest-most box is the unique minimum of 3OP2 and the poset in-

creases as one moves “right” or “up”.

The relevant shapes/lower order ideals of 3OP2 are indicated by the boxes filled

with ⋆’s. We can encode the shapes by the size of columns as read from left to right,

so λ = µ = (1, 1, 2, 1) and ν = (1, 1, 2, 4, 3, 1). Here “superstandard” means that

we consecutively fill the first row, followed by the second row, and so on.

Below, we observe there are only two tableaux T, U on ν/λ that K-rectify to

Sµ:

Sµ =

5

1 2 3 4

, T = 5

3 4 5

1 2

1

, U = 3

2 4 5

1 2

1

.

Therefore, our conjecture states that

C
(1,1,2,4,3,1)
(1,1,2,1),(1,1,2,1)(OP

2) = (−1)12−5−52 = 2.

The reader can check that the rectification order does not affect the result. For

either T or U , there are three initial ways to begin the K -rectification, after which,

all further Kjdt slides are forced.

Note that once one establishes an analogue of Theorem 1.2, one can give an easy

modification of the proof of associativity in Section 6 to establish that Conjecture

7.1 defines an associative product. One can check that the analogue of Theorem 1.2

holds in specific instances, say, with the help of a computer. Indeed, we have made

exhaustive checks when G/P is the odd orthogonal Grassmannian OG(5, 11) and

when it is the Cayley plane OP2, corresponding to the types B5 and E6. We

also made numerous checks in the case of the Freudenthal variety Gω(O3, O6)
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associated to E7, which while not exhaustive, left us convinced. In particular, our

choice of definition of superstandard passes these checks (although we also expect

that other choices of Sµ would as well, such as the ones obtained by rastering by

columns, rather than rows).

We emphasize that this rule agrees in type A with the correct product, and as

well as in cohomology for all minuscule cases. We also have some computational

evidence that our numbers agree with small known cases of Schubert structure

constants in type B (as supplied to us by M. Shimozono in private correspondence),

although admittedly this is not a convincing amount of evidence on its own. Part of

the difficulty in checking Conjecture 7.1 is that it seems to be a challenging task to

construct efficient software to compute the K-theory Schubert structure constants

for the main cases of the minuscule G/P’s outside of type A. In principle, such an

algorithm is linear algebra using torus-equivariant fixed-point localization methods

such as [Willems 2006].

Granted associativity, the conjectures would follow if they agree with multipli-

cation in K (G/P) whenever µ is drawn from some set of multiplicative generators

P for K (G/P). (That is, they agree with a “Pieri rule”.)

We also mention that the results of Sections 2–4 also have straightforward mi-

nuscule generalizations in cohomology; see [Thomas and Yong 2007].

8. Counterexamples

It is interesting that natural analogues of a number of results valid in the standard

Young tableau theory are actually false in our setting. We have already seen in the

introduction that in general Krect is not well-defined. This aspect can also be

blamed for the following two other situations where counterexamples exist:

Haiman’s dual equivalence. One can define K-theoretic dual equivalence, ex-

tending ideas in [Haiman 1992]. Two increasing tableaux are K-dual equivalent

if any sequence of slides ({x
(1)
i1

}, . . . , {x
(k)
ik

}) for T and U results in increasing

tableaux of the same shape. In this case we write

T ≡D U.

By definition, T ≡D U implies

shape(T ) = shape(U ).

One application of this theory (in the classical setting) is that it leads to a proof

of the fundamental theorem of jeu de taquin. For a minuscule (but not K-theoretic)

generalization, see [Thomas and Yong 2007]. However, it is important for this

application that all standard Young tableaux of the same shape are dual equivalent.

In view of Theorem 1.2, it is not surprising that this is not true in our setting.
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Consider the computations

Kinfusion2





1 3

2 ,
2

1 4

1 3



 = 1

2 3

,

Kinfusion2





1 2

3 ,
2

1 4

1 3



 = 1 2

1 3

.

These calculations represent two sequences of Kjdt slides applied to different

tableaux of the same shape (2, 1), but whose results are tableaux of different (skew)

shapes.

Cartons. In an earlier paper [Thomas and Yong 2008a], we gave an S3-symmetric

Littlewood–Richardson rule in terms of cartons. This idea also has a minuscule

extension (which we will report on elsewhere). However, the naı̈ve K-theoretic

generalization does not work.

Briefly, the carton of [Thomas and Yong 2008a] is a three-dimensional box with

a grid drawn rectilinearly on the six faces of its surface, each of whose sides are

growth diagrams. We fix at the outset standard Young tableaux of shape λ, µ and

ν along three edges. Shapes are associated to each vertex so that the Fomin growth

conditions (F1) and (F2) reproduced in Section 2 hold. The number of such cartons

(with fixed initial data) is equal to the classical Littlewood–Richardson number.

The temptation is to attempt to generalize this to K-theory by replacing the initial

standard Young tableau with superstandard tableau of shapes λ, µ and ν, and to

instead utilize the growth conditions (G1) and (G2) we introduced in Section 2.

This does not work: one computes using Theorem 1.4 that if k = n − k = 3,

λ = µ = (2, 1) and ν = (2) then the constant C(2,1),(2,1),(2) := C
(3,3,1)
(2,1),(2,1) = −2.

However one cannot consistently complete a legal filling of this K-carton.

Remark 8.1. These obstructions are closely related to failure of associativity of a

certain tableau product defined in [Buch et al. 2008, Section 3.7].

An Z3-symmetric rule preserving the triality symmetry

Cλ,µ,ν∨ = Cµ,ν∨,λ = Cν∨,λ,µ

where Cλ,µ,ν∨ := Cν
λ,µ and so on exists in the form of puzzles; see [Vakil 2006]).

(Unlike in cohomology, in K-theory, this latter symmetry is not immediate from the

geometric definitions; for a proof see [Buch 2002b; Vakil 2006]. In fact, this sym-

metry is not expected to hold for general G/P , although A. Knutson has informed

us, in private communication, that it holds in the minuscule setting.)
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9. Concluding remarks

Proctor’s d-complete posets. Proctor [2004] has studied the class of d-complete

posets. These posets generalize those required in our discussion of minuscule

G/P Schubert calculus; see also [Thomas and Yong 2006; 2007]. In particular,

d-complete posets were shown by Proctor to have a well-defined jeu de taquin

procedure.

It would be interesting to generalize our arguments to show that for any d-

complete poset D, there is an associative ring K (D) with an additive Z-basis

indexed by lower order ideals of D and structure constants defined by a rule gen-

eralizing Theorem 1.4. Observing that our notions of Kjdt, Krect a priori make

sense in this more general context, we ask:

Problem 9.1. Fix a d-complete poset. For which classes of tableaux C = {Cµ}

(indexed by lower order ideals µ of D) is it true that an analogous Theorem 1.2

holds (that is, if Krect(T ) = C ∈ C under one rectification order, this holds for

any rectification order)?

It seems plausible that good classes C that play the role of the superstandard

tableaux of Theorem 1.2 always exist. As we have said, for the minuscule cases,

we believe that the superstandard tableaux suffice. Perhaps this also holds more

generally.

Assuming this plausible claim holds, one would also like to find a geometric

origin to the ring K (D) (outside of the cases where it should be isomorphic to the

K-theory ring of a minuscule G/P).

A product-differences conjecture. Let λ, µ∈Y. Since this poset is in fact a lattice,

we can speak of their meet λ ∧ µ and join λ ∨ µ.

Conjecture 9.2. Suppose λ, µ ⊆ 3. Let

[OXλ∧µ
][OXλ∨µ

] − [OXλ
][OXµ

] =
∑

ν

dν[OXν
].

Then

(−1)|ν|−|λ|−|µ|dν ≥ 0.

This conjecture generalizes a theorem in the cohomological case [Lam et al.

2007]; see related work [Okounkov 2003; Fomin et al. 2005; Chindris et al. 2007].

(We also know of no counterexample for the corresponding minuscule conjecture,

even in the cohomology case.)

Example 9.3. Let

λ = (4, 2, 1), µ = (3, 3, 2) ⊆ 3 = 4 × 5.
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The join is the unique minimal shape that contains λ and µ, that is, λ∨µ= (4, 3, 2).

Similarly, the meet is the unique maximal shape contained in λ and µ. Hence

λ ∧ µ = (3, 2, 1). One computes using Theorem 1.4 (or otherwise), preferably

with the help of a computer, that

[OX(4,3,2)
] · [OX(3,2,1)

] − [OX(4,2,1)
] · [OX(3,3,2)

]

=
(

[OX(5,5,3,2)
] + 2[OX(5,5,4,1)

] + [OX5,5,5
] + [OX5,4,4,2

]
)

−
(

3[OX(5,5,5,1)
] + [OX(5,5,3,3)

] + 5[OX(5,5,4,2)
] + [OX(5,4,4,3)

]
)

+
(

3[OX(5,5,5,2)
] + 3[OX(5,5,4,3)

]
)

−
(

[OX(5,5,5,3)
]
)

,

in agreement with Conjecture 9.2.

Hecke insertion and factor sequence formulae. In [Buch et al. 2008] a general-

ization of the Robinson–Schensted and Edelman–Greene insertion algorithms was

given. In fact, increasing tableaux also play a prominent role there, although in a

different, but related way. As we have mentioned in Section 1, this is explored,

in part, in [Thomas and Yong 2008b], in connection to longest strictly increasing

subsequences in random words. There we show that the insertion tableau of a

word under Hecke insertion can be alternatively computed as a K-rectification of

a permutation tableau (for a particular choice of rectification order).

A related question: is there a “plactification map” in the sense of [Reiner and

Shimozono 1995]?

We believe that further developing this connection may allow one to, for exam-

ple, prove a K-theory analogue of the “factor sequence formula” conjectured in

[Buch and Fulton 1999] and proved in [Knutson et al. 2006], which is a problem

that has remained open in this topic; see [Buch 2002a; 2005a]. (In [Buch et al.

2008] a different factor sequence formula, generalizing the one given in [Buch

2005a], was given.)

Appendix: Grothendieck polynomials

The goal of this appendix is to provide combinatorial background for the results of

Sections 1–7, in terms of the Grothendieck polynomials of Lascoux and Schützen-

berger [1982]. This presentation is not needed for the paper.

Fix a shape λ and define a set-valued tableau T to be an assignment of nonempty

sets of natural numbers to each box of λ [Buch 2002b]. Such a tableau is semi-

standard if for every box, the largest entry is weakly smaller than the minimum

entry of the box immediately to its right and strictly smaller than the minimum

entry of the box immediately below it. The ordinary case is when T assigns a

singleton to each box. The following are examples of an ordinary and a set-valued
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semistandard tableau:

T1 = 1 2 4 4 6

2 3 5

4

, T2 =
1,2 2,3 4,5,6 6,7 7,8

3,4 4,5 7

6,7,8

.

Associate to each semistandard tableau a weight

ω(T ) := (−1)|T |−|λ|xT

where here xT = x
i1

1 x
i2

2 · · · if i j is the number of j’s appearing in T , and |T | is the

number of entries of T . For example, we have

ω(T1) = x1x2
2 x3x3

4 x5x6 and ω(T2) = (−1)19−9x1x2
2 x2

3 x3
4 x2

5 x3
6 x4

7 x2
8 .

The Grothendieck polynomial is defined as

Gλ(x1, x2, . . . , xk) :=
∑

T

ω(T )

with the sum over all set-valued semistandard tableaux using the labels of size

at most k. This is an inhomogeneous symmetric polynomial whose lowest degree

(=|λ|) homogeneous component is equal to the Schur polynomial sλ(x1, x2, . . . xk).

It is not immediately obvious from the definitions, but true [Buch 2002b] (for

an alternative proof, see [Buch et al. 2008]) that the Gλ(x1, . . . , xk) (for λ with

at most k parts) form a Z-linear basis for the ring of symmetric polynomials in

x1, . . . , xk (say, with coefficients in Q). Thus we can write

Gλ(x1, . . . , xk)Gµ(x1, . . . , xk) =
∑

ν

Cν
λ,µGν(x1, . . . , xk).

The coefficients Cν
λ,µ agree with the K-theory structure constants for Gr(k, Cn)

whenever ν ⊆ 3.

There are more general Grothendieck polynomials Gπ (x1, . . . , xn) defined in

[Lascoux and Schützenberger 1982] for any permutation π ∈ Sn . The polynomials

Gλ amount to the case that π is Grassmannian: it has a unique descent at position

k. In [Buch et al. 2005] a formula was first given that expresses any Gπ in terms

of the Gλ’s. Other formulas for both Gπ and Gλ are also available; see, for ex-

ample, [Buch et al. 2008; Knutson and Yong 2004; Knutson et al. 2008; Lascoux

2001] and the references therein.
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