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Abstract

Introduction: Remodeling of cellular metabolism appears to be a consequence and possibly a cause of oncogenic

transformation in human cancers. Specific aspects of altered tumor metabolism may be amenable to therapeutic

intervention and could be coordinated with other targeted therapies. In breast cancer, the genetic landscape has

been defined most comprehensively in efforts such as The Cancer Genome Atlas (TCGA). However, little is known

about how alterations of tumor metabolism correlate with this landscape.

Methods: In total 25 cancers (23 fully analyzed by TCGA) and 5 normal breast specimens were analyzed by gas

chromatography/mass spectrometry and liquid chromatography/mass spectrometry, quantitating 399 identifiable

metabolites.

Results: We found strong differences correlated with hormone receptor status with 18% of the metabolites

elevated in estrogen receptor negative (ER-) cancers compared to estrogen receptor positive (ER+) including many

glycolytic and glycogenolytic intermediates consistent with increased Warburg effects. Glutathione (GSH) pathway

components were also elevated in ER- tumors consistent with an increased requirement for handling higher levels

of oxidative stress. Additionally, ER- tumors had high levels of the oncometabolite 2-hydroxyglutarate (2-HG) and

the immunomodulatory tryptophan metabolite kynurenine. Kynurenine levels were correlated with the expression

of tryptophan-degrading enzyme (IDO1). However, high levels of 2-HG were not associated with somatic mutations

or expression levels of IDH1 or IDH2. BRCA1 mRNA levels were positively associated with coenzyme A, acetyl coenzyme

A, and GSH and negatively associated with multiple lipid species, supporting the regulation of ACC1 and NRF2 by BRCA1.

Different driver mutations were associated with distinct patterns of specific metabolites, such as lower levels of several

lipid-glycerophosphocholines in tumors with mutated TP53. A strong metabolomic signature associated with proliferation

rate was also observed; the metabolites in this signature overlap broadly with metabolites that define ER status as receptor

status and proliferation rate were correlated.

Conclusions: The addition of metabolomic profiles to the public domain TCGA dataset provides an important new tool for

discovery and hypothesis testing of the genetic regulation of tumor metabolism. Particular sets of metabolites may reveal

insights into the metabolic dysregulation that underlie the heterogeneity of breast cancer.

Introduction

It is now well established that significant heterogeneity

exists among human breast cancers. This heterogeneity

is observable at every level of examination from the macro-

scopic to the molecular. Recent large-scale efforts to meas-

ure and describe human breast tumor heterogeneity

include The Cancer Genome Atlas (TCGA) where a

number of high-throughput ‘omic’ technologies were

systemically applied to hundreds of primary cancer speci-

mens [1]. Mutation, germ line polymorphisms, DNA copy

number, RNA expression, DNA methylation, and protein

expression analyses were performed in parallel on a large

and carefully curated set of breast cancer specimens to

produce the most comprehensive molecular portrait of

the disease to date.

One significant metric that was not included in TGCA

was an unbiased analysis of tumor metabolism. While

metabolic flux cannot be measured in fixed or frozen
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specimens, steady-state levels of numerous key metabo-

lites may provide insight into these fundamental pheno-

typic traits. A number of studies in cancer have uncovered

relationships between genetic abnormalities and various

metabolic reprogramming suggesting that key metabolic

process can be altered as a result of specific transform-

ation events [2-6]. Relatively nonspecific cancer-related

events such as increased proliferation may also underlie

some of the inferred/observed metabolic remodeling. Glu-

cose uptake, serine and glutamine auxotrophy, mitochon-

drial oxidative phosphorylation, and cancer-associated

fibroblasts all appear to have roles in defining breast can-

cer metabolism [7-11]. However, it is not clear whether

these regulatory relationships can be observed in all or

subsets of human tumors.

Breast cancers are broadly categorized as luminal ver-

sus basal types possibly derived from different precursor

cells or at least different committed lineages [12-14].

Within these broad categories, alterations in specific

driver genes are believed to produce the heterogeneity

observed amongst and within breast tumor subtypes.

While the identity and frequency of driver alterations

are generally different in basal and luminal cancers,

there is still considerable overlap. For example, TP53 mu-

tations are very common in basal tumors and PI3KCA

mutations are common in luminal cancer but neither is

subtype exclusive. In contrast, MYC (8q24) amplification

is common in both types [1]. Each of these genetic drivers

has been associated with specific changes in cellular me-

tabolism and therefore may have dominant effects that

can be observed across tumor types.

Metabolomic profiling via mass spectrometry or nu-

clear magnetic resonance (NMR) is now an established

approach that has been employed in several studies to

analyze primary human breast tissues (normal and can-

cer) [15,16]. Building upon transcriptional profiling of

breast cancer, there have also been several efforts to in-

tegrate steady-state metabolite levels with specific breast

cancer subtypes defined by mRNA expression. Expres-

sion subtypes are dominated by estrogen receptor and

ERBB2 status and thus, metabolic profiling was per-

formed to seek an additional level of information to refine

these existing classifications. These analyses identified a

subclassification of luminal A-type cancers based on me-

tabolite levels and found higher levels of Warburg-

associated metabolites in more aggressive cancer types

[9,17]. A separate study of breast cancer lipidomic identi-

fied the association between palmitate-containing phos-

phatidylcholines with estrogen receptor negative and

cancer progression and patient survival [18]. However,

none of these studies established associations of par-

ticular metabolites or metabolic pathways with specific

somatic mutations or expression levels that have been

extensively characterized in TCGA.

In order to more fully explore the relationship between

genetics, tumor type, and metabolic state, we took ad-

vantage of our participation in the breast cancer TCGA

to perform joint analyses of metabolomics and genetics

in a series of primary cancers. From the current study,

we were able to identify several genetic determinants of

the metabolic heterogeneity of human breast tumors

that confirm and extend prior in vitro and in vivo

observations.

Methods

Specimen selection and handling

Breast tissues were collected, stored and used under Duke

University Medical Center Institutional Review Board (IRB)

approved protocols (Pro00012025 and Pro00021284). A

waiver of consent was obtained from the Duke IRB to con-

duct the study (Pro00021284) and subjects were not re-

consented for participation. Twenty-five breast cancers

(diagnosed and treated from 1989 to 1998) were se-

lected for the current study based on their inclusion in

The Cancer Genome Atlas (TCGA). Specifically, we se-

lected cases that were either estrogen receptor (ER)

positive or negative for both estrogen and progester-

one receptors (PR) based on the clinical assay per-

formed at the time of initial diagnosis (clinical and

demographic information is provided in Table S1 in

Additional file 1). Two of the ER + positive cancers

were classified as PR negative by the clinical assay. In

addition to the cancers, we selected five breast speci-

mens obtained from reduction mammoplasties containing

substantial amounts of normal epithelium. Each block of

tissue was cryostat sectioned to analyze tumor epithelial

content based on microscopic examination with a cut-

off of 70% tumor nuclei for inclusion. Additional sec-

tions were also taken and stored desiccated at −80°C

for future use. The remainder of the tissue block was

submitted frozen to Metabolon Inc. (Durham, NC,

USA) for extraction and metabolomic analysis. After

trimming away the cryogenic-embedding compound

(OCT), the weight of each sample (27 to 115 mg) was

determined and used to normalize the extraction re-

agent volume.

Proliferation analysis

Thin sections were fixed in acetone and then stained

with MIB-1 antibody (Dako, Glostrup, Denmark) that

recognizes the Ki-67 proliferation antigen. The mouse

monoclonal antibody was used at a final concentration

of 200 μg/ml and detected with a biotinylated goat anti-

mouse secondary antibody. Following chromogenic de-

tection, each section was scored for the percentage of

nuclear-stained epithelial cells. Two hundred epithelial

cells were counted in each section spanning at least two

high-powered (40X) fields. The proliferation rate was
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expressed as a percentage of the epithelial cells exhibit-

ing nuclear staining.

Metabolomic profiling

The sample preparation process at Metabolon was car-

ried out using an automated MicroLab STAR™ system

from the Hamilton Company (Reno, NV, USA). Recov-

ery standards were added prior to the first step in the

extraction process for quality control purposes. Sample

preparation was conducted using a proprietary (Metabo-

lon, Inc.) series of organic and aqueous extractions to re-

move the protein fraction while allowing maximum

recovery of small molecules. The resulting extract was

divided into two fractions; one for analysis by liquid

chromatography (LC) and one for analysis by gas chro-

matography (GC). Samples were placed briefly on a

Zymark TurboVap (Phoenix Equipment, Inc., Rochester,

NY, USA) to remove the organic solvent. Each sample

was then frozen and dried under vacuum. Samples were

then prepared for the appropriate instrument, either LC/

mass spectrometry (MS) or GC/MS.

The LC/MS portion of the platform is based on a Wa-

ters ACQUITY UPLC (Waters, Milford, MA, USA) and

a Thermo-Finnigan LTQ mass spectrometer (Thermo

Fisher Scientific, Waltham, MA, USA), which consists of

an electrospray ionization (ESI) source and linear ion

trap (LIT) mass analyzer. The sample extract was split

into two aliquots, dried, then reconstituted in acidic or

basic LC-compatible solvents, each of which contained

11 or more injection standards at fixed concentrations.

One aliquot was analyzed using acidic positive ion opti-

mized conditions and the other using basic negative ion

optimized conditions in two independent injections using

separate dedicated columns. Extracts reconstituted in

acidic conditions were gradient eluted using water and

methanol both containing 0.1% formic acid, while the

basic extracts, which also used water/methanol, con-

tained 6.5 mM ammonium bicarbonate. The MS ana-

lysis alternated between MS and data-dependent MS2

scans using dynamic exclusion.

The samples destined for GC/MS analysis were redried

under vacuum desiccation for a minimum of 24 hrs prior to

being derivatized under nitrogen using bis(trimethylsilyl) tri-

flouroacetamide (BSTFA). The GC column was 5% phenyl

and the temperature ramp was from 40° to 300°C in a

16 min period. Samples were analyzed on a Thermo-

Finnigan Trace DSQ fast-scanning single-quadrupole mass

spectrometer using electron impact ionization (Thermo

Fisher Scientific). The instrument was tuned and calibrated

for mass resolution and mass accuracy on a daily basis. The

information output from the raw data files was automatic-

ally extracted as discussed below.

For ions with counts greater than 2 million, an accur-

ate mass measurement could be performed. Accurate

mass measurements could be made on the parent ion as

well as fragments. The typical mass error was less than

5 ppm. Fragmentation spectra (MS/MS) were typically

generated in a data-dependent manner, but if necessary,

targeted MS/MS was employed, such as in the case of

lower level signals.

Identification of known chemical entities was based on

comparison to metabolomic library entries of purified

standards. More than 1,000 commercially available puri-

fied standard compounds have been registered into a

database for distribution to both the LC and GC plat-

forms for determination of their analytical characteris-

tics. The combination of chromatographic properties

and mass spectra gave an indication of a match to the

specific compound or an isobaric entity.

Measurement of 2-hydroxyglutarate

Quantification of L/D-2-hydroxyglutarate (2-HG) in bio-

logical media/tissues was performed by LC-ESI-MS/MS

as described [19] with modifications to accommodate

different sample matrices involved in the study. The

method utilizes a chiral derivatization agent to produce

diastereoisomers with L- and D-isomers of 2-HG,

which can be separated by conventional reverse-phase

LC. D-2-HG, L-2-HG, and diacetyl-L-tartaric anhyd-

ride (DATAN) were from Sigma-Aldrich (St Louis,

MO, USA). Racemic mixtures of L- and D-2-HG-d4

were prepared by mixing 1 mg of α-ketoglutarate-d6

(Sigma-Aldrich/Isotec) with 1 mg of NaBH4 (Sigma-

Aldrich) in 0.2 mL anhydrous MeOH (Sigma-Aldrich)

followed by 30 min incubation at 60°C. Tissue or cell

line homogenates, 200 μL of deionized water, 1 mL of

chloroform, and 4 mm ceramic beads were vigorously

mixed for 45 sec at speed 4 in FastPrep 120 ‘bead-

beater’ instrument (Thermo Savant, Holbrook, NY,

USA). After centrifugation (5 min at 16,100 × g),

200 μL of the aqueous (upper) layer was transferred

into 1.5-mL glass vial and dried (50°C, 60 min). The

dry residue was treated with 50 mg/mL of freshly pre-

pared DATAN in dichloromethane/glacial acetic acid

(4/1 by volume) and heated at 75°C for 30 min. After

drying (50°C, 15 min) the residue was dissolved in

100 μL LC mobile phase A (see below) for analysis by

LC/MS/MS with an Agilent 1200 series HPLC (Agi-

lent Technologies, St Clara, CA, USA) and Sciex/Applied

Biosystems API 3200 QTrap (Applied Biosystems, Foster

City, CA, USA). Mobile phase A: water, 3% acetonitrile,

280 μL ammonium hydroxide (approximately 25%), pH

adjusted to 3.6 by formic acid (approximately 98%). Mo-

bile phase B: methanol. Analytical column: Kinetex C18,

150 × 4.6 mm, 2.6 μm, and SafeGuard C18 4 × 3 mm

guard-column from Phenomenex (Torrance, CA, USA).

Column temperature: 45°C. Elution gradient at 1 mL/min

flow rate: 0 to 1 min 0% B, 1 to 2 min 0 to 100% B, 2 to
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3.5 min 100% B, 3.5 to 4 min 100 to 0% B, 4 to 10 min 0%

B. Injection volume: 10 μL. The Q1/Q3 (m/z) transitions

monitored: 363/147 (2-HG) and 367/151 (2-HG-d4). A

set of calibrator samples in corresponding matrix were

prepared for calibration by adding appropriate amounts of

pure D-2-HG at the following concentration levels: 0,

0.16, 0.54, 1.8, 6, and 20 ug/mL. These samples were ana-

lyzed alongside the experimental samples.

Data analysis

For pairwise comparison of metabolites from different

sample categories (normal, ER+, ER-), we used Welch’s t

test. The false discovery rate was estimated using the q

value [20].

The data were subjected to hierarchical clustering

using Cluster 3.0 and displayed using TreeView [21].

The significance analysis of microarray (SAM) analyses

were performed as described using indicated selection

criteria [22]. For specific metabolite associations with

genetic events, data were analyzed in GraphPad Prism

(GraphPad Software, San Diego, CA, USA) for correl-

ation and significance.

Genetic mutation and copy number, RNA expression

data, and designation of tumor intrinsic subtype were all

derived from the publically available TCGA data sets.

Primary data were downloaded from the TCGA data

portal [23] or analyzed using the online cBioPortal suite

of tools [24]. For the cBioPortal, some analyses were per-

formed on the ‘TCGA Nature 2012’ data set and others

on the ‘TCGA Provisional’ data set.

For analysis of the correlation between each pair of

metabolites, Pearson correlations of the level of each

pair of metabolites (log2 normalized value) among 399

metabolites from 25 tumors and 5 normal breast tissues

were generated. The correlation coefficients were hier-

archically clustered by Cluster 3.0 to produce the heat-

map plot. For analysis of correlation between individual

metabolite and proliferation rate, Pearson correlations

between the level of individual metabolite (log2 normal-

ized value) and Ki-67% (log2 value) were calculated. The

supervised cluster plot was generated based on the correl-

ation between individual metabolite levels and prolifera-

tion rate (Ki-67%) and displayed by TreeView.

For combined analysis of receptor status and prolifera-

tion, normalized metabolic data were natural log trans-

formed yielding a symmetric distribution of the data

about the mean. We used normal theory linear regres-

sion to assess the extent to which the metabolic assay

data could be predicted by one, the other or both of the

tumor’s receptor status and proliferation rate (Ki-67%).

We analyzed each metabolite separately and fit four

models for each: (1) the model with intercept only; (2)

the model with intercept and receptor status; (3) the

model with intercept and log2 proliferation rate; and (4)

the model with intercept, receptor status and log2 prolif-

eration rate. We calculated analysis of variance tables for

the two nested progressions of models: (1, 2, 4) and (1,

3, 4). We report the P values based on the associated F

tests for (a) models 2 over 1, (b) 4 over 2, (c) 3 over 1

and (d) 4 over 3. The P values in (a) and (c) are for the

regression of abundance of the metabolite on receptor

status and for the regression of abundance of the metab-

olite on proliferation rate, respectively. The P values in

(b) and (d) are for the regression of abundance of the

metabolite on receptor status while adjusting for prolif-

eration rate and for the regression of abundance of the

metabolite on the proliferation rate while adjusting for

receptor status, respectively.

Results
To date, over 900 primary breast cancers have been pro-

filed by the TCGA initiative over a four-year period

using an evolving set of molecular analyses. For this rea-

son, not all cancers were analyzed by all techniques. For

the current metabolomic study, we chose 25 cancers that

had passed quality control and were accepted for ana-

lysis by TCGA: 16 ER positive (all but two were also PR

positive) and 9 cancers that were both ER and PR nega-

tive, determined by standard immunopathologic analysis

after cytoreductive surgery. Of these, 23 cancers (15 ER +

and 8 ER-) were eventually subjected to comprehensive

genetic analysis by TCGA. In addition to the cancers, we

selected 5 samples of normal breast tissue (from reduction

mammoplasties not associated with cancer) that contained

a substantial amount of epithelium based on histologic

staining. We cut 20 sections from each block for in situ

analyses before extraction for the quantitative profiling of

small molecules (<1,000 Da) that was performed in a sin-

gle batch on the Metabolon platform generating data on

399 identifiable metabolites (Table S2 in Additional file 2

contains the primary data on metabolites).

Primary tissues in this study were distributed into

three main categories: (1) normal breast from reduc-

tion mammoplasties, (2) ER positive primary breast

cancers, and (3) estrogen and PR negative primary can-

cers. Of the 25 cancers, all were accepted for TCGA

study but only 23 were actually subjected to genetic

analysis. The cancers are representative of the major

subtypes of the disease based on the PAM50 classifica-

tion [25] including basal, HER2, luminal A and luminal

B. One sample was designated as ‘not-classified’ (NC).

None of the tumors were classified as the relatively un-

common ‘claudin low’ subtype.

Hierarchical clustering of the samples based on these

metabolites demonstrated that the 5 normal breast sam-

ples were tightly clustered together while the ER + tumors

exhibited significant heterogeneity: 6 of the ER + tumors

grouped with the 5 normal breast samples while the
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remaining 10 ER + tumors clustered with the 9 ER- tumors

(Figure 1). This relative heterogeneity of ER + tumors is

consistent with previous classification based on gene ex-

pression [12,26]. Pictured below the hierarchical clustering

dendrogram for 23 of the cancers is TCGA data for the

most common gene-based abnormalities (mutation, ampli-

fication, homozygous deletion) found in breast cancer,

most of which are considered to be driver alterations. Also

shown is the PAM50 intrinsic subtype classifier (based on

gene expression) of the TCGA analyzed cancers (23 tu-

mors) as well as the not-classified (NC) tumor. From this

analysis, it is apparent that intrinsic expression tumor sub-

types do not define the classification of the tumors by me-

tabolite levels.

This composite diagram (Figure 1) demonstrates sev-

eral aspects of breast cancer observed across many stud-

ies: (1) hormone receptor expression tracks closely with

intrinsic subtype; (2) TP53 mutations are very frequent

in basal-type cancers; and (3) PIK3CA mutations are

common in luminal types. The metabolite-based cluster-

ing of these specimens places a group of luminal A can-

cers with the normal breast specimens and most of the

basal cancers together in a single branch. A middle

branch contains a combination of mostly luminal A and

B cancers. HER2 cancers, as assigned by expression sub-

type (n = 2) or genomic copy number (n = 4) also tend to

cluster in this middle branch. Overall, the cancers in the

study appear to have a distribution of receptor status,

Figure 1 Breast cancers (n = 25) and normal breast tissues (n = 5) were grouped by unsupervised hierarchical clustering of metabolite

levels and overlaid with intrinsic subtype and status of the somatic mutations of genetic drivers. Normalized metabolite levels were

mean-centered, selected based on at least two-fold changes in two samples and arranged by hierarchical clustering. The estrogen receptor (ER)

status, intrinsic subtypes, and identified somatic mutations in the indicated genes are shown for 23 tumors which were characterized by The

Cancer Genome Atlas (TCGA).
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intrinsic subtype, and genetic alterations typical of an

unselected case series.

Estrogen receptor status reflects a broad metabolic

division in breast cancer

Our next step in the analysis was to compare metabolite

levels in the cancers based on ER status (ER + versus ER-),

the most consistent division in breast cancer from both

a biologic and therapeutic perspective (Figure 2A).

Overall, ER status was a very strong divisor in metabolic

space. The identity of the metabolites that vary by ER

status supports a series of systematic differences in bio-

energetics and biosynthetic pathways. Of the 399 named

metabolites quantified in this study, 75 exhibited a sta-

tistically significant difference between ER + and ER- tu-

mors (Table S3 in Additional file 3, unadjusted t tests

comparing levels between the three groups of samples,

ER+, ER-, and normal breast). Of these, only 8 metabolites

were increased in ER + tumors including 3 carnitine deriv-

atives, suggesting an increase in fatty acid transportation

in hormone receptor positive cancers. Short- and

medium-chain fatty acids were also elevated in ER +

tumors whereas long-chain fatty acids and monoacylgly-

cerols tended to be higher in ER- tumors indicating that

systematic differences in lipolysis and fatty acid oxidation

correlate with hormone receptor status.

ER- tumors had higher levels of glycogenolytic (malto-

pentose, maltotetraose, maltotriose and maltose, Figure 2B

and pathways in Figure 2C) and glycolytic metabolites

(glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-

bisphosphate, and lactate) (Figure 2D). In contrast, there

was a lower level of glucose in the tumors, especially ER-

tumors (Figure 2D). Warburg metabolism is a means for

rapidly dividing cells, such as cancer cells, to accelerate

energy production through increased glycolysis and lactate

production, bypassing the normal oxidation of pyruvate in

Figure 2 Supervised analysis of metabolites by estrogen receptor (ER) status. (A) Tumor-specific metabolites were zero-transformed against

the mean of the five normal breast tumors, filtered and arranged by hierarchical clustering based on 16 ER + and 9 ER- tumors. (B-D) Significantly

higher levels of metabolites in the glycogenolysis (B) and glycolysis (D) pathways, as shown in (C), were found in the ER- compared to ER + tumors.

The names of elevated (labeled in red) and reduced (labeled in green) metabolites in the glycolysis (B) and glycogenolysis (D) pathways are shown in

the metabolism diagram (C). Increased levels of gamma-glutamyl-isoleucine (E) and reduced (GSH) and oxidized (GSSG) glutathione (F) were also

found. Primary data and P values for these comparisons can be found in Table S2 in Additional file 2 and Table S3 in Additional file 3.
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the mitochondria. Thus, the metabolic profile of ER- tu-

mors is consistent with an elevated Warburg effect.

To validate our results, we compared our data to re-

cently published data on breast cancers collected using

the same metabolomic platform [27]. Among the signifi-

cant metabolites that tracked with hormone receptor

status in our data, 57 of these were found in the Teru-

numa dataset and exhibited broadly similar differences

between ER + and ER- cancers (27 reaching significance

in both data sets, Figure S1 in Additional file 4 and

Table S4 in Additional file 5). Therefore, these identified

subtype-specific metabolites can be validated using an

independent dataset.

Reduced glutathione (GSH) and gamma-glutamyl amino

acids in ER- tumors

ER- cancers also had higher levels of gamma-glutamyl

amino acids coupled with increased glutathione synthesis

(Figure 2E, Figure S2 in Additional file 4). Gamma-glutamyl

amino acids result from the transpeptidase-mediated cata-

lytic reaction of amino acids with glutathione (Figure S2 in

Additional file 4). These amino acid-glutathione conjugates

traverse the cell membrane and release the amino acid intra-

cellularly to regenerate glutathione [28]. Elevated levels of

these gamma-glutamyl conjugates indicate an increased up-

take of amino acids in ER- tumors. This may point to a po-

tential shift in fuel substrates for energy production that

favors amino acid catabolism. It is interesting to note that

the most elevated gamma-glutamyl amino acids were the

branched-chain amino acid (BCAA) conjugates of valine,

leucine and isoleucine. Additionally, ER- tumors had in-

creased glutathione (reduced, GSH) and oxidized glutathi-

one (GSSG) (Figure 2F) indicating a trend toward increased

glutathione synthesis, presumably to cope with the higher

levels of oxidative stress.

Metabolite correlations in breast cancers

We postulated that the level of multiple metabolites de-

rived from the same and different metabolic pathway

might be coordinated and serve as a better indicator of

metabolic activity than any single compound alone.

Pearson correlations were calculated for all pairwise com-

parisons between each of the 399 metabolites for all samples

(Table S5 in Additional file 6). The resulting correlation

coefficients were then used to group the 399 metabolites

into distinct groups by hierarchical clustering (cluster 3.0)

and then displayed with TreeView (Figure 3). We found

that multiple groups of metabolites were highly clustered

and correlated. These groups include many metabolites

that are known to be in the same metabolic pathways as

well as unexpected correlation between metabolites in dif-

ferent metabolic pathways. Metabolites from different

pathways clustered in the same groups might indicate two

different metabolic pathways are coordinated by the same

genetic alteration or affected similarly by the metabolic

reprogramming. For example, we found a cluster of metab-

olites comprising many intermediates of various lipids as-

sociated with glycerophosphocholines (Figure 3, cluster 3).

We also noted two separate clusters of amino acids

and di-amino acids (glycine-proline, glutamate-leucine,

alanine-tyrosine) (Figure 3, cluster 4) and N-acetyl-amino

acids (N-acetyl-aspartate, N-acetyl-ornithine, N-acetyl-

aspartyl-glutamate) (Figure 3, cluster 5). Both clusters may

indicate products of protein degradation and catabolism

and can be used to identify tumors with higher protein

catabolism.

Another prominent cluster is composed of acetyl-CoA,

CoA, FAD, AMP as well as GSH and GSSH (Figure 3,

cluster 6). The co-cluster of these metabolites suggests a

high degree of correlation between these energy metabo-

lites and anti-oxidative capacity among the tumor tissues.

We also noted connected clusters of metabolites related

to glycolysis (fructose, glucose-6-phosphate, fructose-

6-phosphate) and glycogenolysis (malto-triose, malto-

tetraose, malto-pentose) (Figure 3, cluster 8), both were

elevated in ER- cancers (Figure 2).

Metabolites associated with specific genetic events

A novel and unexpected finding was the level of the

oncometabolite 2-HG, elevated over 20-fold in ER + tu-

mors compared with normal tissue and over 200-fold in

ER- tumors (Figure 4A). A single ER- tumor exhibited

10-fold higher levels of 2-HG compared to any other

sample (unscaled data). We further confirmed the levels

of 2-HG in a subset of the breast cancer extracts using

an independent assay based on MS performed at Duke

and found a very high correlation between the results

from these two independent platforms (Figure S3A in

Additional file 4). Using this targeted assay, we also mea-

sured 2-HG in a series of breast cancer cell lines and

found that two basal lines (Hs578T and BT20) had the

highest levels, consistent with data from the primary

cancers (Figure 4B). A high level of 2-HG has been asso-

ciated with missense mutations in IDH1 or IDH2 in gli-

oma and several other tumor types [29] and may be an

effector of tumor cell dedifferentiation [30]. Within the

TCGA breast data set, two cancers (<0.5%) were found

to harbor missense mutations in IDH1 that have a high

probability of affecting the function of the enzyme

(R132C, Y235C). Since these data were based on whole

genome sequencing that could overlook specific muta-

tions, we performed targeted sequencing in the tumor

(TCGA-B6-A1KF) with very high levels of 2-HG to look

for the recurrent mutations found in other tumors in

IDH1 and IDH2. This tumor was wild type for both

genes in these regions (Figure S3B in Additional file 4)

suggesting an alternative mechanism leading to 2-HG

production, such as the recently reported activation of
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the myc pathway [27]. Levels of IDH1 and IDH2 mRNA

in these specimens also did not show a significant cor-

relation with 2-HG levels.

A number of reports indicate that alterations in spe-

cific genes or genetic pathways can result in detectable

metabolic changes in cancer. Our study with both de-

tailed gene expression and metabolomic data provided a

powerful means to test these associations and discover

new ones. One of the least complex of such relationships

is the link between the level of the tryptophan-degrading

enzyme indoleamine 2,3-dioxygenase (IDO1) and levels of

the immunomodulatory metabolite, kynurenine (Figure 4C).

Whereas the precursor molecule tryptophan did not vary

between ER + and ER- cancers, median levels of kynurenine

were significantly elevated in ER- tumors (Figure 4D). From

RNAseq data of the 23 cancers in our study, we found a

significant correlation between IDO1 expression and

kynurenine levels (Figure 3E, r = 0.55, P = 0.01). Comparing

levels of IDO1 mRNA within the TCGA data set (n = 748)

revealed a significant positive correlation of IDO1 mRNA

levels with vimentin expression (a hallmark of basal can-

cers). This finding suggests that kynurenine accumulation

commonly occurs in basal cancers and could lead to re-

duced immunosurveillance in this tumor type.

BRCA1 has been implicated in a number of metabolic

processes including fatty acid synthesis and response to

oxidative stress. Using the available RNAseq data, we

correlated expression of BRCA1 with metabolite levels

in the 23 TCGA cancers (Table S6 in Additional file 7).

There was evidence of strong association between high

levels of BRCA1 mRNA and elevated acetyl CoA, CoA,

3′ dephospho-CoA, and several acylcarnitines all indica-

tive of higher levels of fatty acid β-oxidation (Figure 5).

This is consistent with the reported ability of BRCA1

to inhibit acetyl-coenzyme A carboxylase 1 (ACC1/

ACACA) leading to reduced fatty acid synthesis and
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Figure 3 Hierarchical clustering of metabolites based on correlation coefficients. The correlation coefficients were calculated using Pearson

product-moment of each pair of metabolites (log base 2 normalized) among 399 metabolites from 25 breast cancers and 5 normal breast tissues.

Eight clusters of highly correlated metabolites are highlighted on the right panel.
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increased fatty acid β-oxidation resulting in the accu-

mulation of acetyl-CoA and CoA [31]. In contrast,

there were strong inverse correlations between BRCA1

levels and membrane components, long-chain fatty

acids, and amino acids further supporting the role of

BRCA1 in regulating the balance between fatty acid

synthesis and oxidation (Figure 5) [32]. In addition,

GSH and another antioxidant, 3-(4-hydroxyphenyl)lac-

tate were also positively correlated with BRCA1 mRNA

levels, supporting its role in activating NRF2, the mas-

ter regulator of the oxidative stress response and GSH

synthesis [33-35]. BRCA1 mRNA levels did not correl-

ate with proliferation or ER status indicating that this

is an independent set of variables. Furthermore, the

BRCA1 mRNA did not correlate with the mRNA levels

of genes in the fatty acid biosynthesis pathways; con-

sistent with posttranscriptional regulation (Figure S4

in Additional file 4).

To further explore associations with the most com-

mon genetic events in breast cancer, we performed SAM

analyses (Table S7 in Additional file 8) to identify metabo-

lites associated with the somatic driver alterations (shown

in Figure 1, used as categorical variables that is, mutant

versus wild type, amplified/deleted versus diploid). Many

of the genetic events are loosely associated with specific

tumor subtypes (for example, PIK3CA mutations were

not found in basal cancers) such that metabolite correla-

tions with specific genetic features may be confounded by

Figure 4 Specific metabolic/genetic associations. (A) The mean level of 2-hydroxyglutarate (2-HG) in 5 normal tissues, 16 estrogen receptor

(ER) + and 9 ER- tumors. (B) The level of 2-HG in breast cancer cell lines (4 luminal type and 5 basal type cells). (C) Kynurenine is derived from

tryptophan by indoleamine 2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase (TDO) enzymatic activity. (D) The level of tryptophan and kynurenine

in 5 normal tissues, 16 ER + and 9 ER- tumors. (E) The correlation between the level of kynurenine and IDO1 gene expression measured by RNAseq

in 23 tumors analyzed by The Cancer Genome Atlas (TCGA). (F) The correlation between RNA expression of the mesenchymal/basal marker

vimentin and IDO1 in TCGA breast cancers.
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higher level associations. With this in mind, the results do

support several relationships between metabolite profiles

and tumor genetics. Most notably, compared to tumors

with wild-type p53, cancers with TP53 alterations show a

very specific pattern of decreased lipid glycerophosphocho-

lines that is not apparent when classifying the cancers by

ER status, (Figure S5 in Additional file 4). Other significant

associations were observed between PIK3CA mutation and

malonylcarnitine and ERBB2 amplification with docosapen-

taenoate, fucose, and 1-oleoylglycerophosphoethanolamine

(Figure S6 in Additional file 4).

Metabolites associated with proliferation in tumors

Proliferation rate could impact the level of many metab-

olites. We measured proliferation by in situ detection of

Ki-67 followed by quantitative evaluation of the percent-

age of epithelial cells positive for this antigen. As previ-

ously demonstrated in many studies, proliferation tends

to be significantly higher in ER- compared to ER + tu-

mors (mean of 32% versus 14%, P = 0.009 in our cohort)

and epithelial cells in normal breast tissue have a very

low rate of proliferation (Figure 6C). Supervised cluster-

ing and correlation analysis of the metabolites with pro-

liferation rate demonstrated sets of metabolites that

were positively and inversely correlated with prolifera-

tion (Figure 6A and B, and Table S8 in Additional file 9).

Predictably, the level of glucose was lower in rapidly pro-

liferating cancers whereas lactate was positively correlated

with proliferation (Figure 6D). N-acetyl amino acids and

2′-deoxyinosine were highly enriched in rapidly proliferat-

ing tumors. The biological roles of N-acetyl amino acids

are largely unknown. However, aminoacylase-1 (encoded

by ACY1), which is responsible for the degradation of

these N-acetyl amino acids, has been found to be inac-

tivated in several tumor types [36,37]. High levels of

2′-deoxyinosine (dI) may be an indication of misincor-

poration of dI into the DNA of ER- tumor cells, a lesion

capable of generating A– > G transitions in DNA [38].

ER status was highly correlated with proliferation and

therefore many of the same metabolites were associated

with both of these parameters. We further analyzed the

data to determine whether these two parameters had

any degree of independence, and if so, for which sets of

metabolites. Linear regression analyses show that, while

correlated with one another, ER and proliferation status

act as complementary explanatory factors for many of

the metabolites (Figure S7 in Additional file 4). A rela-

tively small number of metabolites were highly corre-

lated with one parameter but not the other, most

notably 2-HG with ER status but not proliferation (Table

S9 in Additional file 10).

Discussion

Links between cancer genetics and altered metabolism

have been established primarily in model and experi-

mental systems but have rarely been tested in primary

P=0.001 P=0.007 P=0.03

P=0.004 P=0.02 P=0.03

Figure 5 Correlation between selected metabolite levels and BRCA1 mRNA expression. Three representative metabolites (coenzyme A

(CoA), reduced glutathione (GSH) and oleoyl-carnitine) that are positively and three (N-acetylneuraminate, arachidonate and palmitate) that are

inversely correlated with BRCA1 mRNA levels from The Cancer Genome Atlas (TCGA) RNAseq data on 23 cancers are shown. The full list of

metabolites correlated with BRCA1 is provided in Table S6 in Additional file 7 showing listing both normalized metabolite levels and metabolite

levels with an additional log2 transformation to reduce the impact of outliers.
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human cancers. The current study makes use of the

comprehensive genetic data from TCGA on breast can-

cer [1] to test reported relationships and discover new

and unexpected associations between genetics and me-

tabolism. TCGA data provides an excellent platform in

this regard for three reasons: (1) the tissues were sub-

jected to stringent quality control criteria including

tumor nuclei exceeding 70% and the absence of signifi-

cant necrosis, (2) multiple analytes were measured in

parallel on the same cancers including DNA sequence

for mutations, DNA copy number assessment, RNA ex-

pression including RNAseq and microarray analysis, methy-

lation, and protein and phosphoprotein levels, and (3) the

data are in the public domain in easily accessible formats

with standardized specimen identifiers that can be directly

linked and co-analyzed with other types of newly generated

data such as the metabolite levels that we measured in the

current study. We include the primary data on these sam-

ples so that anyone can perform their own joint analysis on

metabolites and genes of interest.

The frozen tissues were analyzed on a metabolomics

platform that has been used in other cancer-related

studies [39-41] and at the time of the analysis, included

identification and quantitation of 399 named biochemi-

cals (Mr <1,000 Da). Unsupervised clustering by metabol-

ite levels revealed two major categories, one containing

the normal breast tissues and a subset of the ER + cancers,

and the other containing all of the ER- cancers and the

remaining ER + ones. Overlaying the TCGA data on these

clusters revealed that all of the cancers clustering with

normal breast were of the luminal A intrinsic subtype.

The remaining luminal A and all of the luminal B cancers

fell in the other major cluster along with all of the basal

cancers and the two cancers designated as HER2 by

PAM50. That the luminal A cancers do not all cluster to-

gether is consistent with a metabolomic study employing

high resolution magic angle spinning magnetic resonance

spectroscopy of predominantly luminal cancers [17]. In

this study, three distinct categories of luminal A cancers

were described by hierarchical clustering driven primarily

A B

P=0.009

C
Ki67% HighLow

P=0.0003

P=0.0005 P<0.0001

P<0.0001

D

Figure 6 Proliferation rate is correlated with the level of many metabolites. (A) Supervised clustering of normalized metabolite levels as

ordered by the proliferation rate (Ki-67%) (from low (left) to high (right)). (B) Zoomed views of the metabolites that are most positively (orange

bar) or negatively (blue bar) correlated with proliferation. (C) Proliferation associated with receptor status and cancer status from the 30 samples

in this study. (D) The correlation of representative metabolites positively or negatively associated with proliferation rate.
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by varying levels of glycolytic activity. Widely different

proliferation rates in the ER + cancers may at least par-

tially underlie these luminal sub-clusters.

The basal subtype, a subset of the ER- cancers, demon-

strated significant homogeneity with 4 of the 5 PAM50

basal cancers clustering on one sub-branch of the metabo-

lomic hierarchical tree. A HER2 cancer was the only other

member of this sub-branch but this cancer does share the

common basal trait of having a TP53 mutation. Overlay-

ing the most common genetic driver alterations in breast

cancer on this cluster diagram allowed a visual assessment

of whether branches may also be driven by specific onco-

genic events. TP53 mutations and basal cancer status are

nearly coincident and as described, the basal cancers are

tightly clustered. Therefore, it is difficult to disentangle

genetics from intrinsic subtype in this instance. Other not-

able groupings that may be associated with a specific

genetic driver include MYC amplification and PIK3CA

mutation. PIK3CA mutations are tightly linked to the

luminal subtypes whereas MYC amplification is com-

mon in both basal and luminal cancers. It may be

noteworthy that none of the MYC amplified tumors

clustered with the normal breast tissue.

Supervised classification and t tests based on the three

categories of specimens (ER+, ER/PR-, normal) exhibited

significant signals for many metabolites. Over half of the

399 identified metabolites were different between normal

and cancer. Moreover, >18% of the metabolites varied

significantly between ER + and ER- cancers. These dra-

matic differences are consistent with previous reports

showing strong remodeling of central metabolism be-

tween normal breast tissue and breast cancer [16] and

between tumor subtypes [9]. Notably, glycolytic- and

glycogenolytic-associated metabolites including lactate

were higher in ER- cancers with the prominent excep-

tion of low tumor glucose. The increased lactate produc-

tion from ER- cancer may be caused by increased

glycolysis and confirm our previous finding of a strong

hypoxia program and the high ‘Warburg’ phenotype previ-

ously described in other studies of ER- cancer [7,9,16,27].

From TCGA data (for 23 of 25 of the cancers), we

were able to confirm or identify known and unexpected

associations between metabolite levels and various gen-

etic events. Proof of principle for this approach was

demonstrated by the correlation between kynurenine

and the mRNA of its synthetic enzyme, IDO1. IDO1 ex-

pression was also found to correlate with the basal

phenotype common to ER- cancers and the high levels

of kynurenine produced could result in reduced immu-

nosurveillance of these cancers [42]. Increased serum

kynurenine/tryptophan ratio has been noted during the

progression of several tumor types [43,44]. Our findings

support a connection between high IDO levels and

kynurenine in ER- tumors. Other a priori associations

that were tested included PKM2 exon 9 versus 10

splice variant levels with proliferation and metabolite

levels [45], IDH1 and 2 mRNA and mutations with 2-

hydroxyglutarate levels [29], and levels of GGT1 mRNA

and the gamma-glutamyl amino acids [46]. Of these, the

strongest association was between GGT1 and a subset of

the conjugated amino acids including leucine and isoleu-

cine (Figure S8 in Additional file 10). GGT1 expression

has been associated with a subset of basal cancers and our

data indicating elevated levels of gamma-glutamyl amino

acids in ER- cancers provides functional support for this

genetic link.

A number of driver mutational events have been im-

plicated in breast cancer development including amplifi-

cation of ERBB2, CCND1 and MYC, loss of PTEN and

CDH1, and missense mutations in TP53 and PIK3CA.

Some of these events have been associated with changes

in central metabolism in tumors and experimental sys-

tems [4,5,47-49]. Using these genetic alterations as cat-

egorical variables, we analyzed our data for signs of

metabolic signatures associated with the most common

genetic lesions. The co-existence of TP53 mutation and

reduced levels of a series of lipid glycerophosphocholines

was the most significant association detected. Altered

choline metabolism in the form of decreased glycero-

phosphocholine (GPC) was reported for several tumor

types, consistent with an association with p53 status

[50,51]. A specific connection between p53 and phospho-

lipid metabolism was demonstrated previously with indi-

cation of feedback regulation between phospholipid

turnover and p53 activity [52-55]. In our data, 8 differ-

ent long-chain fatty acid glycerophosphocholines were

strongly reduced in p53 mutant tumors suggesting an

underlying regulatory relationship for this consistent

association. An important caveat for this finding is the

fact that p53 mutation status is associated with the

basal intrinsic subtype in breast cancer. In our data

set, all five of the basal cancers harbored p53 muta-

tions and only one of the nonbasal cancers (HER2) had

a mutation. Therefore, the strong association we observed

between TP53 status and the levels of these phospholipids

may be confounded by intrinsic subtype something that

cannot be distinguished in the current study. Another in-

teresting metabolite-genetic association is the higher level

of fucose in ERBB2+ tumors. Fucose is a simple sugar that

is used to modify proteins and shown to be necessary for

key functions of neoplastic progression of breast cancer

cells [56]. The higher level of fucose may suggest that such

glycoprotein modifications play a particular important role

in ERBB2+ tumors.

Our findings with respect to BRCA1 further highlight

the potential of these joint analyses. Germ line BRCA1

mutations typically lead to triple-negative cancers, but

broad variation in mRNA expression is also observed
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outside of the context of the hereditary syndrome. High

levels of BRCA1 mRNA were positively correlated with

a group of metabolites indicative of elevated fatty acid

β-oxidation and increased anti-stress response and in-

versely correlated with medium- and long-chain fatty

acids and membrane components. BRCA1 protein via

its BRCT domain was shown to bind to ACC1/ACACA

preventing its dephosphorylation, keeping it in a phos-

phorylated and inactive form, thus inhibiting fatty acid

synthesis and promoting fatty acid β-oxidation [31].

We found a number of metabolites that fit this mechan-

ism. BRCA1 has also been implicated in redox homeosta-

sis [33], potentially through an interaction with NRF2 that

prevents its degradation and promotes its nuclear accu-

mulation [35] and we found multiple metabolites that also

fit this activity. These BRCA1 expression-metabolite asso-

ciations are entirely consistent with in vitro mechanistic

studies implicating BRCA1 in these processes and as such,

constitute direct support for the physiologic relevance of

these pathway connections in breast cancer.

Rate of proliferation is a key phenotypic property of

breast cancers that can be used as an independent prog-

nostic factor [57]. Gene expression indicative of prolifer-

ation constitutes a major component of the OncotypeDx

multi-gene recurrence score [58]. We measured prolifer-

ation in our specimens by scoring Ki-67 staining as a

continuous variable and correlated this metric with me-

tabolite levels. As anticipated, a number of strong corre-

lations with proliferative rate were found including high

levels of lactate and low levels of glucose consistent with

glucose-consumption patterns in rapidly growing cells.

Overall, many of the same metabolites correlated with

both receptor status and proliferation. While prolifera-

tion did correlate with ER status in our study (and

others), there were ER + cancers with high proliferation

rates and ER- cancers with relatively low proliferation

rates in our sample set. We compared the relative con-

tribution of these two factors (proliferation and receptor

status) to metabolite levels through statistical analysis

and found that a number of analytes were strongly asso-

ciated with one parameter but not the other suggesting

that there is some degree of independence. However,

these results further highlight the potential confounding

classification issue in breast cancer as receptor status,

intrinsic subtype, and genetic and phenotypic properties

are all correlated. The admixture of cancers we analyzed

in the current study reinforces these relationships indi-

cating that this data set is highly representative of the

landscape of the disease. The inclusion of metabolite

profiles as an additional dimension in the TCGA data-

base provides a new level of resolution to this important

public resource. Indexing our metabolite data to the

rigorously curated, comprehensive, and standardized

TCGA platform offers the opportunity for additional

hypothesis testing and discovery based upon metabolic

signatures and could produce novel insights for detec-

tion, prognostic, predictive, or therapeutic benefit.

Conclusions

We have identified categorical differences in the metabolic

profile of ER- vs. ER + breast tumors that may directly im-

pact tumor behavior and clinical phenotypes. We found

notable differences in energy needs, redox potential, pro-

tein uptake and catabolism which in the ER- samples

correlated with increases in glutathione biosynthesis,

NAD + production, and proliferative signaling. The data

are consistent with high Warburg metabolism in the ER-

tumors, as several biochemical intermediates of the glyco-

lytic pathway including lactate were found to be increased

in these cancers. Joint analysis with genetic alterations fur-

ther identified several gene-metabolite correlations valid-

ating the physiologic relevance of reported in vitro

associations and providing indications of novel regula-

tory relationships between tumor genetics and metab-

olism. The addition of metabolomic data to the public

domain TCGA dataset provides an important new tool

for the discovery and hypothesis testing of the genetic

regulatory of tumor metabolism.

Additional files

Additional file 1: Table S1. Demographic and clinical data for the

breast cancer subjects from which the tissues for this study were derived.

Additional file 2: Table S2. Metabolite levels (normalized and imputed)

of the breast samples with genetic driver alterations indicated.

Additional file 3: Table S3. t tests comparing metabolite levels

between the three groups of specimens; normal breast, estrogen

receptor (ER) + cancers, and ER- cancers.

Additional file 4: Figure S1. Metabolomic comparison between our

dataset and Terunuma et al.’s dataset. Lipid-containing metabolites are

highlighted in blue typeface. Figure S2. Significantly higher levels of

several metabolites in the cysteine and glutathione homeostasis and

amino acid cycle were found in estrogen receptor (ER)- compared to

ER + tumors. Figure S3. (A) Highly correlated 2-hydroxyglutarate (2-HG)

level measured by two different laboratories and methods. On the y-axis are

the values from Metabolon and the x-axis are the same samples analyzed in

the Duke Cancer Pharmacology Laboratory. The right hand plot normalizes

the scales for each set of measurements to spread out the points.

(B) Absence of IDH1 and IDH2 mutations in very high 2-HG sample

(TCGA-B6-A1KF). For comparison, the IDH1 R132C mutation is shown

from HT1080 cells. Figure S4. Heatmap of expression of BRCA1 and

genes in fatty acid biosynthesis pathway based on The Cancer Genome

Atlas (TCGA) mRNA data. Figure S5. A series of lipid glycerophosphocholines

significantly reduced in cancers with TP53 mutations. Figure S6. Examples of

metabolites significantly higher in tumors with mutant PIK3CA or ERBB2

amplified tumors. Figure S7. Scatter plots of the associations of each

metabolite with log proliferation versus the same for receptor status

given that log proliferation status is already accounted for in the

model (and vice versa). Each point corresponds to a metabolite and

the color corresponds to the overall strength of association between

receptor and proliferation and the metabolite. The dashed red lines

correspond to P = 0.05. Note that two of the four metabolites (in each

analysis) most highly associated with proliferation or receptor status

show significant additional explanatory ability for receptor status (red

dots); these metabolites represent the strongest overall associations.
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Figure S8. Correlation between GGT1 mRNA levels and selected

gamma-glutamyl amino acids.

Additional file 5: Table S4. Comparison with the Terunuma et al.’s (JCI

2014) dataset for discrimination of estrogen receptor (ER) + and ER- cancers.

Additional file 6: Table S5. Pearson’s correlations between all

metabolites in the study.

Additional file 7: Table S6. Pearson’s correlations between BRCA1

mRNA levels and metabolites for 23 cancers comparing normalized

metabolite levels and then log2 transformed normalized metabolite

levels with RNAseq expression data from The Cancer Genome Atlas

(TCGA). The metabolites that are significantly associated with BRCA1 mRNA

levels are labeled in red (positive correlation) or green (negative correlation).

Additional file 8: Table S7. Significance of microarray (SAM) analysis of

metabolites using each genetic driver alteration as a separate binary

condition.

Additional file 9: Table S8. Pearson’s correlations between KI-67

(proliferation rate) and metabolite levels.

Additional file 10: Table S9. Linear regression analyses of proliferation

(KI-67), estrogen receptor (ER) status, and metabolite levels.
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