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Abstract—Band selection for remotely sensed image data is an reduce data volume. Taking advantage of spectral correlation
effective means to mitigate the curse of dimensionality. Many cri- to achieve data compression is one of the unique features

teria have been suggested in the past for optimal band selection. ; ; ;
In this paper, a joint band-prioritization and band-decorrelation in multispectral/hyperspectral images. A general approach of

approach to band selection is considered for hyperspectral image this .kmd is band selection tP .’?lchleve dimensionality re-
classification. The proposed band prioritization is a method duction. In the past, many criteria have been proposed for
based on the eigen (spectral) decomposition of a matrix from band selection [1]-[5] to find bands that are crucial and
which a loading-factors matrix can be constructed for band sjgnificant in terms of information conservation. For instance,
prioritization via the corresponding eigenvalues and eigenvectors. Gisiance measures (Bhattacharyya distance, Jeffreys—Matusita
Two approaches are presented, principal components analysis . . . . .
(PCA)-based criteria and classification-based criteria. The for- d'Stance)'_'nformat'on'theoret'_c appro:?\ches (dlver-gence, trans'
mer includes the maximum-variance PCA and maximum SNR formed divergence, mutual information) and eigenanalysis
PCA, whereas the latter derives the minimum misclassification [principal components analysis (PCA)] have been applied to
canonical analysis (MMCA) (i.e., Fisher's discriminant analysis) multispectral images for optimal band selection. In particular,

and subspace projection-based criteria. Since the band prior- yne s of the divergence measure for band selection has
itization does not take spectral correlation into account, an

information-theoretic criterion called divergence is used for band received ConSI_derabIe interest in multispectral 'magery' More
decorrelation. Finally, the band selection can then be done by recently, the divergence was used as a band-selection criterion
an eigenanalysis-based band prioritization in conjunction with for hyperspectral-pixel classification [4]. However, it requires
a divergence-based band decorrelation. It is shown that the computing divergences for all the possible combinations of

proposed band-selection method effectively eliminates a great 544 gypsets. When the divergence measure is applied to
number of insignificant bands. Surprisingly, the experiments

show that with a proper band selection, less than 0.1 of the total hyperspectral imagery, WhiCh is generglly acquired with .more
number of bands can achieve comparab|e performance using the than 200 bandS, such a direct calculation becomes formidable.
number of full bands. This further demonstrates that the band In order to alleviate this problem, an alternative was reported
selection can significantly reduce data volume so as to achievejn [4].
data compression. In this paper, we present a new band-selection method
Index Terms—Band decorrelation, band prioritization, band  that comprises a band prioritization and a band decorrelation.
selection, divergence, eigenanalysis, hyperspectral classification,The band prioritization prioritizes all bands according to the
orthogonal-subspace  projection (OSP), - principal-components qntained information to be used for classification. Bands
analysis (PCA). . . - -
are then selected on the basis of their associated priorities.
Since the band prioritization does not consider the spectral
I. INTRODUCTION correlation [6], a band decorrelation using the divergence is

YPERSPECTRAL sensors can image an area with hursed to decorrelate prioritized bands. The proposed band pri-
H dreds of different wavelength ranges for identificatioff"itization is an eigenanalysis-based method that was used for
of the composition of various materials. As a result, eadfSt classification [7]. Although the concept of eigenanalysis
image scene is represented by an image cube with the tH}@F Peen suggested in [1] and [2], its usefulness was not
dimension specified by spectral range. Such three-dimensioftly €xploited. In [7], Tuet al. constructed a loading-factors
(3-D) representations create enormous amounts of data TRlrix via the eigen (spectral) decomposition of an appropriate
computer processing and data transmission. In order to nfR&trix, in which the loading factors were used to rank the

igate this problem, data compression is generally used ROty of each band. These bands were selected in decreasing
order of priority to achieve a certain level of classification
accuracy. In this paper, we revisit this band-prioritization ap-
Manuscript received October 1, 1997; revised April 28, 1998. prpaph and propose two elgenanaly5|s-based Cl’lterla'l .for _band
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rived: minimum-misclassification canonical analysis (MMCAA. Principal Components Analysis (PCA)
(Fisher’s discriminant analysis) and orthogonal-subspace PrOPrincipal components analysis (PCA), also known as the

jection (OSP) criteria. The classification power of a bandaynen—Loeve Transform, is a decorrelation technique that
subset is the sum of the loading factors produced by e igely used for data compression and interpretation [2].
bands in the selected band subset. A band-power ratio fpkansforms data coordinates in such a fashion that the first
a band selection is then defined as the classification power_p?ifncipal component vector is along the direction of maximum

the selected band subset divided by that of all bands beigiance. It then maximizes the variance in successive com-
used. After all bands are prioritized, a divergence-based b ents. Therefore, in this paper, it will be considered as an
decorrelation is further used to remove either redundant OR/PCA transformation.

insignificant bands. If the divergence between two bands IS ety = 1/N ij—l (xx — m)(x;, — m)7 be a data-sample
below a prescribed threshold, the band with lower priority,yariance matrix where, is the kth I-dimensional pixel
will be removed. Finally, the desired band-selection methQglqior in a hyperspectral imaga is the sample-mean vector,
can be designed by coupling an eigenanalysis-based bapdis the total number of pixel vectors, ardis the data

prioritization with a divergence-based band decorrelation. dimensionality (i.e., total number of bands). Siritds sym-

A comparative study for the four proposed bandyeyic and nonnegative definite, all its eigenvalyes}!_,

prioritization criteria will be conducted using hyperspectral . roai and nonnegative, and its correspondidgnensional

dig(;tal .ilrlnzgery clollect(;org) exrp]erirrllfent_(HYDICE)f im?.g% d?t%igenvectors»fi = (vi1, - vp)T fori=1,2,---, 1 can be

and will be evaluate the effectiveness of mixed-pix : l

classification. The condﬁcted experiments show tha? t%lhosen.to be ort_honormal, il - (ij-lvgj)m = L we
P an define loading factors;, associated withy; for MVPCA

OSP-based band prioritization, coupled with the divergenggz |t ovon Ac

based band decorrelation, produced the best results and can

effectively reduce large dimensionality at the expense of a Tig = \/):vzk for k=1,2,---,1L (1)

slight loss of information for classification. More surprisingly

nearly 94% of the total bands are shown to be unnecess

in terms of classification and thus can be eliminated with l

negligible loss of classification accuracy. This shows that a P = Z“Qk (2)

joint band prioritization and band decorrelation can achieve i=1

significant band reduction while preserving most of the . .4 ihe varianceZ, of the kth band image. Summing

information for classification. 9 , , .
) . . . -2 overk in (2) for each: =1, 2, ---, [ also yields
The remainder of this paper is organized as followg.p”’“ v n (2) ‘ T Y

Section Il presents two PCA-based eigenanalysis band- !

prioritization criteria, an MVPCA, and an MSNR PCA, A=Y rhe 3
while Section lll proposes two classification-based band- k=1

prioritization criteria, MMCA, and orthogonal subspac%0 from (2) and (3),22 = Zl‘ oy

projection (OSP). Since band prioritization does not nec- aince (2) also represents variances of band images, we can
|

Essnzrléy drerclortrielr?te fpec:lr?l Ibandrs, a ddi'xesrgegcﬁ'R? ne the sun} ", ; px to be the power produced by bands
a ecorretation approach Is aiso propose ectio ‘with the firstm largest variances. Without loss of generality,

order to evaluate the performance of the proposed joint bq%"i assume thap, > ps > --- > pr. In this case, we can

prioritization and band decorrelation, a series of HYDICE, - ofine the variance-based band-power ratio of these

experlments_; are co_nducteq in Section V. Finally, a brl%ands to be that of the total number of bands, denoted by
conclusion is given in Section VI. Ruyap(m), as

g&; easy to show that for eadh=1, 2, ---, [ p; defined by

m m

2

Il. PCA-BASED BAND PRIORITIZATION Zpk Zakk
k=1 k=1

Eigenanalysis has been used for band selection in the Ryar(m) = =
past [1], [2]. However, it does not take full advantage of
the relationship between eigenvalues and eigenvectors. Where £ = 22:1 Pr = 22:1 o3, is the sum of variances
et al. in [7] introduced the concept of band prioritizationof all band images. Sdpi/E) < Rya(m) < 1 for m
into canonical analysis (or Fisher’s discriminant analysis) tanging from one tol, where the upper and lower bounds
prioritize bands so as to achieve band reduction in which thee achieved by using all bands [i.&,..(l) = 1] and only
bands were prioritized by their associated loading factors. éame band [i.e.,R...(1)], respectively. Therefore, using (4),
order to obtain these loading factors, a loading-factors mative can determine how many bands are required to achieve a
was constructed from the eigenvalues and eigenvectors of tesired variance band-power ratio anywhere between one and
spectral- or eigendecomposition of an appropriate data matiix,/E. It is worth noting that the results outlined in (2)—(4)
In this section, two PCA-based transforms will be investigatedhn be found in [8] as well, where the selectionehighest-
to form different data matrices from which their correspondingariance bands presented in this paper is equivalent to finding
loading matrices can be constructed to derive two criteria usedprincipal variables using the criterion -, o7, defined in
for band prioritization. (4) with 03, > 03, > -+ > 02,,.. As will be shown in the

mm”*
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experiments, the measure,,.(mn) given by (4) may not be For any givenm, we can use (9) and (1)—(4) to define the
a good measure, since band images are generally correlagfdR-based band-power ratio produced by the firdtands to
and the bands selected based on (2) may still correlatethe total number of bands, denoted By NR(m)

those removed bands, a fact also noted in [8]. To mitigate

this problem, an SNR-based PCA will be introduced in the .

following section. Zpk

RgNR(M) = “=5 (10)
B. Noise Adjusted Principal Component Analysis (NAPC)

The goal of PCA is to find the principal components withvhere E = ™| _, p;. is the total variance of,y;. Since
their directions along the maximum variances of a data matrike noise variances i, have been normalized to one by
However, as shown in [9], variance does not necessarily reflé@¢ Whitening matrixZ" in (6), for eachk =1, 2, ---, [, the
real SNR due to unequal noise variances incurred in differerriance of thekth band imagep defined byp, = S7i_, 7%,
bands. Because of that, Greehal. developed a maximum Via (9) becomes the signal energy. Consequently sthalso
noise fraction (MNF) transform in [9], so that the transformetepresents the SNR of theband image. SimilarlyF' is the
principal components are evaluated by SNR rather than vaatal energy of signals in all-band images. As a result of
ance, as used in a PCA. In light of this interpretation, the MNthe NAPC transform specified by (8), (10) is indeed the SNR
transform can be thought of as a transformation maximizif@nd-power ratio for selectiom bands in accordance with
SNR. The MNF was further reinterpreted in [10] as an NAPQ@ip2 - - - pi. The advantage of using MSNRPCA over MVPCA
The idea of the NAPC is to design a matrix to whiten this clearly demonstrated through operations implemented by
covariance matrix so that the noise-adjusted covariance maf®} and (7), where the noise covariance matx has been
becomes an identity matrix. Therefore, the resulting varianca$itening before the PCA transform is applied. So, the correla-
can be interpreted as SNR’s. By taking advantage of tkien problem with between-band noise variances that results in
NAPC, the possible correlation with removed bands creat@dpoor measurei,..(m) of (4) is resolved by (6). Analagous
by the measureR,,.(m) defined by (4) for band selection,to (4), (10) is also upper-bounded by one (i.e., all bands
can be resolved. In this section, this approach is referredate used) and lower-bounded by/E (only the first band
as an MSNRPCA transformation, which will be based on thg used). It can be used to determine how many bands are
fast NAPC transform [11] with the noise variances estimatg@quired to achieve a certain desired level of SNR between
by the nearest-neighbor difference described in [9] and [10],1/F) < Rgnr(m) < 1.

In the NAPC approach, a noise estimate is required for the

observation model I1l. CLASSIFICATION-BASED

(5) EIGENANALYSIS BAND PRIORITIZATION

Unlike the MVPCA and MSNRPCA, which are based on
wherez is an observation vector with the covariance matrimaximization of energy, the classification-based eigenanalysis-
denoted byX, s is a signal vector, and is the noise vector band prioritization is designed by ranking bands according to
independent ok with the covariance matrix denoted B,. the effectiveness of their classification abilities. Two criteria
The noise estimate will then be used to find a whitening matnixill be derived from this approach, the MMCA and the OSP.

Z=s+n

F to orthonormalizeX,, such that In this case, we need to know how many classes will be
- - 1 considered. For illustrative purposes, the class membership of
FPygF=1 and I F=A;". (6) samples is assumed to be knowrpriori. Nonetheless, this

constraint is not rigorous and can be relaxed by unsupervised

Ay in (6) _is the_diagopal matrix of the _eigenvalue_s X_)II' _ learning methods such as nearest-neighbor clustering [12],
The resulting noise-adjusted data covariance matrix is 9VRBhonen self-organization feature maps [13], etc.
by Xaaj = FTY,F. Let G be the eigenvector matrix resulting '

from PCA based ort,q;. Then we obtain . : I . .
A. Minimum Misclassification Canonical Analysis

GT'Y0giG = Aoy and GT'G =1 (7) (MMCA) or Fisher's Discriminant Analysis
MMCA is derived from Fisher’s discriminant function and
where A,q; = diag{)A.q;,:} is the diagonal matrix of the was used in [7] to minimize the misclassification error.
eigenvalues{Aag;,i}i_; Of o4 Finally, the desired NAPC | ot {w,, ws, ---, we} be the set of classes of interest and
transform can be derived from C be the number of classes to be classified. Assumexthat
is the jth sample vector in class and £ = {x;;}i2; ;_;
is the set of sample vectors to be used for classification,
here NV, is the number of sample vectors in tih class and
= Ny + --- 4+ N¢ is the total number of sample vectors.
Let m = (1/N)_; 3207 x;; be the mean ofZ, and
m; = (1/N;) Y1 | xi; be the mean of clags From Fisher's
Tik = \/ Aadj,svik fOr k=12 --- 1 (9) discriminant analysis [12], we can form total, between-class,

H=GF. 8)

Let {vi}é be the orthonormal eigenvectors associated wi
{Xagj,i 1. We can define the loading factors in a simila
manner to (1) for an MSNRPCA transformation by
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and within-class scatter matrices as follows: the pixelr; andp is the number of signatures of interest. Let
c N, a; = (1 g - )t be ap x 1 abundance-column vector
St = 1 Z Z(XU —m)(x;; — m)T (11) associated withr; where «;; denotes the fraction of thgth
N i=1 j=1 signature in the pixet;.
c A classical approach to solving the mixed-pixel classifi-
Sw = i Z Z i(xij —m;)(x;; — mi)T (12) cation problem is linear unmixing, which assumes that the
N i=1 x:; €w; N materials within a pixel vector are linearly mixed and can be
c represented by a linear-regression model
N; T
Sg = z; W(mZ —m)(m; —m)". (13) r; = Mo +n; (19)
From (9)—(11): wheren; is anl x 1 column vector representing an additive
white Gaussian noise with zero mean and variam&g and
St = Sw + Sp. (14) I is thel x I identity matrix.

In order to minimize the misclassification error, we maxi- 2) Orthogonal Subspgce Projection (OSPyow we as.-.
mize the Rayleigh quotient sume that there ar€’ signatures that need to be classified

with C < p. In this case, we rewrite model (19) to separate

ZTSpZ the undesired signatures U from the desired signafuras
J(Z) = 775w 7 over Z. (15) follows:
The solution to (15) is equivalent to solving the following r=DA+UB4+n (20)
generalized eigenvalue problem
where the subscript is suppressed, the desired signature
Spvi = A Swv; (16) matrix is denoted byD = [m;,---, m¢c] associated
. with the abundance vectoA = (a1, -+, ac)? and the
or equivalentl . . T
quiv y undesired spectral-signature matrix is denoted Wy =
St Sevi = A v (17) [mc41, ---, my] along with its corresponding abundance
vector B = (acy1, -+, o)t A generalized orthogonal-

_For any given band numben, we can use (1)—(3) with g hspace projection classifier can be derived easily by the
eigenvalues and normalized eigenvectors obtained by (17)p%cedure given in [14] to yield

define )", pr as the discriminant power of. bands to be
used for discrimination and also define the total discriminant Plr=P}rDA + Pin (22)

ower to beE = 3! .. The band-power ratio, denoted .
EyWRMMCA(m) %:k:l Pk Pow | where PLJ: = J — UU# and U# = (UTU)—IUT is the

pseudo-inverse of/, and the notatior: in P;+ indicates that

il the projectorP;+ maps the observed pixel into the range
Zpk space(U)! (the orthogonal complement gf’)). Equation
Rpymca (m) = ’“=;5 . (18) (21) represents a standard signal-detection problem. If the

maximization of the SNR matrix given by
The band-power ratio given by (18) is a measure for the Tl e —
misclassification rate of: bands to be used for classification, gSNR= [W Iy DA] [A D™ Py W]

over W (22)

compared to that of the total number lobands. W Pg Enn®| Py W
o o is chosen to be the optimal criterion for the signal model
B. Orthogonal Subspace Projection (OSP) Criterion (21), the maximum SNR of (20) is equivalent to finding the

Like the MMCA, the OSP eigenanalysis-band prioritizatiomaximum eigenmatrix of the following generalized eigenvalue
is also a classification-based approach. The approach descripiplem
in this section will be derived from the concept of OSP
developed in [14]. For more details and other OSP-based

approaches, we refer to [15] and [16]. Before we proceeﬁ;ihe maximum eigenmatrix for (23) is given by
a review of linear-mixture models used in these criteria is

[Pt [PL%DA(DA)TPL%] x=Ax.  (23)

necessary. Anax = SNRyax
1) Linear Spectral Mixture ModelLinear spectral mixture _ (02 DTP%D)—l [DTPLYDA] [(DA)TP%D}
is a widely used model in remotely sensed imagery to de- v v v
termine and quantify multicomponents. Suppose thiatthe AAT
number of spectral bands. Let be anl x 1 column vector T2 [D* Py D). (24)

and denote theth pixel in a multispectral or hyperspectralg .4 on the approach outlined by (20)—(24), a mixed-pixel

image. In this case, each pixel is viewed as a pixel VeCtol «sification can be carried out by an OSP classifigsp=
with dimensionl. Assume thaf\{ is anl x p signature matrix DTPL that is
U 1

denoted bym; m; --- m,] wherem; is anl x 1 column
vector represented by thgh signature (substance) resident in Posp = D" Pgr=D"PyA+D"Pgn.  (25)
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In other words, we first apply?;+ to model (25) to eliminate in similar priorities [6]. In this case, one band can well
U, then use the matched filter Mto extract theD from the represent the other. Consequently, there is no significant loss
signal model (21). A short script of the program using MATef information to select one band while removing the other.
LAB to run the OSP on matrix computations, is given in th&his is particularly true for hyperspectral images. The pro-
appendix for reference. Then, following the same argumeriesed divergence-based band decorrelation is an information-
given for (15)—(17), and using (22)—(24), we can define thbeoretic criterion to measure the correlation between two band
sum ;" | px to be the classification power produced by themages. If the divergence between two band images is below a
m-band selection and further define the band-power ratio gppecified threshold, this implies that these two band images are
the D-class classification power rendered 4ybands to the highly correlated so that the band image with lower priority
total D-class classification power producedldyands, denoted will be removed, and the band image with higher priority will

by ROSP, p(m) to be be retained to represent it in the band-selection process.
. From information theory [19], there is a criterion called
Zpk “divergence,” which can be used to measure the discrepancy
P between any two probability distributions. Let= {p;}!_,

Rosp, p(m) = = (26) andq = {¢:}_, be the image gray-level histograms of any

Zpk two ba_nd images. The divergence, denotedIPyp, ¢), can
1 be defined as

Before concluding this section, three remarks are noteworthy. D(p, q) = L(p; q) + L(q; p) (27)

1) Similar equations to (21)—(25), described in the OSP ) ) i
approach developed in [14], can be found in [17] anghgreL(p; q) is the relative entropy op with respect tog
[18] as well, where the concept of OSP is very closel efined by
related to that of the simultaneous diagonalization and l ‘
dimensionality reduction used in magnetic-resonance L(p; q) = Zpi log& (28)
imaging applications. i=1 £

2) Comparing (22) to (15), their solutions can be obtaineg,y ;.. 1) is the relative entropy with respect tg defined
by maximizing the Raleigh quotient. However, this ig)
equivalent to solving a generalize eigenvalue problen¥
that further results in (23) and (17). Nevertheless, keep ! ¢
in mind that they were derived from two different op- L(g; p) = Z a4 log;.
timal criteria. Equation (23) is based on maximization =1 ‘
of SNR, while (15) uses Fisher’s discriminant distancRote thatL(p; ¢) is also referred to as directed divergence,
to minimize the misclassification error. cross entropy, or Kullback—Leibler distance betwgesndgq.

3) As noted by the first remark, the OSP-baseg/hile (27) is symmetric [i.e.D(p, ¢) = D(q., p)], (28) and
eigenanalysis-band prioritization is also an MSNR29) are generally not symmetric [i.el{p; q) # L(q; p)].
criterion. Comparing to the MSNRPCA criterion, Equation (27) can be used to measure the similarity be-
they are different in the sense that the former makegeen two images. Namely, it can measure the overlapped
use of subspace projection to eliminate undesirggformation contained in any pair of images. If the divergence
signatures and suppress noise before the MSN&below a prescribed threshold, the band with lower priority
criterion is applied, whereas the latter simply rank@ill be removed. The implementation of the proposed band
principal components in decreasing order of magnitu@fcorrelation is described as follows.
of SNR. More specifically, the orthogonal subspace Algorithm for Divergence-Based Band Decorrelation:
projection-based eigenanalysis-band prioritization h@gsume that all bands have been prioritized by band
done more than what the MSNRPCA has. It not onlprioritization Q2 = {Bj}é':l whereB; > By > --- > By, >
maximizes the SNR that the MSNRPCA does, byt the notation of priority order, antlis the total number of
also enhances the desired signature because of bgds. Letp; be the image gray-level histogram of the band
undesired signatures annihilation and noise suppressifiiage specified by3;. e is a prescribed threshold.

a task which the MSNRPCA does not do. On the 1) |njtialization: Let counterj be set to 1 (i.e.j = 1 and
other hand, the advantage of MSNRPCA over the ° ihe injtial band sef?, = (B}

orthogonal subspace projection-based eigenanalysisy) ¢ the j-stage forj > 1, the current visited-band image

(29)

band prioritization is that it is derived independent is B..

of classification. Therefore, it has applications other Fojr eachB; € Q,_;, computeD(p;, p;).

than classification. 3) If D(p:,p;) < &, B; will be removed. Let2; = Q;_1,
and go to step 5.

IV. DIVERGENCEBASED BAND DECORRELATION 4) Otherwisep(pi’ pj) >e and check if theBZ is the last

As mentioned previously, band prioritization does not take ~ band in€;_;.
care of spectral correlation. It is always possible that two  a) If it is the last band if2;_1, thenD(p; : p;) > ¢
near bands share so much information that they may result for all B; € Q;_;. This implies that the5; must
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TABLE |
BAND NUMBERS AND BAND-POWER RATIOS REQUIRED FORMVPCA, MSNRPCA, MMCA, AND OSP RITERIA
MVPCA MSNRPCA MMCA SP UBS

Number of
Total Bands 10 11 10 12 12
Selected 87,57, 86, 93, 70, 72, 97,79, 128, | 64,67, 85, 17, 34, 51, 68,
Band 100,99, 83, | 118, 73,95, | 64,100,78, |78, 34,95, 85,102,119,
Numbers 90, 102, 70, | 91, 87,90, 95,101,90, | 31,22,118, 136, 153, 170,

i 126 135,15 14 14,101,7 187,204
Band Power | - 5296 0.2260 0.2859 0.1400 0.2399
Ratio

contain some information that cannot be represented
by one of the bands if;_;. Thus, it must be added
to ;1. LetQ; =Q,_; U{B;}, and go to step 5.
b) If itis not the last band is2;_;, continue to check
next B; in ,_;, and go to step 3.
5) If j = [, stop algorithm. Otherwise, let= j + 1, and
go to step 2.
It should be noted that in steps 2—4, &)f's in €;_; must
be checked, examined, and comparedto The band sef;,
produced by the above band-decorrelation algorithm, is the
final desired band set that will be used for classification.
The band-selection problem considered in this section fig. 1. HYDICE image scene of band 30.
very similar to a best-subset selection for multiple linear-
regression analysis in [20], where various computational methe image. There are four vehicles vertically aligned where the
ods are proposed for minimizing the sum of squared residugp three are treaded vehicles and the bottom one is a wheeled
(i.e., least-squares error). However, there are two differencgshicle. The size of the treaded vehicles is approximately 4
One is that the band-decorrelation algorithm described above«iss m, and the size of the wheeled vehicle is about %
based on the criterion of divergence rather than least-squatiesin addition to these vehicles, there is an object located
error. It is a simple exhaustive process. Another differengg@ the center of the scene. The following experiments are
is that the methods described in [20] assume that the sigsigned to demonstrate how the band prioritization and band
of the selected subset must be knowpriori (in our case, decorrelation can be used jointly for band selection and how
the number of bands needing to be selected must be knomBy affect classification results. The classifier used for target
in advance), whereas our algorithm does not require thissification to conduct a comparative study of various band-
assumption. It terminates as long as a prescribed thresheddection criteria is specified by (25) (i.e., the OSP classifier
is met. This is a significant advantage because in reality, \terived in [14]).
do not know how many bands are required for band selection First of all, we assume that the signature matfvixis made
As will be shown in the experiments, if the number of selectagh of six signaturesthe first treaded vehicle, the wheeled
bands is known, a simple uniform-band selection WithOl\ybhide, object, grass, tree, and r@adjhere the desired
finding specific bands can achieve good results. In this casgnature matrixD consists of three man-made signatures,
there is no need for band-selection algorithms. {treaded vehicle, wheeled vehicle, objgcind the undesired
signhature matrix is composed of the remaining three natural-
background signatureggrass, tree, rogd All the required
V. EXPERIMENTS signature information was directly extracted from the image
In this section, a series of experiments using a HYDICEcene. The experiments were done by first prioritizing all
image is presented to illustrate the five eigenanalysis-badshds using the four-band prioritization criteria proposed in
band-prioritization criteria used for band selection. A comthis paper: MVPCA, MSNRPCA, MMCA, and OSP and
parative study is also conducted along with uniform barttien following with the divergence-based band decorrelation
selection (UBS), in which the bands are selected uniformlgiescribed in the previous section. Finally, (4), (10), (18),
The HYDICE image used, shown in Fig. 1 (image of bandnd (26) were used to calculate the band-power r&titor
30), is radiance data taken in Maryland in August 199%he selected band sets. For these experiments, the divergence
using 210 bands with 10 nm spectral resolution and spectthteshold was set to 1.5. It was empirically chosen and seemed
coverage 0.4-2.%. The ground-sampling distance (GSD) isappropriate. The numbers of bands required for MVPCA,
approximately 0.78 m. The figure has a size of 22828 and MSNRPCA, MMCA, and OSP are tabulated in Table | and
shows a large grass field with tree lines running along the léft the range from 10 to 12. If the threshold was set too high,
edge. This field contains a road running along the right edgeafly a few bands could be selected, and results were not good.
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Fig. 2. Classification results produced by MVPCA according to Table I: (3ig. 3. Classification results produced by MSNRPCA according to Table I:
for treaded vehicles, (b) for wheeled vehicles, and (c) for the object. (a) for treaded vehicles, (b) for wheeled vehicles, and (c) for the object.

If the threshold was set too low, many unnecessary redundgsit objects. Comparing Figs. 2—6 to Fig. 7, all four criteria
bands were selected that did not provide much additiongbng with UBS produced comparable results. In order to
information. Also listed in Table | are their correspondingonduct a comparative analysis, Fig. 7 was used as a base for
band numbers in order of priority and associated band-pow&mparison. This is because the objective of band selection is
ratios. Figs. 2-5 show the classification results using MVPCAy select appropriate bands that can retain as much information
MSNRPCA, MMCA, and OSP band-prioritization criteria withcontained in Fig. 7 as possible. According to this criterion,
bands selected according to Table I. In order to evaluate &P produced the best-matched results to Fig. 7, while Fig. 2
performance of these four criteria, two more experiments afigay be the worst. This can be explained by the fact that
also included. Fig. 6 is produced by a UBS where the bantgtg variance-based band-power ratio of MVPCA might still
were selected uniformly from 210 bands, with the total numbetcount for part of the variances contributed by those removed
of bands chosen to be the maximum number of bands requitsghds that may be correlated with selected bands. In order to
for any of four criteria. In this case, 12 was the highest numbe#solve this correlation problem, MSNRPCA was introduced to
(for OSP) and thus, 12 bands uniformly distributed among th@prove MVPCA. As evidenced in Fig. 3, the results produced
210 were chosen. Fig. 7 is produced by using the full set by MSNRPCA are generally better than those in Fig. 2 in
210 bands. As shown in Figs. 2-7, images labeled by (a) aeems of target classification. Fig. 3 looks closer to Fig. 7 than
the classification results for treaded vehicles, images labeleid. 2 does to Fig. 7 after the between-band correlation was
by (b) are for wheeled vehicles, and images labeled by (c) goperly taken care of by a whitening matrix implemented in
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Fig. 4. Classification results produced by MMCA according to Table I: (8}ig. 5. Classification results produced by OSP according to Table I: (a) for
for treaded vehicles, (b) for wheeled vehicles, and (c) for the object. treaded vehicles, (b) for wheeled vehicles, and (c) for the object.

MSNRPCA. Figs. 2—6 show different performances one way

or another. For instance, Fig. 2 shows the best detection of thdt is also noted that in all figures, the third treaded vehicle
wheeled vehicle but may be the worst detection of the treadeds missed when the treaded vehicles were classified. But,
vehicles and the object. Fig. 3 produced by MSNRPCA showswas picked up in the wheeled-vehicle classification. This
a better detection for the wheeled vehicle and the object ladcurrence is not surprising, because the spectrum of the third
not for treaded vehicles. On the contrary, Fig. 6, producéckaded vehicle is much more similar to that of the wheeled
by UBS, shows a good detection of treaded vehicles and tehicle than to those of the first two treaded vehicles. For
object but a bad detection of the wheeled vehicle becausemiore details, we refer to [16]. As a result, classifying one will
also detected the object as well. Fig. 4, produced by MMCAlgtect the other. In this case, spatial information such as shape
can be ranked between Figs. 3 and 6, where the detectmnsize may be useful to help us separate these two vehicles,
performance of vehicles is between MSNRPCA and UBS, bbecause one is larger than the other.

the detection of the object turns out to be the worst of the three.Table | also shows some interesting findings. In order to pro-
It is interesting to note that Fig. 7, produced by the entire 21uce classification results comparable to Fig. 7, no more than
bands, shows a bright broken line along the vehicles. THi bands (i.e., approximately 6% of 210 bands) are needed
line is caused by a strong interferer in the scene, which fiazr the proposed band-selection method. More surprisingly,
only shown in a few band images among all 210 bands. Nleeir corresponding band-power ratios are even less than a
criteria detected it. quarter of total band energy. This implies that most of the 210
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Fig. 6. Classification results produced by the UBS: (a) for treaded vehiclgsg. 7. Classification results produced by using all 210 bands: (a) for treaded
(b) for wheeled vehicles, and (c) for the object. vehicles, (b) for wheeled vehicles, and (c) for the object.

Stgated for comparative analysis. They all resulted in similar

bands are either redundant or insignificant. So, the propo .
%Jnclusmns [6].

joint-band prioritization and band-decorrelation approach
band selection can effectively eliminate a great number of
unnecessary bands and achieve good classification results. The VI. CONCLUSION
band reduction rate can be as high as 94%. This is a tremenThis paper presented a joint band-prioritization and band-
dous advantage that offers substantial saving in storage a®dorrelation approach to band selection. The band priori-
computation. Nevertheless, these bands cannot be randotidgtion was based on an eigenanalysis and decomposed a
selected. This must be done by a careful selection of desimddtrix into an eigenform matrix from which a loading-factors
bands using an appropriate criterion. In our proposed UB®atrix could be constructed and used to prioritize bands.
it is determined by the maximum number of bands requirékhe loading factors determined the priority of each band and
for any of the four band-prioritization criteria. Furthermoreranked all bands in accordance with their associated priorities.
despite no band content-based selection criterion for UBSThe band prioritization was then followed by a divergence-
value for the total number of bands to select is needed. Thiased band decorrelation that used the divergence measure
value cannot be randomly determined. to remove redundant or insignificant bands. As shown by
Although the experimental results presented in this papdiyDICE data, the proposed band-selection method could
were conducted based on only one image scene (which vediectively reduce band dimensionality with very little loss
also studied in [16]), several other HYDICE images were algd information in hyperspectral image classification. Recently,
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it has been shown in [16] that interference played a significant
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NAPC, was developed in [21]. It considerably improved PCA
performance via interference annihilation. However, in this
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(4]

APPENDIX

In what follows, a short script of the program using MAT- [3]
LAB to run the OSP for matrix computations is provided for
reference.

(6]
% load desiredD and undesired’/ signatures
load U/
load D
% generate the OSP projector
P = eye(210) — U xinv(U' « U) = U,

(7]

IP = inv(P); (8]
% input parameters of the data set [9]
head=512;
column=320;
totalband=210; [10]
bpp = 2;
frame=column*totalbandyp;
begindot=41,; [11]
enddot=168;
begipline=191; [12]
endline=318;
dotnum=enddot-begindot+1; Hi}
linenum=endline-beginline+1;
% calculate the matrix for OSP
S=zeros(totalband); (15]
fid = fopen('filenamé,’ +');
fseek(fid, head, bof");
fseek(fid, (beginline— 1) x frame’ cof’); [16]
fseek(fid, (begindot— 1) « bpp,’ cof’);
for ¢ = 1:linenum [17]
block=zeros(totalband,dotnum);
for j = 1:totalband [18]
block(j,:)=fread(fid,[1,dotnum],’int16);
fseek(fid, (column-dotnum « bpp,’ cof'); [19]
end
block=P*block; [20]
for j = 1:dothum [21]
S =5+ block(:, j) * block(:, 5);
end [22]
end
felose(fid);
S = IP+ S/16 384; [23]
% the end
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