
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 6, NOVEMBER 1999 2631

A Joint Band Prioritization and Band-
Decorrelation Approach to Band Selection

for Hyperspectral Image Classification
Chein-I Chang,Senior Member, IEEE, Qian Du, Student Member, IEEE,

Tzu-Lung Sun, and Mark L. G. Althouse,Member, IEEE

Abstract—Band selection for remotely sensed image data is an
effective means to mitigate the curse of dimensionality. Many cri-
teria have been suggested in the past for optimal band selection.
In this paper, a joint band-prioritization and band-decorrelation
approach to band selection is considered for hyperspectral image
classification. The proposed band prioritization is a method
based on the eigen (spectral) decomposition of a matrix from
which a loading-factors matrix can be constructed for band
prioritization via the corresponding eigenvalues and eigenvectors.
Two approaches are presented, principal components analysis
(PCA)-based criteria and classification-based criteria. The for-
mer includes the maximum-variance PCA and maximum SNR
PCA, whereas the latter derives the minimum misclassification
canonical analysis (MMCA) (i.e., Fisher’s discriminant analysis)
and subspace projection-based criteria. Since the band prior-
itization does not take spectral correlation into account, an
information-theoretic criterion called divergence is used for band
decorrelation. Finally, the band selection can then be done by
an eigenanalysis-based band prioritization in conjunction with
a divergence-based band decorrelation. It is shown that the
proposed band-selection method effectively eliminates a great
number of insignificant bands. Surprisingly, the experiments
show that with a proper band selection, less than 0.1 of the total
number of bands can achieve comparable performance using the
number of full bands. This further demonstrates that the band
selection can significantly reduce data volume so as to achieve
data compression.

Index Terms—Band decorrelation, band prioritization, band
selection, divergence, eigenanalysis, hyperspectral classification,
orthogonal-subspace projection (OSP), principal-components
analysis (PCA).

I. INTRODUCTION

H YPERSPECTRAL sensors can image an area with hun-
dreds of different wavelength ranges for identification

of the composition of various materials. As a result, each
image scene is represented by an image cube with the third
dimension specified by spectral range. Such three-dimensional
(3-D) representations create enormous amounts of data for
computer processing and data transmission. In order to mit-
igate this problem, data compression is generally used to
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reduce data volume. Taking advantage of spectral correlation
to achieve data compression is one of the unique features
in multispectral/hyperspectral images. A general approach of
this kind is band selection to achieve dimensionality re-
duction. In the past, many criteria have been proposed for
band selection [1]–[5] to find bands that are crucial and
significant in terms of information conservation. For instance,
distance measures (Bhattacharyya distance, Jeffreys–Matusita
distance), information-theoretic approaches (divergence, trans-
formed divergence, mutual information) and eigenanalysis
[principal components analysis (PCA)] have been applied to
multispectral images for optimal band selection. In particular,
the use of the divergence measure for band selection has
received considerable interest in multispectral imagery. More
recently, the divergence was used as a band-selection criterion
for hyperspectral-pixel classification [4]. However, it requires
computing divergences for all the possible combinations of
band subsets. When the divergence measure is applied to
hyperspectral imagery, which is generally acquired with more
than 200 bands, such a direct calculation becomes formidable.
In order to alleviate this problem, an alternative was reported
in [4].

In this paper, we present a new band-selection method
that comprises a band prioritization and a band decorrelation.
The band prioritization prioritizes all bands according to the
contained information to be used for classification. Bands
are then selected on the basis of their associated priorities.
Since the band prioritization does not consider the spectral
correlation [6], a band decorrelation using the divergence is
used to decorrelate prioritized bands. The proposed band pri-
oritization is an eigenanalysis-based method that was used for
fast classification [7]. Although the concept of eigenanalysis
has been suggested in [1] and [2], its usefulness was not
fully exploited. In [7], Tu et al. constructed a loading-factors
matrix via the eigen (spectral) decomposition of an appropriate
matrix, in which the loading factors were used to rank the
priority of each band. These bands were selected in decreasing
order of priority to achieve a certain level of classification
accuracy. In this paper, we revisit this band-prioritization ap-
proach and propose two eigenanalysis-based criteria for band
prioritization, the PCA-based criteria, and the classification-
based criteria. Two PCA-based criteria are to be considered:
maximum-variance PCA (MVPCA) and maximum-SNR PCA
(MSNRPCA). Two classification-based criteria are also de-

0196–2892/99$10.00 1999 IEEE



2632 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 6, NOVEMBER 1999

rived: minimum-misclassification canonical analysis (MMCA)
(Fisher’s discriminant analysis) and orthogonal-subspace pro-
jection (OSP) criteria. The classification power of a band
subset is the sum of the loading factors produced by the
bands in the selected band subset. A band-power ratio for
a band selection is then defined as the classification power of
the selected band subset divided by that of all bands being
used. After all bands are prioritized, a divergence-based band
decorrelation is further used to remove either redundant or
insignificant bands. If the divergence between two bands is
below a prescribed threshold, the band with lower priority
will be removed. Finally, the desired band-selection method
can be designed by coupling an eigenanalysis-based band
prioritization with a divergence-based band decorrelation.

A comparative study for the four proposed band-
prioritization criteria will be conducted using hyperspectral
digital imagery collection experiment (HYDICE) image data
and will be evaluated by the effectiveness of mixed-pixel
classification. The conducted experiments show that the
OSP-based band prioritization, coupled with the divergence-
based band decorrelation, produced the best results and can
effectively reduce large dimensionality at the expense of a
slight loss of information for classification. More surprisingly,
nearly 94% of the total bands are shown to be unnecessary
in terms of classification and thus can be eliminated with
negligible loss of classification accuracy. This shows that a
joint band prioritization and band decorrelation can achieve
significant band reduction while preserving most of the
information for classification.

The remainder of this paper is organized as follows.
Section II presents two PCA-based eigenanalysis band-
prioritization criteria, an MVPCA, and an MSNR PCA,
while Section III proposes two classification-based band-
prioritization criteria, MMCA, and orthogonal subspace
projection (OSP). Since band prioritization does not nec-
essarily decorrelate spectral bands, a divergence-based
band-decorrelation approach is also proposed in Section IV. In
order to evaluate the performance of the proposed joint band
prioritization and band decorrelation, a series of HYDICE
experiments are conducted in Section V. Finally, a brief
conclusion is given in Section VI.

II. PCA-BASED BAND PRIORITIZATION

Eigenanalysis has been used for band selection in the
past [1], [2]. However, it does not take full advantage of
the relationship between eigenvalues and eigenvectors. Tu
et al. in [7] introduced the concept of band prioritization
into canonical analysis (or Fisher’s discriminant analysis) to
prioritize bands so as to achieve band reduction in which the
bands were prioritized by their associated loading factors. In
order to obtain these loading factors, a loading-factors matrix
was constructed from the eigenvalues and eigenvectors of the
spectral- or eigendecomposition of an appropriate data matrix.
In this section, two PCA-based transforms will be investigated
to form different data matrices from which their corresponding
loading matrices can be constructed to derive two criteria used
for band prioritization.

A. Principal Components Analysis (PCA)

Principal components analysis (PCA), also known as the
Karhunen–Loeve Transform, is a decorrelation technique that
is widely used for data compression and interpretation [2].
It transforms data coordinates in such a fashion that the first
principal component vector is along the direction of maximum
variance. It then maximizes the variance in successive com-
ponents. Therefore, in this paper, it will be considered as an
MVPCA transformation.

Let be a data-sample
covariance matrix where is the th -dimensional pixel
vector in a hyperspectral image, is the sample-mean vector,

is the total number of pixel vectors, andis the data
dimensionality (i.e., total number of bands). Sinceis sym-
metric and nonnegative definite, all its eigenvalues
are real and nonnegative, and its corresponding-dimensional
eigenvectors for can be
chosen to be orthonormal, i.e., . We
can define loading factors associated with for MVPCA
transformation as

for (1)

It is easy to show that for each defined by

(2)

is indeed the variance of the th band image. Summing
up over in (2) for each also yields

(3)

So from (2) and (3), .
Since (2) also represents variances of band images, we can

define the sum to be the power produced by bands
with the first largest variances. Without loss of generality,
we assume that . In this case, we can
further define the variance-based band-power ratio of these
bands to be that of the total number of bands, denoted by

, as

(4)

where is the sum of variances
of all band images. So for
ranging from one to , where the upper and lower bounds
are achieved by using all bands [i.e., ] and only
one band [i.e., ], respectively. Therefore, using (4),
we can determine how many bands are required to achieve a
desired variance band-power ratio anywhere between one and

. It is worth noting that the results outlined in (2)–(4)
can be found in [8] as well, where the selection ofhighest-
variance bands presented in this paper is equivalent to finding

principal variables using the criterion defined in
(4) with . As will be shown in the



CHANG et al.: JOINT-BAND PRIORITIZATION AND BAND-DECORRELATION APPROACH TO BAND SELECTION 2633

experiments, the measure given by (4) may not be
a good measure, since band images are generally correlated,
and the bands selected based on (2) may still correlate to
those removed bands, a fact also noted in [8]. To mitigate
this problem, an SNR-based PCA will be introduced in the
following section.

B. Noise Adjusted Principal Component Analysis (NAPC)

The goal of PCA is to find the principal components with
their directions along the maximum variances of a data matrix.
However, as shown in [9], variance does not necessarily reflect
real SNR due to unequal noise variances incurred in different
bands. Because of that, Greenet al. developed a maximum
noise fraction (MNF) transform in [9], so that the transformed
principal components are evaluated by SNR rather than vari-
ance, as used in a PCA. In light of this interpretation, the MNF
transform can be thought of as a transformation maximizing
SNR. The MNF was further reinterpreted in [10] as an NAPC.
The idea of the NAPC is to design a matrix to whiten the
covariance matrix so that the noise-adjusted covariance matrix
becomes an identity matrix. Therefore, the resulting variances
can be interpreted as SNR’s. By taking advantage of the
NAPC, the possible correlation with removed bands created
by the measure defined by (4) for band selection,
can be resolved. In this section, this approach is referred to
as an MSNRPCA transformation, which will be based on the
fast NAPC transform [11] with the noise variances estimated
by the nearest-neighbor difference described in [9] and [10].

In the NAPC approach, a noise estimate is required for the
observation model

(5)

where is an observation vector with the covariance matrix
denoted by , is a signal vector, and is the noise vector
independent of with the covariance matrix denoted by .
The noise estimate will then be used to find a whitening matrix

to orthonormalize such that

and (6)

in (6) is the diagonal matrix of the eigenvalues of .
The resulting noise-adjusted data covariance matrix is given
by . Let be the eigenvector matrix resulting
from PCA based on . Then we obtain

and (7)

where diag is the diagonal matrix of the
eigenvalues of . Finally, the desired NAPC
transform can be derived from

(8)

Let be the orthonormal eigenvectors associated with
. We can define the loading factors in a similar

manner to (1) for an MSNRPCA transformation by

for (9)

For any given , we can use (9) and (1)–(4) to define the
SNR-based band-power ratio produced by the firstbands to
the total number of bands, denoted bySNR

SNR (10)

where is the total variance of . Since
the noise variances in have been normalized to one by
the whitening matrix in (6), for each , the
variance of the th band image defined by
via (9) becomes the signal energy. Consequently, thealso
represents the SNR of the-band image. Similarly, is the
total energy of signals in all-band images. As a result of
the NAPC transform specified by (8), (10) is indeed the SNR
band-power ratio for selection bands in accordance with

. The advantage of using MSNRPCA over MVPCA
is clearly demonstrated through operations implemented by
(6) and (7), where the noise covariance matrix has been
whitening before the PCA transform is applied. So, the correla-
tion problem with between-band noise variances that results in
a poor measure of (4) is resolved by (6). Analagous
to (4), (10) is also upper-bounded by one (i.e., all bands
are used) and lower-bounded by (only the first band
is used). It can be used to determine how many bands are
required to achieve a certain desired level of SNR between

SNR .

III. CLASSIFICATION-BASED

EIGENANALYSIS BAND PRIORITIZATION

Unlike the MVPCA and MSNRPCA, which are based on
maximization of energy, the classification-based eigenanalysis-
band prioritization is designed by ranking bands according to
the effectiveness of their classification abilities. Two criteria
will be derived from this approach, the MMCA and the OSP.
In this case, we need to know how many classes will be
considered. For illustrative purposes, the class membership of
samples is assumed to be knowna priori. Nonetheless, this
constraint is not rigorous and can be relaxed by unsupervised
learning methods such as nearest-neighbor clustering [12],
Kohonen self-organization feature maps [13], etc.

A. Minimum Misclassification Canonical Analysis
(MMCA) or Fisher’s Discriminant Analysis

MMCA is derived from Fisher’s discriminant function and
was used in [7] to minimize the misclassification error.

Let be the set of classes of interest and
be the number of classes to be classified. Assume that

is the th sample vector in class and
is the set of sample vectors to be used for classification,
where is the number of sample vectors in theth class and

is the total number of sample vectors.
Let be the mean of , and

be the mean of class. From Fisher’s
discriminant analysis [12], we can form total, between-class,
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and within-class scatter matrices as follows:

(11)

(12)

(13)

From (9)–(11):

(14)

In order to minimize the misclassification error, we maxi-
mize the Rayleigh quotient

over (15)

The solution to (15) is equivalent to solving the following
generalized eigenvalue problem

(16)

or equivalently

(17)

For any given band number , we can use (1)–(3) with
eigenvalues and normalized eigenvectors obtained by (17) to
define as the discriminant power of bands to be
used for discrimination and also define the total discriminant
power to be . The band-power ratio, denoted
by MMCA , is

MMCA (18)

The band-power ratio given by (18) is a measure for the
misclassification rate of bands to be used for classification,
compared to that of the total number ofbands.

B. Orthogonal Subspace Projection (OSP) Criterion

Like the MMCA, the OSP eigenanalysis-band prioritization
is also a classification-based approach. The approach described
in this section will be derived from the concept of OSP
developed in [14]. For more details and other OSP-based
approaches, we refer to [15] and [16]. Before we proceed,
a review of linear-mixture models used in these criteria is
necessary.

1) Linear Spectral Mixture Model:Linear spectral mixture
is a widely used model in remotely sensed imagery to de-
termine and quantify multicomponents. Suppose thatis the
number of spectral bands. Let be an column vector
and denote theth pixel in a multispectral or hyperspectral
image. In this case, each pixel is viewed as a pixel vector
with dimension . Assume that is an signature matrix
denoted by where is an column
vector represented by theth signature (substance) resident in

the pixel and is the number of signatures of interest. Let
be a abundance-column vector

associated with where denotes the fraction of theth
signature in the pixel .

A classical approach to solving the mixed-pixel classifi-
cation problem is linear unmixing, which assumes that the
materials within a pixel vector are linearly mixed and can be
represented by a linear-regression model

(19)

where is an column vector representing an additive
white Gaussian noise with zero mean and variance, and

is the identity matrix.
2) Orthogonal Subspace Projection (OSP):Now we as-

sume that there are signatures that need to be classified
with . In this case, we rewrite model (19) to separate
the undesired signatures U from the desired signatureas
follows:

(20)

where the subscript is suppressed, the desired signature
matrix is denoted by associated
with the abundance vector and the
undesired spectral-signature matrix is denoted by

along with its corresponding abundance
vector . A generalized orthogonal-
subspace projection classifier can be derived easily by the
procedure given in [14] to yield

(21)

where and is the
pseudo-inverse of , and the notation in indicates that
the projector maps the observed pixel into the range
space (the orthogonal complement of ). Equation
(21) represents a standard signal-detection problem. If the
maximization of the SNR matrix given by

SNR over (22)

is chosen to be the optimal criterion for the signal model
(21), the maximum SNR of (20) is equivalent to finding the
maximum eigenmatrix of the following generalized eigenvalue
problem

(23)

The maximum eigenmatrix for (23) is given by

SNR

(24)

Based on the approach outlined by (20)–(24), a mixed-pixel
classification can be carried out by an OSP classifierOSP

, that is,

OSP (25)
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In other words, we first apply to model (25) to eliminate
, then use the matched filter Mto extract the from the

signal model (21). A short script of the program using MAT-
LAB to run the OSP on matrix computations, is given in the
appendix for reference. Then, following the same arguments
given for (15)–(17), and using (22)–(24), we can define the
sum to be the classification power produced by the

-band selection and further define the band-power ratio of
the -class classification power rendered bybands to the
total -class classification power produced bybands, denoted
by OSP to be

(26)

Before concluding this section, three remarks are noteworthy.

1) Similar equations to (21)–(25), described in the OSP
approach developed in [14], can be found in [17] and
[18] as well, where the concept of OSP is very closely
related to that of the simultaneous diagonalization and
dimensionality reduction used in magnetic-resonance
imaging applications.

2) Comparing (22) to (15), their solutions can be obtained
by maximizing the Raleigh quotient. However, this is
equivalent to solving a generalize eigenvalue problem
that further results in (23) and (17). Nevertheless, keep
in mind that they were derived from two different op-
timal criteria. Equation (23) is based on maximization
of SNR, while (15) uses Fisher’s discriminant distance
to minimize the misclassification error.

3) As noted by the first remark, the OSP-based
eigenanalysis-band prioritization is also an MSNR
criterion. Comparing to the MSNRPCA criterion,
they are different in the sense that the former makes
use of subspace projection to eliminate undesired
signatures and suppress noise before the MSNR
criterion is applied, whereas the latter simply ranks
principal components in decreasing order of magnitude
of SNR. More specifically, the orthogonal subspace
projection-based eigenanalysis-band prioritization has
done more than what the MSNRPCA has. It not only
maximizes the SNR that the MSNRPCA does, but
also enhances the desired signature because of the
undesired signatures annihilation and noise suppression,
a task which the MSNRPCA does not do. On the
other hand, the advantage of MSNRPCA over the
orthogonal subspace projection-based eigenanalysis-
band prioritization is that it is derived independent
of classification. Therefore, it has applications other
than classification.

IV. DIVERGENCE-BASED BAND DECORRELATION

As mentioned previously, band prioritization does not take
care of spectral correlation. It is always possible that two
near bands share so much information that they may result

in similar priorities [6]. In this case, one band can well
represent the other. Consequently, there is no significant loss
of information to select one band while removing the other.
This is particularly true for hyperspectral images. The pro-
posed divergence-based band decorrelation is an information-
theoretic criterion to measure the correlation between two band
images. If the divergence between two band images is below a
specified threshold, this implies that these two band images are
highly correlated so that the band image with lower priority
will be removed, and the band image with higher priority will
be retained to represent it in the band-selection process.

From information theory [19], there is a criterion called
“divergence,” which can be used to measure the discrepancy
between any two probability distributions. Let
and be the image gray-level histograms of any
two band images. The divergence, denoted by , can
be defined as

(27)

where is the relative entropy of with respect to
defined by

(28)

and is the relative entropy with respect to defined
by

(29)

Note that is also referred to as directed divergence,
cross entropy, or Kullback–Leibler distance betweenand .
While (27) is symmetric [i.e., ], (28) and
(29) are generally not symmetric [i.e., ].

Equation (27) can be used to measure the similarity be-
tween two images. Namely, it can measure the overlapped
information contained in any pair of images. If the divergence
is below a prescribed threshold, the band with lower priority
will be removed. The implementation of the proposed band
decorrelation is described as follows.

Algorithm for Divergence-Based Band Decorrelation:
Assume that all bands have been prioritized by band
prioritization where ,
is the notation of priority order, andis the total number of
bands. Let be the image gray-level histogram of the band
image specified by . is a prescribed threshold.

1) Initialization: Let counter be set to 1 (i.e., and
the initial band set .

2) At the -stage for , the current visited-band image
is .

For each , compute .
3) If , will be removed. Let ,

and go to step 5.
4) Otherwise, and check if the is the last

band in .

a) If it is the last band in , then
for all . This implies that the must
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TABLE I
BAND NUMBERS AND BAND-POWER RATIOS REQUIRED FOR MVPCA, MSNRPCA, MMCA, AND OSP CRITERIA

contain some information that cannot be represented
by one of the bands in . Thus, it must be added
to . Let , and go to step 5.

b) If it is not the last band in , continue to check
next in , and go to step 3.

5) If , stop algorithm. Otherwise, let , and
go to step 2.

It should be noted that in steps 2–4, all’s in must
be checked, examined, and compared to. The band set ,
produced by the above band-decorrelation algorithm, is the
final desired band set that will be used for classification.

The band-selection problem considered in this section is
very similar to a best-subset selection for multiple linear-
regression analysis in [20], where various computational meth-
ods are proposed for minimizing the sum of squared residuals
(i.e., least-squares error). However, there are two differences.
One is that the band-decorrelation algorithm described above is
based on the criterion of divergence rather than least-squares
error. It is a simple exhaustive process. Another difference
is that the methods described in [20] assume that the size
of the selected subset must be knowna priori (in our case,
the number of bands needing to be selected must be known
in advance), whereas our algorithm does not require this
assumption. It terminates as long as a prescribed threshold
is met. This is a significant advantage because in reality, we
do not know how many bands are required for band selection.
As will be shown in the experiments, if the number of selected
bands is known, a simple uniform-band selection without
finding specific bands can achieve good results. In this case,
there is no need for band-selection algorithms.

V. EXPERIMENTS

In this section, a series of experiments using a HYDICE
image is presented to illustrate the five eigenanalysis-based
band-prioritization criteria used for band selection. A com-
parative study is also conducted along with uniform band
selection (UBS), in which the bands are selected uniformly.
The HYDICE image used, shown in Fig. 1 (image of band
30), is radiance data taken in Maryland in August 1995
using 210 bands with 10 nm spectral resolution and spectral
coverage 0.4–2.5 . The ground-sampling distance (GSD) is
approximately 0.78 m. The figure has a size of 128128 and
shows a large grass field with tree lines running along the left
edge. This field contains a road running along the right edge of

Fig. 1. HYDICE image scene of band 30.

the image. There are four vehicles vertically aligned where the
top three are treaded vehicles and the bottom one is a wheeled
vehicle. The size of the treaded vehicles is approximately 4

8 m, and the size of the wheeled vehicle is about 36
m. In addition to these vehicles, there is an object located
in the center of the scene. The following experiments are
designed to demonstrate how the band prioritization and band
decorrelation can be used jointly for band selection and how
they affect classification results. The classifier used for target
classification to conduct a comparative study of various band-
selection criteria is specified by (25) (i.e., the OSP classifier
derived in [14]).

First of all, we assume that the signature matrixis made
up of six signatures the first treaded vehicle, the wheeled
vehicle, object, grass, tree, and roadwhere the desired
signature matrix consists of three man-made signatures,

treaded vehicle, wheeled vehicle, object, and the undesired
signature matrix is composed of the remaining three natural-
background signaturesgrass, tree, road. All the required
signature information was directly extracted from the image
scene. The experiments were done by first prioritizing all
bands using the four-band prioritization criteria proposed in
this paper: MVPCA, MSNRPCA, MMCA, and OSP and
then following with the divergence-based band decorrelation
described in the previous section. Finally, (4), (10), (18),
and (26) were used to calculate the band-power ratiofor
the selected band sets. For these experiments, the divergence
threshold was set to 1.5. It was empirically chosen and seemed
appropriate. The numbers of bands required for MVPCA,
MSNRPCA, MMCA, and OSP are tabulated in Table I and
in the range from 10 to 12. If the threshold was set too high,
only a few bands could be selected, and results were not good.
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(a)

(b)

(c)

Fig. 2. Classification results produced by MVPCA according to Table I: (a)
for treaded vehicles, (b) for wheeled vehicles, and (c) for the object.

If the threshold was set too low, many unnecessary redundant
bands were selected that did not provide much additional
information. Also listed in Table I are their corresponding
band numbers in order of priority and associated band-power
ratios. Figs. 2–5 show the classification results using MVPCA,
MSNRPCA, MMCA, and OSP band-prioritization criteria with
bands selected according to Table I. In order to evaluate the
performance of these four criteria, two more experiments are
also included. Fig. 6 is produced by a UBS where the bands
were selected uniformly from 210 bands, with the total number
of bands chosen to be the maximum number of bands required
for any of four criteria. In this case, 12 was the highest number
(for OSP) and thus, 12 bands uniformly distributed among the
210 were chosen. Fig. 7 is produced by using the full set of
210 bands. As shown in Figs. 2–7, images labeled by (a) are
the classification results for treaded vehicles, images labeled
by (b) are for wheeled vehicles, and images labeled by (c) are

(a)

(b)

(c)

Fig. 3. Classification results produced by MSNRPCA according to Table I:
(a) for treaded vehicles, (b) for wheeled vehicles, and (c) for the object.

for objects. Comparing Figs. 2–6 to Fig. 7, all four criteria
along with UBS produced comparable results. In order to
conduct a comparative analysis, Fig. 7 was used as a base for
comparison. This is because the objective of band selection is
to select appropriate bands that can retain as much information
contained in Fig. 7 as possible. According to this criterion,
OSP produced the best-matched results to Fig. 7, while Fig. 2
may be the worst. This can be explained by the fact that
the variance-based band-power ratio of MVPCA might still
account for part of the variances contributed by those removed
bands that may be correlated with selected bands. In order to
resolve this correlation problem, MSNRPCA was introduced to
improve MVPCA. As evidenced in Fig. 3, the results produced
by MSNRPCA are generally better than those in Fig. 2 in
terms of target classification. Fig. 3 looks closer to Fig. 7 than
Fig. 2 does to Fig. 7 after the between-band correlation was
properly taken care of by a whitening matrix implemented in
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(a)

(b)

(c)

Fig. 4. Classification results produced by MMCA according to Table I: (a)
for treaded vehicles, (b) for wheeled vehicles, and (c) for the object.

MSNRPCA. Figs. 2–6 show different performances one way
or another. For instance, Fig. 2 shows the best detection of the
wheeled vehicle but may be the worst detection of the treaded
vehicles and the object. Fig. 3 produced by MSNRPCA shows
a better detection for the wheeled vehicle and the object but
not for treaded vehicles. On the contrary, Fig. 6, produced
by UBS, shows a good detection of treaded vehicles and the
object but a bad detection of the wheeled vehicle because it
also detected the object as well. Fig. 4, produced by MMCA,
can be ranked between Figs. 3 and 6, where the detection
performance of vehicles is between MSNRPCA and UBS, but
the detection of the object turns out to be the worst of the three.
It is interesting to note that Fig. 7, produced by the entire 210
bands, shows a bright broken line along the vehicles. This
line is caused by a strong interferer in the scene, which is
only shown in a few band images among all 210 bands. No
criteria detected it.

(a)

(b)

(c)

Fig. 5. Classification results produced by OSP according to Table I: (a) for
treaded vehicles, (b) for wheeled vehicles, and (c) for the object.

It is also noted that in all figures, the third treaded vehicle
was missed when the treaded vehicles were classified. But,
it was picked up in the wheeled-vehicle classification. This
occurrence is not surprising, because the spectrum of the third
treaded vehicle is much more similar to that of the wheeled
vehicle than to those of the first two treaded vehicles. For
more details, we refer to [16]. As a result, classifying one will
detect the other. In this case, spatial information such as shape
or size may be useful to help us separate these two vehicles,
because one is larger than the other.

Table I also shows some interesting findings. In order to pro-
duce classification results comparable to Fig. 7, no more than
12 bands (i.e., approximately 6% of 210 bands) are needed
for the proposed band-selection method. More surprisingly,
their corresponding band-power ratios are even less than a
quarter of total band energy. This implies that most of the 210
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(a)

(b)

(c)

Fig. 6. Classification results produced by the UBS: (a) for treaded vehicles,
(b) for wheeled vehicles, and (c) for the object.

bands are either redundant or insignificant. So, the proposed
joint-band prioritization and band-decorrelation approach to
band selection can effectively eliminate a great number of
unnecessary bands and achieve good classification results. The
band reduction rate can be as high as 94%. This is a tremen-
dous advantage that offers substantial saving in storage and
computation. Nevertheless, these bands cannot be randomly
selected. This must be done by a careful selection of desired
bands using an appropriate criterion. In our proposed UBS,
it is determined by the maximum number of bands required
for any of the four band-prioritization criteria. Furthermore,
despite no band content-based selection criterion for UBS, a
value for the total number of bands to select is needed. This
value cannot be randomly determined.

Although the experimental results presented in this paper
were conducted based on only one image scene (which was
also studied in [16]), several other HYDICE images were also

(a)

(b)

(c)

Fig. 7. Classification results produced by using all 210 bands: (a) for treaded
vehicles, (b) for wheeled vehicles, and (c) for the object.

tested for comparative analysis. They all resulted in similar
conclusions [6].

VI. CONCLUSION

This paper presented a joint band-prioritization and band-
decorrelation approach to band selection. The band priori-
tization was based on an eigenanalysis and decomposed a
matrix into an eigenform matrix from which a loading-factors
matrix could be constructed and used to prioritize bands.
The loading factors determined the priority of each band and
ranked all bands in accordance with their associated priorities.
The band prioritization was then followed by a divergence-
based band decorrelation that used the divergence measure
to remove redundant or insignificant bands. As shown by
HYDICE data, the proposed band-selection method could
effectively reduce band dimensionality with very little loss
of information in hyperspectral image classification. Recently,
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it has been shown in [16] that interference played a significant
role in hyperspectral target detection and image classification.
By considering interference as an unknown separate source, an
interference and noise-adjusted PCA (INAPCA), derived from
NAPC, was developed in [21]. It considerably improved PCA
performance via interference annihilation. However, in this
case, finding potential interfering signatures for annihilation
(as well as accurately estimating noise variances) is crucial
to satisfactory performance [21]–[23]. If both the noise and
interference can be reliably estimated, then an error analysis
based on SNR or receiver-operating characteristics (ROC) for
the band selection may become possible. A further study on
this issue may be worth pursuing.

APPENDIX

In what follows, a short script of the program using MAT-
LAB to run the OSP for matrix computations is provided for
reference.

% load desired and undesired signatures
load
load
% generate the OSP projector

;
;

% input parameters of the data set
head=512;
column=320;
totalband=210;

;
frame=column*totalband* ;
begindot=41;
enddot=168;
beginline=191;
endline=318;
dotnum=enddot-begindot+1;
linenum=endline-beginline+1;
% calculate the matrix for OSP

=zeros(totalband);
filename ;

;
beginline frame ;
begindot ;

for :linenum
block=zeros(totalband,dotnum);
for :totalband

block( ,:)=fread(fid,[1,dotnum],’int16’);
column-dotnum ;

end
block= *block;
for :dotnum

;
end

end
;

;
% the end
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