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Abstract—The fundamental problem of Zero-Shot Learning
(ZSL) is that the one-hot label space is discrete, which leads
to a complete loss of the relationships between seen and unseen
classes. Conventional approaches rely on using semantic auxiliary
information, e.g. attributes, to re-encode each class so as to
preserve the inter-class associations. However, existing learning
algorithms only focus on unifying visual and semantic spaces
without jointly considering the label space. More importantly,
because the final classification is conducted in the label space
through a compatibility function, the gap between attribute
and label spaces leads to significant performance degradation.
Therefore, this paper proposes a novel pathway that uses the
label space to jointly reconcile visual and semantic spaces
directly, which is named Attributing Label Space (ALS). In the
training phase, one-hot labels of seen classes are directly used as
prototypes in a common space, where both images and attributes
are mapped. Since mappings can be optimized independently,
the computational complexity is extremely low. In addition, the
correlation between semantic attributes has less influence on
visual embedding training because features are mapped into
labels instead of attributes. In the testing phase, the discrete
condition of label space is removed, and priori one-hot labels
are used to denote seen classes and further compose labels of
unseen classes. Therefore, the label space is very discriminative
for the Generalized ZSL (GZSL), which is more reasonable and
challenging for real-world applications. Extensive experiments
on five benchmarks manifest improved performance over all of
compared state-of-the-art methods.

Index Terms—Projection Learning, Generalized Zero-shot
Learning, Label Space.

I. INTRODUCTION

MODELS trained on large-scale labeled images, such as

the deep learning based architectures [1] [2], have great

contribution to recent successes in visual object classification.

However, well-annotated data are not always available in the

training phase. For example, the number of newly defined
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visual concepts or products can grow rapidly, and there are

few labeled images in some classes that rarely occur in nature,

which is called the long-tailed distribution challenging [3].

Another example is the fine-grained image classification [4],

experience-expertsts are required to label images to establish

the specific datasets for learning classifiers.

The semantic representations of classes are introduced to

recognize entirely new classes without additional data labeling,

which is named Zero-Shot Learning (ZSL). Specifically, high

dimensional vectors in the semantic space are regarded as

the prototypes [5] (like to class centers) of classes, and the

semantic relationship between seen and unseen classes are

used. In the training phase, mappings or probability models

are learned from images and prototypes in seen classes to

establish the connection between the visual and semantic

space. In the testing phase, (projected) prototypes of unseen

classes are employed to match images from these classes

via learned models. As an extension, Generalized Zero-Shot

Learning (GZSL) [6] removes the constraint that only the

images in unseen classes are obtained in the testing phase,

in other words, test images can come from either seen or

unseen classes. For practical applications such as annotating

new images, seen classes are often more common than unseen

ones and it is unrealistic to assume that test images can only

be matched with the unseen prototypes. Therefore, GZSL is

more reasonable and challenging for real-world recognition

than ZSL.

To represent the prototypes of classes in the semantic space,

two kind of auxiliary information are often used. Firstly,

labelling high dimension attributes, where each dimension

represents a specific property of the classes. In this way,

learning mappings in the training phase is more like to be

the multi-label problem [7]. Secondly, introducing additional

modal, e.g., the embedding from the texture description of

each class, to be the class center in semantic space. Since

natural language processing techniques such as BERT [8] or

fast-text [9] can be used for extracting sentence embedding, the

second way requires vary little labelled data, which is proper

to produce large scale ZSL. However, texture description is

sometimes not strict and complete, and there may be semantic

loss when embeddings are extracted from textures. Both of

these can introduce ambiguity when models are learned. On

contrast, labelling attributes can make the prototypes be more

discriminative, because each dimension has a clear meaning.

Therefore, most existing methods including this paper focus

on the attribute-based zero-shot classification.

To unify images (or global visual features) and semantic
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Fig. 1: The intuition of our method. “cat” and “zebra” are seen classes meanwhile “stride” and “tiger” are unseen classes. In the training
phase, mappings denoted by the solid arrows are learned. In the testing phase, unseen images are projected by the leaerned mappings. (a)
Learning visual-semantic embedding directly, correlations between prototypes may cause ambiguity. (b) Introducing the joint-label space
makes prototypes more discriminative.

attributes into the same space (also called common space),

a group of methods map both visual features and attributes

into a common space, where low-rank condition can be

added to restrict the common space [10] [11]. However, the

optimal projection matrix may be not unique. For example,

we denote matrix P as a linear embedding, which maps

high dimensional vectors (i.e., denote to x1 and x2) from

the source space to the target space. Specifically, y1 = Px1
and y2 = Px2. And then, given arbitrary orthogonal matrix

R, we have z1 = RPx1 and z2 = RPx2. It is easy to

be proved that the Euclidean distance or Cosine distance

between z1 and z2 are equal that of y1 and y2. In addition, to

preserve the structure of visual features in the common space,

graph information, such as adjacent matrices, are generally

considered [12] [13], which introduces large computational

complexity. Besides, most existing methods directly connect

features and attributes where the correlation among attributes

in different classes can result in poor performance [14]. For

example, if monkeys and bears are utilized as seen examples to

train models, the property “brown” and “fur” are very relevant.

As such, unseen animals having white fur such as “polar bears”

may be considered completely different from seen classes.

Consequently, reducing the correlation of classes can improve

the discrimination of prototypes in the common space. Second,

since the final classification is conducted in the semantic space

in most methods, the gap between attributes and labels leads

to significant performance degradation.

In this paper, we propose a novel ZSL framework by defin-

ing a discriminative label space where the final classification

is conducted. In this label space, labels of seen classes are

fixed into one-hot vectors as references to decorrelate features

and attributes. The labels of unseen classes are obtained by

mapping class-level attributes into the label space. Since seen

and unseen class labels are defined in different ways, they are

more robust in the final classification. To train the embedding

from visual space to common space, a linear projection matrix

is learned to avoid over-fitting. To learn the embedding from

semantic space to common space, the attribute and label of

the same seen class are required to reconstruct each other,

because they hold equivalent class information. Since there

is no additional constraint such as graph information, the

computational complexity is very low in the training phase.

An illustration of our method is shown in Figure 1. Assume

“cats” and “zebras” are two seen classes, while “tigers” and

“street crossings” are unseen classes. If the visual-semantic

embedding is learned directly, the correlations between the

prototypes may lead ambiguity when classifying unseen im-

ages. Differently, the prototypes of seen classes are firstly

defined when the label space is used, and then unseen pro-

totypes are learned by their relationship of corresponding

seen prototypes, which can reduce the ambiguity caused by

correlations. For example, both the image and texture de-

scription of the class “street” crossing contain “stripes”; thus,

both their projections in the label space refer to “zebras”.

Similarly, “tigers” refer to both “cats” and “zebras” classes

owing to their “feline” and “stripe” properties, respectively.

More importantly, labels of seen classes are accurately defined

as one-hot vectors; thus, seen and unseen classes in the

label space are more discriminative in GZSL. We conduct

experiments to compare the proposed method with state-of-

the-art baselines under five benchmark datasets with the same

features, splits and evaluation [15]. Results demonstrate the

leading performance of our method in most cases, especially

for the GZSL task.

Existing methods introducing class labels generally use

them as indexes or regularization. For example, labels are

regarded as indexes to the corresponding semantic attributes

[16] [17]. Another way of using the labels is to utilize them in

a regularization to learn parameters [18] [19]. Differently, class

labels in this paper are directly regarded as variables, which

are the targets of the projected visual features and semantic

attributes. Thus, the influence of the class labels is much

stronger than reference methods. A similar work is Indirect

Attribute Prediction (IAP) [20] that establishes a probability

model to predict attributes based on visual features, which

generally requires a lower computational cost than the direct



IEEE TRANSACTIONS ON IMAGE PROCESSING 3

attribute prediction [21]. However, labels of seen and unseen

classes are defined in different spaces, which is not appropriate

for the GZSL task. In [19], class labels are introduced to learn

prototypes in the visual space. Labels are employed only as a

constraint, and not as embeddings in this method, where the

correlation between features and attributes still influences the

learning of projections. In this paper, we define a complete

label space, where both seen and unseen class centers are in

the same space like traditional supervised classification. This

paper makes three main contributions.

• Since a label space is employed to jointly connect the

visual and the semantic space, the correlation in visual

and semantic space is reduced in the label space, which

results in performance improvement.

• In the testing phase, seen classes are also fixed to one-

hot vectors, while unseen classes are computed by a

learned model. Therefore, the label space where the final

classification is conducted is robust.

• Detailed comparisons among different frameworks and

mappings are discussed to show the advantages of intro-

ducing and attributing the label space, especially for the

GZSL task.

II. RELATED WORKS

A. Embedding Learning

To train a model from seen classes that can be generalized

to classify unseen classes, visual features, attributes and labels

of seen classes are generally required. In the testing phase, test

features should be classified into the correct classes identified

by their attributes via the learned model. According to whether

or not the label space is introduced as an intermediate space

connecting the visual and semantic space, ZSL methods can be

divided into Direct Visual-Semantic Embedding and Indirect

Visual-Semantic Embedding frameworks.

Direct Visual-Semantic Embedding (DVSE): the DVSE

framework, containing most existing ZSL methods, directly

estimates the conditional distribution or mapping between

visual features and their corresponding attributes. There are

three types of DVSE methods. The first category of methods

train linear or nonlinear mappings, which transform features

from the visual space into the semantic space [20] [22] [23]

[24] [16] [25] [26]. Fig. 2(a) shows an illustration, where

visual features and attributes of seen classes are collected to

train mappings. In the testing phase, the similarity between

images and prototypes of new classes in the semantic space is

measured for classification. The second category of methods

synthesize visual features with attributes [27] [28], which

can reduce the hubness problem when the Nearest Neighbor

(NN) search is used in the visual space for classification

[29]. Alternatively, a supervised classifier can be trained with

synthesized features instead of the NN search [30]. The

pipeline of the second category is reverse is shown in Fig. 2(b).

In the third category of methods, a common space is learned

using features and attributes from seen classes [31] [32] [4]

[33] [10], as shown in Fig. 2(c). To recognize images in unseen

classes, both visual features and attributes are projected into

the common space for NN search. The common space in Fig.

2(c) is represented by the dashed box, which indicates that the

space is totally unknown and must be trained. Notice that, in

Fig. 2(a), (b) and (c), class labels are only used to identify

visual features and attributes in the same class (i.e., the same

color), which are not regarded as variables.

Indirect Visual-Semantic Embedding (IVSE): In this

framework, labels of seen classes are used as intermediates

to connect the visual and semantic space. The independence

of labels in different classes can significantly reduce the

correlation among dimensions in the semantic space, therefore,

the mapping from images to classes is more discriminative.

As illustrated in Fig. 2(d), IAP introduces the labels of

seen classes as intermediate variables between features and

attributes. When new attributes are obtained, the condition

probabilities of attributes and labels in unseen classes are

learned. The online incremental zero-shot learning method was

proposed based on IAP [21], because it requires lower com-

putational cost comparing to the Direct Attribute Prediction

(DAP). Due to labels of seen and unseen classes are defined

in two different spaces, IAP is not appropriate for the GZSL

task.

In the proposed method, the label space is not only intro-

duced to reconcile features and attributes, but also used for

classification. As shown in Fig. 2(e), the label space contains

priori seen labels and projected unseen labels. This is the main

difference between IVSE and ALS. Specifically, labels of seen

classes are fixed as one-hot vectors in the common space, and

are represented by solid stars. Mappings are trained to project

visual features and semantic attributes into their class labels.

After training these mappings, attributes of test classes are

mapped into the common space to act as labels for unseen

classes, which are denoted by dashed stars.

Compared with the IAP method, there are three main

differences. First of all, labels of seen and unseen classes are

defined in the same space, so can be directly generalized to

the GZSL task. Secondly, labels of seen classes are fixed as

one-hot vectors, which are used to compose unseen labels. In

this way, seen and unseen classes can be regarded as “pure

substances” and “mixtures”, which is more discriminative in

the GZSL task. Finally, labels and attributes are required to

reconstruct each other in the training phase, which can reduce

the domain shift problem between seen and unseen attributes.

B. Semantic Representation

There are mainly two ways to obtain the prototypes of

classes in the semantic space for zero shot image classification.

The first way is introducing labelled attributes, and each

dimension of an attribute vector is a specific property. When

these class-level attributes are regarded as class centers in the

semantic space to classify images, it is similar to the multi-

label classification task. In ZSL or GZSL task, it only required

to label once for each class, then hundreds of unlabeled images

can be classified into the new defined class. Even though,

labeling attributes is more expensive than label single image in

establish the dataset, therefore attributed-based ZSL is mainly

used for small or medium datasets, such as Attribute Pascal

and Yahoo (aPY) [34], Animals with Attributes (AWA) [15],
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Fig. 2: Comparison of different ZSL frameworks. (a) Mapping visual features into the semantic space; (b) Mapping semantic attributes into
the visual space (c) Common space embedding; (d) Indirect attribute prediction; (e) Attributing label space.

Caltech-UCSD-Birds (CUB) [35] and SUN attributes (SUN)

[36].

Another way to obtain the semantic representation is us-

ing vocab or sentence embedding extracted from the tex-

ture description of classes. This way is more like to be

a multimodality learning task [37], because measuring the

similarity between visual and semantic spaces requires to align

two modalities. Compared to labeling attributes, it requires

little annotation information to extract semantic embeddings

from pre-trained model using natural language processing

techniques like BERT [8]. Therefore, it is mainly used for

generate large-scale dataset for ZSL, like ImageNet [38].

However, two problems can influence the performance of the

ZSL methods when sentence embeddings are used. Firstly, the

texture description may be not strict or complete, which can

introduce ambiguity. Secondly, there is the information loss

of extracting features compared to directly label the attributes.

Since the classification accuracy of ZSL is much less than that

of supervised image recognition, existing methods including

our work mainly focus on the attribute-based task, which is

easier than using embeddings.

Early works for ZSL and GZSL do not have the same exper-

imental setting thus the comparison results may be reasonable,

therefore, authors in [15] propose a uniform setting and re-

evaluate plenty of methods under their standard. In [15], class

attributes in high dimensional vector are used as the semantic

representations in aPY, AWA, CUB and SUN, meanwhile the

sentence embeddings are regarded as the semantic represen-

tations in ImageNet. To have a fair comparison with existing

methods, we completely follow the experimental settings in

[15], which are described in detail in the Section V.

III. APPROACH

In the zero-shot learning task, we aim to correctly recog-

nize images in unseen classes according to their class-level

attributes, where unseen classes are totally independent from

the training phase.

Assume we have C seen classes to train the model.

The training dataset Ds is defined by a series of triplets

(xis, yi
s, ais)

Ns

i=1
∈ Xs × Ys × As, where Ns is the number

of training samples. Xs ∈ R
d×Ns denotes the set of images or

features. Ys ∈ {0, 1}
C×Ns represents the one-hot class labels,

where one element of each column is 1, while the others are

0. As ∈ R
k×Ns contains training attributes. Note that class-

level attributes are used in this method, which means Ys and

As are augmented from {0, 1}C×C and R
k×C respectively,

by class labels. Moreover, in the training phase, the label

(or common) space only contains C labels, which can be

denoted as Y ∈ {0, 1}C . Two models must be learned to map

features and attributes into the label space, respectively. In

detail, f : xi
s → yi

s denotes the visual embedding, while

g : ai
s → yis is the semantic embedding. In the testing

phase, visual and semantic samples of unseen classes are

given, i.e., (xi
u, aiu)

Nu

i=1
∈ Xu × Au. Since labels of seen and

unseen classes are unified in the same space, the discrete

space Y is extended to Y = R
C , which is continuous and

has enough positions to represent the growing number of

unseen classes in the common space. For classification, let

A = (a1, ..., aC , aC+1, ..., aC+U ) denote class-level attributes

in C seen and U unseen classes.

A. Attributing Label Space (ALS)

In this paper, we define the common space as R
C , where

labels of seen classes are represented by one-hot vectors to

reduce the correlation between semantic attributes. The loss

function can be written as

min
P,Q

f(Xs,Ys;P) + g(Ys,As;Q) + Ω(P,Q), (1)

where P and Q are the parameters of the two mappings. Ω(.)
is the regularization. In Eq. (1), constraints can be introduced

in regularization term to connect the two mappings.

Visual Embedding: In this paper, visual embedding aims

to map visual features into the neighbors of their prototypes



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

in the common space. A direct way of doing this is to train

a classifier like SVM. For each feature, the score of the

corresponding classifier is set to 1 while that of other classifiers

is 0. However, for ZSL, using a classifier is not appropriate for

visual embedding because it induces over-fitting. Specifically,

typical classification methods can correctly map seen features

to their labels. However, in the testing phase, unseen features

are also mapped to those labels, which is meaningless for

ZSL, because test features obviously do not belong to any

known classes. In this method, our embedding only aims to

map features in seen classes to the corresponding one-hot

vectors, according to their class labels. Therefore we simply

let f be a linear projection, where labels of unseen classes are

represented as linear combinations of one-hot vectors, instead

of a one-hot vector itself.

Semantic Embedding: Generally, semantic embedding is

used to adjust the relative positions of prototypes, which

should be the centers of projected features. In this method,

because the correlation among dimensions of semantic space

tend to mislead the visual embedding learning, we regard

the semantic embedding as a decorrelation process. In other

words, attributes in different classes should be more indepen-

dent in the common space. To this end, we directly map an

attribute to the corresponding one-hot vector in the label space.

Besides, since there is a one-to-one correspondence between

an attribute and its class label, we assume that if a semantic

attribute is mapped to a label, then it can also be reconstructed

from the label by inverse operation.

From the above discussion, the objective function of the

proposed method can be defined as

min
P,Q
||PXs − Ys||

2
F + ||Ys −QT As||

2
F + α||P||2F + β||Q||2F ,

s.t. As = QYs,
(2)

where P ∈ R
C×d and Q ∈ R

k×C denote the linear visual em-

bedding and visual embedding, respectively. Here, we simply

use the L2 norm as the regularization of two projections. In

the training phase, P and Q can be optimized individually. Let

the gradient of P for Eq. (2) equal zero, the closed form of

visual embedding is

P = YsXT
s (XsXT

s + αI)−1. (3)

For semantic embedding Q, we relax the constraint and the

objective function related to Q can be rewritten as

min
Q
||As −QYs||

2
F + λ||Ys −QT As||

2
F + β||Q||2F , (4)

where λ is a weighting coefficient that balances the importance

of the first and second terms. The derivation of Eq. (4) is

λAsAT
s Q + Q(YsYT

s + βIC×C) = (1 + λ)AsYT
s . (5)

Eq. (5) is the Sylvester Equation [39], which has the closed

form solution

vec[Q] =[IC ⊗ (λAsAT
s ) + (YsYT

s + βIC×C)⊗ Ik]
−1

vec[(1 + λ)AsYT
s ],

(6)

where vec[Q] is the vectorization operation for matrix Q, ⊗
denotes the Kronecker product and Ik stands for the k × k
identity matrix.

Since the main computational cost comes from solving

the Sylvester Equation, the proposed method has similar

computational complexity as SAE [40], which can be trained

very quickly.

B. Classification

In the training phase, the common space Y contains C
one-hot vectors. When unseen classes are observed in the

testing phase, their attributes are projected into the common

space as labels of unseen classes. Moreover, for real-world

recognition tasks, the number of new classes is unknown, and

even rises over time. To solve this problem, the common space

is extended as Y = R
C , where infinite prototypes can be

defined in the continuous space. In ZSL, given U attributes of

unseen classes aj (j ∈ C + 1, ...C + U ), their labels in the

common space are represented as

ljz = QT aj , j = C + 1, ..., C + U. (7)

In our method, the classification is based on NN search in the

common space,

c(xiu) = argmin
j

d(Pxiu, ljz), j ∈ C + 1, ..., C + U, (8)

where c(xi
u) is the class identity of unseen sample xi

u, and

d(a, b) denotes the distance between vector a and b.

In the testing phase of GZSL, labels of unseen classes are

similar to those for ZSL. Different from existing methods,

labels of seen classes are denoted as the one-hot vectors. In

this way, labels of GZSL are defined as

ljg =

{

yj , j = 1, ..., C

QT aj , j = C + 1, ..., C + U,
(9)

where yj denotes the label of the j-th seen class. The classi-

fication of GZSL is also based on the NN search,

c(xiu) = argmin
j

d(Pxiu, ljg), j ∈ 1, ..., C + U. (10)

As labels of seen classes are exact one-hot vectors in Eq.

(9), the label space is more accurate for representing both seen

and unseen classes. This is the main reason why ALS makes

significant improvement in GZSL. In addition, for human

beings, a general way to define objects in new classes is

to combine properties of known classes [20]. For example,

“motor homes” contain a similar shape and function as both

“motor” and “house”. In other words, meanings are given to

labels of unseen classes in the original label space. In this way,

the model recognizes new classes as analogy of seen classes,

which is more natural. Example from the dataset Animals with

Attributes (AWA) [15] are shown in Figure 3. In detail, six

classes are selected as seen classes that vary in shape, size,

life habit, etc. Thus, each class is assumed to be orthogonal to

the others. The t-SNE result [41] of visual features projected

in the label space is shown, where labels of six seen classes

are fixed to one-hot vectors, which further make up labels of

three unseen classes. Specifically, the unseen object “giraffe”
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antelope

killer whale

gorilla

rabbit

otter

cow

giraffe

rat

dolphin

Fig. 3: Relationship between six seen and three unseen classes
illustrated by t-SNE. Projected features of seen classes in the common
space are represented by “+”, while the corresponding images are in
solid boxes. Features in unseen classes are denoted by “.”, while
images are in dashed boxes. Arrows denote axes in the common
space

can be regarded as the linear combination of “antelope” and

“cow”, because the shape of giraffes is similar to antelopes,

while both giraffes and cows have spots. Similarly, “rat” is

correlated to both “rabbit” and “otter”. In contrast, a “dolphin”

is more similar to a “killer whale” than any other seen classes

so its label is only near to that of the killer whale. Besides,

all unseen labels are far from the “gorilla” since they have

few common attributes. This result verifies our assumption

about the relationship between prototypes of seen and unseen

classes. In Figure. 4, t-SNE projections in the common space

of all 10 unseen classes are shown. In most cases, features and

attributes in same classes are projected into the same regions.

This demonstrates that the label space can efficiently reconcile

visual and semantic spaces.

IV. MODEL ANALYSIS

After establishing the ZSL model, we further analyze dif-

ferent frameworks of learning embeddings for ZSL, where the

direction of inference is discussed in detail. As we mainly

focus on discussing of the framework rather than specific

approaches in this section, linear projections are used for fair

comparison. All comparisons that verify our conclusions in

this section are shown in Section V.

A. Comparison of Different Frameworks

In this paper, different frameworks are discussed and com-

pared. Methods that directly learn mappings between the visual

and semantic spaces belong to the DVSE framework, where

class labels are not introduced. Differently, methods in IVSE

use the labels of seen classes as variables, but the final

classification is not conducted in the label space. In contrast,

the compatibility function of the proposed ALS is directly

horse

blue whale

sheep

seal

bat

giraffe

rat

bobcat

walrus

dolphin

Fig. 4: The t-SNE projection of visual features projected in the label
space. Visual points are denoted by “.” and semantic prototypes are
represented by stars.

defined in the label space, where both seen and unseen classes

are unified.

In the DVSE framework, “visual projection” is the direct

method, where the training phase can be defined as

min
P
||PXs − As||

2
F + α||P||2F . (11)

In the following discussion, Eq. (11) is denoted as “X→ A”,

where features are projected into the semantic space for NN

search. A main disadvantage is that visual projection tends to

cause the hubness problem [27], where most projected features

share the same prototype as their nearest neighbor. According

to [42], the reverse process of visual projection can reduce the

hubness problem, i.e.,

min
P
||Xs − PAs||

2
F + α||P||2F , (12)

which is represented as “X← A”. As attributes are projected

into the visual space, this is also called “visual synthesis” [30],

where visual features of unseen classes can be synthesized

by their attributes from projection P. However, because the

distribution of visual features in seen and unseen classes are

generally different, unidirectional projections in Eqs. (11) and

(12) induce the domain shift problem [43]. To solve this

problem, the “mutual reconstruction” is defined as

min
P
||Xs − PAs||

2
F + α||PT Xs − As||

2
F , (13)

where visual features and semantic attributes are required to

reconstruct each other with the same parameters P. In [40],

a projection trained by Eq. (13) is proved to be efficient

to reduce the domain shift problem. In addition, the final

classification can be conducted in either the semantic or

visual space, where the corresponding compatibility function

is defined as d(PT xiu, aj) or d(xi
u,Paj). For convenience of

discussion, they are denoted as “X↔ Â” and “X̂↔ A”, where
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Â and X̂ mean the classification is implemented in semantic

and visual space respectively.

In our experiments, the classification accuracies of these

four strategies are compared. We find that, X ← A is much

better than X → A, while, X ↔ Â and X̂ ↔ A are better

than X → A and X ← A, respectively. According to related

experiments in Section 4.3, two conclusions are verified. First,

when mutual reconstruction is introduced, the classification

accuracy is generally increased because the domain shift

problem is reduced. Second, the hubness problem can be

reduced when classification is conducted in the visual space.

When the label space is introduced as an intermediate space,

Eq. (11-13) can be respectively modified as

min
P,Q
||PXs−Ys||

2
F +α||P||2F +||QYs−As||

2
F +β||Q||2F , (14)

min
P,Q
||Xs−PYs||

2
F +α||P||2F +||Ys−QAs||

2
F +β||Q||2F , (15)

min
P,Q
||Xs − PYs||

2
F + α||PT Xs − Ys||

2
F

+ ||As −QYs||
2
F + β||QT As − Ys||

2
F .

(16)

In Eq. (14), features are projected into the semantic space

via mappings P and Q, denoted by “X → Y → A”. In the

testing phase, the compatibility function is d(QPxiu, aj), which

is defined in the semantic space. After training via Eq. (15),

NN search is implemented in the visual space where attributes

are mapped, and this process is denoted by “X ← Y ← A”.

Similar to Eq. (13), there are three classification methods when

P and Q are trained via Eq. (16). Specifically, “X↔ Y↔ Â”

and “X̂↔ Y↔ A” denote that the classification is conducted

in the semantic and attribute space, respectively. As such,

prototypes cannot be fixed to one-hot labels, so attributes or

synthesized features are used as prototypes. In detail, compat-

ibility functions are respectively defined as d(QPT xiu, aj) and

d(xiu,PQT aj). Both these strategies belong to IVSE according

to our definition. Differently, when the label space is directly

used for NN search via Eqs. (8) and (10), “X ↔ Ŷ ↔ A” is

a typical model in ALS.

Based on comparisons in our experiments, two conclusions

can be drawn. Primarily, introducing the label space can

decrease the correlation among properties (dimensions) in the

semantic space. Therefore, two projections P and Q are more

discriminative, and projected features from different classes

can be divided easily. This is demonstrated by the fact that

IVSE is better than DVSE in the same cases. Besides, ALS

defines a robust common space where seen prototypes are one-

hot vectors and unseen prototypes are infered by semantic

embedding. In this way, priori knowledge of seen class labels

is used to accurately define the label space, making prototypes

in the common space more discriminative. This is the main

reason that the ALS framework performs much better than

IVSE for the GZSL task. This is verified by the fact that

X ↔ Ŷ ↔ A is much better than X ↔ Y ↔ Â and

X̂ ↔ Y ↔ A for the GZSL task. Relevant comparisons are

shown in Section V.

B. Comparison of Mappings

After showing the improvements of ALS, the influence of

different projection directions in the ALS framework is also

considered. In this Section, the final classification is conducted

in the label space in all cases.

Our main model is defined as (2), which can be denoted

as “X → Y ↔ A”. As we first discuss the different way

of semantic embeddings, the visual embedding is fixed as

“X → Y”. As attributes of unseen classes are projected

into the label space, there are two different directions, label

synthesis “Y ← A” and mutual reconstruction “Y ↔ A”.

For a given class, the label and class-level attributes hold

the same information when they are used as class centers.

In addition, in the proposed method, semantic meanings are

given to labels. Consequently, it is more reasonable that labels

and attributes in the same class are required to reconstruct

each other. Moreover, because the number of training classes

is generally small, and the distributions between attributes in

seen and unseen classes are very different, the domain shift

problem causes degradation if a mapping from attributes to

labels is trained directly. The mutual reconstruction loss can

prevent the over-fitting in the training phase in this way.

Similarly, the semantic embedding is fixed as “Y↔ A” and

different methods of visual embedding are compared: “X →
Y” and “X ↔ Y”. Notice that X ↔ Y requires labels to

reconstruct visual features, and contains the term

γ||Xs − PYs||
2
F = γ

C
∑

c=1

∑

xi
s
∈Xc

s

||xis − Pycs||
2
F , (17)

where Xs =
⋃C

c=1
Xc

s denotes the partition of features in C
classes. As yc

s is the one-hot vector indicating the c-th column

Pc, the optimal of Pc is the mean of features in the c-th class

Pc = x̄c =
1

nc

∑

xi
s
∈Xc

s

xi
s, (18)

where nc is the number of features in the c-th class. This

means that the label tends to be projected into the center of

features in the visual space, because visual features in one

class are much more diverse than their class labels. According

to Eqs. (17) and (18), the reconstruction loss has a lower bound

γ

C
∑

c=1

∑

xi
s
∈Xc

s

||xis − x̄c||2F . (19)

When optimizing P, the lower bound can influence the optimal

solution according to the hyper-parameter γ. In experiments,

we find that γ has a negative correlation with the classification

accuracy. Therefore, it may not appropriate to reconstruct

features from a single one-hot label vector. Detailed results

are shown in the next Section, which demonstrate the above

discussions of mapping selection.

C. Analysis of Hubness

Authors in [42] give the theoretical analysis why visual

synthesis is better than visual projection. Specifically, if a

linear embedding is learned via Eq. (11), it can be proved that
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(a) X→A (b) X←A (c) X→Y← A

1-1

-1

1

Fig. 5: Illustration of shrinkage. (a) Visual projection; (b) Visual synthesis; (c) Attributing label space.

||PXs||
2
F ≤ ||As||

2
F . This means that the projected points PXs

will be shrunk towards the targets As. Based on this proof,

the authors draw a conclusion that the influence of shrinkage

will be reduced if the prototypes are in the visual space [42].

In our framework, both the visual features and semantic

attributes are projected into the label space. When the model

is trained via following function,

min
P,Q
||PXs−Ys||

2
F +α||P||2F +||Ys−QAs||

2
F +β||Q||2F , (20)

it can be easily proved that ||PXs||
2
F ≤ ||Y||

2
F and ||QAs||

2
F ≤

||Y||2F . Therefore, there is no direct relationship of value

between ||PXs||
2
F and ||QAs||

2
F . It may be also a way to avoid

the influence of shrinkage, which is shown in Fig. 5. However,

we find it is hard to have a theoretically proof of the relation-

ship in norm in the Eq. (2). Thus, we compute ||QtAs||
2
F for

all datasets and empirically find that ||QtAs||
2
F ≤ ||Y||

2
F is

also satisfied.

To further verify the ability of ALS to avoid the hubness

problem, we introduce the “skewness” that measures the

degree of hubness in a nearest neighbor search problem [29]

[27], which is defined as

skewness =

∑C
c=1

(Nk(c)− E[Nk])
3/C

V ar[Nk]3/2
, (21)

where the Nk is the discrete distribution of the number Nk(c)
of the times each prototype c found in the top k of the ranking

for test samples. Notice that when k = 1, Nk represents the

distribution of the (predicted) labels of the test set. V ar[Nk]
is the variance of Nk. In experiments, the comparison of

skewness value in different frameworks are shown to verify

the ability of our method to avoid hubness problem in the

ZSL task.

V. EXPERIMENTS

In our experiments, our method is compared with state-of-

the-art baselines on five benchmark datasets, including four

medium-scale datasets and one very large-scale dataset under

the same settings. To begin with, datasets, splits and other

settings are introduced. Then the proposed method is evaluated

on the medium-scale datasets in detail, including a comparison

of main accuracy with other baselines, discussion on different

frameworks, the computational cost, and the influences on

hyper-parameters. At last, our method is generalized to the

large-scale dataset, which is very challenging for the GZSL

task.

A. Datasets, Evaluations and Baselines

The medium benchmark datasets include Attribute Pascal

and Yahoo (aPY) [34], Animals with Attributes (AWA) [15],

Caltech-UCSD-Birds (CUB) [35] and SUN attributes (SUN)

[36]. The very large-scale dataset is ImageNet 21K. aPY

contains 15,339 images in 32 classes, with 20 seen and 12

unseen classes. Each class corresponds to a 64-dim attribute.

For AWA, the original dataset [20] is not publicly available.

Therefore, images in same classes are re-collected for training

and testing [15]. AWA has a total of 37,322 images and 85-dim

class-level attributes, in which 40 classes are used for training

and 10 for testing. CUB contains 11788 images from 150/50

seen/unseen types of birds, where each type is described by a

312-dim attribute. SUN contains 14,340 images and 102-dim

attributes, where 645 out of 717 classes are used in the training

phase. To split the dataset for training and testing, we follow

the settings in [15], where unseen classes are not included in

the deep neural network training. Therefore, unseen classes are

really “unknown” for the trained model. The 2048-dim feature

of each image is extracted from the 101-layered ResNet [44].

Detailed splits of these datasets are shown in Table I.

The method is also tested on the large-scale dataset Im-

ageNet, which contains 21,841 classes with more than 10

millions images collected from the real-world. In the training

phase, 1K seen classes containing 1.2 million images are

used to learn mappings, where the original ResNet-101 pre-

trained on ImageNet is used to extract the 1024-dim visual

features. In the testing phase, different splits are used as

unseen classes. Particularly, 2-hop/3-hop contains 1,509/7,678

unseen classes that are within two/three tree hops of 1K seen

classes according to the ImageNet label hierarchy [31]. Classes

that contain the top 500/1K/5K maximum images as well

as the top 500/1K/5K minimum images are also used for
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TABLE I: Details of five datasets

Dataset Dim. of
at-

tributes

No. of
seen

classes

No. of
seen

images

No. of
unseen
classes

No. of
unseen
images

SUN 102 645 10320 72 1440
CUB 312 150 7057 50 2967
AWA 85 40 23527 10 7913
aPY 64 20 5932 12 7924

ImageNet 500 1K 1.2M 20K 10M

TABLE II: Comparisons of Zero-Shot Learning (ZSL) on SUN, CUB,
AWA and aPY. We measure the AP of Top-1 accuracy in %.

method SUN CUB AWA aPY

DAP [20] 39.9 40.0 46.1 33.8
IAP [20] 19.4 24.0 35.9 36.6

CONSE [46] 38.8 34.3 44.5 26.9
CMT [24] 39.9 34.6 37.9 28.0
SSE [32] 51.5 43.9 61.0 34.0

LATEM [23] 55.3 49.3 55.8 35.2
ALE [4] 58.1 54.9 62.5 39.7

DEVISE [16] 56.5 52.0 59.7 39.8
SJE [22] 53.7 53.9 61.9 32.9

ESZSL [47] 54.5 53.9 58.6 38.3
SYNC [31] 56.3 55.6 46.6 23.9
SAE [40] 59.7 50.9 66.0 35.1

LESAE [11] 60.0 53.9 68.4 40.8
PSR [48] 61.4 56.0 63.8 38.4

SP-ANE [49] 59.2 55.4 58.5 24.1
ZSKL [50] 60.4 49.3 69.9 41.9
CDL [19] 63.6 54.5 69.9 43.0

MIVSE [17] 43.5 35.7 46.1 32.8
GCN [18] 48.8 48.9 54.6 40.38

ALS 62.0 57.5 66.2 44.5

testing respectively, which are represented as the 500/1K/5K

most/least populated classes in experiments. Finally, all 20K

classes are tested, which is very challenging. For each class,

a 500-dimensional attribute is extracted using the “word-to-

vector” method [45], since ImageNet does not contain attribute

annotations for all classes. Details are shown in [31] and [15].

To evaluate the performance of the methods, the average

of per-class precision (AP) is measured. Specifically, “zsl”

denotes the AP of features classified into unseen classes. In

the GZSL task, test features of unseen classes are classified

into all classes, which is denoted as “ts”. In [15], a subset

of features from seen classes are used for validation, which

are also classified into both seen and unseen classes. The

AP of these features is represented as “tr”. Finally, “H” is

the harmonic mean of ts and tr, which is also introduced to

evaluate the GZSL [15].

For comparison, a number of baselines in the (generalized)

zero-shot learning task are introduced following [15], which

include DAP [20], IAP [20], CONSE [46], CMT [24], SSE

[32], LATEM [23], ALE [4], DEVISE [16], SJE [22], ESZSL

[47], SYNC [31] and SAE [40]. Moreover, recent works such

as LESAE [11], PSR [48], SP-ANE [49], ZSKL [50] and CDL

[19] are also compared. Since recent works are seldom eval-

uated in large-scale dataset ImageNet with standard settings,

we only select the same methods as [15] to be baselines.

B. Main Results

We compare our approach with state-of-the-art baselines

on five medium-scale datasets. In Table II, ZSL classification
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Fig. 6: Correlations between unseen class “dolphin” and seen classes
in the common label space.
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Fig. 7: t-SNE visualization of projections in 50 in CUB dataset.

results are shown, where ‘ALS’ represents the result of our

method. The accuracies of most baselines are tested in same

settings as [15] for fair comparison. The proposed method

achieves state-of-the-art performance on all four datasets,

especially in terms of aPY. In CDL, the class labels are also

introduced to learn a representation of visual features. And

then the representations and semantic attributes are mapped

into a common space. In fact, the pipeline of CDL in the
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ZSL task is similar to the proposed method, and it is the

reason why these two methods achieve comparable accuracies.

However, since we compute the similarity in the label space,

the seen and unseen prototypes can be defined differently like

Eq. (9). On contract, prototypes in seen and unseen classes in

common space are computed in the same way in CDL. This

is the mean reason that our method is better in the GZSL

task. In summary, the model trained using seen data can be

well generalized to unseen classes. An example from the AWA

dataset can be found in Fig. 6, which shows the correlation

between the unseen “dolphin” and forty seen bases in the

label space. Since there are multiple images of dolphins, we

compute the mean of features projected in the label space.

Results show that dolphin has strong correlations with aquatic

animals. More importantly, the projected feature center is

similar to the projected attribute, which demonstrates that the

proposed model can associate the visual and semantic space in

the latent space. To further verify this conclusion, the t-SNE

result of projections in 50 unseen classes in CUB is shown

in Fig. 7, where the colored circles with black border denote

the projected attributes in different classes, and the dots in

different colors denote the projected visual features. Results

show that most of the projected visual features and attributes

are close in the common space.

For the GZSL task, the proposed method significantly im-

proves the ts and H. The average increment of ts value is 11.2.

The H value jointly considers the classification performance of

seen and unseen classes, which can be used as the evaluation

for annotating new objects. Compared with state-of-the-art

methods, the H value is increased by 4.7, 0.5, 8.3 and 11.9

on SUN, CUB, AWA and aPY, respectively. tr reflects the

over-fitting training for seen classes. In Table III, the baselines

with the highest tr generally refer to very low ts and H

values. This means the trained model in these methods cannot

be generalized to new classes. Compared with baselines, the

proposed method achieves leading performance considering in

recognizing both seen and unseen classes.

C. Detailed Evaluation

In this section, detailed results for the model analysis are

shown, where zsl and H represent the performance for the

ZSL and GZSL tasks, respectively. A comparison of Eqs. (11-

13) is shown in the first row of Table IV. Mappings of both

X↔ Â and X̂↔ A are trained via Eq. (13). They implement

classification in the semantic space Â and visual space X̂

respectively. Results demonstrate that X ← A is much better

than X → A, which verifies that visual synthesis can reduce

the hubness problem. In addition, the mutual reconstruction

can reduce the domain shift problem, suggested by the fact

that results of X ↔ Â and X̂ ↔ A are better than those of

X → A and X ← A respectively. More importantly, compar-

isons between DVSE and IVSE demonstrate an improvement

when label space is introduced, where zsl and H values rise

in most cases. Last but not least, although trained via Eq.

(16), accuracies are different when the final classification is

conducted in each of the three different spaces. ALS, where the

compatibility function is defined in the label space Ŷ, achieves

the best performance in GZSL compared to IVSE methods

X̂ ↔ Y ↔ A and X ↔ Ŷ ↔ Â. This verifies the advantage

of priori seen labels in generalized zero-shot classification.

The accuracy of different mapping directions are also

shown. The results shown in the first row of Table V verify that

mutual reconstruction between labels and attributes can reduce

the domain shift problem, since the results of X→ Y↔ A are

better than that of X → Y ← A. In the second row of Table

V, the two visual embedding methods achieve comparable

accuracy, while the visual projection X → Y obtains the

leading performance in most cases. For X ↔ Y ↔ A, the

hyper-parameter γ in Eq. (17) is set to a very small value,

i.e, from 0.001 to 0.1, according to different datasets. In fact,

γ has a negative correlation with accuracy, which means the

reconstruction of visual features can degrade in performance as

γ rises. Since X→ Y↔ A achieves the leading performance,

its accuracy is recorded as our main result in comparison in

Table III.

Moreover, the comparison between the non-linear embed-

ding and the linear embedding under our ALS framework is

presented in Table VI, where the GZSL accuracies are eval-

uated. Specifically, for visual embedding, we use three Fully

Connected layers which are followed with Batch Normaliza-

tion (BN) [51] and ReLU [52] layers. For semantic embedding,

the Auto-Enocoder structure is introduced, where the codes of

class-level attributes are required to be near to corresponding

class labels as much as possible. The experimental results

show that non-linear embedding achieves higher accuracies

in tr. It is because that the non-linear embedding tends to let

unseen images directly equal to the defined one-hot labels,

which causes overlap between seen and unseen projections in

the common space. In fact, unseen features are mapped among

the one-hot labels (as their linear combinations), not directly

equal to one-hot labels. The results also verify our analysis in

Section III-A.

Finally, to verify the ability of avoiding hubness problem of

different frameworks, we compute the skewness value, where

the distribution of N1 is used. Since the number of samples in

each class in SUN dataset exactly equals to 20, the skewness

value computed via the definition is not a number, because

both the numerator and denominator are 0. Therefore, we use

the variance of the distribution of predicted labels to instead

skewness value in SUN dataset. The results show that the

skewness value of the proposed method is closer to that of

the ground truth in most cases. Notice that the number of

images in each class is not balanced in APY, therefore, the

skewness value of ground truth is the biggest.

D. Influence of Hyper-parameters

In our method, there are three hyper-parameters α, β and

λ, which balance the influence of the regularization terms in

the objective functions. In this section, the influence of the

hyper-parameters is discussed to demonstrate the robustness

of proposed method. We vary one hyper-parameter at a time,

while fixing the others. The influences of α, β and λ, for the

four medium-scale datasets are shown in Figure 8. As can be

seen, none of the parameters have a significant influence for
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TABLE III: Generalized Zero-Shot Learning (GZSL) results on SUN, CUB, AWA and aPY. (CMT*: CMT with novelty detection). We
measure the AP of Top-1 accuracy in %.

SUN CUB AWA aPY

Method ts tr H ts tr H ts tr H ts tr H

DAP [20] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 84.7 0.0 4.8 78.3 9.0
IAP [20] 1.0 37.8 1.8 0.2 72.8 0.4 0.9 87.6 1.8 5.7 65.6 10.4

CONSE [46] 6.8 39.9 11.6 1.6 72.2 3.1 0.5 90.6 1.0 0.0 91.2 0.0
CMT [24] 8.7 28.0 13.3 4.7 60.1 8.7 8.7 89.0 15.9 10.9 74.2 19.0
SSE [32] 2.1 36.4 4.0 8.5 46.9 14.4 8.1 82.5 14.8 0.2 78.9 0.4

LATEM [23] 14.7 28.8 19.5 15.2 57.3 24.0 11.5 77.3 20.0 0.1 73.0 0.2
ALE [4] 21.8 33.1 26.3 23.7 62.8 34.4 14.0 81.8 23.9 4.6 73.7 8.7

DEVISE [16] 16.9 27.4 20.9 23.8 53.0 32.8 17.1 74.7 27.8 4.9 76.9 9.2
SJE [22] 14.7 30.5 19.8 23.5 59.2 33.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL [47] 11.0 27.9 15.8 12.6 63.8 21.0 5.9 77.8 11.0 2.4 70.1 4.6
SYNC [31] 7.9 43.3 13.4 11.5 70.9 19.8 10.0 90.5 18.0 7.4 66.3 13.3
SAE [40] 17.8 32.0 22.8 18.8 58.5 29.0 16.7 82.5 27.8 12.3 72.5 20.9

LESAE [11] 21.9 34.7 26.9 24.3 53.0 33.3 21.8 70.6 33.3 12.7 56.1 20.1
PSR [48] 20.8 37.2 26.7 24.6 54.3 33.9 20.7 73.8 32.3 13.5 51.4 21.4

SP-ANE [49] 24.9 38.6 30.3 34.7 70.6 46.6 23.3 90.9 37.1 13.7 63.4 22.6
ZSKL [50] 19.8 29.1 23.6 19.9 52.5 28.9 17.6 80.9 29.0 11.9 76.3 20.5
CDL [19] 21.5 34.7 26.5 23.5 55.2 32.9 28.1 73.5 40.6 19.8 48.6 28.1

MIVSE [17] 9.4 23.3 13.4 11.3 49.9 18.4 5.43 87.3 10.2 10.5 68.7 18.2
GCN [18] 12.7 28.3 17.5 15.2 56.4 24.0 19.4 81.5 31.3 11.1 75.1 19.4

ALS 41.5 31.9 36.1 43.1 51.6 46.9 53.8 56.0 54.9 28.6 65.5 40.0

TABLE IV: Comparison between DVSE and IVSE frameworks on SUN, CUB, AWA and aPY. We measure the AP of Top-1 accuracy in %.

SUN CUB AWA aPY

Framework Projections zsl H zsl H zsl H zsl H

DVSE X→ A 44.8 16.2 35.7 21.4 51.8 22.4 29.6 20.3

X← A 60.8 24.2 51.9 30.0 65.5 37.7 41.7 21.0

X↔ Â 53.5 17.9 36.4 23.3 57.1 23.1 29.0 9.3

X̂↔ A 61.0 25.0 51.9 29.0 66.0 29.4 35.1 21.9

IVSE X→ Y→ A 44.8 16.4 36.2 21.6 54.8 24.4 29.7 22.3

X← Y← A 61.2 24.2 52.4 30.2 65.9 40.1 42.9 22.4

X↔ Y↔ Â 56.3 17.6 46.7 23.8 58.9 36.8 33.7 13.3

X̂↔ Y↔ A 60.1 24.8 53.7 33.1 65.4 36.9 38.6 25.9

ALS X↔ Ŷ↔ A 61.5 36.1 54.9 40.4 64.6 53.9 42.3 38.8

TABLE V: Comparison of projection selections on SUN, CUB, AWA and aPY. We measure the AP of Top-1 accuracy in %.

SUN CUB AWA aPY

Projections zsl H zsl H zsl H zsl H

X→ Y←A 61.7 35.6 55.9 46.1 59.3 21.1 41.2 22.0

X→ Y↔A 62.0 36.1 57.5 46.9 66.2 54.9 44.5 40.0

X↔Y↔ A 61.5 35.1 54.9 40.4 64.6 53.9 42.3 38.8

X→Y↔ A 62.0 36.1 57.5 46.9 66.2 54.9 44.5 40.0

SUN and aPY. However, the accuracy on CUB decreases as α
rises, while performances on AWA and CUB have a negative

correlation with λ.

For the GZSL task, the H value is shown in Fig. (9).

β is very robust for all datasets. Moreover, when λ is in

the range [1.0 2.0], the best performance is obtained for all

four datasets. In contrast, accuracies are very different as α
changes. Specifically, the H value of AWA and aPY has a

positive correlation with α, while that of SUN and CUB is

negative. Considering the trade-off in both the ZSL and GZSL

tasks, λ can be empirically set in the range of [2.0, 4.0],

while β is fixed to 1.0. α varies from 1 to 100, according

to different datasets. In Eq (2), the error of ||Px–y||2F will get

larger as α rises in α||P||2F , which means the projection of

seen classes will leave far away from one-hot labels. In our

ALS framework, the prototypes in seen and unseen classes are

defined in different ways that is show in Eq. (9). In this way,

the improvement of α may increase ts and decrease tr, which

will further cause salient change of the H value. Differently,

semantic embedding Q is constrained by the reconstruction

error, therefore the hyper-parameter β or γ do not cause such

large variety. Moreover, the harmonic mean H value is a trade-

off between ts and tr, where a maximum is existed in each

dataset. In SUN and CUB, the maximum of H value appears

when α is near to 1. In AWA and APY, the maximum of H

value appears when α is larger than 10.

E. Computational Cost

It is very efficient to train projections in SAE [40], where

the main cost comes from solving the Sylvester Equation.

Specifically, the computational complexity is O(d3k3), where

d and k are the dimensions of the visual and semantic spaces,
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TABLE VI: Comparison of the linear embedding and non-linear embedding under the ALS framework. We measure the AP of Top-1 accuracy
in %.

SUN CUB AWA aPY

Method ts tr H ts tr H ts tr H ts tr H

Non-linear ALS 2.1 32.7 0.04 3.1 56.3 0.04 3.1 83.4 0.06 5.3 81.6 0.1
Linear ALS 41.5 31.9 36.1 43.1 51.6 46.9 53.8 56.0 54.9 28.6 65.5 40.0
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Fig. 8: ZSL accuracy of the proposed method, influenced by hyper-parameters α, β and λ.
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Fig. 9: GZSL accuracy of the proposed method, influenced by hyper-parameters α, β and λ

TABLE VII: Comparison of skewness value of different frameworks.

Framework SUN* CUB AWA aPY

X→ A 264.7 1.26 1.99 0.46

X← A 42.3 0.68 1.17 1.45

X→ Y↔ A 39.0 0.71 0.62 1.79

ground truth 0 -3.82 0.23 2.62

TABLE VIII: Comparison of computational cost between the pro-
posed method and SAE. We measure time consumption in seconds.

method SUN CUB AWA aPY

SAE 1.97 2.72 2.44 1.64

ALS 1.66 1.07 3.12 1.57

respectively. In the proposed method, the computational com-

plexity for solving Eq. (6) is O(C3k3), where C is the

number of seen classes. In real applications, visual features

are extracted from deep networks, and d is generally bigger

than C. Therefore, the proposed model is comparable and even

faster than SAE for projection training. The costs for each

dataset are listed in Table VIII. Results show that our method

has similar time consumption with SAE to learn projection

matrices.

F. Large-scale Dataset

Finally, our method is evaluated on the ImageNet 21K

dataset, where the top-10 accuracy is computed. Comparisons

for the ZSL task are shown in Table IX, where we choose

the same baselines as [15]. Our method is better than most

baselines and is comparable to the current state-of-the-art

performance. More importantly, the proposed method achieves

the leading performance in least populated 500/1K/5K classes.

This means that our method is advantageous for annotating

images of objects that are rare in nature, which is the original

intention of ZSL. For the GZSL task, the evaluation of “ts” is

presented in Table X. Results show that the proposed method

achieves state-of-the-art performance in all cases, especially

for 2 hops and most 500/1K unseen classes, where about 3-4

increments are achieved. All results demonstrate the advantage

of our method for GZSL. Since the sentence embedding of

texture description of classes are used, it is different from

the attribute-based ZSL as we mentioned in the Section I

and Section II. This is the reason that the accuracy of our

method is slightly less than that of SYNC [31]. It seems rea-

sonable to consider the feature extracting and visual-semantic

embedding together, which can help the alignment between

different modalities. Graphic Convolutional Network (GCN)

is also proper to mine the semantic relationship between the

prototypes [53], which can be an extension work in the future.
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TABLE IX: Zero-Shot Learning comparisons on ImageNet dataset. We measure AP of Top-10 accuracy in %.

Hierarchy Most populated Least populated All

Method 2 hops 3 hops 500 1K 5K 500 1K 5K 20K

CONSE 27.24 8.97 37.69 27.17 12.05 17.94 11.66 4.87 3.97
CMT 10.90 3.33 18.33 12.30 4.87 6.02 3.97 1.92 1.53

LATEM 27.17 7.69 42.69 30.89 11.02 20.89 13.84 5.00 3.07
ALE 27.05 7.43 41.66 30.12 11.08 20.38 13.20 4.87 3.07

DEVISE 26.92 7.17 41.41 29.74 10.96 20.51 12.94 4.74 2.94
SJE 26.98 6.92 41.02 28.84 10.76 20.12 12.69 4.61 2.94

ESZSL 30.25 7.43 45.89 33.33 12.17 21.53 14.35 5.38 3.71
SYNC 37.05 11.92 51.66 38.97 16.66 25.12 17.69 6.92 5.25

SAE 22.56 6.66 37.82 26.92 10.25 16.92 10.76 4.10 2.94

ALS 34.36 10.60 49.70 36.89 15.30 29.11 18.57 6.96 4.48

TABLE X: Generalized Zero-Shot Learning comparisons on ImageNet dataset. We measure Top-10 accuracy in %.

Hierarchy Most populated Least populated All

Method 2 hops 3 hops 500 1K 5K 500 1K 5K 20K

CONSE 0.86 7.14 23.47 18.38 9.92 0.00 0.00 0.66 3.43
CMT 7.80 2.77 9.65 7.73 3.83 3.37 2.71 1.45 1.25

LATEM 16.99 6.28 23.61 18.65 8.73 8.73 7.60 3.50 2.71
ALE 17.79 6.34 24.93 19.37 9.12 10.38 8.46 3.63 2.77

DEVISE 17.59 6.28 24.66 19.11 8.99 10.11 8.26 3.63 2.71
SJE 17.46 6.21 23.61 18.45 8.79 9.85 8.00 3.50 2.71

ESZSL 19.24 6.81 26.52 20.56 9.72 9.12 7.73 3.76 3.10
SYNC 14.55 5.62 16.33 13.82 7.87 2.77 2.44 1.78 2.64
SAE 13.55 4.82 20.76 16.60 7.60 3.43 2.57 1.58 2.24

ALS 22.01 7.74 30.53 24.68 11.72 10.53 8.92 4.14 3.68

VI. CONCLUSION

In this paper, we proposed a novel method for (generalized)

zero-shot learning. In the training phase, the seen class label

space was used as the common space, where both visual

features and semantic attributes were projected. To avoid over-

fitting, we trained a linear mapping from visual features to

their labels. The reconstruction loss was introduced to train

the mapping between labels and attributes, which can reduce

the domain shift problem. After training, the label space was

extended to represent unseen classes. Moreover, a detailed

comparison among DVSE, IVSE and ALS frameworks was

discussed to show the advantages of introducing the label

space, where final classification was conducted. Experimental

results showed that our method achieved the leading perfor-

mance in most cases. More importantly, our method achieved

significant improvement in generalized zero-shot learning,

proving it with potential for annotating novel images.
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