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1 Introduction

A relevant problem in the analysis of longitudinal data is due to missing ob-

servations, in particular when the missing mechanism is non-ignorable (Little

& Rubin, 2002). In the statistical literature there exist different approaches to

model such a mechanism. Here we focus on the shared-parameter approach

(Wu & Carroll, 1988), which introduces random effects to capture the asso-

ciation between the measurement and the missing process. The idea is that

there exists an underlying latent process, described by the random effects, that

drives both observed processes. An example of shared-parameter approach

is represented by Joint Models (JMs; Wulfsohn & Tsiatis, 1997; Henderson

et al., 2000; Tsiatis & Davidian, 2004; Rizopolous, 2012).

In the standard formulation, a JM is characterized by a generalized linear

mixed model for the longitudinal process, with normally distributed random

effects, and by a proportional hazard Cox’s model (Cox, 1972) for the survival

process, where the risk of the event of interest (e.g., death) at a given time

depends on the expected value of the longitudinal response at the same time.

The standard JM formulation assumes the subject-specific random effects

to be time constant. In order to relax this assumption, Bartolucci and Far-

comeni (2014) introduce a family of mixed latent Markov models, where the

non-ignorable missing process is accounted for through a discrete time-to-

event history approach. Differently, Barrett et al. (2015) illustrate an approach

for continuous longitudinal responses based on the discretization of time-to-

event and on a hazard model formulated in terms of a probit model. In this

way, exact likelihood inference is admitted for a wide range of random effects

specifications.



In our contribution (Section 2), we propose to adopt a first-order autore-

gressive process, AR(1), instead of a discrete one, so that the resulting model is

more parsimonious than that of Bartolucci and Farcomeni (2014) and we gen-

eralize the approach of Barrett et al. (2015) to different longitudinal outcomes,

such as binary and count responses, using the quadrature method illustrated in

Bartolucci et al. (2014) for parameter estimation. Our proposal is suitable for

applications to data involving a range of different types of response (Section

3).

2 The proposed model

Aim of the work is to relax the hypotheses of the model of Barrett et al. (2015)

by assuming a generalized linear parametrization for the longitudinal process

and a sequence of random effects that follows an AR(1) process. The key-point

is that each observation j for subject i is taken at time ti j falling in a certain

“time window” or period si j = s(ti j).
The sub-model for the longitudinal process is formulated as

g(µi j) = αisi j
+xT

i jβββ, (1)

with g(·) denoting a suitable link function, µi j denoting the conditional ex-

pected value of the outcome yi j = yi(ti j), and xi j = xi(ti j) being the corre-

sponding vector of covariates that may include ti j itself. The random intercept

αis depends on the time as follows:

αis = αi,s−1ρ+ηis

√

1−ρ2, s > 1,

with αi1 = ηi1 and where ρ = cor(αis,αi,s−1). Moreover, the error terms ηis

are independent and distributed as N(0, σ2).
The sub-model for the survival process is defined as follows:

log
p(Si > s|Si ≥ s,αis,wis)

1− p(Si > s|Si ≥ s,αis,wis)
= αisγ+wT

isδδδ, (2)

with Si corresponding to the number of periods that subject i survives and

wis denoting the vector of covariates that are operative at time s on the survival

process. In practice, the model based on assumptions (1) and (2) generalize the

proposal of Barrett et al. (2015) to a generic (i.e., continuous, binary, count)

longitudinal outcome.

In order to compute the likelihood function of any model in the proposed

class, we rely on a quadrature method based on an equally spaced grid of points



and on a recursion developed in the hidden Markov literature (see Baum et al.,

1970). This likelihood function is characterized by individual components

p(yi,si,di|Xi,Wi) based on suitably marginalizing out αααi from the following

expression, where αααi is the vector of random effects:

p(yi,si,di|αααi,Xi,Wi) =
[

∏
si−1
s=1 p(Si > s|Si ≥ s,αis,wis)

]

×p(Si > si|Si ≥ si,αis,wis)
di p(Si = si|Si ≥ si,αis,wis)

1−di

×∏
ji
j=1 p(yi j|αisi j

,xi j).

In this expression, di is the final status of subject i, equal to 1 if subject i is

alive at the end of the last period of observation and to 0 otherwise, si is the

number of periods of observation, yi is the observed vector of responses with

ji elements, and Xi and Wi are matrices of covariates with columns xi j and

wis, respectively.

Note that the method of Barrett et al. (2015), based on exact likelihood

inference, is no longer applicable in our extended approach. By our method we

also obtain the corresponding score vector with respect to the free parameters.

Maximization of the likelihood function is based on a quasi-Newton algorithm

in which the observed information matrix is obtained by a numerical method

based on the score vector. On the basis of this matrix, we also obtain standard

errors for the parameter estimates.

3 Application

We propose three applications of JM specified by equations (1) and (2) on cer-

tain datasets, which are characterized by different types of response variable:

• data concerning repeated measurements of lung function in cystic fibrosis

patients, in which the continuous response variable corresponds to the

percent forced expiratory volume;

• data concerning the count of yearly new skin cancers so as to analyze the

effect of β-carotene for the prevention of non-melanoma skin cancer;

• data concerning the follow up of 312 randomized patients with primary

biliary cirrhosis, in which the longitudinal outcomes are given by the

serum bilirubin levels (mg/dL) and by the presence of edema.
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