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Summary
In this article we study a joint model for longitudinal measurements and competing risks survival
data. Our joint model provides a flexible approach to handle possible nonignorable missing data in
the longitudinal measurements due to dropout. It is also an extension of previous joint models with
a single failure type, offering a possible way to model informatively censored events as a competing
risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a
proportional cause-specific hazards frailty submodel (Prentice et al., 1978, Biometrics 34, 541-554)
for the competing risks survival data, linked together by some latent random effects. We propose to
obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM)
algorithm and estimate their standard errors using a profile likelihood method. The developed method
works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease.
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1. Introduction
In many biomedical studies it is common that both longitudinal measurements of a response
variable and the time to some event of interest are recorded during follow-up. A typical example
is the AIDS study where CD4 count and viral load are collected longitudinally and the time to
AIDS or death is also monitored. Another example is the Scleroderma Lung Study (Tashkin
et al., 2006), a double-blinded, randomized clinical trial to evaluate effectiveness of oral
cyclophosphamide (CYC) versus placebo in the treatment of lung disease due to scleroderma.
In this study the primary outcome is forced vital capacity (FVC, as % predicted) determined
at 3-month intervals from the baseline. The event of interest is the time-to-treatment failure or
death. A treatment failure occurs when %FVC of a patient in either group falls by ≥15% after
3 months into the treatment. In both examples the two endpoints are known to be correlated,
which may introduce nonignorable nonresponse missing values for the longitudinal outcome
after event times (Schluchter, 1992; Hogan and Laird, 1997). This type of missing data cannot
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be handled correctly by standard methods such as mixed effects models (Harville, 1977; Laird
and Ware, 1982; Saha and Jones, 2005) and generalized estimating equations (Liang and Zeger,
1986; Zeger, Liang, and Albert, 1988; Robins, Rotnizky, and Zhao, 1995). In the Scleroderma
Lung Study, dependence between the two endpoints is further complicated by informatively
censored events due to dropout during follow-up. We note that both death and dropout could
cause nonignorable missing data in the measurements of %FVC.

Joint analysis of longitudinal measurements and event time data has been proposed to adjust
inferences on longitudinal measurements in the presence of nonignorable missing values
(Schluchter, 1992; DeGruttola and Tu, 1994; Little, 1995; Hogan and Laird, 1997; Henderson,
Diggle, and Dobson, 2000). Joint models can also be used to assess effects of factors of interest
on both endpoints simultaneously (Zeng and Cai, 2005b). Yet in other studies joint models
have been proposed to solve diffculties in Cox proportional hazards model with time-dependent
covariates, which are possibly missing at some event times or subject to substantial
measurement error (Faucett and Thomas, 1996; Wulfsohn and Tsiatis, 1997; Wang and Taylor,
2001; Xu and Zeger, 2001; Song, Davidian, and Tsiatis, 2002; Brown and Ibrahim, 2003;
Tseng, Hsieh, and Wang, 2005). A common assumption used by all these authors is
noninformative censorship in the submodel for survival data with a single failure type, which
is no longer applicable in the presence of competing risks or informative censoring. In the
scleroderma lung study, dropout cannot always be treated as noninformative censoring because
it may be correlated with treatment failure or death and could also cause nonignorable missing
values in %FVC.

This article considers joint analysis of repeated measurements and survival data in the presence
of multiple failure types. Our method is a natural extension of Henderson et al. (2000). The
new aspect in this article is the extension from a single-type failure to the competing risks at
the survival endpoint, which enables one to handle informative censoring. Moreover, the
profile likelihood approach is used for making inference. In our joint model, a linear mixed
effects submodel is used to characterize the distribution of the longitudinal measurements,
together with a cause-specific hazards frailty model for competing risks survival data (Prentice
et al., 1978). The association between the two aspects is modeled via the linkage of the latent
random effects. An expectation maximization (EM) algorithm is derived to estimate the
parameters in both submodels, and inverse of the empirical Fisher information from the profile
likelihood is used to approximate the variance-covariance matrix of the estimators. We note
that standard analysis of competing risks using the causespecific proportional hazards model
without random effects can be done by treating one risk as the event of interest, and the others
as noninformatively censored events (Kalbfleisch and Prentice, 2002, p. 251-259). However,
when cause-specific hazards contain random effects (frailty), such an approach is no longer
valid. A new estimation and inference procedure is indeed needed, or the analysis could lead
to biased results.

We note that the cause-specific hazards model is not aimed at evaluating the effects of risk
factors on the marginal probabilities of occurrence of different risks. If it becomes the research
interest, a mixture model approach can be used (Larson and Dinse, 1985; Ng and McLachlan,
2003). We study in another paper joint analysis of longitudinal outcome and competing risks
survival data based on a mixture submodel for the competing risks, where additional hidden
variables need to be introduced to simplify the EM algorithm.

The rest of this article is organized as follows. The model and the inference procedure are
described in Section 2. Section 3 contains application of the joint model to the scleroderma
lung study. Section 4 includes simulation studies in which the joint model is compared to
separate analyses in the presence of different strengths of associations between the longitudinal
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measurements and the event times. Section 5 contains some concluding remarks and possible
future directions.

2. The Model, Estimation, and Inference Procedure
2.1 The Model

Let Yi (t) be the longitudinal outcome measured at time t for subject i, where i = 1, 2,…, n, and
n is the total number of subjects in study. Each subject may experience one of g distinct failure
types or could be right censored during follow-up. Let Ci = (Ti, Di) denote the competing risks
data on subject i, where Ti is the failure/censoring time, and Di takes value in {0, 1,…, g}, with
Di = 0 indicating a censored event and Di = k showing that subject i fails from the kth type of
failure, where k = 1,…, g. Throughout, the censoring mechanism is assumed to be independent
of the survival time. As mentioned before, dependent (or informative) censoring can be treated
as one of the g types of failures.

The joint model is specified in terms of the following two linked components:

(1)

In the linear mixed effects submodel (1),  and  are vectors of covariates associated

with the longitudinal trajectory Yi (t) and are allowed to change over time. Note that 

may or may not be the same as . The parameter β represents the fixed effects of

, the vector bi is a latent random variable that can be interpreted as subject-specific effects

of , and εi (t) ~ N(0, σ2) for all t ≥ 0 is the measurement error. We assume that bi is
independent of εi (t) and that εi (t1) is independent of εi (t2)for any t1 ≠ t2.

Submodel (2) specifies the distribution of the competing risks survival data with

 being the instantaneous rate for failures of type k at time t given the

vector of covariates  and the frailty ui in the presence of all other failure types. Here
λ0k (t) is a completely unspecified baseline hazard function for risk k, where k = 1,…, g. We
assume that bi and ui jointly have a multivariate normal distribution:

We denote  and ν = (ν, …, νg)T. The parameter ν1 is set to 1 to ensure
identifiability. There are three sources of correlations in our joint model. The correlation among
the longitudinal measurements within the same subject is modeled by random effects bi, which
is similar to standard mixed effects models. Submodel (2) is an extension of the cause-specific
hazards model for competing risks survival data described by Prentice et al. (1978) with
subject-specific random effects ui to model the correlation between different failure types. The
linkage between the longitudinal measurements and the competing risks is flexibly modeled
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through the association between bi and ui via a joint multivariate normal distribution. Therefore,
the association between the two endpoints can be tested by the hypothesis that all the elements
in Σbu equal zero. Finally, we assume the longitudinal measurements are independent of the
competing risks survival data, conditional on all the covariates and random effects.

2.2 Likelihood and the EM Algorithm
Suppose the longitudinal outcome Yi (t) is observed at time points tij for j = 1,…, ni, and denote
Yi =(Yi1,…,Yini). Note that the set (ti1,…,tini) can be different among subjects, due to different
event times and the fact that some patients may miss one or more visits. We assume that the
missing values in the longitudinal measurements caused by reasons other than occurrence of
the events are missing at random. Recall that the competing risks data on subject i are Ci =
(T i, Di). It is important to note that the joint distribution of (Y, C) is completely determined by
f(Y | θ, Ψ), f(C | θ, Ψ), and f(θ | Ψ) as specified in Section 2.1, where Ψ = (β, σ2, γ, ν, Σ, λ01(t),
…, λ0g(t)) is the vector containing all the unknown parameters from (1) to (2). The full
likelihood function for Ψ, conditional on the observed data (Yi, Ci) for i =1,…, n and the
covariates, is thus

(3)

where the second equality follows from the assumption that Y and C are independent
conditional on all the covariates and the random effects. The cumulative hazards of the baseline
functions in λk are chosen to be step functions with jumps at observed event times.

The observed data likelihood is diffcult to maximize in the presence of integration. Below we
propose to obtain the maximum likelihood estimate of Ψ through an EM algorithm. Given θi,
the complete data likelihood is

(4)

In the E-step of the (m + 1)th iteration, we need to calculate the expected values of all the
functions of θi, say h(θi), that appear in l(Ψ;θ)=logL(Ψ;Y,C,θ) conditional on (Y,C) and Ψ(m).
The expectation can be derived by

(5)
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In the M-step, we update Ψ using

(6)

whereQ(Ψ;Ψ(m))= Eθ|Y,C,Ψ(m) (l(Ψ;θ)). Recall that Ψ = (β, σ2, γ, ν, Σ, λ01(t),…, λ0g(t)). See
Web Appendix A for the derivation of the EM algorithm. The integrals can be evaluated using
Gauss-Hermite quadrature (Press et al., 1992). We found that 20 quadrature points
approximated the integrals satisfactorily, and hence were used for all expectations required in
the calculation. We show that β, σ2, Σ, and the cumulative baseline hazard functions H0k(t) can
be updated with closed forms, where H0k (t) is a step function with jumps at observed event
times due to risk k, k =1,…,g. No closedform solutions exist for γ and ν, which need to be
updated using a one-step Newton-Raphson algorithm in each iteration. The algorithm stops
when the convergence criteria are satisfied. We point out that the model construction and the
EM algorithm derivations are natural extensions of the work originally proposed by Wulfsohn
and Tsiatis (1997) and then extended by Henderson et al. (2000).

2.3 Standard Error Estimation
The parameter vector Ψ can be split into two components, the parametric component Ω = (β,
σ2, γ, ν, Σ) and the collection of nonparametric baseline hazard functions Λ = (λ01(t),
…,λ0g(t)). The dimension of Λ is O(n) which makes the method by Louis (1982) infeasible.
On the other hand, because we are only interested in making inference on Ω, calculating the
entire information matrix with the baseline functions is unnecessary. We propose to
approximate the variance- covariance matrix of Ω by inverting the empirical Fisher information
obtained from the profile likelihood where the baseline hazards functions are profiled out (Lin,

McCulloch, and Rosenheck, 2004). Let  denote the observed score vector from the
profile likelihood on the ith subject evaluated at . The observed information matrix of Ω can
be approximated by

(7)

3. Example
In the scleroderma lung study, the primary outcome is FVC (% predicted), which was measured
every 3 months from the baseline. We are interested in evaluating whether oral CYC can either
improve %FVC scores or decrease the risk of treatment failure or death. The study enrolled
158 patients with scleroderma-related interstitial lung disease, who were randomized to receive
either CYC (2 mg/kg; 79 patients) or identical-appearing placebo (79 patients) for 12 months.
A second year of follow-up was performed to determine whether CYC effects persisted after
stopping treatment. The patients may drop out or die before the completion of the study and
the average number of visits per patient is 7.3. For illustration purposes, we considered two
factors in our joint model when assessing the CYC treatment effects: baseline %FVC (FVC0)
and baseline lung fibrosis (FIB0). The latter was included because it was an important risk
factor and it had an interaction effect with the treatment as suggested by our preliminary
analyses. Comparison of baseline- and fibrosisadjusted %FVC scores between the two groups
revealed overlapping values prior to 6 months due to the dose escalation protocol for CYC and
the anticipated delay in treatment effect. In addition, the beneficial effects of CYC on
pulmonary function continued to increase after stopping treatment, but eventually dissipated
at month 24. Therefore we analyzed 6-21 months' %FVC scores at the longitudinal endpoint.
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We excluded one patient who had a suspicious %FVC measurement at month 9, and eventually
there were 140 patients in the final analysis. Table 1 summarizes the number of treatment
failures, deaths, and censored events due to withdrawal in these patients. We classified the
censored events into two types: (1) informative, if the event was known to be disease related
or treatment related in which the patient withdrew due to worsening disease, adverse event
(AE), or serious adverse event (SAE). However, there may be %FVC measurements available
after treatment withdrawal because these patients were encouraged to continue with scheduled
visits and procedures. Therefore, this category can be further divided into two sub-types
depending on whether there were measurements after the events. (2) Noninformative, if there
was no evidence showing that the event was related to the disease or the treatment. We observed
14 treatment failures or deaths, 32 informatively censored events, and 5 noninformatively
censored events. The remaining 89 patients (45 in CYC group and 44 in the placebo group)
completed the study. Because the informatively censored events were related to the patients'
disease condition, this category not only correlates with treatment failure or death, but could
also cause nonignorable missing data in %FVC scores.

Figure 1 (a) and (b) displays the longitudinal profile of %FVC over time for the two groups.
There exists a large variation in the baseline %FVC and the measurements at the subsequent
visits are apparently correlated with the baseline values. The three types of events, treatment
failure or death, informatively censored events, and noninformatively censored events, are
labeled by different symbols. It seems that occurrence of some events of the first two types is
related to low %FVC scores. However, whether it would cause a problem for the analysis of
%FVC measurements remains unclear before we apply the joint model.

We considered a random slope model that provided a better model fit than a random intercept
model, and the improvement of a random intercept and random slope model from this simpler
one was marginal. With the baseline covariates adjusted totheir means, we have, for subject i
at visit j,

(8)

where bi is the random slope and ∈ij ~N(0, σ2) is the mutually independent measurement error;
the cause-specific hazards for treatment failure or death (risk 1) and informatively censored
events (risk 2) are specified as

(9)

(10)

respectively. The joint distribution of the random slope bi in (8) and the frailty ui in (9) and
(10) are assumed to be a zero-mean bivariate normal with variance-covariance

The results of such a joint analysis (model (8)-(10)) are summarized in Table 2. For comparison
purposes, we also carried out separate analyses of the two endpoints, which were done by fitting
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a random slope linear model (8) for %FVC scores using SAS Proc Mixed and a cause-specific
hazards frailty model (9)-(10) for the competing risks failure time data. We used the same
approach as proposed in Section 2.3 to compute the variance-covariance matrix for the
parameters at the survival endpoint. It is observed that the two methods produce similar point
estimates and standard errors for most parameters and identify the same set of significant effects
at the longitudinal endpoint: FVC0, FIB0, and the interaction between FIB0 and CYC. Lung
fibrosis is negatively correlated with %FVC, but its interaction with CYC suggests that CYC
increases %FVC more effectively for patients with a higher degree of fibrosis. The overall
effects of treatment CYC on %FVC scores could be evaluated by testing the null hypothesis
β4 = β5 = β6 = β7 = 0, which yields a p-value 0.0271 for the joint model, and 0.0429 for the
separate model. No significant overall effects of CYC are identified for the time-to-treatment
failure or death by testing γ13 = γ14 = γ15 = 0. In the joint model, with negative covariance
σbu and positive ν2, there tends to be a lower risk for both treatment failure or death and
informatively censored events due to dropout for patients with higher than average increasing
rate of %FVC over time. However, there is not enough evidence to show that either σbu or
ν2 is significantly different from zero, which explains why we observe similar estimates in the
joint analysis and the separate analysis. We note that, as seen in our first simulation study in
the next section, the estimates for ν2 are not reliable under the current sample size and event
rates. Hence we would not overinterpret the quantities in this application. In addition, the
simulation suggests that the bias of ν2 does not seem to affect the estimation of other parameters
in the joint model. Finally, we would like to point out that it is necessary to perform the joint
analysis to avoid possible invalid inference from the separate analyses, although the two
approaches produced similar results for the scleroderma lung study.

4. Simulation Studies
We note that the association between the longitudinal measurements and the survival data is
modeled by the following parameters: the parameter ν2, the variances of random effects bi and
ui, and their correlation. In the simulation experiments we show how to adjust the association
between the two end points by manipulating one or all of the above parameters. We conducted
two simulations. In the first simulation the association between the two endpoints is negligible,
so we expect similar results between the joint model and the separate analyses. In the second
study there is a strong association between the two endpoints, so the competing risks could
cause considerable missing values in the longitudinal measurements. Consequently, the
separate analyses are expected to produce biased estimates.

We conducted the first simulation by generating data with structures similar to the scleroderma
lung study, in which the variance σ2

u was set to 0.05, so the linkage between the two endpoints
was expected tobe negligible. The longitudinal measurements and the competing risks event
times were simulated from model (8)-(10), where the covariates were sampled from
distributions close to what we observed in the real data. We approximated the nonparametric
baseline hazards by Weibull distributions, and the other parameters were set to their estimated
values from the joint model. The results of the joint model and the separate analyses are
compared in Table 3 using 200 simulated data sets with sample size n = 140. In the table we
label the mean of point estimates as Est, the empirical standard error as SE, the median of
estimated standard error as Est. SE, and the confidence interval coverage probability as CP.

It is shown that the two methods produce comparable point estimates and empirical standard
errors for most parameters. However, the random effects ν2 and  and their standard errors
are poorly estimated by the separate analyses. Even the joint model is not able to provide sound
estimates for ν2. It suggests that with n = 140, low event rates (around 10% for risk 1 and 23%

for risk 2), and a relatively small variance of , the frailty at the survival endpoint
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could be hard to estimate. Also because of the small variance of ui, the association between
the longitudinal measurements and the survival data is not sufficiently strong, so we observed
similar results from the two methods. At last, we note that under these settings the joint model
could be conservative in the sense that the estimated standard errors tend to be larger than the
empirical ones.

In the second simulation, we adjusted all the four parameters (ν2, the variances of random
effects bi and ui, and their correlation) to increase association between the two endpoints and
to show that the separate analyses could lead to invalid inference. The longitudinal
measurements were simulated from the following random slope model:

(11)

where tij = 0, 0.5, 1, …, 5 was the scheduled visiting time, X2i ~ Bernoulli(0.5) acting as a
treatment group indicator in randomized trials, and the measurement error ∈ij ~N(0, 5). The
distribution for the random slope bi is specified below. Again, we simulated two competing
risks for event times, say risk 1 and risk 2, with the following cause-specific hazards:

(12)

(13)

where the covariates X1i ~ N(2, 1.0) and X2i was from (11). The random effects bi and ui have
a zero-mean bivariate normal distribution with variance-covariance matrix

where , , and σbu = 0.45, to reach a correlation of -0.9. The baseline hazards were
held constant at 0.1 and 0.15 for risk 1 and risk 2, respectively, so the time to each risk formed
an exponential distribution. We simulated the censoring time from an exponential distribution
with mean 25 and set the maximum follow-up time as 5. The longitudinal measurements were
missing after the observed or censored event times. Overall, we obtained censoring rate at about
20%, risk 1 rate at about 45%, and risk 2 rate at about 35%. The Monte Carlo samples were
analyzed in two ways: the joint model as specified in (11)-(13), and the separate analyses of
the two endpoints that were done by fitting a random slope linear model (11) for the longitudinal
outcome and a cause-specific hazards frailty model (12)-(13) for the competing risks failure
time data. The simulation was based on 200 Monte Carlosamples, and two sample sizes, 200
and 500, were considered (Tables 4 and 5). We label the mean square error as MSEJ and
MSES for the joint model and the separate analyses, respectively.

The results can be summarized as follows. First of all, the joint model is able to get almost
unbiased estimates for all the parameters and the estimated standard errors from profile
likelihood are close to the empirical ones. The simulated coverage probabilities of 95%
confidence intervals constructed with these estimates are all around the nominal value 0.95.
However, the time trend β1 (the time trend for the control group) and β3 (change of the time
trend comparing the treatment group with the placebo group) of the longitudinal measurements
are severely biased in the separate analysis, even for a large sample size (say, 500). The variance
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of the time trend, , is also underestimated. These result in much lower confidence interval
coverage probabilities for the parameters. The biases are the consequence of the informative
dropout process, in which with a negative correlation between bi and ui and the positive
coefficient ν2, we observe a higher risk of dropout for those subjects with lower than average
increasing rates over time. The nonignorable missing values after dropout cannot be accounted
for in the linear mixed effects model alone and biases in the estimated time trend and its variance
are observed. This also results in attenuated slope change comparing the treatment group with
the placebo group (β3). The biases will not vanish by increasing the sample size as shown in
Table 4. In the joint analysis the informative dropout process has been modeled together with
the longitudinal measurements so that we are able to obtain almost unbiased estimates of these
quantities. In addition, both the empirical and the estimated standard errors of β1, β3, and 
tend to be smaller in the separate model than in the joint model, which could also be due to
violation of the missing-at-random assumption in the separate analysis. Our results are
consistent with the findings of Henderson et al. (2000). Second, it is observed that the joint
model provides a more accurate estimate for ν2 than the cause-specific hazards model alone
for both sample sizes. This indicates that we can improve efficiency of frailty estimation in the
survival endpoint by combining the information of the longitudinal outcome, if the two
endpoints are correlated and the correlation is correctly modeled. Third, the joint model, which
utilizes information from both endpoints, tends to produce smaller empirical standard errors
of the parameters for the competing risks endpoint than the separate model. Over- all, the joint
model performs better than the separate analyses because the MSEs from the joint model are
almost always smaller. At last, we point out that estimation of the standard errors at the survival
endpoint seems to require a larger sample size than the longitudinal model. As a consequence,
the empirical standard errors and the estimated standard errors are fairly similar for parameters
in the longitudinal submodel, but more varied for those in the competing risks.

5. Discussion
In this article, we have proposed a joint model for longitudinal measurements and competing
risks failure time data, which can be used to handle informative censoring at the survival
endpoint by treating the informatively censored events as a competing risk for the event of
interest. This is an extension of previous joint models with a single failure type for the event
times. The assumption of multivariate normal provides a flexible approach to link together the
random effects from the two aspects. We have developed an EM algorithm to obtain the MLEs
of the parameters and proposed a profile likelihood method to estimate their standard errors.
Our joint model not only offers a framework for joint inference on longitudinal outcome and
time-to-event data with competing risks, but also a means to analyze longitudinal outcome with
nonignorable missing mechanisms. However, because the dimension of the parameter space
increases with the sample size due to nonparametric baseline hazards, a rigorous treatment of
the asymptotic properties of the MLEs under our model warrants future research. We note that
recently Zeng and Cai (2005a) derived the asymptotic distributions of the maximum likelihood
estimators from their joint model in which they considered a single failure type for the time to
event.

We assume that correlations among different competing risks are driven by the same random
effect ui. This assumption can be further extended so that the risks are linked by different
random effects that are potentially correlated. We note that this model would require
considerably more computation efforts, especially when g is moderate, and a larger sample
size so that there are enough events for each risk for sound inference.

We know that in the scleroderma study influential points and outliers plausibly occur, so
robustizing the joint model to handle outlying observations in the longitudinal outcome can be
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investigated in the future. The robustness obtained using the t distribution in linear models
have been studied by Sutradhar and Ali (1986), Lange, Little, and Taylor (1989), and Taylor,
Yu, and Sandler (2005). In our joint model we may replace the normal distribution assumption
for measurement errors with a t distribution to take into account longer-thannormal tails.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a)-(b) Profile plots of %FVC for CYC group versus the placebo group: ○ for treatment failure
or death; + for informative censoring without %FVC measurements after the events; △ for
informative censoring with %FVC measurements after the events; □for noninformatively
censored events.
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Table 1
Three types of events for subjects with %FVC measurements at 6 months or later in the scleroderma lung study

Category CYC Placebo Total

(1) Treatment failure or death 5 9 14

(2) Informatively censored events (worsening disease, AE,
SAE)

No measurements after withdrawal 6 7 13

With measurements after withdrawal 12 7 19

(3) Noninformatively censored events (other reasons) 1 4 5

Biometrics. Author manuscript; available in PMC 2009 September 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Elashoff et al. Page 14

Table 2
Analysis of 6-21 months' scleroderma lung study data

Joint analysis estimate (SE) Separate analyses estimate
(SE)

Longitudinal outcome %FVC

Time (β1) -0.05 (0.08) -0.04 (0.08)

FVC0(β2) 0.91 (0.04)* 0.90 (0.05)*

FIB0(β3) -1.83 (0.61)* -1.90 (0.54)*

CYC (β4) 0.11 (1.00) 0.15 (1.06)

FVC0 × CYC (β5) 0.13 (0.07) 0.13 (0.07)

FIB0 × CYC (β6) 1.71 (0.80)* 1.85 (0.79)*

Time × CYC (β7) 0.13 (0.11) 0.12 (0.11)

σ2 24.78 (0.67) 24.72 (1.47)

σb
2 0.22 (0.03) 0.22 (0.03)

p-value for H0 : β4 = β5 = β6 = β7 = 0 0.0271 0.0429

Cause-specific hazards (treatment failure or death)

FVC0(γ11) 0.02 (0.03) 0.02 (0.03)

FIB0 (γ12) 0.18 (0.35) 0.17 (0.32)

CYC (γ13) -0.69 (0.77) -0.70 (0.70)

FVC0 × CYC (γ14) -0.05 (0.07) -0.05 (0.07)

FIB0 × CYC (γ15) -0.47 (1.12) -0.51 (0.98)

p-value for H0 : γ13 = γ14 = γ15 = 0 0.7711 0.7292

Cause-specific hazards (informatively censored events)

FVC0(γ21) -0.07 (0.03)* -0.07 (0.03)*

FIB0(γ22) 0.20 (0.33) 0.18 (0.32)

CYC (γ23) 0.31 (0.46) 0.31 (0.45)

FVC0 × CYC (γ24) 0.11 (0.04)* 0.10 (0.04)*

FIB0 × CYC (γ25) 0.12 (0.41) 0.10 (0.39)

Random effects for survival endpoint

ν2 1.93 (2.23) -0.24 (> 100)

σu
2 0.05 (0.09) 0.20 (0.52)

Covariance of bi and ui

σbu -0.10 (0.10)

*
p-value < 0.05.
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