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Abstract

Most existing joint neural models for Infor-

mation Extraction (IE) use local task-specific

classifiers to predict labels for individual in-

stances (e.g., trigger, relation) regardless of

their interactions. For example, a VICTIM of

a DIE event is likely to be a VICTIM of an AT-

TACK event in the same sentence. In order to

capture such cross-subtask and cross-instance

inter-dependencies, we propose a joint neural

framework, ONEIE, that aims to extract the

globally optimal IE result as a graph from an

input sentence. ONEIE performs end-to-end

IE in four stages: (1) Encoding a given sen-

tence as contextualized word representations;

(2) Identifying entity mentions and event trig-

gers as nodes; (3) Computing label scores for

all nodes and their pairwise links using local

classifiers; (4) Searching for the globally op-

timal graph with a beam decoder. At the de-

coding stage, we incorporate global features

to capture the cross-subtask and cross-instance

interactions. Experiments show that adding

global features improves the performance of

our model and achieves new state-of-the-art

on all subtasks. As ONEIE does not use any

language-specific feature, we prove it can be

easily applied to new languages or trained in

a multilingual manner. Our code and models

for English, Spanish and Chinese are publicly

available for research purpose 1.

1 Introduction

Information Extraction (IE) aims to extract struc-

tured information from unstructured texts. It is a

complex task comprised of a wide range of sub-

tasks, such as named, nominal, and pronominal

mention extraction, entity linking, entity corefer-

ence resolution, relation extraction, event extrac-

tion, and event coreference resolution. Early ef-

forts typically perform IE in a pipelined fashion,

1 http://blender.cs.illinois.edu/software/
oneie

which leads to the error propagation problem and

disallows interactions among components in the

pipeline. As a solution, some researchers propose

joint inference and joint modeling methods to im-

prove local prediction (Roth and Yih, 2004; Ji and

Grishman, 2005; Ji et al., 2005; Sil and Yates, 2013;

Li et al., 2014; Durrett and Klein, 2014; Miwa

and Sasaki, 2014; Lu and Roth, 2015; Yang and

Mitchell, 2016; Kirschnick et al., 2016). Due to

the success of deep learning, neural models have

been widely applied to various IE subtasks (Col-

lobert et al., 2011; Chiu and Nichols, 2016; Chen

et al., 2015; Lin et al., 2016). Recently, some ef-

forts (Wadden et al., 2019; Luan et al., 2019) re-

visit global inference approaches by designing neu-

ral networks with embedding features to jointly

model multiple subtasks. However, these methods

use separate local task-specific classifiers in the

final layer and do not explicitly model the inter-

dependencies among tasks and instances. Figure 1

shows a real example where the local argument role

classifier predicts a redundant PERSON edge. The

model should be able to avoid such mistakes if it is

capable of learning and leveraging the fact that it is

unusual for an ELECT event to have two PERSON

arguments.

PER
Erdogan

PER
Abdullah Gul

End-Position
resigned

Elect
won

person person

Example: Prime Minister Abdullah Gul resigned earlier
Tuesday to make way for Erdogan, who won a
parliamentary seat in by-elections Sunday.

person

Figure 1: A typical error made by local classifiers with-

out global constraints.

To address this issue, we propose a joint neu-

http://blender.cs.illinois.edu/software/oneie
http://blender.cs.illinois.edu/software/oneie
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Figure 2: An illustration of our end-to-end joint information extraction framework ONEIE at the test stage. We do

not show all pairwise links for simplicity purposes.

ral framework, ONEIE, to perform end-to-end IE

with global constraints. As Figure 2 shows, in-

stead of predicting separate knowledge elements

using local classifiers, ONEIE aims to extract a

globally optimal information network for the in-

put sentence. When comparing candidate infor-

mation networks during the decoding process, we

not only consider individual label scores for each

knowledge element, but evaluate cross-subtask and

cross-instance interactions in the network. In this

example, a graph with the INJURE-VICTIM-ORG

(the VICTIM of an INJURE event is an ORG entity)

structure is demoted. Experiments show that our

framework achieves comparable or better results

compared to the state-of-the-art end-to-end archi-

tecture (Wadden et al., 2019).

To the best of our knowledge, ONEIE is the

first end-to-end neural IE framework that explic-

itly models cross-subtask and cross-instance inter-

dependencies and predicts the result as a unified

graph instead of isolated knowledge elements. Be-

cause ONEIE does not rely on language-specific

features, it can be rapidly applied to new languages.

Furthermore, global features in our framework are

highly explainable and can be explicitly analyzed.

2 Task

Given a sentence, our ONEIE framework aims to

extract an information network representation (Li

et al., 2014), where entity mentions and event trig-

gers are represented as nodes, and relations and

event-argument links are represented as edges. In

other words, we perform entity, relation, and event

extraction within a unified framework. In this sec-

tion, we will elaborate these tasks and involved

terminologies.

Entity Extraction aims to identify entity men-

tions in text and classify them into pre-defined en-

tity types. A mention can be a name, nominal, or

pronoun. For example, “Kashmir region” should

be recognized as a location (LOC) named entity

mention in Figure 2.

Relation Extraction is the task of assigning a

relation type to an ordered pair of entity mentions.

For example, there is a PART-WHOLE relation be-

tween “Kashmir region” and “India”.

Event Extraction entails identifying event trig-

gers (the words or phrases that most clearly ex-

press event occurrences) and their arguments (the

words or phrases for participants in those events)

in unstructured texts and classifying these phrases,

respectively, for their types and roles. An argument

can be an entity, time expression, or value (e.g.,

MONEY, JOB-TITLE, CRIME). For example, in Fig-

ure 2, the word “injured” triggers an INJURE event

and “300” is the VICTIM argument.

We formulate the task of extracting information

networks as follows. Given an input sentence, our

goal is to predict a graph G = (V,E), where V and

E are the node and edge sets respectively. Each

node vi = 〈ai, bi, li〉 ∈ V represents an entity men-

tion or event trigger, where a and b are the start

and end word indices, and l is the node type la-

bel. Each edge eij = 〈i, j, lij〉 ∈ E is represented

similarly, whereas i and j denote the indices of in-

volved nodes. For example, in Figure 2, the trigger

“injured” is represented as 〈7, 7, INJURE〉, the entity

mention “Kashmir region” is represented as 〈10,
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11, LOC〉, and the event-argument edge between

them is 〈2, 3, PLACE〉.

3 Approach

As Figure 2 illustrates, our ONEIE framework ex-

tracts the information network from a given sen-

tence in four steps: encoding, identification, clas-

sification, and decoding. We encode the input sen-

tence using a pre-trained BERT encoder (Devlin

et al., 2019) and identify entity mentions and event

triggers in the sentence. After that, we compute

the type label scores for all nodes and pairwise

edges among them. During decoding, we explore

possible information networks for the input sen-

tence using beam search and return the one with

the highest global score.

3.1 Encoding

Given an input sentence of L words, we obtain

the contextualized representation xi for each word

using a pre-trained BERT encoder. If a word is

split into multiple word pieces (e.g., Mondrian→
Mon, ##dr, ##ian), we use the average of all piece

vectors as its word representation. While previous

methods typically use the output of the last layer of

BERT, our preliminary study shows that enriching

word representations using the output of the third

last layer of BERT can substantially improve the

performance on most subtasks.

3.2 Identification

At this stage, we identify entity mentions and

event triggers in the sentence, which will act as

nodes in the information network. We use a feed-

forward network FFN to compute a score vector

ŷi = FFN(xi) for each word, where each value in

ŷi represents the score for a tag in a target tag

set2. After that, we use a conditional random

fields (CRFs) layer to capture the dependencies

between predicted tags (e.g., an I-PER tag should

not follow a B-GPE tag). Similar to (Chiu and

Nichols, 2016), we calculate the score of a tag path

ẑ = {ẑ1, ..., ẑL} as

s(X, ẑ) =

L
∑

i=1

ŷi,ẑi +

L+1
∑

i=1

Aẑi−1,ẑi ,

where X = {x1, ...,xL} is the contextualized rep-

resentations of the input sequence, ŷi,ẑi is the ẑi-th

2We use the BIO tag scheme, in which the prefix B- marks
the beginning of a mention, and I- means inside of a mention.
A token not belonging to any mention is tagged with O.

component of the score vector ŷi, and Aẑi−1,ẑi is

the (ẑi−1, ẑi) entry in matrix A that indicates the

transition score from tag ẑi−1 to ẑi. The weights

in A are learned during training. We append two

special tags <start> and <end> to the tag path

as ẑ0 and ẑL+1 to denote the start and end of the

sequence. At the training stage, we maximize the

log-likelihood of the gold-standard tag path as

log p(z|X) = s(X, z)− log
∑

ẑ∈Z

es(X,ẑ),

where Z is the set of all possible tag paths for a

given sentence. Thus, we define the identification

loss as LI = − log p(z|X).

In our implementation, we use separate taggers

to extract entity mentions and event triggers. Note

that we do not use types predicted by the taggers.

Instead, we make a joint decision for all knowl-

edge elements at the decoding stage to prevent

error propagation and utilize their interactions to

improve the prediction of node type.

3.3 Classification

We represent each identified node as vi by averag-

ing its word representations. After that, we use sep-

arate task-specific feed-forward networks to calcu-

late label scores for each node as ŷt
i = FFNt(vi),

where t indicates a specific task. To obtain the label

score vector for the edge between the i-th and j-th

nodes, we concatenate their span representations

and calculate the vector as ŷt
k = FFNt(vi,vj).

For each task, the training objective is to mini-

mize the following cross-entropy loss

Lt = −
1

N t

Nt

∑

i=1

yt
i log ŷ

t
i,

where yt
i is the true label vector and N t is the

number of instances for task t.

If we ignore the inter-dependencies between

nodes and edges, we can simply predict the label

with the highest score for each knowledge element

and thus generate the locally best graph Ĝ. The

score of Ĝ can be calculated as

s′(Ĝ) =
∑

t∈T

Nt

∑

i=1

max ŷt
i,

where T is the set of tasks. We refer to s′(Ĝ) as

the local score of Ĝ.
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Categary Description

Role 1. The number of entities that act as <rolei> and <rolej> arguments at the same time.

2. The number of <event typei> events with <number> <rolej> arguments.

3. The number of occurrences of <event typei>, <rolej>, and <entity typek> combination.

4. The number of events that have multiple <rolei> arguments.

5. The number of entities that act as a <rolei> argument of an <event typej> event and a <rolek> argument
of an <event typel> event at the same time.

Relation 6. The number of occurrences of <entity typei>, <entity typej>, and <relation typek> combination.

7. The number of occurrences of <entity typei> and <relation typej> combination.

8. The number of occurrences of a <relation typei> relation between a <rolej> argument and a <rolek>
argument of the same event.

9. The number of entities that have a <relation typei> relation with multiple entities.

10. The number of entities involving in <relation typei> and <relation typej> relations simultaneously.

Trigger 11. Whether a graph contains more than one <event typei> event.

Table 1: Global feature categories.

3.4 Global Features

A limitation of local classifiers is that they are in-

capable of capturing inter-dependencies between

knowledge elements in an information network.

We consider two types of inter-dependencies in our

framework.

The first type of inter-dependency is Cross-

subtask interactions between entities, relations,

and events. Consider the following sentence. “A

civilian aid worker from San Francisco was killed

in an attack in Afghanistan.” A local classifier may

predict “San Francisco” as a VICTIM argument be-

cause an entity mention preceding “was killed” is

usually the victim despite the fact that a GPE is un-

likely to be a VICTIM. To impose such constraints,

we design a global feature as shown in Figure 3(a)

to evaluate whether the structure DIE-VICTIM-GPE

exists in a candidate graph.

Another type of inter-dependency is Cross-

instance interactions between multiple event

and/or relation instances in the sentence. Take the

following sentence as an example. “South Carolina

boy, 9, dies during hunting trip after his father ac-

cidentally shot him on Thanksgiving Day.” It can

be challenging for a local classifier to predict “boy”

as the VICTIM of the ATTACK event triggered by

“shot” due to the long distance between these two

words. However, as shown in Figure 3(b), if an

entity is the VICTIM of a DIE event, it is also likely

to be the VICTIM of an ATTACK event in the same

sentence.

Motivated by these observations, we design a

set of global feature templates (event schemas) as

listed in Table 1 to capture cross-subtask and cross-

instance interactions, while the model fills in all

possible types to generate features and learns the

(a)	Cross-subtask	Interaction (b)	Cross-instance	Interactions

PER

dies
Die Attack

boy
victim victim

shot

Die

San Francisco

killed
victim

GPE

Figure 3: Examples of inter-dependencies between ele-

ments in information networks. (a) A VICTIM edge is

unlikely to exist between a GPE entity and a DIE event

trigger. (b) The VICTIM of a DIE event is likely to be

the VICTIM of an ATTACK event in the same sentence.

weight of each feature during training. Given a

graph G, we represent its global feature vector as

fG = {f1(G), ..., fM (G)}, where M is the num-

ber of global features and fi(·) is a function that

evaluates a certain feature and returns a scalar. For

example,

fi(G) =

{

1, G has multiple ATTACK events

0, otherwise.

Next, ONEIE learns a weight vector u ∈ R
M

and calculates the global feature score of G as the

dot product of fG and u. We define the global

score of G as the sum of its local score and global

feature score, namely

s(G) = s′(G) + ufG,

We make the assumption that the gold-standard

graph for a sentence should achieve the highest

global score. Therefore, we minimize the following

loss function

LG = s(Ĝ)− s(G),
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where Ĝ is the graph predicted by local classifiers

and G is the gold-standard graph.

Finally, we optimize the following joint objec-

tive function during training

L = LI +
∑

t∈T

Lt + LG

3.5 Decoding

As we have discussed, because local classifiers

ignore interactions among elements in an infor-

mation network, they may predict contradictory

results or fail to predict difficult edges that require

information from other elements. In order to ad-

dress these issues, ONEIE makes a joint decision

for all nodes and their pairwise edges to obtain the

globally optimal graph. The basic idea is to cal-

culate the global score for each candidate graph

and select the one with the highest score. However,

exhaustive search is infeasible in many cases as the

size of search space grows exponentially with the

number of nodes. Therefore, we design a beam

search-based decoder as Figure 4 depicts.

Given a set of identified nodes V and the label

scores for all nodes and their pairwise links, we

perform decoding with an initial beam set B =
{K0}, where K0 is an order-zero graph. At each

step i, we expand each candidate in B in node step

and edge step as follows.

Node step: We select vi ∈ V and define its

candidate set as Vi = {〈ai, bi, l
(k)
i 〉|1 ≤ k ≤ βv},

where l
(k)
i denotes the label with the k-th highest

local score for vi, and βv is a hyper-parameter that

controls the number of candidate labels to consider.

We update the beam set by

B ← {G+ v|(G, v) ∈ B × Vi},

Edge step: We iteratively select a previous node

vj ∈ V, j < i and add possible edges between vj
and vi. Note that if vi is a trigger, we skip vj if it

is also a trigger. At each iteration, we construct a

candidate edge set as Eij = {〈j, i, l
(k)
ij 〉|1 ≤ k ≤

βe}, where l
(k)
ij is the label with k-th highest score

for eij and βe is a threshold for the number of

candidate labels. Next, we update the beam set by

B ← {G+ e|(G, e) ∈ B × Eij},

At the end of each edge step, if |B| is larger than

the beam width θ, we rank all candidates by global

score in descending order and keep the top θ ones.

After the last step, we return the graph with the

highest global score as the information network for

the input sentence.

4 Experiments

4.1 Data

We perform our experiments on the Automatic

Content Extraction (ACE) 2005 dataset3, which

provides entity, value, time, relation, and event

annotations for English, Chinese, and Arabic. Fol-

lowing Wadden et al. (2019)’s pre-processing4, we

conduct experiments on two datasets, ACE05-R

that includes named entity and relation annotations,

and ACE05-E that includes entity, relation, and

event annotations. We keep 7 entity types, 6 coarse-

grained relation types, 33 event types, and 22 argu-

ment roles.

In order to reinstate some important elements

absent from ACE05-R and ACE05-E, we create a

new dataset, ACE05-E+, by adding back the order

of relation arguments, pronouns, and multi-token

event triggers, which have been largely ignored

in previous work. We also skip lines before the

<text> tag (e.g., headline, datetime) as they are

not annotated.

In addition to ACE, we derive another dataset,

ERE-EN, from the Entities, Relations and Events

(ERE) annotation task created under the Deep Ex-

ploration and Filtering of Test (DEFT) program

because it covers more recent articles. Specifi-

cally, we extract 458 documents and 16,516 sen-

tences from three ERE datasets, LDC2015E29,

LDC2015E68, and LDC2015E78. For ERE-EN,

we keep 7 entity types, 5 relation types, 38 event

types, and 20 argument roles.

To evaluate the portability of our model, we also

develop a Chinese dataset from ACE2005 and a

Spanish dataset from ERE (LDC2015E107). We

refer to these datasets as ACE05-CN and ERE-ES

respectively.

4.2 Experimental Setup

We optimize our model with BertAdam for 80

epochs with a learning rate of 5e-5 and weight

decay of 1e-5 for BERT, and a learning rate of

1e-3 and weight decay of 1e-3 for other parame-

ters. We use use the bert-base-multilingual-cased

3https://www.ldc.upenn.edu/collaborations/
past-projects/ace

4https://github.com/dwadden/dygiepp

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://github.com/dwadden/dygiepp
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Figure 4: An illustration of our decoding algorithm. At each step, we expand each candidate graph by adding a

new node and possible edges between it and existing nodes. After that, we rank all expanded graphs and keep the

top ones.

Dataset Split #Sents #Entities #Rels #Events

Train 10,051 26,473 4,788 -

ACE05-R Dev 2,424 6,362 1,131 -

Test 2,050 5,476 1,151 -

Train 17,172 29.006 4,664 4,202

ACE05-E Dev 923 2,451 560 450

Test 832 3,017 636 403

Train 6,841 29,657 7,934 2,926

ACE05-CN Dev 526 2,250 596 217

Test 547 2,388 672 190

Train 19,240 47,525 7,152 4,419

ACE05-E+ Dev 902 3,422 728 468

Test 676 3,673 802 424

Train 14,219 38,864 5,045 6,419

ERE-EN Dev 1,162 3,320 424 552

Test 1,129 3,291 477 559

Train 7,067 11,839 1,698 3,272

ERE-ES Dev 556 886 120 210

Test 546 811 108 269

Table 2: Dataset statistics.

model5 for ACE05-CN and ERE-ES, and use the

bert-large-cased model for other datasets. Follow-

ing (Wadden et al., 2019), we use two-layer FFNs

with a dropout rate of 0.4 for local classifiers. We

use 150 hidden units for entity and relation extrac-

tion, and 600 hidden units for event extraction. For

global features, we set βv and βe to 2 and set θ

to 10. In our experiments, we use random seeds

and report averaged scores across runs. We use the

same criteria as (Zhang et al., 2019; Wadden et al.,

2019) for evaluation as follows.

• Entity: An entity mention is correct if its offsets

and type match a reference entity.

• Relation: A relation is correct if its relation type

5https://huggingface.co/transformers/
pretrained_models.html

is correct and the offsets of the related entity

mentions are correct.

• Trigger: A trigger is correctly identified (Trig-

I) if its offsets match a reference trigger. It is

correctly classified (Trig-C) if its event type also

matches the reference trigger.

• Argument: An argument is correctly identified

(Arg-I) if its offsets and event type match a refer-

ence argument mention. It is correctly classified

(Arg-C) if its role label also matches the refer-

ence argument mention.

4.3 Overall Performance

In Table 3, we compare our results with two mod-

els: (1) DYGIE++ (Wadden et al., 2019), the state-

of-the-art end-to-end IE model that utilizes multi-

sentence BERT encodings and span graph prop-

agation; (2) BASELINE that follows the architec-

ture of ONEIE but only uses the output of the last

layer of BERT and local classifiers. We can see

that our model consistently outperforms DYGIE++

and BASELINE on ACE05-R and ACE05-E.

In (Wadden et al., 2019), the authors show that

combining triggers predicted by a four-model en-

semble optimized for trigger detection can improve

the performance of event extraction. While we also

report our results using a four-model ensemble in

Table 4 for fair comparison, we hold the opinion

that the single-model scores in Table 3 better reflect

the actual performance of ONEIE and should be

used for future comparison.

Table 5 shows the performance of ONEIE on

two new datasets, ACE05-E+ and ERE-EN.

In Table 6 we list salient global features learned

by the model. Take feature #9 as an example, if a

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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Dataset Task DYGIE++ BASELINE ONEIE

ACE05-R
Entity 88.6 - 88.8

Relation 63.4 - 67.5

ACE05-E

Entity 89.7 90.2 90.2

Trig-I - 76.6 78.2

Trig-C 69.7 73.5 74.7

Arg-I 53.0 56.4 59.2

Arg-C 48.8 53.9 56.8

Table 3: Results on ACE2005 datasets (F-score, %).

Dataset Task DYGIE++* ONEIE*

ACE05-E

Entity 90.7 90.3

Trig-I 76.5 78.6

Trig-C 73.6 75.2

Arg-I 55.4 60.7

Arg-C 52.5 58.6

Table 4: Experiment results on ACE05-E (F-score, %).

DYGIE++* and ONEIE* use a four-model ensemble

optimized for trigger detection.

Task Entity Trig-I Trig-C Arg-I Arg-C Relation

ACE05-E+ 89.6 75.6 72.8 57.3 54.8 58.6

ERE-EN 87.0 68.4 57.0 50.1 46.5 53.2

Table 5: New benchmark results (F-score, %).

candidate graph contains multiple ORG-AFF edges

incident to the same node, the model will demote

this graph by adding a negative value into its global

score. We also observe that the weights of about

9% global features are almost not updated, which

indicates that they are barely found in both gold-

standard and predicted graphs. In Table 8, we per-

form qualitative analysis on concrete examples.

4.4 Porting to Another Language

As Table 7, we evaluate the proposed framework

on ACE05-CN and ERE-ES. The results show that

ONEIE works well on Chinese and Spanish data

without any special design for the new language.

We also observe that adding English training data

can improve the performance on Chinese and Span-

ish.

4.5 Remaining Challenges

We have analyzed 75 of the remaining errors and

in Figure 5 we present the distribution of various

error types which need more features and knowl-

edge acquisition to address in the future. In this

section, we will discuss some main categories with

examples.

Need background knowledge. Most of current

IE methods ignore external knowledge such as

entity attributes and scenario models. For exam-

Positive Feature Weight

1 A TRANSPORT event has only one DESTINA-
TION argument

2.61

2 An ATTACK event has only one PLACE argu-
ment

2.31

3 A TRANSPORT event has only one ORIGIN ar-
gument

2.01

4 An END-POSITION event has only one PERSON

argument
1.51

5 A PER-SOC relation exists between two PER

entities
1.08

6 A GEN-AFF relation exists between ORG and
LOC entities

0.96

7 A BENEFICIARY argument is a PER entity 0.93

8 A GEN-AFF relation exists between ORG and
GPE entities

0.90

Negative Feature Weight

9 An entity has an ORG-AFF relation with multi-
ple entities

-3.21

10 An entity has an PART-WHOLE relation with
multiple entities

-2.49

11 An event has two PLACE arguments -2.47

12 A TRANSPORT event has multiple DESTINA-
TION arguments

-2.25

13 An entity has a GEN-AFF relation with multi-
ple entities

-2.02

14 An ATTACK event has multiple PLACE argu-
ments

-1.86

15 An entity has a PHYS relation with multiple
entities

-1.69

16 An event has multiple VICTIM arguments -1.61

Table 6: Salient positive and negative global features.

Dataset Training Entity Relation Trig-C Arg-C

ACE05-CN
CN 88.5 62.4 65.6 52.0

CN+EN 89.8 62.9 67.7 53.2

ERE-ES
ES 81.3 48.1 56.8 40.3

ES+EN 81.8 52.9 59.1 42.3

Table 7: Results on ACE05-CN and ERE-ES (F-score,

%). For ACE05-CN, EN refers to ACE05-E+. For

ERE-ES, EN refers to ERE-EN.

16.0%

17.3%

12.0%

13.3%

6.7%

8.0%

18.7%

4.0% 4.0%

Underspecified definition

Need Background 
Knowledge

Annotation error

Generic entity & 
uncertain event

Need syntactic structure

Multiple events
per trigger

Rare word

Metaphor

Cross-sentence reasoning

Figure 5: Distribution of remaining errors.

ple, in the following sentence, “And Putin’s media

aide, Sergei Yastrzhembsky, told Kommersant Rus-

sia would not forgive the Iraqi debt”, our model

mistakenly identifies “Kommersan” as a person

instead of organization. With entity linking, we
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Sentence & Analysis Baseline +Global Features

#1: Russia’s foreign minister expressed outrage at suggestions
from a top Washington official last week that Moscow should
forgive the eight billion dollars in Soviet-era debt that Baghdad
owes it, as a gesture of good will.

⋆ Global feature category: 8
⋆ Analysis: It is unlikely for a person to have an ORG-AFF relation
with multiple entities.

GPE
Russia

PER
minister

GPE
Washington

PER
official

ORG-AFF

ORG-AFF

ORG-AFF

ORG-AFF

GPE
Russia

PER
minister

GPE
Washington

PER
official

ORG-AFF

ORG-AFF

#2: They also deployed along the border with Israel.

⋆ Global feature category: 9
⋆ Analysis: It is uncommon that an ORIGIN argument and a DES-
TINATION argument have a PART-WHOLE relation.

LOC
border

GPE
Israel

Transport
deployed

PART-WHOLE

destination origin

LOC
border

GPE
Israel

Transport
deployed

PART-WHOLE

origin

#3: Prime Minister Abdullah Gul resigned earlier Tuesday to
make way for Erdogan , who won a parliamentary seat in by-
elections Sunday.

⋆ Global feature categories: 2 and 5
⋆ Analysis: 1. An ELECT usually has only one PERSON argument;
2. An entity is unlikely to act as a PERSON argument for END-
POSITION and ELECT events at the same time.

person
PER

Erdogan
PER

Abdullah Gul

End-Position
resigned

Elect
won

person person

PER
Erdogan

PER
Abdullah Gul

End-Position
resigned

Elect
won

person person

#4: Diller will continue to play a critical role in the future of
Vivendi ’s entertainment arm.

⋆ Global feature category: 6
⋆ Analysis: A PART-WHOLE relation should not exist between PER

and ORG entities.

PER
Vivendi

ORG
arm

PER
Diller

PART-WHOLE PER
Vivendi

ORG
arm

PER
Diller

#5: He also brought a check from Campbell to pay the fines and
fees.

⋆ Global feature category: 3
⋆ Analysis: As “Campbell” is likely to be an ENTITY argument of
a FINE event, the model corrects its entity type from FAC to PER.

FAC
Campbell

Fine
fines PER

Campbell
Fine
fines entity

Table 8: Examples showing how global features improve the quality of extracted information networks. For some

sentences, we do not draw the whole information network.

can correct this error based on the first sentence

in its Wikipedia page “Kommersant is a nationally

distributed daily newspaper published in Russia

mostly devoted to politics and business”.

Rare words. The second challenge is the fa-

mous long-tail problem: many triggers, entity men-

tions (e.g., “caretaker”, “Gazeta.ru”) and contex-

tual phrases in the test data rarely appear in the

training data. While most event triggers are verbs

or nouns, some adverbs and multi-word expres-

sions can also serve as triggers.

Multiple types per trigger. Some trigger words

may indicate both the procedure and the result sta-

tus of an action. For example, “named” may indi-

cate both NOMINATE and START-POSITION events;

“killed” and “eliminate” may indicate both ATTACK

and DIE events. In these cases the human ground

truth usually only annotates the procedure types,

whereas our system produces the resultant event

types.

Need syntactic structure. Our model may bene-

fit from deeper syntactic analysis. For example,

in the following sentence “As well as previously

holding senior positions at Barclays Bank, BZW

and Kleinwort Benson, McCarthy was formerly a

top civil servant at the Department of Trade and

Industry”, our model misses all of the employers

“Barclays Bank”, “BZW” and “Kleinwort Benson”

for “McCarthy” probably because they appear in a

previous sub-sentence.

Uncertain events and metaphors. Our model

mistakenly labels some future planned events as

specific events because its lacking of tense pre-

diction and metaphor recognition. For example,

START-ORG triggered by “formation” does not hap-

pen in the following sentence “The statement did

not give any reason for the move, but said Lahoud

would begin consultations Wednesday aimed at the

formation of a new government”. Our model also

mistakenly identifies “camp” as a facility, and a
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DIE event triggered by “dying” in the following

sentence “Russia hints ‘peace camp’ alliance with

Germany and France is dying by Dmitry Zaks.”.

The IE community is lacking of newer data sets

with end-to-end annotations. Unfortunately, the

annotation quality of the ACE data set is not perfect

due to some long-term debates on the annotation

guideline; e.g., Should “government” be tagged as

a GPE or an ORG? Should “dead” be both an entity

and event trigger? Should we consider designator

word as part of the entity mention or not?

5 Related Work

Previous work (Roth and Yih, 2004; Li et al., 2011)

encodes inter-dependency among knowledge el-

ements as global constraints in an integer linear

programming framework to effectively remove ex-

traction errors. Such integrity verification results

can be used to find knowledge elements that vio-

late the constraints and identify possible instances

of detector errors or failures. Inspired by these

previous efforts, we propose a joint neural frame-

work with global features in which the weights

are learned during training. Similar to (Li et al.,

2014)’s method, ONEIE also uses global features

to capture cross-subtask and cross-instance inter-

dependencies, while our features are language-

independent and do not rely on other NLP tools

such as dependency parsers. Our methods also

differ in local features, optimization methods, and

decoding procedures.

Some recent efforts develop joint neural models

to perform extraction of two IE subtasks, such as

entity and relation extraction (Zheng et al., 2017;

Katiyar and Cardie, 2017; Bekoulis et al., 2018; Fu

et al., 2019; Luan et al., 2019; Sun et al., 2019) and

event and temporal relation extraction (Han et al.,

2019). Wadden et al. (2019) design a joint model

to extract entities, relations and events based on

BERT and dynamic span graphs. Our framework

extends (Wadden et al., 2019) by incorporating

global features based on cross-subtask and cross-

instance constraints. Unlike (Wadden et al., 2019)

that uses a span-based method to extract mentions,

we adopt a CRF-based tagger in our framework

because it can extract mentions of any length, not

restricted by the maximum span width.

6 Conclusions and Future Work

We propose a joint end-to-end IE framework that

incorporates global features to capture the inter-

dependency between knowledge elements. Experi-

ments show that our framework achieves better or

comparable performance compared to the state of

the art and prove the effectiveness of global fea-

tures. Our framework is also proved to be language-

independent and can be applied to other languages,

and it can benefit from multi-lingual training.

In the future, we plan to incorporate more com-

prehensive event schemas that are automatically

induced from multilingual multimedia data and ex-

ternal knowledge to further improve the quality of

IE. We also plan to extend our framework to more

IE subtasks such as document-level entity corefer-

ence resolution and event coreference resolution.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.



8008

Natural language processing (almost) from scratch.
Journal of Machine Learning Research.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL HLT2019).

Greg Durrett and Dan Klein. 2014. A joint model for
entity analysis: Coreference, typing, and linking. In
Transactions of the Association for Computational
Linguistics (TACL).

Tsu-Jui Fu, Peng-Hsuan Li, and Wei-Yun Ma. 2019.
GraphRel: Modeling text as relational graphs for
joint entity and relation extraction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL2019).

Rujun Han, Qiang Ning, and Nanyun Peng. 2019. Joint
event and temporal relation extraction with shared
representations and structured prediction. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP2019).

Heng Ji and Ralph Grishman. 2005. Improving name
tagging by reference resolution and relation detec-
tion. In In Proceedings of ACL 05, Ann Arbor, USA.

Heng Ji, David Westbrook, and Ralph Grishman. 2005.
Using semantic relations to refine coreference deci-
sions. In In Proceedings of HLT/EMNLP 05, Van-
couver, B.C., Canada.

Arzoo Katiyar and Claire Cardie. 2017. Going out on
a limb: Joint extraction of entity mentions and re-
lations without dependency trees. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (ACL2017).

Johannes Kirschnick, Holmer Hemsen, and Volker
Markl. 2016. JEDI: Joint entity and relation de-
tection using type inference. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics System Demonstrations
(ACL2016).

Qi Li, Sam Anzaroot, Wen-Pin Lin, Xiang Li, and
Heng Ji. 2011. Joint inference for cross-document
information extraction. In Proceedings of the 20th
ACM International Conference on Information and
Knowledge Management (CIKM2011).

Qi Li, Heng Ji, HONG Yu, and Sujian Li. 2014.
Constructing information networks using one single
model. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP2014).

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL2016).

Wei Lu and Dan Roth. 2015. Joint mention extraction
and classification with mention hypergraphs. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP2015).

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A gen-
eral framework for information extraction using dy-
namic span graphs. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL HLT2019).

Makoto Miwa and Yutaka Sasaki. 2014. Modeling
joint entity and relation extraction with table repre-
sentation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP2014).

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Eighth Confer-
ence on Computational Natural Language Learning
(CoNLL2004).

Avirup Sil and Alexander Yates. 2013. Re-ranking for
joint named-entity recognition and linking. In Pro-
ceedings of the 22nd ACM international conference
on Conference on Information & Knowledge Man-
agement (CIKM2013).

Changzhi Sun, Yeyun Gong, Yuanbin Wu, Ming Gong,
Daxin Jiang, Man Lan, Shiliang Sun, and Nan Duan.
2019. Joint type inference on entities and relations
via graph convolutional networks. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL2019).

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP2019).

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document context.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL HLT2016).

Tongtao Zhang, Heng Ji, and Avirup Sil. 2019. Joint
entity and event extraction with generative adversar-
ial imitation learning. Data Intelligence.

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing
Hao, Peng Zhou, and Bo Xu. 2017. Joint extraction
of entities and relations based on a novel tagging



8009

scheme. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(ACL2017).


