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Abstract: The rapid growth of cloud computing environment with many clients ranging from
personal users to big corporate or business houses has become a challenge for cloud organizations to
handle the massive volume of data and various resources in the cloud. Inefficient management of
resources can degrade the performance of cloud computing. Therefore, resources must be evenly
allocated to different stakeholders without compromising the organization’s profit as well as users’
satisfaction. A customer’s request cannot be withheld indefinitely just because the fundamental
resources are not free on the board. In this paper, a combined resource allocation security with
efficient task scheduling in cloud computing using a hybrid machine learning (RATS-HM) technique
is proposed to overcome those problems. The proposed RATS-HM techniques are given as follows:
First, an improved cat swarm optimization algorithm-based short scheduler for task scheduling (ICS-
TS) minimizes the make-span time and maximizes throughput. Second, a group optimization-based
deep neural network (GO-DNN) for efficient resource allocation using different design constraints
includes bandwidth and resource load. Third, a lightweight authentication scheme, i.e., NSUPREME
is proposed for data encryption to provide security to data storage. Finally, the proposed RATS-
HM technique is simulated with a different simulation setup, and the results are compared with
state-of-art techniques to prove the effectiveness. The results regarding resource utilization, energy
consumption, response time, etc., show that the proposed technique is superior to the existing one.

Keywords: cloud computing; resource allocation; task scheduling; data storage; cloud security;
hybrid machine learning; RATS-HM; NSUPREME

1. Introduction

Cloud computing is a remarkable innovation created by the forefront season of
labourer farms in PC, and it helps in discontinuing virtualization movements [1]. Ap-
propriate handling is portrayed as an “association” that wires programming, foundation
as a help, and Platform as a Service (PaaS) [2,3]. Everybody has a different all-around
proposition about business. The aim of appropriated figuring is to create a virtual asset of
PCs, workers, and specialists develop that application in order to serve the clients, paying
little mind to the procured model [4]. In addition, Internet connectivity and infrastructure
are important since the cloud is built on the bedrock of two major foundations, e.g., cloud
computing and networking. For many cloud applications, the network can be used for
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cloud computing and additional applications [5]. The QoS distribution network in the
cloud is integrated with its infrastructure and capabilities. As a result, more application
service providers (ASPs) [6] realize the distinction between the actual use and operation of
the required infrastructure and have used the infrastructure leased from the infrastructure
providers. For example, Force Square uses Amazon EC2 Analytics for over 5 million days,
saving 53% of its value to meet measurable needs [7], creating the first cloud resource
measurement resource.

In particular, pertaining to the demand forecast schedule, the ASP periodically reviews
the rental services, makes appropriate decisions about the allocation of goals and resources,
and does not spend money on extra calculation, storage, or data transfer [8,9]. Moreover,
resource allocation should be commensurate with decentralization, as the provider may
deliver services of unique types and or combinations of these services based on resources,
complicating the problem rather than requiring complex tenders [10]. Relevant resources
can be accessed from multiple sources, and multiple users can compete with the same
resources [11,12], with suppliers demanding suppliers, customer submissions, and cus-
tomer submissions. In cloud computing, most issues relate to data security, power, security,
service availability, memory expansion management, and task planning. However, task
planning is usually a major topic of cloud computing research. Many tasks in cloud comput-
ing require high performance, optimal completion time, low response time, and available
resources to utilize useful resources. On account of these varied purposes of the allocation
plan, it must assign the tasks correctly.

It can provide services to clients over the Internet using various resources [13]. Since
Amazon introduced the cloud computing concept, Amazon has developed several cloud
computing systems, including EC2, Google of Engine, Apache Hardtop, and Microsoft
Azure. Amazon EC2 is a resource system cluster. Web services are provided by a Linux
virtual machine resource, Amazon Data Center [14]. Events can be divided into three cate-
gories according to their size: small, large, and very large [15]. There is an influential impact
of cloud computing on the IT industry [16] and narrow competition among companies
regarding the efficiency of their service delivery [17].

Companies are also striving to improve or upgrade their services further through
various resources so that more and more clients can subscribe to the cloud [18]. Hence,
one of the most important factors that affect the quality of service is resource allocation
and SLA [19], showing the level of user satisfaction. However, dimensions and boundaries
must be specified, and upper parameters are difficult to achieve [20].

This study has the following significant contributions:

• In order to manage resource crunches in the cloud environment, we proposed schedul-
ing user tasks by employing the advanced Cat optimization algorithm.

• The proposed resource allocation and security with efficient computer operational
planning use hybrid machine learning to optimize the task.

• ICS-TS is introduced to improve passive resources by partitioning the cloud envi-
ronment into the workspace and state space. GO-DNN based resource management
further reduces resource usage in a large-scale cloud environment, with multiple
servers receiving multiple requests per day from users.

• On successfully completing the system, an in-depth neural network based on opti-
mization is implemented, setting tasks on appropriate virtual machines. Consequently,
the source forecast and reset forecast measures virtual machine processors, memory,
and I/O usage.

The rest of the paper is organized as follows: Section 2 discusses about previous work;
Section 3 formulates the problem and network model; the proposed research is exhibited in
Section 4, Section 5 reveals experimental result, and the paper is concluded in Section 6.

2. Related Work

Wei et al. [21] have presented the asset distribution model dependent on distinct
asset valuing many SPs and various asset allotments simultaneously, which improves the
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benefit. The recreation results show that the assessed cost of CSAMIISG is near the genuine
exchange cost, and the exchange cost is not exactly the real exchange esteem. The method
is comparative for SPs and INs. They will refresh the application framework for future
activities and change the settings to make it more effective.

Tang et al. [22] have proposed a YARN’s endeavors to determine these issues. The
dispersion of progressive assets is considered at one level. For onetime asset distribution,
another asset assignment framework is called long-haul asset reasonableness (LTRF) for
such assessments. They offer various leveled long-haul asset reasonableness (H-LTRF) with
the option of the LTRF expansion to add progressive sources, for example, the LTRF and
H-LTRF. LTYARN subject by presenting LTRF and H-LTRF, and their examinations show
that this prompts preferable legitimization of assets over the current assessor.

Zhang et al. [23] have presented a distributed computing that offers asset designation
and estimating and offers a practical sale dependent on client evaluations and qualities.
Contingent upon the installment model, clients can present many solicitations simultane-
ously. However, they can deal with different solicitations, one of which is known as an
unclear presentation. They show that asset suppliers can receive expanded social rewards
and genuine help for the association. They offer a way to deal with asset designation to
make brisk assignment arrangements and upgrade the social advantages of cloud asset
suppliers. The installment technique quantifies the interests of the asset supplier for every
client. They break down the arrangement on a preliminary premise dependent on social
help, execution time, asset use, and clients.

Jiang et al. [24] have proposed that the VM joining asset allotment calculation was
used to accomplish energy productivity and diminish server farm administration level
understanding infringement, considering the utilization of DCNS fragments, the number of
overhauls, and the length of the transportation course. This technique effectively decreases
energy utilization, the number of movements, and the length of the relocation way to the
unique cloud administration.

Gong et al. [25] have presented a resource task control approach that targets dynamic
excess weight and resource requirements. It allows various sources to respond to various in-
stabilities following various obstacles and adds consolidated help to join to ensure that QoS
does not offer acceptable assistance for one assistance. As showed by close tests, resource
use can be improved by giving agreeable sponsoring to resources, regardless of whether
there is a specific method to manage organization needs. This system ensures that QoS
adjusts to normal mediations and responds continuously to eccentric resource necessities.

Wu et al. [26] have presented a trade CPU and memory hotspots for new programming
and VMs with a two-venture crossbreed variation model to expect VM load-dependent
on severe order control. Rather than anticipating course events, they considered order
line programs using natural language preparing (NLP) innovation and used grey research
analysis (GRA) to lessen credits. Built-up a double mixture versatile model that produc-
tively and precisely predicts VM load, including CPU and memory. Select projects that
expand the CPU VM by over 5%, and afterward assess the ANFIS model VM and CPU
and memory load using the Boeing technique. Broad testing shows that rearrangement
techniques improved the execution and asset usage of VMs.

Zhao et al. [27] have described an integrated approach based on MEC and Cloud
Computing loads for vehicles on the transport network. Cloud-MEC system integrated
download results are designed to synchronize system upload results and allow system
resources. If the problem worsens and the NPP becomes complicated, they recommend
downloading the resource optimization program calculation and switching to the CCORAO
program associated with the solution. The algorithm effectively improves computer usage
and computation time, especially if MEC servers do not meet the requirements because of
insufficient computing resources.

Abbasi et al. [28] have proposed power consumption to balance power consumption
and load delay, i.e., XCS and BCM-XCS. The results of our experiments show the advantages
of BCM-XCS compared to the basic method based on XCS. Load distribution between cloud
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and fog nodes is a specific way of reducing processing delays and communication delays.
The major advantage of controlling processing fluctuations is that specific methods can
gradually reduce processing delays by 42%, using specific energy consumption.

Reis et al. [29] have investigated a predictive approach to configuration recommenda-
tion based on genetic algorithms (GA) and support vector regression (SVR). This integrated
program calculates idle time and provides possible and optimal configuration of cloud
resources in terms of time and cost. The results showed that the forecast time was very
close to direct time, which effectively estimated time and costs and their reduction.

Gui et al. [30] have proposed tests on load and resource distribution on a dense C-Ron
operating MEC designed to improve single-phase energy efficiency. A standard hybrid
non-software program designed to improve load unloading results, resource planning, and
radio resource allocation. Lebanon has developed a theory that divides the problem into
four individual sub-problems using central variation methods and compatibility games.
They theoretically analyze the trade-off between service delays and energy efficiency.
Advanced simulations exhibit how system parameters influence energy efficiency and
service interruption. The results of the models confirmed the benefits of a rich C-RON load
and resource allocation scheme.

Praveenchandar et al. [31] recommended an energy-saving approach for effective
planning and resource allocation. Resource allocation in task execution and response time
was fulfilled using the forecasting system and dynamic resource updating algorithm. This
system is useful for reducing the energy structure of the system by reducing data center con-
sumption. The resource table update approach returns the exact values. Resource allocation
is effectively achieved through operational planning and reduction of energy consumption.

Christos et al. [32] proposed an innovative system of secure caching scenario which
operates in a wireless-mobile 6G network for managing Big Data (BD) on smart buildings
(SBs). The proposed scenario combines the functions of the IoT with Cloud Computing
(CC), Edge Computing (EC), and BD (on SB). They created a novel and secure cache decision
system (CDS) in a wireless network that operates over an SB, which offered the users a safer
and efficient environment for browsing the Internet, sharing and managing large-scale data
in the fog.

Christos et al. [33] proposed Integrated Federated Model (InFeMo) to incorporate all
the existing cloud models with a federated learning scenario, as well as other related tech-
nologies that may have integrated use with each other, offering a novel integrated scenario.
The proposed model motivated to deliver a more energy-efficient system architecture and
environment for the users. The proposed system was built on the resources made available
by Cloud Service Providers (CSPs) and by using the PaaS (Platform as a Service) model,
in order to be able to handle user requests better and faster. Their research tried to fill a
scientific gap in the field of federated cloud systems.

A few of the recent works on resource allocation in a cloud environment with its
solution approach are listed in Table 1.

Table 1. Summary of Related Works on Resource allocation in Cloud computing and their pro-
posed solutions.

Citation Author Title Propose Solutions Environment Open Issue

[21] Wei et al.

Imperfect information dynamic
Stackelberg game based resource

allocation using hidden Markov for
cloud computing

The assessed cost of CSAMIISG is near
the genuine exchange cost and the

exchange cost is not exactly the real
exchange esteem

Huawei
Application framework and
change settings to make it

more effective

[22] Tang et al.
Fair resource allocation for

data-intensive computing in the cloud

The technique offers various leveled
long haul asset reasonableness (H-LTRF)
with the option of the LTRF expansion to

add progressive sources, for example,
the LTRF and H-LTRF.

Amazon EC2

LTYARN open source at

http://sourceforge.net/
projects/ltyarn/ (accessed

on 22 August 2021)

http://sourceforge.net/projects/ltyarn/
http://sourceforge.net/projects/ltyarn/
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Table 1. Cont.

Citation Author Title Propose Solutions Environment Open Issue

[23] Zhang
et al.

An online auction mechanism for cloud
computing resource The author proposes the online virtual

resource allocation and payment
(OVRAP) algorithm

IBM CPLEX12
C++ is used for algorithm

implementationallocation and pricing based on user
evaluation and cost

[24] Jiang et al.

Self-adaptive resource allocation for
energy-aware virtual machine

placement in a dynamic computing
cloud

proposed method first groups the
servers with a shorter path length using

the given DCN topology

Google cluster
trace

Lacks a large amount of
practical data

[26] Wu et al.

ANFIS with natural language processing
and gray relational analysis based cloud

computing framework for real-time
energy-efficient resource allocation

proposed aANFIS model solves the
dynamical prediction problem of VM

workload by training the values of
feature attributes

Malleable Network
System Simulator

Lacks a large amount of
practical data

3. Problem Formulation and Network Model
3.1. Research Gap

From the review [21–31], many specialists have attempted to accomplish better out-
comes in asset allotment, asset arranging, and appropriation. In past reviews, clients did
not require assets, and assets were circulated such that clients did not organize. The asset
portion is a significant segment of distributed computing. Its exhibition will straightfor-
wardly influence the presentation of the whole cloud climate. Since distributed computing
has its qualities, starting asset designation strategies and organization processing calcu-
lations do not work in these circumstances. When arranging, the organizer should think
about various impediments, including the idea of the undertaking, the size of the errand,
the time needed to finish the assignment, the accessibility of assets, the request for the
assignment, and the stacking. Assignment arranging is a significant issue in distributed
computing. Appropriate arranging of works will prompt proficient utilization of assets.

3.2. Research Objectives

• To design and develop dynamic resource allocation and task scheduling process
• To minimize the expected total makespan and maximize throughput through optimal

scheduling.

A hybrid machine learning framework addresses performance issues while allocating
resources and task scheduling. The proposed technique is simulated using the CloudSim.

3.3. Network Model

The cloud user submits a request to the service provider for access to various resources
from the cloud. This requirement is represented as loads. The workload is divided into
four categories. The workload is submitted to the task manager and divided into different
groups. The work schedule, based on the advanced cat live algorithm, is used to reduce
time and increase efficiency. To create a loaded virtual machine (VM), the center value of
each cluster is identified and grouped accordingly for the loads. Four clusters are formed:
C1, C2, C3, and C4. The detailed model is exhibited in Figure 1. There are a number of Task
managers, and the workload is divided into a number of clusters. The ICS-TS algorithm
and GO-DNN scheme are used for scheduling tasks and for managing resource allocation.
RAM, CPU, and bandwidth utilization of each allocation is computed for each virtual
machine and virtual machines are arranged on the best VM value.
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Figure 1. Proposed RATS-HM technique.

4. Proposed OEQRM Scheme

This section labels the proposed algorithm for scheduling the workflow. It also explains
the three contributions of the proposed algorithm like improved cat swarm optimization
algorithm based short scheduler for task scheduling, group optimization-based deep neural
network on increasing bandwidth and resource load and lightweight authentication scheme
for encrypting the stored data in the cloud. The ICS-TS algorithm in the proposed system
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accepts some inputs like user request, Task Type, Task Dependency, and Bandwidth and
returns multiple service providers to optimize task scheduling. It uses Group Optimized
Deep Neural Network (GO-DNN) scheme for optimizing resource utilization. To increase
the security of the system, Lightweight, a 64-bit block encryption scheme is used. The
following sections present each module of the proposed system.

4.1. Task Scheduling with ICS-TS Algorithm

Parameters of multiple service providers for optimizing scheduling are as follows:
User request (Ur): Set of user requests which consist of 1 to n task units.
Task Type (Tt): The type of task is described, and it consists of 1 to m. the Tm indicates

a maximum number of the task inside the task unit.
Task dependency (Td): Dependencies of task units are indicated as Ur. The data

obtained from Uri is given as Td ij
= 1 and this data is used by Td ij

. Otherwise, it is
considered as Td ij

= 0

Td 33 =


Ur1 Ur2 Ur3

Ur1 0 1 0
Ur2 1 0 0
Ur3 0 1 0

 (1)

Input Data (Din): The input data size of the task unit is represented as input data.
Output Data (Dout): The yield information size of the errand unit is spoken to as Dout.

For this situation, the asset pool is accepted as heterogeneous, and the asset is taken from
the actual machine or a worker or PC in the distance that comprises the information center.
Different arrangements are appointed to the same assets. The asset information consists of
six tuples, and it is given as R = (PM, Pc, CP, R, CE, Nbw, Ecom).

Physical Machines (PM): It indicates the set of actual machines present in a data
center, and it is indicated as PM = (PR1, PR2, PR3,..., PRn).

Computing Power (Pc): Pc indicates the matrix of the processing power of the actual
machines. Pc ij Indicates execution of the task unit type i on a physical machine PMj and
the average power of PMj is represented by Pc avg,j. The average power is calculated by
taking the mean of entries in the column of a matrix Pc j .

Td ij
=


PM1 PM2 . . . PMj

Ur1 Tt1,1 Tt1,2 . . . Tt1,j
Ur2 Tt2,1 Tt2,2 . . . Tt2,j

...
...

...
...

...
Uri Tti,1 Tti,1 . . . Tti,j

 (2)

RAM in PM (R): Each PM’s existing Random Access Memory.
Computing Energy (CE): A matrix indicates a task unit’s execution time. The energy

consumed by a PMj to execute ith task unit type per unit time per unit data is given as CEij.
Bandwidth (BW): The bandwidth between PMs and the data transfer rate between

PMi to PMj, and this is indicated by BWij.
Initially, it is considered that there are k-subtasks for the users in the cloud services.

These k-subtasks are scheduled using m computational resources, and it is indicated by {R1,
R2,..., Rm}. It is considered that each resource, Rj, has a fixed costs price, and it is indicated
as pj. The price vector is given by p = {p1, p2,..., pm}.The time allocated for Ri to execute the
subtask is given ti. The execution time vector is given by t = {t1, t2,..., tm}.

To enhance the multitude-based bumblebee, a mating calculation is used, and the
advancement depends on the pursuit calculation is supported by the way toward mating
in genuine bumble bees. The conduct of bumblebees is the collaboration of their:

• ecological and physiological environments,
• genetic potentiality,
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• the social conditions of the colony, as well as various earlier and ongoing interactions
between these three parameters.

ICS are unique social insects that live in the forces created by them. The three most
common elements of the river are the queen, some of the planes, and the workers. The
queen is larger than other bees because of the royal jelly. The average lifespan of a queen is
five to six years, which can be as high as 1500 eggs. When the queen flies inside the bee,
the plane tries to join her in the air. Equation (3) shows a controlled drone crossing with
the queen.

P(D) = e[
−∆( f )

S(t) ] (3)

where P(D) indicates the probability of the addition of the queen’s spermatheca to the
drone’s sperm (D), ∆(f ) indicates the magnitude of difference between the queen’s spermath-
eca and the drone’s sperm. The queen’s speed at time ‘t’ is given by S(t). After iteration, the
speed and energy of the queen decrease, and these are represented in Equations (4) and (5),
respectively:

S(t + 1) = αS(t) (4)

E(t) = αE(t) (5)

where α ranges between [0, 1] is the randomly generated factor. It calculates the decreased
energy and speed at each iteration. ‘E’ indicates the energy, and ‘S’ indicates the speed. The
detailed algorithm is present below (Algorithm 1).

Algorithm 1 ICS-TS algorithm

Input: Din, Ur, Tt, BW
Output: Multiple Service Providers To Optimize Scheduling

1 Initialize Din, Ur,Tt, BW
2 Calculate the Ur and Din (using it equation)
3 Calculate the Td.
4 Remove the dependent data from the vector.
5 Calculate the initial value of P (D )
6 if (P (D ) = = 1)
7 Ur with higher priority is executed
8 Calculate the Pc,CE
9 Keep it best solution
10 Else
11 Wait until P (D ) become high
12 After some iteration if (P (D ) == 0)
13 Replace the queen with brood
14 End

Return: Multiple Service Providers To Optimize Scheduling

The complexity of the ICS-TS algorithm algorithm(Algorithm 1) is O(n) where n is
number of times the value of P(D) is non-zero.

4.2. Resource Allocation Using GO-DNN

The important goal is to optimize the allocation of resources. The use of resources
creates a layer to increase the efficiency of cloud systems. Reducing the cost of using
existing resources is another factor.

•→makespan = min ((Fji) for ji ∈ J

•→ Cost = min(C (ri, jk)) for 1 ≤ I ≤ a, 1 ≤ k ≤ b (6)

•→ Fitness = αCost + βmakespan + βreliabilty

where α, β, and γ are in [0, 1]. They are parameters to influence the variables of fitness. C(ri,
jk) is the cost of the job jk, which executes on resource rj, and makespan is the termination
time of the job. Similarly, if the movement of bacterium varies for a period of time, it is
tumbling. The pth bacterium at qth chemotactic rth reproductive and tth elimination and
dispersal step is given by αp(q, r, t). The step size of the tumble is given by S(p). The
computation chemotaxis is described as:

αp(q + 1, r, t) = αp(q, r, t) + S(p) (7)
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The parameter used in the BEA algorithm is d—dimension of the search space, N—
number of bacteria in the Nc—chemotaxis step, Ns—swim a length, Nre—the number of
reproduction steps, Ned—the number of elimination dispersal events, Ped—elimination-
dispersal with probability, S (i)—the size of the step taken in the random direction.

Only optimal policies are considered; any reference to an optimal policy in the sequel
pertains to an optimal policy or value function for the clairvoyant problem.

CHi =
n

∑
i=1

SAi (8)

Finally, the Brown function [9] is used to crosscheck the resource allocation as follows:

F(SA) =
n

∑
i=1

(
S2

Ai

)(S2
Ai+1

+1)
+
(

S2
Ai+1

)(S2
Ai
+1)

(9)

Generally, when multiple sensors are spread over a locality, each node is configured
with equal sensing equipment. Hence any failure of one or more nodes can be handled
by the network without much inconvenience. Thus, to evaluate the time efficiency of
the virtual machine, the time elapsed until the first node died cannot be taken as the
only metric.

ti =
[pi ]

∑
j=1

λp1
xp1−1e−λτ

Γ(pi)
(10)

where pi is the upper bound on a number of the virtual machine that can be transmitted by
sensor i during the time τ.

NLT = T
[

max(ti) ∈
Na

N

]
(11)

where Na holds the number of nodes alive and N holds the number of sensors in the
network. The cost of routing(CR) between two nodes are presented in (12),

CR(nd) = ∑
i,j∈(n,∪,d)

Ci,j (12)

where Ci,j is the cost function for a connection from node i to node j. Thus,

Ci,j = Ep + 2NEtx(n, d) + e
1

Ei
R (13)

where, Ei
R is a cost function that acts as balancing factors for sensors’ energy consumption,

considering the remaining energy of sensors.
The velocity of an agent is calculated by adding its acceleration (Equation (15)) to the

fraction of its current velocity (Equation (16)).
The next location of the agent can be calculated using Equation (17):

Fd
i (t) = ∑

j∈kbest,j 6=i
rndjG(t)

Mj(t)Mi(t)
Rij + ε

(
xd

j (t)− xd
i (t)

)
(14)

ad
i (t) =

Fd
i (t)

Mi(t)
= ∑

j∈kbest,j 6=i
rndjG(t)

Mj(t)
Rij + ε

(
xd

j (t)− xd
i (t)

)
(15)

Vd
i (t + 1) = rndi ×Vd

i (t) + ad
i (t) (16)

Xd
i (t + 1) = Xd

i (t) + Vd
i (t + 1) (17)

where rndi and rndj are random numbers in the interval [0, 1], ε is a small value, Rij(t)
indicates the Euclidean distance from agent I to agent j and is calculated ||Xi(t) − Xj(t)||2.
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Kbest is the set of first K agents having the best fitness value. K is a function of time
initialized to Kinitial value, which will be reduced time.

The gravitational constant is represented by U(t) and holds the initial value as Uinitial:

U(t) = U(Uinitial , Uend, t) (18)

K and U are two main components used for balancing its diversification and intensi-
fication in GSA. Diversification is used to prevent being trapped in the local optimum at
initial iterations.The detaild algorithm is present below (Algorithm 2).

Algorithm 2 Multi-objective Rule Set

Input: d, N, Nc, Ns, Nre, Ned, Ped, S (i)
Output: Optimal Resource utilization

1 Initialization of the parameters: d, N,N c,N s,N re,N ed,P ed,S(i)
2 Elimination-dispersal loop is taken by k = k + 1
3 Reproduction loop is represented by: l = l + 1
4 Chemo taxis loop is given by m = m + 1
5 Select the heuristic.
6 Calculate fitness function F (p, m,l,k) and it is given by
7 F(p, m, l, k) = J(p, m, l, k) + Fcc(αP(m, l, k),L(m, l, k))
8 Assume Flast = F (p, m, l, k)
9 Tumble: create a random vector ∆ (i)∈Rn with each ∆j(p), j = 1, 2, 3 . . . . . . d.
10 Move:αP(m + 1,l,k) = αP(m, l, k)+ S(P)(∆(P)/

√
∆T(P)∆(P))

11 Calculate F(p, m, l, k) and F(p, m, l, k)+ Fcc(αP(m, l,k),P(m, l, k))
12 Swim
13 Assume j = 0.
14 While j<Ns, j = j + 1
15 if F(p, m + 1, l, k) < Flast, let Flast = F(p,m + 1,k,l) andαP(m + 1,l,k)=αP(m,l,k) +

S(P)(∆(P)/
√

∆T(P)∆(P)) and use thisαP(m + 1,l,k) to calculate the new F(p,m + 1,l,k)
16 else let j = Ns
17 End
18 Iterate to next bacteria (p + 1) if p 6= N.
19 End

Return: Optimized Resource Utilization

The addition of high values to K and G parameters in the initial stage is considered
an important step in the GSA, and it is indicated as Kinitial and Uinitial. If high-value K is
used, the mass will be moved to the search space based on the position of more masses,
thereby increasing the diversification of the algorithm. High-value G is used to increase the
mobility of each mass present in the search space, thereby increasing the diversification of
the algorithm. The best solution space can be identified by assuming high values of K and
G. The complexity of the above algorithm is O(Ns × N). This is a swarm-based algorithm
where the execution depends on the value of Ns and N.

4.3. Data Encryption Using Lightweight Scheme

Lightweight is an encryption algorithm based on block cipher for cloud computing
and is suitable for constraint-resource applications. Lightweight uses a text of 64-bit block
length and a key of 128 bit long. It uses a Feistel network structure and it comprises of
32-rounds. Three different lightweight operations are left bit-wise rotation, addition mod
28, and XOR. The following notations are used to describe lightweight.

The 64-bit plaintext and ciphertext are considered concatenations of 8 bytes and
denoted by T = T7//T6// . . . . . . . . . //T0 and F = F7//F6// . . . . . . //F0 respectively.
Similarly the 64-bit intermediate values are represented as, Yi = Yi,7//Yi,6// . . . . . . //Yi,0
for i = 0, 1, 2,..., 32.

The lightweight uses a 128-bit master key, a concatenation of 16 bytes and denoted by
MK = MK15|| . . . . . . ||MK0. The followings are notations for mathematical operations:

The encryption process of plain text T

T = T7//T6//T5//T4//T3//T2//T1//T0 (19)
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4.3.1. Initial Transformation

Initial Transformation transforms a plaintext T given as input to the first Round
Function, Y0 = Y0,7//Y0,6// . . . . . . //Y0,0 by using the four whitening-key bytes, WK0,
WK1, WK2 and Wk3

Y0,0 = T0 ⊕WK0, X0,1 = T1, (20)

Y0,2 = T2 ⊕WK1, Y0,3 = T3, (21)

Y0,4 = T4 ⊕WK2, Y0,5 = T5, (22)

Y0,6 = T6 ⊕WK3, Y0,7 = T7, (23)

For i = 0 to 30

Yi+1,0 = Yi,7 ⊕ (F0(Yi,6)⊕ SK4i+3), Yi+1,1 = Yi,0, (24)

Yi+1,2 = Yi,1 ⊕ (F1(Yi,0)⊕ SK4i), Yi+1,3 = Yi,2, (25)

Yi+1,4 = Yi,3 ⊕ (F0(Yi,2)⊕ K4i+1), Yi+1,5 = Yi,4, (26)

Yi+1,6 = Yi,5 ⊕ (F1(Yi,4)⊕ SK4i+2), Yi+1,7 = Yi,6, (27)

4.3.2. Final Transformation

Final Transformation untwists the swap of the last round function and transforms
Y32 = Y32,7//Y32,6// . . . . . . //Y32,0 it to the ciphertext F by using the four whitening-key
bytes WK4, WK5, WK6, and Wk7. This step is similar to the initial Transformation. It is
observed that the X-OR and modular arithmetic operations are performed to generate the
seven-byte ciphertext.

F0 = Y32,0 ⊕WK4, F1 = Y32,1, (28)

F2 = Y32,0 ⊕WK5, F3 = Y32,3, (29)

F4 = Y32,4 ⊕WK6, F5 = Y32,5, (30)

F6 = Y32,6 ⊕WK7, F7 = Y32,7, (31)

F = F7//F6//F5//F4//F3//F2//F1//F0 (Fi are ciphertext bytes)
The decryption operation is identical in operation to encryption apart from the follow-

ing modifications. Operations replace all operations except for the operations connecting
and output of F0. The order in which the keys WKi and SKi are applied is reversed.

5. Results and Discussion

The proposed model is simulated using a cloudlet simulator, and test results are
evaluated to measure its performance. Based on the obtained results, some factors are like
resource utilization, acquisition speed, implementation time, and energy management are
analyzed. Create a cloud data center measured in continuous PM. It also starts creating
data canters with resource agents. Each data center started with multiple data hosts and
associated VMs. Client Tasks Cloudlets and Cloudlet Planning address incoming tasks.
We compared our proposed RATS-HM task planning, an optimal power minimization
(ITSEPM), First Coming First Serve (FCFS), and Round Robin (RR). Tables 2 and 3 show
the hardware and simulation settings.

Table 2. Hardware Specifications.

Required Component Specification

Processor Intel® Pentium® CPU G2030 @ 3.00 GHZ
Operating System Windows (X86 ultimate) 64-bit OS
Hard Disk 1 TB
RAM 4 GB
System 64 Bit OS System
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Table 3. Simulation Settings.

Component Specification Values

Cloudlets Length of task
No of tasks

1600–3400
30–300

Virtual Machine Host 4

Physical Machine
Memory
Bandwidth
Storage

540
25,00,00
500 GB

The proposed (RATS-HM) system improves performance and integrates with some
existing methods. We evaluate the performance of our proposed model using different
parameters such as power consumption, data center resource usage, acceptance rate, and
implementation time. Resource usage is calculated as the ratio of data center resources,
CPU, memory, bandwidth, and total capacity. We use the block processing concept for Visit
official visit technology. At the same time, jobs come in t = 0.

For distribution, we use a specific distribution system. The work planning concept
used in our framework prioritizes tasks. Priority is given to agents who allocate resources
from the resource table. Process acquisition speed, velocity, and execution time are calcu-
lated, and standard scheduling algorithms analyze FCFS and round-robin methods.

5.1. Performance Metrics

Metrics like power consumption, resource utilization, bandwidth utilization, memory
utilization, and response time are used to evaluate the proposed model and its comparison
with some of the existing ones.

5.1.1. Evaluation of Resource Utilization

It refers to the number of allocated resources a task spends for its complete execution.
Resource Utilization (RU) can be represented as

RU = Ravl − Rnu

where Ravl denotes resources available and Rnu denotes unutilized resources.
Resource usage includes our specific work processor and memory usage. The per-

centage of using a particular method is always higher when the other two methods are
combined. Figure 2 shows a graphic representation of the percentage utilization of re-
sources by using various resource allocation schemes. It shows that for various task sizes,
the percentage utilization of resources is maximum for the proposed RATS-HM technique.
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5.1.2. Evaluation of Response Time

Response time of a task is the time elapsed between the launching of a task and its
completion of execution. The response time TSRes can be represented as follows,

TSRes = TSCT − TSAT

where TSCT is the completion time of the task and TSAT is the arrival time of the task. The
response time is presented in Table 4.

Table 4. Evaluation and analysis of response time.

Offline Execution Time

Workload prediction online 10 min
Task monitoring and scheduling 20 min
Connection to agents 0.050 s
Power management 2.015 s
Response to users 0.010 s

Resource usage includes our specific work processor and memory usage. The per-
centage of using a particular method is always higher when the other two methods are
combined. Figure 3 shows the maximum resource usage. This is essentially the RATS-HM
proposed in our work in which passive prime ministers should be turned off. It participates
in the resource utilization system.
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5.1.3. Evaluation of Power Consumption

It can be defined as the unit of energy that all cloud servers use in allocating resources.
In this specific task, management implements an energy management module to reduce
energy consumption. While real-time data centers use many power consumption tech-
nologies like dynamic voltage, frequency, and resource sleep, they are not enough for the
virtualized environment.

Compared to existing ones, our proposed approach gives better results showing energy
reduction. Figure 4 is the proof of this. The energy management technique presented in



Sensors 2022, 22, 1242 14 of 16

this study reduces passive energy consumption, external energy consumption, internal
communication, and primary energy consumption PM.
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The appropriate use of assets produces benefits for distributed computing specialist
organizations. The exploratory outcome shows that the proposed technique used the CPU
asset more proficiently than the current ITSEPM structure. The experimental result shows
that the proposed RATS-HM strategy uses memory resources more proficiently than the
current FCFS, ITSEPM, and round-robin (RR) systems.

6. Conclusions

In this work, we presented a hybrid machine learning algorithm that schedules tasks
and efficiently allocates resources in cloud environments. We utilized improved feline
multitude advancement calculation, bunch streamlining the based profound neural organi-
zation, and a lightweight confirmation plan to expand the memory, CPU, asset, and data
transmission. We discovered that our methodology delivers favorable outcomes when
we contrast our proposed RATS-HM strategy and the current ITSEPM, FCFS, and Round
robin systems for CPU usage and reaction time. Furthermore, from asset use, the proposed
RATS-HM method effectively designates assets with high utility. We obtained the most
extreme usage result for processing assets, e.g., CPU, memory, and data transfer capacity.
The proposed framework adds transmission capacity to two memory and CPU assets. Next,
work will zero in on more viable processing to improve utilization time. In the future, a
large amount of practical data with a real cloud environment will be used to establish the
effectiveness of the proposed model in a real-life scenario.
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