A Joint Survival-Longitudinal Modelling Approach for the Dynamic Prediction of Rehospitalization in Telemonitored Chronic Heart Failure Patients

Edmund Njeru Njagi*

Joint work with Dimitris Rizopoulos, Geert Molenberghs, Paul Dendale, and Koen Willekens

* Interuniversity Institute for Biostatistics and statistical Bioinformatics, Universiteit Hasselt, Belgium

> International Hexa-Symposium on Biostatistics, Bioinformatics, and Epidemiology, November 15, 2013, Diepenbeek

> > Dynamic Prediction in CHF Management

universite

U LEUVEN

Chronic Heart Failure

- Inability of heart to pump enough for body needs.
- Compensatory mechanisms.
- Problems (decompensation).

Rehospitalization and Telemonitoring

- Rehospitalization rates high.
- Remote monitoring after discharge.
- Predict rehospitalization.

- Chronic heart failure (CHF) study.
- Focus on 80 patients telemonitored for 6 months.
- Daily measurements.

Data Continued

- Diastolic, and Systolic Blood Pressure,
- Heart Rate, and Weight.
- Day when patient rehospitalized.

- Various methods based on cut-offs.
- Predict rehospitalizations using whole history?
- Performance of the predictions?

- Joint model for time-to-rehospitalization and marker.
- Model for hazard, given marker.
- Time-varying covariate.

• Longitudinal not at every event time.

- Censoring.
- Longitudinal with error.

- Conditional survival probabilities.
- $Prob(T_i^* \ge t + \Delta t | T_i^* > t)$ e.g. $t + \Delta t = 20 + 5$
- Equivalently, $\operatorname{Prob}\{T_i^* \epsilon(t, t + \Delta t] | T_i^* > t\}$

Step 2 Continued:

- Confidence intervals for these estimates.
- Additional information for intervention decisions.

Step 3 Continued:

- Quantify predictive performance.
- Based on Area Under ROC curve (AUC) ideas.

- For given t and given Δt (AUC(t)).
- For range of t's and given Δt (D.D.I.)
- D.D.I. Dynamic discrimination index.

Step 3 Continued:

Logic:

$\mathsf{Prob}[\pi_i(t+\Delta t|t) < \pi_j(t+\Delta t|t)| \{T_i^* \in (t,t+\Delta t]\} \cap \{T_i^* > t+\Delta t\}]$

Model

• Time to first rehospitalization:

$$h_i(t|\mathcal{M}_i(t), w_i) = \rho t^{\rho-1} \exp\{\gamma_0 + \gamma' w_i + \alpha m_i(t)\},\$$

• Longitudinal DBP:

$$y_i(t) = m_i(t) + \varepsilon_i(t) = \beta_0 + \beta_1 t + b_{0i} + \varepsilon_i(t),$$

• "Non-informativeness".

Conditional Survival Probabilities, Day 20

Conditional survival probabilities at each of the remaining time points till study end.

Dynamic Prediction in CHF Management

KU LEUVEN

hass

Conditional Survival Probabilities, Day 40

Conditional survival probabilities at each of the remaining time points till study end.

Dynamic Prediction in CHF Management

KU LEUVEN

hasse

Conditional Survival Probabilities, Day 60

Conditional survival probabilities at each of the remaining time points till study end.

Dynamic Prediction in CHF Management

KU LEUVEN

hasse

Conditional Survival Probabilitie, Day 80

Conditional survival probabilities at each of the remaining time points till study end.

Dynamic Prediction in CHF Management

KU LEUVEN

hasse

Dynamic Updates of Survival Probabilities

Patient 1: Conditional surv. probs. of an extra 20, 40, 60 and 80 days, with each additional 20 days' measurements wiversiteit

Dynamic Prediction in CHF Management

→ E → < E</p>

KU LEUVEN

Dynamic Updates of Survival Probabilities

Patient 2: Conditional surv. probs. of an extra 20, 40, 60 and 80 days, with each additional 20 days' measurements universiteit

Dynamic Prediction in CHF Management

→ E → < E</p>

KU LEUVEN

Predictive Performance

Δt	t	AUC(t)	DDI
2	14	0.6944	0.4875
	28	0.7429	
	42	0.9552	
	84	0.3770	
	168	0.0862	
4	14	0.6944	0.4949
	28	0.7714	
	42	0.8955	
	84	0.3770	
	168	0.0862	
8			0.5814
16			0.5745

Dynamic Prediction in CHF Management

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- A 🗉

KU LEUVEN

Interuniversity Institute for Biostatistics

Predictive Performance

Δt	DDI
2	0.6698
4	0.6698
8	0.7433
16	0.6576

- The probabilities and their confidence intervals.
- Additional information to aid intervention decisions.
- Predictive performance quantified.

- All markers simultaneously.
- Recurrent nature of the time-to-hospitalization.
- Consider more parameterizations, e.g. value plus slope.

- Dendale, P., De Keulenaer, G., Troisfontaines, P., Weytjens, C. et al. (2011). Effect of a telemonitoring-facilitated collaboration between general practitioner and heart failure clinic on mortality and rehospitalization rates in severe heart failure: the TEMA-HF 1 (TElemonitoring in the MAnagement of Heart Failure) study. European Journal of Heart Failure, 14, 333–340.
- Njagi, E. N., Rizopoulos, D., Molenberghs, G., Dendale, P., and Willekens, K. (2013). A joint survival-longitudinal modelling approach for the dynamic prediction of rehospitalization in telemonitored chronic heart failure patients. Statistical Modelling, **13**, 179–198

universiteit

イロト イポト イヨト イヨ

ULEUVEN

- Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. *Journal of Statistical Software*, **35**(9), 1–33.
- Rizopoulos, D. (2011). Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data. *Biometrics*, 67, 819–829.
- Rizopoulos, D. (2012a). Joint Models for Longitudinal and Time-to-Event Data. Boca Raton: Chapman and Hall/CRC.
- Rizopoulos, D. (2012b). Package "JM": R package version 1.0-0, URL http://cran.r-project.org/web/packages/JM/JM.pdf.

universitei

イロト イ理ト イヨト イヨト

U LEUVEN

- Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: an overview. *Statistica Sinica*, 14, 809–834.
- Verbeke, G., Molenberghs, G., and Rizopoulos, D. (2010). Random effects models for longitudinal data. *Longitudinal Research with Latent Variables*. K. van Montfort, H. Oud, and Al Satorra (Eds.). New York: Springer, pp. 37–96.

Thank you for Your Attention.

