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Abstract

Neutral program variants are alternative implementations of a program, yet equivalent 

with respect to the test suite. Techniques such as approximate computing or genetic 

improvement share the intuition that potential for enhancements lies in these acceptable 

behavioral differences (e.g., enhanced performance or reliability). Yet, the automatic 

synthesis of neutral program variants, through program transformations remains a key 

challenge. This work aims at characterizing plastic code regions in Java programs, i.e., 

the code regions that are modifiable while maintaining functional correctness, accord-

ing to a test suite. Our empirical study relies on automatic variations of 6 real-world 

Java programs. First, we transform these programs with three state-of-the-art program 

transformations: add, replace and delete statements. We get a pool of 23,445 neutral vari-

ants, from which we gather the following novel insights: developers naturally write code 

that supports fine-grain behavioral changes; statement deletion is a surprisingly effective 

program transformation; high-level design decisions, such as the choice of a data struc-

ture, are natural points that can evolve while keeping functionality. Second, we design 

3 novel program transformations, targeted at specific plastic regions. New experiments 

reveal that respectively 60%, 58% and 73% of the synthesized variants (175,688 in total) 

are neutral and exhibit execution traces that are different from the original.

Keywords Neutral program variant · Program transformation · Java · Code plasticity

1 Introduction

Neutral program variants are at the core of automatic software enhancement. The 

intuition is that these variants that are different from the original, yet are similar 

have the potential for enhanced performance, security or resilience. Approximate 
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computing explores how program variants can provide different trade-offs between 

accuracy and resource consumption [25]. Software diversity aims at using these var-

iants to reduce the knowledge that an attacker can take for granted when designing 

exploits [5]. Genetic improvement [28] automatically searches the space of program 

variants for improved performance.

Despite their key role, the automatic synthesis of neutral program variants, is still 

a major challenge because of the size of the search space. Starting from one initial 

program that one aim to improve, there exists a vast amount of possible variants 

that can be synthesized through small code transformations, most of which do not 

compile or do not pass the test suite (i.e., ill-formed variants). Exploring this search 

space randomly can produce a large number of ill-formed variants that are useless 

for automatic improvement, but still require resources to synthesize and try to com-

pile and test. Our work aims at reducing the number of ill-formed variants that are 

generated while exploring the space of program variants for automatic improvement 

tasks. We focus on two specific challenges: understanding how and where to trans-

form a program to synthesize a neutral variant. The how part refers to the design 

of program transformations that introduce some behavioral variations. The where 

refers to the parts of a program that can stand behavioral variations, while maintain-

ing the overall functionality similar to the original program. We call these parts of 

programs the plastic code regions. With the term “plastic” we want to capture a 

specific characteristic of certain code regions: their “malleability”, or they intrinsic 

capability at being changed to another code while keeping functional correctness, 

with respect to a given test suite. If we can identify such code regions, they become 

natural candidates for transformations that aim to synthesize neutral variants. This 

concept of plastic region is close to the concept of forgiving code regions explored 

by Rinard [30] or of mutational robustness explored by Schulte et al. [34]. The con-

ceptual difference is that Rinard and Schulte reason about the ability to tolerate per-

turbations, while, with the term “plastic”, we aim at characterizing the ability of the 

code to exist in multiple forms.

Our work aims to characterize these plastic code regions. This journey focuses 

on Java programs and the in-depth analysis of various program transformations on 

6 large, mature, open source Java projects. We articulate our journey around three 

main parts. First, we run state of the art program transformations [4, 34] that add, 

delete or replace an AST node. We consider that a transformation synthesizes a neu-

tral variant if the variant compiles and successfully passes the test suite of the origi-

nal program. This first contribution is a conceptual replication [36] of the work by 

Schulte et al. [34]. This replication addresses two threats to the validity of Schulte’s 

results: our methodology mitigates internal threats, by using another tool to detect 

neutral variants, and our experiment mitigates external threats by experimenting 

with a new set of programs, in a different programming language.

Second, we analyze a set of 23,445 neutral variants. We provide a quantitative 

analysis of the types of AST nodes and the types of transformations that more likely 

yield neutral variants. We analyze the interplay between the synthesis of neutral pro-

gram variants and the specification of the original program provided as a set of test 

cases. Also, we manually analyze dozens of neutral variants to provide a qualitative 

analysis of plastic code regions and the role they play in Java programs.
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In the third part of our investigation, we design and experiment with three novel, 

targeted program transformations: ADD METHOD INVOCATION, SWAP SUBTYPE and LOOP 

FLIP. Our experiments with our 6 Java projects demonstrate a significant increase 

in the rate of neutral variants among the program variants (respectively 60%, 58% 

and 73%). We consolidate these results by assessing that the neutral variants indeed 

implement behavior differences: we trace the execution of these variants, and 

observe that all neutral variants actually exhibit behavior diversity.

In summary, this work contributes novel insights about neutral program variants, 

as follows:

• A conceptual replication of the work by Schulte et al. [34] about the existence 

of neutral variants, with a new tool, new study subjects and a different program-

ming language
• A large scale quantitative analysis of the types of Java language constructs that 

are prone to neutral variants synthesis with the state of the art program transfor-

mations: add, delete and replace AST nodes
• A deep, qualitative analysis of plastic code regions that can be exploited to 

design efficient program transformations
• Three targeted program transformations that significantly increase the ratio of 

neutral variants, compared to the state of the art
• Open tools and datasets to support the reproduction of the experiments, available 

at: https ://githu b.com/casto r-softw are/journ ey-paper -repli catio n

The rest of this paper is organized as follows. In Sect. 2, we define the terminol-

ogy for this work. In Sect. 3, we introduce the experimental protocol that we follow 

in order to investigate the synthesis of neutral variants. In Sect. 4.1, we analyze the 

types of program transformations and AST nodes that more likely yield neutral vari-

ants. In Sect. 4.4, we manually explore and categorize neutral variants according to 

the role of the code region that has been transformed. In Sect. 4.5, we leverage the 

analysis of previous sections to design novel program transformations targeted at 

specific code regions. In Sect. 5, we discuss some key findings of this study. Sec-

tion 6 elaborates on the threats to the validity of this work, Sect. 7 discusses related 

work and we conclude in Sect. 8.

2  Background and de�nitions

Here we define the key concepts that we leverage to explore the different regions of 

Java programs that are prone to the synthesis of neutral program variants.

2.1  Generic program transformations

Given an initial program, which comes along with a test suite, we consider three 

generic program transformations on source code that have been defined in previous 

work [4, 28, 34]. These transformations operate on the abstract syntax tree (AST). 

https://github.com/castor-software/journey-paper-replication
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In this context we call code region a sub tree present in a program AST. First, we 

randomly select a statement node in the AST, we check if it is covered by one test 

case at least (to prevent transforming dead code), then, we consider three types of 

transformations (cf. Fig. 1).

De�nition 1 Program transformations We consider the following three transforma-

tions on AST nodes

• delete the node and the subsequent subtree (DELETE, Fig. 1c);
• add a node just before the selected one (ADD, Fig. 1b);
• replace the node and the subtree by another one (REPLACE, Fig. 1d).

De�nition 2 Location The statement at which we perform a program transforma-

tion is called the location.

De�nition 3 Transplant For ADD and REPLACE, the statement that is copied and 

inserted is called the transplant statement.

This terminology (Definitions 2 and 3) follow a convention established by Barr 

et al. [2].

We add further constraints to the generic program transformations in order to 

increase the chance of synthesizing neutral variants. For ADD and REPLACE, we con-

sider transplant statements from the same program as the location (we do not syn-

thesize new code, nor take code from other programs). We also consider the follow-

ing two additional steps:

• We build the type signature of the location: the list of all variable types that are 

used in the location and the return type of the statement. The transplant shall be 

randomly selected only among statements that have a compatible signature.
• When injecting the transplant (as a replacement or an addition to the transplant), 

the variables of the statement are renamed with names of variables of the same 

types that are in the scope of the location. Similar restrictions are common in the 

GI literature, for example Yuan et al. [40] use a type matching based approach 

(Fig. 2).

(a) Original (b) add (c) delete (d) replace

Fig. 1  Generic program transformations
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Figure 3 shows an excerpt of program, in which we have selected one location. 

Figure 2 is a transplant example, i.e., an existing statement extracted from the same 

program. In order to insert the transplant at the location, we need to rename the vari-

ables with names that fit the namespace. The expression inAvail< max can be 

rewritten in 4 different ways: each integer variable can be replaced by one of the two 

integer variable identifiers (a or i). The statement context.eof = true; can 

be rewritten in one single way, rewriting context.eof into b (Fig. 4).

There are different reasons for which a random add or replace fails at producing a 

compilable variant. Hence we introduce different preconditions to limit the number 

of meaningless variants.

For REPLACE, we enforce that: a statement cannot be replaced by itself; for both 

ADD and REPLACE, statements of type case, AST nodes of type variable instantiation, 

return, throw are only replaced by statements of the same type; the type of returned 

value in a return statement must be the same for the original and for its replacement.

2.2  Neutral variant

Given a program P and a test suite TS for P, a program transformation can synthe-

size a variant program �(P) , which falls into one of the following categories: (1) 

�(P) does not compile; (2) the variant compiles but does not pass all the tests in TS: 

∃t ∈ TS|fail(t, �(P)) ; (3) the variant compiles and passes the same test suite as the 

Fig. 2  Transplant if (inAvail < max) {

context.eof = true;

}

Fig. 3  Location class A {

int i = 0;

void m(int a) {

boolean b = false;

[...]

// Location

[...]

}

}

Fig. 4  Transformed code class A {

int i = 0;

void m(int a) {

boolean b = false;

[...]

if (this.i < a) {

b = true;

}

[...]

}

}
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original program: ∀t ∈ TS|pass(t, �(P)) . This work focuses on the latter category, 

i.e., all variants that are equivalent to the original modulo the test suite. We call such 

variants neutral variants.

De�nition 4 Neutral variant Given a program P, a test suite TS for P and a pro-

gram transformation � , a variant �(P) is a neutral variant of P if the two following 

conditions hold 1) �(P) results from a program transformation on a region of P that 

is covered by at least one test case of TS; 2) ∀t ∈ TS|pass(t, �(P))

This work aims at characterizing the code regions of Java programs where pro-

gram transformations are the most likely to synthesize neutral variants.

3  Experimental protocol

Program transformations are instrumental for automatic software improvement, and 

code plasticity is the property of software that supports these transformations. In 

what follows, we design a protocol to analyze the interplay between transformations, 

the programming language and code plasticity.

3.1  Protocol

In this paper, we perform the following experiment.

The experiment is budget-based: we try neither to exhaustively visit the search 

space nor to have a fixed-size sample. Since the investigation of neutral variants is 

an expensive process, our computation platform is Grid5000, a scientific platform 

for parallel, large-scale computation [6]. We submit one batch of single program 

transformations for each program that is run as long as resources (CPU and mem-

ory) are available on the grid. Both locations and transplant are selected randomly 

within the rules detailed in Sect. 2. Then, for each variant that compiles, we extract 

or compute the metrics described in Sect. 3.3. We also manually analyze dozens of 

neutral variants in order to build a taxonomy of plastic code regions.

In the second part of our study, we refine the program transformations defined 

above, in order to target specific code regions. We run another round of experiments 

to determine the impact of targeted transformations on the neutral variant rate.

3.2  Dataset

We consider the 6 programs presented in Table  1. They were manually selected 

among popular Java programs (cf1) with a strong test suite. All programs are popular 

1 www.mvnre posit ory.com.

http://www.mvnrepository.com


537

1 3

Genetic Programming and Evolvable Machines (2019) 20:531–580 

Java libraries developed by either the Apache foundation, Google or Eclipse.2 The 

second column gives the number of classes, the third column the number of state-

ments. This latter number approximates the size of the search space for our program 

transformations. Column 4 provides the number of test case executions when run-

ning the test suite and column 5 gives the statement coverage rate. (This number of 

test case execution corresponds to the number of Junit test methods as reported by 

maven.)

The programs range between 60 and 666 classes. All of them are tested with very 

large test suites that include hundreds of test cases executing the program in many 

different situations. One can notice the extremely high number of test cases executed 

on commons-collection. This results from an extensive usage of inheritance in the 

test suite, hence many test cases are executed multiple times (e.g., test cases that 

test methods declared in abstract classes). The test suites cover most of the program 

(up to 96% statement coverage for commons-codec). Jgit is the exception (only 70% 

coverage): it includes many classes meant to connect to different remote git serv-

ers, which are not covered by the unit test cases (due to the difficulty of stubbing 

these servers). This dataset provides a solid basis to investigate the role plastic code 

regions play to produce modulo-test equivalent program variants.

3.3  Metrics

De�nition 5 Neutral Variant Rate (NVR) is the ratio between the number of neu-

tral variants and the number of transformations that produce a variant that compiles: 

#NeutralVariants∕#Compile.

The neutral variant rate is a key metric to capture the plasticity of a code region: 

the higher it is for a certain region, the more this region can be used by program 

transformations to synthesize valid variants. It is designed to consider only variants 

that compile, because (1) our goal is to study what characteristics impact a program 

tolerance for alternative implementation (2) we compare it for transformations with 

widely different #CompileVariants∕#Transformation ratios. This ratio is more linked 

Table 1  Descriptive statistics 

about our subject programs
#classes #stmt #TC cov. (%)

commons-lang 3.3.2 132 8442 2514 94

commons-collections 4.0 286 6780 13,677 84

commons-codec 1.10 60 2695 662 96

commons-io 2.4 103 2573 966 87

Gson 2.4 66 2377 966 79

jgit 3.7.0 666 22,333 3341 70

2 The exact versions of the library and the whole dataset is available here: https ://githu b.com/casto 

r-softw are/journ ey-paper -repli catio n/tree/maste r/proje cts.

https://github.com/castor-software/journey-paper-replication/tree/master/projects
https://github.com/castor-software/journey-paper-replication/tree/master/projects
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to the transformation implementation than to whatever characteristic of the targeted 

program region. It is noteworthy that running tests is the actual costly part of the 

search for neutral variants. Non-compilable variants fail fast and therefore, do not 

cost much search time.

We collect the following metrics to characterize the regions where we perform 

program transformations.

De�nition 6 Location features Let us call loc the location yielding the neutral vari-

ant. We focus on the following features: (1) TC
loc

 is the number of test cases that 

execute loc. (2) Transfoloc is a categorical feature that characterizes the type of trans-

formation that we performed on loc: ADD, DELETE or REPLACE. This can be further 

refined by considering the type of AST node where the transformation occurs.

3.4  Research questions

Our journey among neutral variants is organized around the following research 

questions:

RQ1. To what extent can we generate neutral variants through random pro-

gram transformations?

This first question can be seen as a conceptual replication of Schulte et al.’ [34]’s 

experiment demonstrating software mutational robustness. Here, we analyze the 

same phenomenon with a new transformation tool, new study subjects and in a dif-

ferent programming language.

RQ2. To what extent does the number of test cases covering a certain region 

impact its ability to support program transformations?

This question addresses the interplay between the synthesis of neutral variants 

and the specification for specific code regions. Since our notion of neutral variant is 

modulo-test, we check if the number of test cases that cover the location influences 

the ability to synthesize a neutral variant.

RQ3. Are all program regions equally prone to produce neutral variants 

under program transformations?

In this question, we are interested in analyzing whether the type of AST node or 

the type of transformation has an impact on the neutral variant rate. For instance, it 

may happen that loops are more plastic than assignments. We study three dimen-

sions in the qualification of transformations: (1) how they are applied (addition of 

new code versus deletion of existing code); (2) where they are applied, i.e. the type 

of the locations (e.g. conditions versus method invocations); and (3) for ADD and 

REPLACE, the type of the transplant.

RQ4. What roles the code regions prone to neutral variant synthesis play in 

the program?

This question relies on a manual inquiry of dozens of neutral variants from all 

programs of our dataset, to build a taxonomy of program neutral variants. Here, we 
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categorize different roles that certain code regions can play (e.g., optimization or 

data checking code) and relate this role to the plasticity of the region.

RQ5. Can program transformations target specific plastic code regions in 

order to increase their capacity at synthesizing neutral variants that exhibit 

behavioral variations?

We exploit the insights gained in RQ3 and RQ4 to define novel types of program 

transformations, which refine the ADD and REPLACE generic transformations: ADD 

METHOD INVOCATION, SWAP SUBTYPE, LOOP FLIP. These transformations perform addi-

tional code analysis to select the location. This question investigates whether this 

refinement helps to reduce the number of variants that are not neutral program vari-

ants hence cannot be used as candidates for modulo test equivalent improvement.

3.5  Tools

To conduct the experiments described in this paper, we have implemented a tool that 

runs program transformations on Java programs and automatically runs a test suits 

on the variant, in order to select neutral variants. This tool, Sosiefier is open source 

and available online.3 The analysis and transformation of the JAVA AST mostly 

relies on another open source library called Spoon [27].

To capture, align and compare execution traces described in Sect. 4.5, we have 

implemented yajta,4 a library to tailor runtime probes and trace representations. It 

uses a Java agent, which instruments Java bytecode with Javassist [9], to collect log 

information about the execution. Scalability is a key challenge here, since the inser-

tion of probes on every branch of every method represents a considerable overhead 

both in terms of execution time, and heap size. For example, a single test run can 

generate a trace up to GBs of data, which turns into a performance bottleneck when 

comparing the traces from hundreds of variants. This is especially true for perfor-

mance test cases such as PhoneticEnginePerformanceTest (335,500,702 

method calls and 990,617,578 branches executed) in commons-codec. These 

issues are well described in the work of Kim et al. [20].

Consequently, we optimized the tracing process as follows: (1) execute and com-

pare only the test cases that actually cover the location in the original program ; 

(2) add transformation-specific knowledge to target the logs (e.g. the addition of a 

method invocation only requires to trace method call) ; and (3) collect and store 

complete traces only for the original program, and compare this trace with the vari-

ant behavior on-the-fly. This way, we determine, at runtime, if a divergence occurs 

and we do not need to store the execution trace of the variant.

3 https ://githu b.com/DIVER SIFY-proje ct/sosie fier.
4 https ://githu b.com/casto r-softw are/yajta .

https://github.com/DIVERSIFY-project/sosiefier
https://github.com/castor-software/yajta
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4  Results

4.1  Neutral variant rate of random transformations

This section focuses on RQ1.

RQ 1 To what extent can we generate neutral variants through random 

transformations?

We run program transformations on our six case studies (cf. Table 1). Table 2 

gives the key data about the neutral variants computed with the budget-based 

approach described in Sect. 3.1. It sums up the results of the 180,207 variants gen-

erated, from which 98,225 compile and 23,445 are neutral variants. The second, 

third and fourth columns indicate the number of neutral variants synthesized by 

ADD, DELETE or REPLACE. The fifth column indicates the global neutral variant rate 

(NVR) as defined in Definition 5, i.e., the rate of neutral variants among all variants 

that we generated and that compile. The last column (exploration) indicates the rate 

of program statements on which we ran a transformation, i.e., the extent to which 

we explored the space of locations. The low exploration rate for jgit is related to 

the large size of the project: since our exploration of program transformations has 

a bounded resource budget, we could not cover a large program as much as a small 

one.

The data in Table 2 provides clear evidence that it is possible to synthesize neu-

tral variants with program transformations. In other words, it is possible to trans-

form statements of programs and obtain programs that compile and are equivalent to 

the original, modulo the test suite.

The program variants that compile are neutral variants in up to 30% of the cases 

(for jgit).

This first research question is a conceptual replication of the study of Schulte 

et al. [34]. Their program transformations are the same as ours. Yet, they ran experi-

ments on a very different set of study subjects: 22 programs written in C, of size 

ranging from 34 to 59K lines of code and with test suites of various coverage ratios 

Table 2  Neutral variant rate for the synthesis of neutral program variants with the generic, random pro-

gram transformations

add del rep NVR (%) Exploration (%)

commons-codec 289 146 266 18.0 91.9

commons-collections 3912 754 3960 21.8 83.3

commons-io 1754 319 1472 21.1 92

commons-lang 419 190 537 15.7 78

gson 2199 215 1897 25.3 80.3

jgit 1924 1375 2963 30.0 57

total 10,078 2809 10,558 23.9 –
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(from 100% to coverage below 1%). They also run experiments on the assembly 

counterpart of these programs. Their results show that 33.9% of the variants of on C 

code are neutral, with a standard deviation of 10. They also obtain 39.6% of neutral 

variants at the assembly level, with a standard deviation of 22 on assembly variants.

Our results confirm the main observation Schulte and colleagues: running ADD, 

DELETE and REPLACE randomly can synthesize a significant ratio of neutral program 

variants. The neutral variant rate between both our and Schulte’s experiments are 

of the same order of magnitude. Their experiments generate slightly more neutral 

variants, which could indicate that different programming languages allow various 

degrees of plasticity. In particular, a stronger type system can limit code plasticity. 

Yet, the in-depth analysis of differences between languages is outside the scope of 

this paper.

Answer to RQ1: Program transformations, applied in random code regions, can syn-

thesize neutral program variants on Java source code. The ratio of neutral variants 

varies between 15.7% and 30.0%, out of thousands of variants, for our dataset. These 

new results confirm the main observations of Schulte and colleagues.

4.2  Sensitivity to the test suite

RQ 2 To what extent does the number of test cases covering a certain region impact 

its ability to support program transformations?

Here, we check if the number of test cases that cover a statement affects the plastic-

ity that we observe. In other words, we evaluate the importance of the number of test 

cases that cover a location with respect to the probability of synthesizing a neutral 

variant when we transform that point with one of our program transformations.

In order to analyze this impact, we look at the distribution of neutral variant rate 

for all trials made on statements covered by a given number of test cases. Yet, in all 

projects, the distribution of statements according to the number of test cases that 

cover it is extremely skewed: more than half of the statements are covered by only 

one test case and then there is a long tail of few statements that are covered by tens 

and even hundreds of test cases.

Figure  5 represents the following information, given any location at which we 

synthesized one or multiple variants that compile, what is the probability that we 

succeed in getting a neutral variant, given the number of test cases that cover the 

location? Because of the skewed distribution of statements with respect to the num-

ber of covering test cases, we group data in bins of locations that represent at least 

4000 transformations. Bins for low numbers of test cases cover a narrower range of 

values because statements covered by few tests are more common than statements 

covered by a large amounts of tests.

The broken line represents the average neutral variant rate per bin of locations. 

Boxes represent the first and last quartile and the median for the distribution of 

neutral variant rate for statements covered by n test cases. Circles represents 

outliers (outside of a 95% confidence interval) statement for each classes. For 
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example, for the 5943 locations covered by 1 test case, the weighted average neu-

tral variant rate is 26.9% and 25% of these points support the synthesis of neutral 

variants in more than 37.5% of the trials. Outliers are locations for which neutral 

variant rate is above 93.8%.

For 17 out of 28 bins, the median neutral variant rate is 0%, meaning that, for 

at least half of the locations, none of the variants tried are actually neutral. Mean-

while, the first quartile is above 0% for all bins. This means that we successfully 

synthesized neutral variants for at least 25% of statements covered, independently 

of the amount of test cases (for 11 bins it is actually more than 50% of state-

ments). The average neutral variant rate is close to the overall neutral variant rate 

of 23.9%, whatever the number of test cases covering the location.

Under the assumption of a linear model, the part of the neutral variant rate 

explained by the number of test cases is negligible (Adjusted R-squared: 

0.002036). This implies either that the ability to synthesize a neutral variant on 
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a given statement is not significantly influenced by the number of test cases that 

cover it with a linear model.

Answer to RQ2: the number of test cases that cover a location is independent from 

the ability to synthesize a neutral variant at this point. We believe that this indicates 

the presence of inherent code plasticity, a concept for which we propose a first char-

acterization in the RQ5. To some extent, the neutral variant rate on locations that 

are covered by large numbers of test cases reflects this amount of software plasticity.

4.3  Language level plasticity

RQ 3 Are all program regions equally prone to produce neutral variants under pro-

gram transformations?

As a preliminary step for our analysis of the plasticity of language structures, we 

analyze the usage frequency of each construct. Table 3, summarizes the usage dis-

tribution of each construct listed by decreasing median frequency. It appears that 6 

constructs are frequently used, in approximately the same proportion in all projects 

(the top 6 lines of the table). There is no surprise here: these constructs correspond 

to the fundamental statements of any object-oriented program (assignment, if, 

invocation, return, constructor call and unaryOperator).

Table 3  Distribution of 

statement type across projects
Node Type Min Med (%) Max (%)

Invocation 34% 37 39

Assignment 17% 19 22

Return 10% 13 19

If 9.4% 10 14

ConstructorCall 4.2% 6.6 8.8

UnaryOperator 3.1% 3.8 8.6

Throw 1.7% 2.9 4.4

Case 0.13% 1.2 2.6

For 0.55% 0.76 1.5

ForEach 0.37% 0.72 0.87

Try 0.17% 0.65 1.4

While 0.40% 0.62 0.85

Break 0.18% 0.54 1.6

Continue 0.018% 0.21 0.65

Switch 0.033% 0.17 0.32

Synchronized 0 0.048 0.21

Enum 0 0.042 0.094

Do 0 0.032 0.091

Assert 0 2.68e−03 0.0014
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The 13 other constructs present in the table are an order of magnitude less fre-

quent than the top constructs. They are also used in more various ways across pro-

grams. For instance, commons-collections favors for-each and while loops, 

while commons-codec uses for loops. This can be explained by the different types 

of structure that these projects use: collections vs arrays.

The use of switch and its child nodes (break, case, and continue) as well 

as try are also unequally distributed across projects. This disparity partly explains 

the variation in the observations presented in the following section: uncommon con-

structs lead to more variations.

4.3.1  ADD

Figure 6 displays the neutral variant rate of the ADD transformation according to the 

type of statements added (type of the transplant node in the AST). Each cluster of 
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Fig. 6  Neutral variant rate for the ADD transformation, depending on the type of AST node used as trans-

plant



545

1 3

Genetic Programming and Evolvable Machines (2019) 20:531–580 

bars includes one bar per case study. The darkest bar represents the average neutral 

variant rate. The figure only displays the distributions for the node types for which 

we performed more than 25 trial transformations for a given project.

The first striking observation is that neutral variant rates reach significantly high 

values. In four cases, the random addition of statements yields more than 60% neu-

tral variants: add “if” nodes in jgit, add “loop” nodes in gson and “try” nodes 

in both commons-io and jgit. The addition of such nodes provides important 

opportunities to explore alternative executions.

We observe important variations between node types as well as between projects. 

However, some regularities emerge: for instance, adding a “return” always yields a 

low neutral variant rate. This low plasticity of return statements matches the intui-

tion: this is the end point of a computation and it is usually a region where a very 

specific behavior is expected (and formalized as an assertion in the test). Meanwhile, 

the addition of “Try” statements appears as an effective strategy to generate neutral 

variants.

Looking more closely at Fig. 6, we realize that on average, the addition of “assign-

ment” nodes is the most effective (if we exclude addition of “try” nodes for which 

we don’t have enough data for all projects). This can be explained by the fact that 

there are many places in the code where the variable declaration and the first value 

assignment for this variable are separated by a few statements. In these situations 

it is possible to assign any arbitrary value to the variable, which will be canceled 

by the subsequent assignment. Yao et  al. [39] observed a similar phenomenon of 

specific assignments that “squeezes out” a corrupted state. Also, for some projects, 

such as commons-io and jgit, the addition of “invocation” nodes is effective. 

It probably indicates a non-negligible proportion of side-effect free methods in the 

program, but further experimentation on that matter is detailed in Sect. 4.5.1.

The addition of conditionals and loops is also effective. It is important to under-

stand that a large number of these additional blocks have conditions such that the 

execution never enters the body of the block, meaning that only the evaluation of the 

condition is executed.

4.3.2  DELETE

Figure 7 shows the neutral variant rate of the DELETE transformation in function of 

the type of the AST node deleted, grouped by project. The figure only shows the 

node types for which enough data were collected (More than 25 transformations 

tried for a given project). While we observe large variations between projects for 

a given node type, we also note that there is a large variation in the neutral variant 

rate per node type. For instance, this figure suggests that method invocations are less 

specified than while-blocks, since the neutral variant rate is higher.

It appears that deleting a method invocation produces above average results for 

all projects of our sample. We explain this effect by the presence of side-effect free 

methods which can be safely removed (discussed also in the next section) and by the 

existence of many redundant calls (discussed in the next section).

The deletion of “continue” nodes is quite effective at synthesizing neutral variant 

as it yields 27% success overall (Not included on the graph since not enough trials 
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were conducted per project, even if over all projects 102 trials were done.). Those 

nodes are usually used as shortcuts in the computation, hence removing them yields 

slower yet acceptable program variants; we discuss this in depth in the next section.
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Fig. 7  Neutral variant rate of DELETE transformation in function of the type of the location

Table 4  Neutral variant rate of ADD, DELETE, and REPLACE by project and their 95% confidence interval

ADD NVR DELETE NVR REPLACE NVR

commons-codec 45.51% ± 3.87 20.03% ± 2.91 10.55% ± 1.2

commons-collections 53.14% ± 1.14 23.63% ± 1.47 13.63% ± 0.39

commons-io 51.74% ± 1.68 19.35% ± 1.91 12.53% ± 0.6

commons-lang 42.45% ± 3.08 12.99% ± 1.72 11.05% ± 0.88

gson 48.04% ± 1.45 18.6% ± 2.24 16.74% ± 0.69

jgit 58.29% ± 1.68 26.7% ± 1.21 23.86% ± 0.75

Total 51.83% ± 0.69 22.48% ± 0.71 15.42% ± 0.26
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4.3.3  REPLACE

A REPLACE transformation can be seen as the combination of a DELETE and an ADD. 

Consequently, results are somewhat similar to the ones of ADD and DELETE. The neu-

tral variant rate can be seen as the probability that the outcome of a transformation 

that compiles also passes the tests. This means that if ADD and DELETE transforma-

tions were independent for a given statement, the neutral variant rate for REPLACE 

should be close to the product of the two others. Yet, for each project (as shown in 

Table 4), the neutral variant rate for REPLACE is higher than this product, meaning 

that local neutral variant rate of ADD and DELETE are probably not independent.

We note two key phenomena. First, picking a transplant and a location that are 

method invocations is quite effective. This suggests the presence of alternative yet equiv-

alent calls. This is similar to what is discussed in the next section and also by Carzaniga 

et al. [7]. It also appears that replacing an assignment by another one is efficient. Second, 

we observe a certain plasticity around “return” statements: some of them can be replaced 

by the statement surrounded by a “try” or a condition. This suggests the existence of 

similar statements in the neighborhood of the location, which perform additional checks.

Answer to RQ3: Generic, random program transformations can yield more than 

23.30% ± 0.26 neutral program variants, but not all code regions are equally prone 

to neutral variant synthesis. In particular, method invocations and variable assign-

ments are more plastic than the rest of the code.

4.4  Role of plastic code regions

This section focuses on RQ4. Now, we are interested in understanding whether there 

is a difference in nature between the neutral variants and the variants that fail the test 

suite.

RQ 4 What roles do the code regions prone to neutral variant synthesis play in the 

program?

For each program, we selected neutral variant among extreme cases: those syn-

thesized on locations covered by a single test case or synthesized on points covered 

by the highest number of test cases. By doing this, we are able to build a taxonomy 

of neutral variants.

This analysis is the result of more than two full weeks of work, where we have 

manually analyzed dozens of neutral variants. At a very coarse grain, before explain-

ing them in detail, we distinguish three kinds of neutral variants: (1) revealer neutral 

variants indicate the presence of software plasticity in the code; (2) fooler neutral 

variants are named after Cohen’s [11] counter-measures for security. (3) buggy neu-

tral variants are made on locations that are poorly specified by the test suite, the 

transformation simply introduces a bug.

Revealer neutral variants take their denomination from the fact that they reveal 

something in the code that is implicit otherwise: code plasticity. Once those regions 
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are revealed, program transformation can target them, with a high confidence that 

the variant shall be neutral.

Fooler neutral variants are called like this in reference to the “garbage insertion” 

transformation proposed by Cohen [11]. These neutral variants add garbage code 

that can fool attackers who look for specific instruction sequences. To this extent, 

neutral variant synthesis can be seen as a realization of Cohen’s transformation.

Buggy neutral variants are simply the degenerated and uninteresting by-products 

resulting from of weak test cases. We will not provide a taxonomy of buggy neutral 

variants.

In the following, we discuss categories of revealer and fooler neutral variants. For 

each category, we present a single archetypal example from the ones synthesized for 

this work (Table 2). Each example illustrates the difference in the original that pro-

duces a neutral variant. Examples come with a table that provides the values for the 

location features. A more complete set of examples is available online.5

Plastic specification Some program regions implement behavior which correct-

ness is not binary. In other terms, there is no one single possible correct value, but 

rather several ones. We call such specification “plastic”.

The regions of code implementing plastic specifications provide great opportu-

nities for the synthesis of neutral variants, which transform the programs in many 

ways while maintaining valuable and correct-enough functionality.

One situation that we have encountered many times relates to the production of 

hash keys. Methods that produce these keys have a very plastic specification: they 

must return an integer value that can be used to identify an element. The only con-

tract is that the function must be deterministic. Otherwise, there is no other con-

straint on the value of the hash key. Listing  1 illustrates an example of a neutral 

variant synthesized by removing a statement from a hash method (line 3). To us, the 

neutral variant still provides a perfectly valid functionality.

Listing 1 Delete a statement in hash (commons.collection)
1 int hash(final Object key) {

2 int h = key.hashCode ();

3 - h += (h << 9);

4 h ^= h >>> 14;

5 h += h << 4;

6 h ^= h >>> 10;

7 return h;}

#tc transfo type node type
422 del var declaration

Optimization Some code is purely about optimization, which is an ideal plas-

tic region. If one removes such code, the output is still exactly the same, only 

non-functional properties such as performance are impacted. Listing 2 shows an 

example of neutral variant that removes an optimization: at the end of the if-

block (line 7), the original program stores the value of buf in toString, 

which allows to bypass the computation of buf next time toString() is 

5 https ://githu b.com/casto r-softw are/journ ey-paper -repli catio n/tree/maste r/RQ4.

https://github.com/castor-software/journey-paper-replication/tree/master/RQ4
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called; the neutral variant removes this part of the code, producing a potential 

performance degradation if the method is called intensively.

Listing 2 Delete a statement in toString (commons.lang)
1 String toString () {

2 String result = toString;

3 if (result == null) {

4 final StringBuilder buf = new StringBuilder (32);

5 [...] //... compute buf

6 result = buf.toString ();

7 - toString = result;

8 }

9 return result ;}

#tc transfo type node type
2 del stmt list

Code redundancy Sometimes, the very same computation is performed sev-

eral times in the same program. For instance, two subsequent calls to list.

remove(o), even separated by other instructions are equivalent (as long as 

list and o do not change between). Program transformations naturally exploit 

this computation redundancy through the removal or replacement of these redun-

dant statements. Replacement with a call to a side-effect free method also pro-

duces valid neutral variants.

Listing  3 displays an example of such a neutral variant (removing if-block 

at line 3). The statement if (isEmpty(padStr)) padStr = SPACE;  

assigns a value to padStr, then this variable is passed to methods leftPad and 

rightPad. Yet, each of these two methods include the exact same statement, 

which will eventually assign a value to padStr. So, the statement is redundant 

and can be removed from the original program, yielding a valid fooler neutral 

variant. Compared to neutral variants that remove some optimization, those neu-

tral variants might perform better than the original program.

Listing 3 Delete in center (commons.lang)
1 String center(String str , final int size , String padStr) {

2 if (str == null || size <= 0) {return str;}

3 - if (isEmpty(padStr)) {padStr = SPACE;}
4 [...]

5 str = leftPad(str , strLen + pads / 2, padStr);

6 str = rightPad(str , size , padStr);

7 return str;}

#tc transfo type node type
1 del if

gram (replace at line 4), i.e., ((Object[]) object)[i] has the same behavior
as Array.get(object, i), with completely different implementations.

Implementation redundancy It often happens that programs embed several differ-

ent functions that provide the same service, in different ways. For example, there can 
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exist several versions of the same method with different sets of parameters, which 

can be used interchangeably by providing good parameter values. It is also possible 

to use libraries that provide this diversity of similar methods (as demonstrated by 

Carzaniga et  al. [7]). Listing 4 illustrates the exploitation of such implementation 

redundancy inside the program (replace at line 4), i.e., ((Object[]) object)

[i] has the same behavior as Array.get(object, i), with completely dif-

ferent implementations.

Listing 4 Replace in get (commons.collection)
1 Object get(final Object object , final int index) {

2 [...]

3 else if (object instanceof Object []) {

4 - return ((Object[]) object)[i];

5 + try {
6 + return Array.get(object, i);

7 + } catch (final IllegalArgumentException ex) {
8 + throw new IllegalArgumentException("Unsupported

9 + object type: " + object.getClass().getName());

10 + }
11 }

12 [...]

13 }

#tc transfo type node type
1 rep return

Optional functionality In software, not all parts are of equal importance. Some 

parts represent the core functionality, other parts are about options and are not essen-

tial to the computation. Those optional parts are either not specified or the specifica-

tion is of less importance. These are areas that can be safely removed or replaced 

while still producing useful variants. Listing 5 is an example of neutral variant that 

exploits such optional functionality. The neutral variant completely removes the 

body of the method, which is supposed to transform the type passed as parameter 

into an equivalent version that is serializable, and instead it returns the parameter. 

The neutral variant is covered by 624 different test cases, it is executed 6000 times 

and all executions complete successfully, and all assertions in the test cases are sat-

isfied. This is an example of an advanced feature implemented in the core part of 

GSon that is not necessary to make the library run correctly.
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Listing 5 Replace in canonicalize (GSon)
1 public static Type canonicalize(Type type) {

2 - if (type instanceof Class) {
3 - Class<?> c = (Class<?>) type;

4 - return c.isArray() ? new

5 - GenericArrayTypeImpl(canonicalize(c.getComponentType())) : c;

6 - }
7 - else

8 - if (type instanceof ParameterizedType) {
9 - ParameterizedType p = (ParameterizedType) type;

10 - return new ParameterizedTypeImpl(p.getOwnerType(),

11 - p.getRawType(), p.getActualTypeArguments());

12 - }
13 - else

14 - if (type instanceof GenericArrayType) {
15 - GenericArrayType g = (GenericArrayType) type;

16 - return new GenericArrayTypeImpl(g.getGenericComponentType());

17 - }
18 - else

19 - if (type instanceof WildcardType) {
20 - WildcardType w = (WildcardType) type;

21 - return new WildcardTypeImpl(w.getUpperBounds(),

22 - w.getLowerBounds());

23 - }
24 - else {
25 - return type;

26 - }
27 + return type;

28 }

#tc transfo type node type
623 rep if

Listing 6 Add in ensureCapacity (commons.collection)
1 void ensureCapacity(final int newCapacity) {

2 final int oldCapacity = data.length;

3 if (newCapacity <= oldCapacity) {

4 return;

5 }

6 if (size == 0) {

7 threshold = calculateThreshold(newCapacity , loadFactor);

8 data = new HashEntry[newCapacity ];

9 } else {

10 [...]

11 }

12 + ensureCapacity(threshold);

13 }

#tc transfo type node type
8 add invocation

Fooler neutral variants We have realized that a number of ADD and REPLACE trans-

formations result in neutral variants which have more code than the original and 

where the additional code is harmless for the overall execution. These neutral vari-

ants act exactly as Cohen’s “garbage insertion” strategy to fool malicious attackers, 

hence we call them fooler neutral variants.
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We found multiple kinds of fooler neutral variants: some add branches in the code 

or redundant method calls or redundant sequences of method invocations. Some oth-

ers reduce the legitimate input space through additional checks on input parameters. 

Listing 6 is an example of a fooler neutral variant, which adds a recursive call to 

ensureCapacity() (line 12). This could turn the method into an infinite recur-

sion, except that in the additional recursive invocation, the value of the parameter is 

such that the condition of the first if statement always holds true and the method 

execution immediately stops. The additional invocation adds a harmless method call 

in the execution flow.

Discussion Let us now consider again the location features given for each neutral 

variant. Most neutral variants manually identified as buggy occur on locations cov-

ered by a single test case. In other words, the risk of synthesizing bad neutral vari-

ants increases when the number of test cases is low.

More interestingly, we realized that valid revealer and fooler neutral variants can 

be found both on points intensively tested and on weakly tested points. This con-

firms the intuition we expressed in the previous section: if a region is intrinsically 

plastic (has a plastic specification or is optional), the number of test cases barely 

matters, the only fact that the specification and the corresponding code region is 

plastic explains the fact that we can easily synthesize neutral variants.

Answer to RQ4: We have provided a first classification of plastic code regions 

according to the role this region plays in a program. The “revealers” indicate plastic 

code regions [30]. The “foolers” are useful in a protection setting [11]. Our manual 

analysis shows the variety of roles that code plays in a program. It uncovers the mul-

titude of opportunities that exist to modify the execution of programs while main-

taining a global, acceptable functionality.

4.5  Targeted transformations

RQ 5 Can program transformations target specific plastic code regions in order 

to increase their capacity of synthesizing neutral variants that exhibit behavioral 

variations?

For this question we design three novel, targeted program transformations: ADD 

METHOD INVOCATION that adds an invocation at the location, SWAP SUBTYPE that modi-

fies the type of concrete objects that are passed to variables declared with an abstract 

type, and LOOP FLIP that reverses the order in which a loop iterates over a sequence of 

elements. These transformations refine the previous ADD, DELETE, REPLACE to target 

language constructs that are most likely plastic regions. Our intention is to design 

transformations that are more likely to produce variants that are syntactically correct, 

pass the same test suite as the original and exhibit a behavior that is different from the 

original. We assess the effectiveness of each targeted transformation with respect to:

• neutral variant rate, as defined in Definition 5
• behavior difference
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We assess behavior difference by comparing the traces produced by the original and 

the neutral variant when running with the same input. For each targeted transforma-

tion, we select the relevant trace features that must be collected, in order to tune 

yajta (cf. Sect. 3.5). Then, the traces are aligned up until the first execution of the 

transformed region. If the traces diverge between a neutral variant and the original, 

we consider that the program transformation has, indeed, yield an observable behav-

ioral difference. This reveals that (1) the transformation was performed on code that 

is not dead; (2) the compiler optimizations did not mask the effect of the transforma-

tions; and (3) two different executions can yield the same result. The assessment of 

behavioral differences through execution traces has proven useful in the search for 

patches fixing bugs in the field of automatic program repair [13].

4.5.1  ADD METHOD INVOCATION

The ADD METHOD INVOCATION transformation leverages the following observation: 

Fig. 6 indicates that the addition of “invocation” nodes is likely to produce neutral 

variants. We focus on invocations rather than loops or conditions to reduce the risk 

of synthesizing variants where the added code is not executed. We also exploit the 

good results obtained when adding “try” blocks.

4.5.2  The ADD METHOD INVOCATION transformation process

The transformation starts with the selection of a random location � . Then, it builds 

the set of methods that are accessible from � . A method is considered to be acces-

sible if (1) the method is public, protected and in the same package as the class of 

� , or private and in the same class; (2) if � belongs to the body of a static method, 

the method called must be static. (3) if � does not belong to the body of a static 

method, the inserted invocation must either refer to a static method, or refer to a 

method member of the class of an object available in the context. (4) there exists a 

set of variables in the local context to fit the method’s parameters. Let us notice that 

we prevent the method hosting � to be selected, as this would create recursive calls 

likely to produce an infinite loop.

Once a method m has been selected, we synthesize a transplant in the form of an 

invocation AST node to insert at the location. If the return type of m is not void, a 

public field is synthesized in the hosting class and the invocation result is assigned 

to this field. This additional rule aims at forcing the usage of the invocation’s result 

and hence at preventing the compiler from considering the invocation as dead code 

and removing it [31]. The transplant is then wrapped into a “try-catch” block.

A formal definition of the transformation is provided in “Appendix”.

4.5.3  Illustration of the ADD METHOD INVOCATION transformation

Listing  7 illustrates the addition of an invocation of conditionC0(String, 

int) before the return statement. Since conditionC0 returns a boolean, a 
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public field of the same type is added to the DoubleMetaphone class to consume 

the result of the invocation.

Listing 7 Add method invocation in DoubleMetaphone.java:882 (commons.codec)

882 + public boolean v6482819 = true;

883 private boolean isSilentStart(final String value) {

884 boolean result = false;

885 for (final String element : SILENT_START) {

886 if (value.startsWith(element)) {

887 result = true;

888 break;

889 }

890 }

891 + try {
892 + v6482819 = conditionC0(this.VOWELS, this.maxCodeLen);

893 + } catch (Exception v4663426) {}
894 return result;

895 }

Figure  8 illustrates the juxtaposition of two dynamic call trees: the tree of the 

execution of StringEncoderComparatorTest on the original isSilent-

Start method and the tree when running the same test on the transformed method. 

Each node on the figure represents a method and each edge represents a method 

invocation. The temporal aspect of the execution is represented in two dimensions: 

method invocations go from top to bottom, and, if a method invokes several others, 

the calls on the left occur before those on the right. The nodes in grey represent calls 

the parts of the test execution that are common to both the original and the trans-

formed program. Nodes in light green (and connected with dashed lines) represent 

the parts of the execution added with the transformation.

4.5.4  Searching the space of the ADD METHOD INVOCATION transformation

The size of the search space can be bound by the product of the number of state-

ments in the targeted program and the number of methods it declares. In practice, we 

limit ourselves to methods for which we can pass parameters within the context of 

the location, which significantly reduces the size of the space. Yet, the space remains 

huge. Consequently, for experimental purposes, we limit our search to up to 10 dif-

ferent methods per location. If more than 10 methods can be invoked at the same 

point, we randomly select 10. As we performed sampling on the search space, in the 

rest of the subsection, we give NVR measures with their 95% confidence interval 

modelled following a binomial distribution.

4.5.5  Behavior diversity

To assess the behavioral variations introduced by the addition of a method invoca-

tion, we use yajta to trace the number of times each method in the program invokes 
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any other method. This observation produces a N × N matrix, where N is the num-

ber of methods executed when running the test suite. The comparison of the matrix 

produced on the original program and the one produced on the variant reveals if it 

is, indeed, possible to observe additional method invocations (i.e., additional behav-

ior) at runtime.

Table  5 shows an excerpt of the trace when running StringEncoderCom-

paratorTest. Each line records the number of times a method has invoked the 

methods mentioned in the column header. The results recorded during the execution 

of the test on the original program appear in black, while the new calls, occurring 

as a result of the transformation, appear in green. We observe that the transformed 

method (isSilentStart) is called 12 times by doubleMetaphone during the 

test run, on the original program. The program transformation adds an invocation 

to conditionC0 in isSilentStart. This results in 12 invocations of con-

ditionC0, as well as 12 times more invocations to all the methods invoked by 

conditionC0. These can be observed in Fig. 8 as 12 subtrees of one node calling 

3 other appear in green.

Fig. 8  Impact of a modification on StringEncoderComparatorTest call tree
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4.5.6  Empirical results for the ADD METHOD INVOCATION transformation

Table 6 displays the results per study object: (#Locs) number of locations for which 

transformations were attempted, number of times we performed the ADD METHOD 

INVOCATION transformation and produced a compilable variant (# Compile); number 

of transformations that yield a neutral variants (# NV); and the neutral variant rate 

(NVR). Overall, 66.29% of the program transformations yield a program variant 

that compiles and passes the suite, which corresponds to 171,744 neutral variants in 

total.

The first key observation is that method invocations are plastic regions, regardless 

of the original program. The second observation is that the targeted program trans-

formation is significantly (p value < 0.001 with a Wilcoxon rank sum test) 

more effective than a random invocation addition to synthesize neutral variants: 

66.29% on average instead of the 45% neutral variant rate of the ADD transformation 

presented in Fig. 6 when inserting method invocation.

Several factors contribute to this successful synthesis of neutral variants. 

First, the transformation selects the methods to be added, ensuring that it is pos-

sible to get valid parameter values in the context of the location. This design 

decision can favor repeating an invocation that already exists in the method that 

hosts the location. If the method is idempotent, the trace changes with no side 

effect. Second, the additional invocation is wrapped into “try” blocks. This may 

also lead to the compilation of invocations that quickly throw an exception and 

therefore, do not cause any state change. In general, the addition of invocations 

to idempotent (i.e. methods that have no additional effect if they are called more 

than once with the same input parameters) or pure methods (i.e. method with no 

externally observable side effect [32]) can make the insertion benign.

In Table  7 we provide the cumulative neutral variant rates, with respect to 

the type of method in which the location is selected (location (Loc) in static or 

non-static method) and with respect to the type of transplant (invoke a method 

that inside the same class as the location or that is external to that class). In this 

table, we observe a significant (p value < 0.001 with a Wilcoxon rank sum 

test) difference between the two types of locations: locations in static methods 

are more plastic (87.06%) that in non static ones (63.85%). We hypothesize that 

this comes from the fact that in the case of a location inside a static method, 

the additional invocation can only be towards a static method. Increased neutral 

Table 6  Neutral variant rate of ADD METHOD INVOCATION 

#Locs #Compiles #NV NVR

commons-codec 1722 17,650 11,150 63.17% ± 0.71

commons-collections 7027 40,333 26,150 64.84% ± 0.47

commons-io 1608 10,009 7413 74.06% ± 0.86

commons-lang 4287 129,593 86,452 66.71% ± 0.26

gson 2460 32,932 18,215 55.31% ± 0.54

jgit 12,822 28,582 22,364 78.25% ± 0.48

Total 29,926 259,099 171,744 66.29% ± 0.18
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variant rate in this case could come from the fact the proportion of pure methods 

is higher among static methods than among regular methods.

We also observe more successful transformations when the transplant is 

selected outside the class that hosts the location (84.25% instead of 63.75%, p 

value < 0.001 with a Wilcoxon rank sum test). We hypothesize that 

methods invoked in the same class as the location are likely to be non-pure 

methods. The transformation selects invocations to methods for which the con-

text of the location can provide values to pass as parameters. This means that 

most of the methods inside the same class can be invoked, whereas in the case of 

external methods this tends to select methods with no parameter or methods that 

have only parameters of primitive data types. We hypothesize that this difference 

in the selection of candidate methods increases the chance to have more pure 

methods among external than among internal method invocations.

4.5.7  SWAP SUBTYPE

The results of the REPLACE transformation showed that targeting assignment statements 

yields more neutral variants than on other types of AST nodes. In this section, we intro-

duce a new transformation that refines REPLACE on “Assignment”, leveraging Java inter-

faces. A common practice in Java consists of declaring a variable typed with an inter-

face. When a developer adopts this practice, she indicates that any concrete object that 

implements the interface can be assigned to this variable. The existing diversity of avail-

able types sharing an interface can be leveraged to fuel our search for neutral variants.

4.5.8  The SWAP SUBTYPE transformation process

This program transformation operates on assignment statements that pass a new 

concrete object to a variable typed with an interface. The transformation replaces 

the constructor called in such assignments by one of a class implementing the 

same interface. In the following experiments we have implemented this transfor-

mation for classes and interfaces of Java collections.

4.5.9  Illustration of the SWAP SUBTYPE transformation

Listing 8 shows an example of a SWAP SUBTYPE transformation, while Fig. 9 illus-

trates its impact on the dynamic call tree of one test. Nodes in light teal are 

Table 7  Neutral variant rate of ADD METHOD INVOCATION depending on Transplant and Location type

Internal Transplant External Transplant Total

Static Loc 85.92% ± 0.62 87.96% ± 0.52 87.06% ± 0.40

Non static Loc 62.52% ± 0.20 80.89% ± 0.59 63.85% ± 0.20

Total 63.75% ± 0.20 84.25% ± 0.40 66.29% ± 0.18
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method invocations from org.apache.commons.collections4 which were not pre-

sent before. (They replace previous calls to the Java standard library).

Listing 8 SwapSubType in Lang.java:130 (commons.codec)

130 public static Lang loadFromResource(final String

languageRulesResourceName , final Languages languages) {

131 - final List<LangRule> rules = new ArrayList<LangRule>();

132 + final List<LangRule> rules = new

org.apache.commons.collections4.list.NodeCachingLinkedList<LangRule>();

133 [...]

134 }

4.5.10  Searching the space of SWAP SUBTYPE transformations

The search space here is composed of all statements that assign a new concrete 

object to a variable which type is a collection (see “SwapSubtype” section in 

Fig. 9  Impact of a modification on the call tree of one execution of PhoneticEngineTest.

testEncode() 
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Appendix for the actual list). This space is small enough to be explored exhaus-

tively. We target 16 interfaces, which are implemented by 50 classes (some of 

which implement several interfaces) from 3 different libraries (java.util, 

org.apache.commons.collections and net.sf.trove4j). The 

complete list of interfaces, and their concrete classes, targeted by this transfor-

mation is available in the replication repository. This transformation is similar to 

what Manotas et al. [24] have implemented in their framework SEEDS. While the 

choice of a concrete collection might be a long planned decision for performance 

reasons, we believe that in many cases the choice is made by default.

4.5.11  Behavior diversity

To observe the changes introduced by the SWAP SUBTYPE transformation, we use 

yajta to trace both the methods defined in the classes of the program that is trans-

formed and all the methods in collection classes that are involved in the transfor-

mation (the ones at the location and the ones in the transplants). The trace com-

parison procedure is the same as for the ADD METHOD INVOCATION transformation.

4.5.12  Empirical results for the SWAP SUBTYPE transformation

Table 8 presents the results of the SWAP SUBTYPE transformation on each project of our 

sample. In total, we synthesized 4909 variants that compiled on 339 different locations 

(i.e. collection assignment to a variable typed as an interface for which at least one 

transformation yields a variant that compiles). Out of the 4909 variants that compile 

correctly, 2860 are neutral variants. This represents a global 58.26% neutral variant 

rate. We notice that the SWAP SUBTYPE transformation yields more than 80% neutral vari-

ants for 4 projects. Yet, for jgit and commons-collections, the neutral variant 

rate falls to 46.89% and 60.98% respectively. Overall this represents a geometric mean 

of 74%.

Table 8  Neutral variant rate of 

SWAP SUBTYPE 
#Loc #Compile #NV NVR (%)

commons-codec 21 186 164 88.17

commons-collections 68 738 450 60.98

commons-io 16 183 177 96.72

commons-lang 41 544 445 81.80

gson 17 266 221 83.08

jgit 190 2992 1403 46.89

Total 339 4909 2860 58.26
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A major reason for the lower neutral variant rate on commons-collections is 

the use of inner classes that implement the Collection interface. This happens to 

create classes that mix the contract of the Collection interface with the contract 

of the class inside which the Collection interface implementation is defined. For 

example, the class MultiValueMap$Values implements the iterator of the Col-

lection interface inside MultiValueMap. Listing  9 shows an instantiation of 

MultiValueMap$Values that was used as a location for the SWAP SUBTYPE trans-

formation. The original program assigns a MultiValueMap$Values to values-

View. This means that subsequent calls to MultiValueMap$Values.itera-

tor() return the values that are stored in the field map. Now, since vs is a of type 

Collection, the SWAP SUBTYPE transformation assumes that it can assign it any object 

typed with an implementation of Collection, e.g. LinkedList in this example. 

Yet, because a call to iterator() on an instance of LinkedList only iterate 

over elements that have been added to the instance, all MultiValueMap$Values.

iterator() calls return empty iterators which leads to failing tests. Such situations 

occurred for 113 variants, 0 of which are neutral.

Listing 9 SwapSubType in MultiValueMap.java:326 (commons.codec)

326 @Override

327 @SuppressWarnings ("unchecked")

328 public Collection <Object > values () {

329 final Collection <V> vs = valuesView;

330 - return (Collection<Object>) (vs != null ? vs : (valuesView = new

Values()));

331 + return (Collection<Object>) (vs != null ? vs : (valuesView = new

LinkedList<V>()));

332 }

While the number of candidates to be targeted by this transformation is lower 

than for other transformations, SWAP SUBTYPE affects all subsequent invocations that 

target the modified variable. Therefore, the program transformation impacts the gen-

erated variant in a more profound way than other transformations. This effect is well 

illustrated by Fig. 9.

In theory, it is possible to swap any valid subtype of an interface when assigning 

a concrete object to a variable typed with the interface, and this with no effect on the 

functionality. This property is a direct consequence of the fact that any requirement 

on the type of a variable should be expressed in the interface. In other words, SWAP 

SUBTYPE should be a sound preserving transformation. Indeed, we observe that there 

exist at least one neutral variant for 71% of the 339 locations targeted by the SWAP 

SUBTYPE transformation. However, in practice we observe that is not always the case, 

and SWAP SUBTYPE is, indeed, a program transformation: only 58% of the transforma-

tions actually yield a neutral variant.
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Listing 10 Altering an ordered loop in ReflectiveTypeAdapterFactory:140 (gson)
140 List <String > fieldNames = getFieldNames(field);

141 BoundField previous = null;

142 - Map<String, BoundField> result = new LinkedHashMap<String, BoundField>();

143 + Map<String, BoundField> result = new HashMap<String, BoundField>();

144 [...]

145 for (int i = 0; i < fieldNames.size(); ++i) {

146 String name = fieldNames.get(i);

147 if (i != 0) serialize = false; // only serialize the

default name

148 BoundField boundField = createBoundField(context , field ,

name ,

149 TypeToken.get(fieldType), serialize , deserialize);

150 BoundField replaced = result.put(name , boundField);

151 if (previous == null) previous = replaced;

152 }

Listing  10 illustrates an example where the SWAP SUBTYPE transformation fails 

at producing a neutral variant. Here, the concrete type in the original program is 

LinkedHashMap. This specific implementation of the Map interface keeps the 

entries in the order of insertion. When the for loop iterates through the field-
Names list, the result map is filled such that the elements in map are stored 

in the same order as the elements in fieldNames. Now, when the swap subtypes 

transformation assigns a HashMap object to result instead of a LinkedHash-

Map, the elements of result are ordered with respect to their hash value instead 

of keeping the order of insertion of fieldNames. Consequently, subsequent meth-

ods that expect a specific order in result fail because of this change.

It is important to notice that when we replace LinkedHashMap by org.

apache. commons.collections4.map.LinkedMap in Listing  10, the 

corresponding variant is neutral, since the substitute type satisfies the required invar-

iant: elements are kept in order of insertion. More generally, we can say that this 

zone is plastic, modulo this type invariant.

4.5.13  LOOP FLIP

Swapping instructions is a state of the art transformation used by Schulte et al. [34] 

or in a sound way for obfuscation [38]. Here we explore a targeted swap transforma-

tion, which reverses the order of iterations in loops.

4.5.14  The LOOP FLIP transformation process

We propose a program transformation that reverses the order in which for loops 

iterate over a set of elements. It targets counted loops, i.e., loops for which we can 

identify a loop counter variable that is initialized with a specific value and which is 

increased or decreased at each iteration until it satisfies a condition. The transforma-

tion does not necessarily expect a well-behaved counted loop. The transformation 

makes the loop run the same iterations as the original loop, but for loop index values 

in reverse order. To achieve this, we need to identify the initial value, the step, and 

the last value. Listing 12 shows such an example for a simple case. The loop counter 
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is the variable i, its initial value is 0, the step is +1 , so the last value is straightfor-

ward to determine ( srcArgs.length − 1 ). In this example, the transformation replaces 

the original loop with one starting from the last value, with a step of −1 and ending 

when the loop counter reaches the initial value.

The example of Listing 11 is a non-normalized loop that we still handle with LOOP 

FLIP. The variable i is still the loop counter. Its first value is 0, and its last value is 

28 as 32 is not reachable. For the general case, the last value is the last multiple of 

step smaller than the difference between the upper bound and the starting value. Yet, 

as we only transform the code in a static way, this expression is directly inserted in 

the initialization of the loop counter. More implementation details are given in the 

replication repository.6

Listing 11 Loopflip in MemberUtils.java:115 (commons.lang)

115 - for (int i = 0; i < srcArgs.length; i++) {
116 + for (int i = srcArgs.length-1; i >= 0; i--) {

Listing 12 Loopflip in UnixCrypt.java:87 (commons.codec)

87 - for (int i = 0; i < 32; i += 4) {
88 + for (int i = 32 - (((32 - 0) % 4) == 0 ? 4 : (32 - 0) % 4); i >= 0; i -=

4) {

4.5.15  Illustration of the LOOP FLIP transformation

In order to illustrate how test execution may be affected by this transformation, 

Listing 11 details a transformation, a test that cover the transformed code and its 

execution trace.

Listing 13 Loopflip in BinaryCodec.java:108,123 (commons.lang)

108 public static byte[] toAsciiBytes(final byte[] raw) {

109 if (isEmpty(raw)) {

110 return EMPTY_BYTE_ARRAY;

111 }

112 final byte[] l_ascii = new byte[(raw.length) << 3];

113 for (int ii = 0, jj = (l_ascii.length) - 1 ; ii <

(raw.length) ; ii++ , jj -= 8) {

114 - for (int bits = 0 ; bits < (BITS.length) ; ++bits) {
115 + for (int bits = (BITS.length - 1) ; bits >= 0 ; --bits) {
116 if (((raw[ii]) & (BITS[bits])) == 0) {

117 A l ascii[(jj - bits)] = ’0’;

118 } else {

119 lB ascii[(jj - bits)] = ’1’;

120 }

121 }

122 }

123 return l_ascii;

124 }

6 https ://githu b.com/casto r-softw are/journ ey-paper -repli catio n/tree/maste r/RQ5.

https://github.com/castor-software/journey-paper-replication/tree/master/RQ5
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Listing 13 shows an example where the LOOP FLIP transformation yields a neu-

tral variants of the BinaryCodec.toAsciiBytes() method. This method 

returns an array of bytes, which is filled inside the loop that we transform. The 

variant is neutral because the array is filled with values which do not depend on 

the iteration order of the loop, but only on the value of the loop index. We can 

think of this as filling the table with a set of numbered operations, where the 

order in which the operations are performed does not matter. Consequently the 

l_ascii array contains exactly the same thing, whatever the iteration order of 

the for loop in line 114.

Listing 14 Call to toAsciiBytes in BinaryCodecTest.java:706,709 (commons.codec)

706 bits = new byte [1];

707 bits [0] = BIT_0; //0b00010111

708 l_encoded = new String(BinaryCodec.toAsciiBytes(bits));

709 assertEquals("00010111", l_encoded);

Listing  14 shows an excerpt of the test case that specifies the behavior of 

BinaryCodec.toAsciiBytes(). It calls the method with the binary value 

00010111 as parameter and assesses that the return value is the array of bytes that 

encodes the String “00010111”. Figures 10 and 11 show the execution of both the 

original and transformed method in that context. Round nodes correspond to method 

calls, squared ones correspond to branches in the order where they are called (from 

left to right). The branch highlighted in orange (dashed line) corresponds to the 

Fig. 10  Original test execution of BinaryCodec.toAsciiBytes. (Note the pattern AAABABBB). Round 

nodes correspond to method calls, squared ones correspond to branches in the order where they are 

called (from left to right). The branch highlighted in orange (dashed line) corresponds to the line A (in 

the same color in Listing 13). The branch highlighted in green (dotted line) corresponds to the line B.
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line A (in the same color in Listing 13). The branch highlighted in green (dotted 

line) corresponds to the line B. We can observe that the execution order is indeed 

reversed. 

4.5.16  Searching the space of LOOP FLIP transformations

In the case of this transformation, the search space is composed of for-loops based 

on an integer index. Since it is fairly small, we exhaustively explore it.

4.5.17  Behavior diversity

The observation of branch executions would not be enough to systematically detect 

behavioral differences caused by this transformation for every case. Indeed for a 

loop whose body is composed of a single branch, branches executed do not depend 

on the index variable, therefore, branch observation would fail to detect differences. 

Thus the simplest observation method is to insert a probe at the beginning of the 

transformed loop to trace the value of the loop index.

4.5.18  Empirical results for the LOOP FLIP transformation

Table  9 summarizes the results of the LOOP FLIP experiments. We observe that 

this program transformation is very effective at synthesizing neutral variants. In 

total, we synthesized 479 neutral variants out of 656 variants, that compiled, tar-

geting each a different for loop, which corresponds to a global neutral variant 

Fig. 11  Transformed test execution of BinaryCodec.toAsciiBytes. (Note the pattern BBBABAAA). 

Round nodes correspond to method calls, squared ones correspond to branches in the order where they 

are called (from left to right). The branch highlighted in orange (dashed line) corresponds to the line A 

(in the same color in Listing 13). The branch highlighted in green (dotted line) corresponds to the line B.
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rate of 73%. This neutral variant rate varies from 64 to 92% in commons-col-

lections. This is significantly higher than any of the random program trans-

formations analyzed previously.

The high neutral variant rate of LOOP FLIP can be explained by the fact that 

in many cases this transformation processes loops in which there are no loop-

carried dependencies [14] (e.g., Listing  13). Meanwhile we can also note that 

both the number of candidates and the neutral variant rate vary widely from one 

project to another. This can be explained by different usages of loops in different 

projects. For example, if a project uses forEach loops more often than for 

loops, then the number of candidates for our transformation decreases. Also, 

for loops are used for different purposes: in some cases this control structure is 

used to apply the same computation to n elements that are independent of each 

other, whereas in other cases it is used to sequence of computations in which 

each action depends on the previous one. In the former case, the order of the 

loop iteration does not matter, while in the latter case, flipping loop order is very 

likely to modify the global behavior.

Listing 15 Altering an ordered loop in ReflectiveTypeAdapterFactory:140 (gson)
140 List <String > fieldNames = getFieldNames(field);

141 BoundField previous = null;

142 Map <String , BoundField > result = new LinkedHashMap <String ,

BoundField >();

143 [...]

144 - for (int i = 0; i < fieldNames.size(); ++i) {
145 + for (int i = (fieldNames.size()) - 1; i >= 0; --i) {
146 String name = fieldNames.get(i);

147 if (i != 0) serialize = false; // only serialize the

default name

148 BoundField boundField = createBoundField(context , field ,

name ,

149 TypeToken.get(fieldType), serialize , deserialize);

150 BoundField replaced = result.put(name , boundField);

151 if (previous == null) previous = replaced;

152 }

For example, Listing  15 illustrates a LOOP FLIP transformation that yields a 

variant that is not neutral. This case is similar to the one discussed on Listing 10: 

Table 9  Neutral variant rate of 

LOOP FLIP 
#Locs #Trials #NV NVR (%)

commons-codec 42 42 31 73

commons-collections 61 61 56 92

commons-io 35 35 24 69

commons-lang 227 227 146 64

gson 17 17 11 65

jgit 274 274 211 77

Total 586 586 427 73
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when changing the iteration order, the result map is filled in a different order 

than in the original case. Consequently, the behavior of the method changes, 

which does not correspond to the expectation of the callers and eventually fails 

some test cases.

4.5.19  Research Question 5 Conclusion

In this section we have leveraged the observations made with generic, random pro-

gram transformations, in order to design three new transformations that target code 

regions which are very likely plastic. When designing these transformations, we also 

increased the amount of static analysis performed by the transformation, leveraging 

the strong type system of Java. Overall, these design decisions aim at focusing the 

search on spaces of program variants with high densities of neutral variants. The 

results confirm these higher densities, with neutral variant rates of 66% (ADD METHOD 

INVOCATION), 58% (SWAP SUBTYPE), 73% (LOOP FLIP) that are significantly higher than 

the rates with generic, random transformations 23% overall (p value < 0.001 for each 

of the three Wilcoxon rank sum test).

Beyond the results and observations made with these three transformations, the 

experiments reported here are very encouraging to explore the ‘grey’ zone that 

exists between sound and semantic preserving transformations at one extreme and 

random, generic highly program transformations on the other extreme. We believe 

that in-depth knowledge about the nature of plastic code regions, combined with 

static code analysis is essential to design transformations that explore spaces of pro-

gram variants that are behaviorally diverse, while limiting the amount of resources 

required to explore these spaces.

Answer to RQ5 Program transformations targeted at specific plastic code regions are 

significantly more effective than random transformations at synthesizing program 

variants, which exhibit visible behavior diversity and are equivalent modulo test 

suite. This RQ has explored three targeted program transformations that yield 66%, 

58%, 73% neutral variants.

5  Discussion

Our journey among the different factors that influence the synthesis of neutral pro-

gram variants has shed the light on several key findings. We have observed that 

many neutral variants result from the very specific combinations of one program 

transformation on one specific type of language structure. For example, the DELETE 

transformation in “invocation” nodes is surprisingly effective at synthesizing neutral 

variants, while it performs very poorly on “loop”. Similarly, the ADD transformation 

is very effective with “try” nodes, but is very bad with “return”.

These observations are novel and very interesting to design program transforma-

tions in future work. Yet, we believe that the most intriguing findings of our work 

relate to regions of the code that are plastic by nature, and not, by chance, because of 

one specific transformation.
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The functional contract of a code region is what ultimately determines if a vari-

ant of that region is neutral or not. Such a contract defines a set of properties about 

the inputs and outputs of the code region, as well as state invariants for that region. 

Consequently, a contract can be more or less restrictive on the behaviors that imple-

ment the contract. Our empirical inquiry of program transformations has revealed 

that some contracts define loose expectations about the behavior of a code region. In 

turn, these code regions are more plastic than other parts.

Here are three examples of code regions with loose contracts:

• the contract of a hash function (e.g. the one of Listing 1) loosely specifies 

the returned value:7 it only enforces the result to be a deterministic integer only 

depending on information used in equals. In addition, a weak requirement is 

that this method should avoid collision. This means any transformation, which 

side effect is to change the return in a deterministic way, yields a variant that 

fulfills the contract, even if changing the likelihood of collision impacts perfor-

mance.
• the contract over some data ordering. For example, data structures that do not 

impose an order on their elements, or loops with no loop-carried dependence 

are code regions that have a loose contract. These regions tolerate many types of 

transformations that change order, for example, LOOP FLIP or SWAP SUBTYPE in case 

where an ordered collection is replaced by another a non-ordered one.
• optional functionalities (e.g., optimization code). The elective nature of these 

code regions make them naturally loosely specified. These functionalities are 

called by other functions, and the functional contract is defined on these other 

functions, not on the optional ones. All transformations that remove or modify 

the optional functionality produce program variant that is very likely to satisfy 

the contract.

In this work, we have used unit test suites as proxies for functional contracts. As 

discussed in Sect. 4.4, this might lead to false positives (variants considered neutral 

modulo the test suite, but that happen to be buggy variants). Yet, in many cases, this 

also allowed us to spot inherently plastic code regions that are prone to several pro-

gram transformations, which can synthesize more neutral variants.

6  Threats to validity

We performed a large scale experiment in a relatively unexplored domain: the char-

acterization of plastic code regions. We now present the threats to validity.

While we aim at analyzing code plasticity, we actually measure the rate of neutral 

variants produced by specific program transformations. This can raise a threat to 

the construct validity of our study, with respect to two concerns: (1) the limitation 

7 Oracle’s documentation (Java 8): https ://docs.oracl e.com/javas e/8/docs/api/java/lang/Objec 

t.html#hashC ode--.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--
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of plasticity to a given transformation, (2) the confinement of changes only to the 

source code but not to the behavior. We mitigate the first concern through the man-

ual analysis in our answer to RQ4 that emphasizes the presence of real code plastic-

ity and not only plasticity related to a given transformation. To mitigate the second, 

we analyzed, in RQ5’s answer, the execution traces proving actual, observable dif-

ferences in execution.

Our findings might not generalize to all types of applications. Depending on the 

type of applications and the quality of their test suite, the obtained results could 

change. To minimize the impact of this threat, we selected open source frameworks 

and libraries because of their popularity, their longevity and the very high quality of 

their test suites. In addition, we provided an explicit analysis of the impact of tests 

on the neutral variant rate of transformations in Sect. 4.2.

Finally, our large scale experiments rely on a complex tool chain, which inte-

grates code transformation, instrumentation, trace analysis and statistical analysis. 

We also rely on the Grid5000 grid infrastructure to run millions of transformations. 

We did extensive testing of our code transformation infrastructure, built on top 

of the Spoon framework that has been developed, tested and maintained for more 

than 10 years. However, as for any large scale experimental infrastructure, there are 

surely bugs in this software. We hope that they only change marginal quantitative 

results, and not the qualitative essence of our findings. Our infrastructure is publicly 

available on Github.8

7  Related work

Our work is related to seminal work analyzing the capacity of software to yield use-

ful variants under program transformations. It is also related to work that exploits 

program transformations (either random or targeted) to improve software. Here, we 

discuss the key work in these areas, as well as the novelty of our work.

7.1  Plasticity of software

The work on mutational robustness by Schulte et al. [34] is a key inspiration for our 

own work. These authors explore the ability of software to be transformed under 

random copy, deletion and swap of AST nodes. Their experiments on 22 small to 

medium C programs (30 to 60 K lines of code) show that 30 % of the transforma-

tions yield variants that are equivalent to the original, modulo the test suite. They 

call this property of software mutational robustness. More recently, this research 

group demonstrate that the interaction of several neutral mutations can lead a pro-

gram to exhibit new positive behavior such as passing an additional test. They call 

this phenomenon positive epistasis [29]. Other work has since confirmed the exist-

ence of mutational robustness [17, 22]

8 https ://githu b.com/casto r-softw are/journ ey-paper -repli catio n.

https://github.com/castor-software/journey-paper-replication
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Our RQ1 can be considered as a conceptual replication [36] of the work by 

Schulte and colleague. Our results mitigate two threats to the validity of Schulte’s 

results: our methodology mitigates internal threats, by using another tool to perform 

program transformations, and our experiment mitigates external threats by trans-

forming Java programs (instead of C). Similarly to Schulte, we conclude “that muta-

tional robustness is an inherent property of software”. Yet, our study also provides 

completely novel insights about the language constructs and the code areas that sup-

port mutational robustness (we call them plastic code regions) and about the effec-

tiveness of targeted transformations to maximize the synthesis of neutral variants.

Recently, Danglot et  al. [12] have also explored the capacity of software and 

absorbing state transformations. They explore correctness attraction: the extent to 

which programs can still produce correct results under runtime state perturbations. 

In that study the authors rely on a perfect oracle to asses the correctness of outputs, 

and they observe that many perturbations do not break the correctness in ten subject 

programs. Our work also shows that program variants can have different traces and 

still deliver equivalent results (modulo the test suite). Yet, we rely on different trans-

formations and we analyze in-depth the nature of the code regions that can yield 

neutral variants.

Our work extends the body of knowledge about forgiving code regions [30]. In 

particular, we find regions characterized by “plastic specifications”, i.e. regions 

which are governed by a very open yet strong contract. For instance, the only cor-

rectness contract of a hashing function is to be deterministic. On the one hand this 

is a strong contract. On the other hand, this is very open: many variants of a hashing 

function are valid, and consequently, many modifications in the code result in valid 

hashing functions.

Some recent work investigate a specific form of software plasticity, referred to as 

redundancy [8, 16, 37]. This work consider that a code fragment is redundant with 

another fragment, in a specific context, if in that context, both fragments lead a pro-

gram from a given state to an equivalent one through a different series of intermedi-

ate state. This is very close to neutral variants, which have diverse visible behavior 

and yet satisfy the same properties as assessed by the test suite. The key difference 

between our work is that we investigate program transformations to synthesize neu-

tral variants, i.e. increase redundancy, whereas they analyze redundancy that natu-

rally occurs in software systems.

7.2  Exploiting software plasticity

Genetic improvement [28] is an area of search-based software engineering [18], 

which consists in automatically and incrementally generating variants of an existing 

program in order to either improve non-functional properties such as resource con-

sumption or execution time, or functional ones (e.g. automatic repair). All variants 

should pass the test suite of the original program. Existing work in this domain rely 

on random program transformations to search for program variants: Schulte et  al. 

[33] exploit mutational robustness to reduce energy consumption; Langdon and 

Petke [21] add, delete, replace lines in C, C ++ , CUDA program sources to improve 



571

1 3

Genetic Programming and Evolvable Machines (2019) 20:531–580 

performance; Cody-Kenny et al. [10] add, delete, replace AST nodes, to profile pro-

gram performance; López et al. [23] explore program mutations to optimize source 

code. Manotas and al. [24] replace Java collections to optimize energy consumption. 

All this work leverage the existence of code plasticity, and the performance of the 

search process can be improved with targeted program transformations. In particu-

lar, our results with the SWAP SUBTYPE transformation, show that changing library is 

very effective to generate neutral variants, and this transformation is a key enabler to 

improve performance [3].

Software diversification [5] is the field concerned with the automatic synthesis 

of program variants for dependability. Existing work in this area also intensively 

exploit software plasticity and program transformations: Feldt [15] was among the 

first to use genetic programming to generate multiple versions of a program to have 

failure diversity; we relied on random transformations to synthesize diverse imple-

mentations of Java programs [1, 4]; recent work on composite diversification [38], 

investigate the opportunity to combine multiple security oriented transformation 

techniques. This work can benefit from our findings about targeted program transfor-

mations, which introduce important behavior changes (in particular the SWAP SUBTYPE 

transformation), while maximizing the chances of preserving the core functionality.

Shacham et al. [35] and, more recently, Basios et al. [3] investigate source code 

transformations to replace libraries and data structures, in a similar was as the SWAP 

SUBTYPE transformation. This corroborates the idea of a certain plasticity around 

these data structures, and the notion of interface.

8  Conclusion

The existence of neutral program variants and the ability to generate large quantities 

of such variants are essential foundations for automatic software improvement. Our 

work contributes to these foundations with novel empirical facts about neutral vari-

ants and with actionable transformations to synthesize such variants. Our empiri-

cal analysis explores the space of neutral variants of Java programs, focusing on 6 

large open source projects, from different domains. We generated 98,225 variants 

that compile for these projects, through program transformations, and 23,445 were 

neutral variants, i.e., more than 20% of the variants run correctly and pass the same 

test suite as the original. A detailed analysis of these neutral variants revealed that 

some language constructs are more likely to be plastic than others to the synthesis of 

neutral variants (for example, method invocations) and also that some code regions 

have specific roles that make them plastic (for example, optimization code).

The actionable contribution of our work comes in the form of three novel pro-

gram transformations for Java programs. We have designed these transformations 

to target specific code regions that appear more prone to neutral variant synthesis. 

Our experiments show that these transformations perform significantly better than 

generic ones: 60% (ADD METHOD INVOCATION), 58% (SWAP SUBTYPE), 73% (LOOP FLIP) 

instead of 23,9%.

One key insight from the series of experiments reported in this work is that 

some code regions are inherently plastic. These code regions are naturally prone to 
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behavioral variations that preserve the global functionality. These regions include 

code that has a plastic specification (e.g., hash function); optional functionality 

(e.g., optimization code) or regions that can be naturally reordered (e.g., loops with 

no loop-carried dependence). In our future work, we wish to leverage this insight 

about the deep nature of large programs to develop techniques that can generate vast 

amounts of software diversity for obfuscation [19] and moving target defenses [26].
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Appendix

Add method invocation

The following section details the transformation Add method invocation. Listing 

“Add method invocation” section describes the subset of the Java language targeted, 

and what follows describes the transformation’s behavior.

<class > ::= (<modifier >)*

’class’ <identifier > (ref)*

’{’ (<class_member >)* ’}’

<class_member > ::= <attribute > |

<other > | <method >

<method > ::= (<modifier >)* (return_type)

<identifier > ’(’

(<type > <identifier >)* ’)’ ’{’

(<statement >)* ’}’

<statement > ::= <variable_declaration > |

<block > | <other >

<block > ::= (<block_header >) ’{’

(<statement >)* ’}’

P = {Packages},

C(p) = {Classes of p‖p ∈ P},

M(c) = {methods in class c},

S(m) = {statements in method m’s body},

http://creativecommons.org/licenses/by/4.0/
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LV(s) = {Local variables up to s},

Pa(m) = {Parameter of method m},

A(c) = {Attributes of class c},

As(c) = {a ∈ A(c)‖static(a)},

Let p ∈ P, c ∈ C(p), m ∈ M(c), s ∈ S(m)

V(c, m, s) = LV(s) ∪ Pa(m) ∪ A(c) ∪ {this}, a set of accessible variable from s

Vs(c, m, s) = LV(s) ∪ Pa(m) ∪ As(c), a set of accessible variable from s

M(p, c, m, s) = {m� ∈ c} ∪ {m� ∈ c�‖∀c� ∈ p ∧ ¬private(m�)} ∪ {m� ∈ c�‖

∀p� ∈ P,∀c� ∈ p� ∧ public(m�)}

Ma(p, c, m, s) = {m�‖static(m�) ∨ ClassOf (m�) ∈ TypeOf (LV(c, m, s))}

Let m�
∈ M

a

Class c follows ...m...
c → ...Well; m...

Wellstatic∧¬void

static(m) ∧ TypeOf(m′) �= void

Well → ’public static’ TypeOf(m′) wellID

Well¬static∧¬void

¬ static(m) ∧ TypeOf(m′) �= void

Well → ’public’ TypeOf(m′) wellID

Wellvoid

TypeOf(m′) = void

Well → SKIP

Method m follows ...s...

m → ...’try {’Well Ta Call; ’} catch (Exception ’ eId ’) {}’s...

We
TypeOf(m′) �= void

We → wellID =

Wevoid

TypeOf(m′) = void

We → SKIP

Targetstatic

static(m′)

Ta → SKIP

Target
¬ static(m′)

Ta → targetID.

Call
Call → QN(m′)(params)

SwapSubtype

The following section details the behavior of the SwapSubtype transformation, the 

subset of Java targeted “SwapSubtype” section, and how it modified it.
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<affectation > ::= <ls > ’=’ <rs>

<ls> ::= (<interface > (’<’ <type > ’>’)?)? <identifier >

<rs> ::= ’new’ <concrete_class_constructor > (’<’ <type > ’>’)? ’(’

<param_list > ’)’

<param_list > ::= <> | <param > | <param > ’,’ <param_list >

\label{lst:col -assign}

I = {Interfaces}

T = {Types}

C(t) = {Constructor of t}

T(i) = {t ∈ T‖t implements i}

Let i ∈ I, t1, t2 ∈ T(i)2 such as t
1
≠ t

2

Affectation
Aff(I, id, t1, params) ∧ ∃c ∈ C(t2)

Aff(I, id, t1, params) → Iid =′ new′t′
2
(′params′)′

The following sections list the different interfaces targeted by our implementation 

of the transformation, and for each interface the different classes implementing these 

interfaces used interchangeably.

java.util.SortedSet

• java.util.concurrent.ConcurrentSkipListSet
• java.util.TreeSet

java.util.concurrent.BlockingDeque

• java.util.concurrent.LinkedBlockingDeque

java.util.Collection

• java.util.concurrent.LinkedTransferQueue
• java.util.concurrent.SynchronousQueue
• java.util.PriorityQueue
• java.util.concurrent.CopyOnWriteArraySet
• java.util.concurrent.LinkedBlockingQueue
• java.util.TreeSet
• java.util.concurrent.ConcurrentLinkedDeque
• java.util.Stack
• java.util.concurrent.PriorityBlockingQueue
• java.util.ArrayList
• java.util.HashSet
• java.util.concurrent.ArrayBlockingQueue
• java.util.Vector
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• java.util.concurrent.ConcurrentSkipListSet
• java.util.concurrent.LinkedBlockingDeque
• java.util.concurrent.DelayQueue
• java.util.ArrayDeque
• java.util.LinkedList
• java.util.LinkedHashSet
• java.util.concurrent.ConcurrentLinkedQueue
• java.util.concurrent.CopyOnWriteArrayList

java.util.concurrent.ConcurrentNavigableMap

• java.util.concurrent.ConcurrentSkipListMap

java.util.Set

• java.util.HashSet
• gnu.trove.set.hash.THashSet
• java.util.concurrent.ConcurrentSkipListSet
• org.apache.commons.collections4.set.ListOrderedSet
• java.util.concurrent.CopyOnWriteArraySet
• java.util.TreeSet
• java.util.LinkedHashSet
• gnu.trove.set.hash.TCustomHashSet

java.util.concurrent.BlockingQueue

• java.util.concurrent.ArrayBlockingQueue
• java.util.concurrent.LinkedTransferQueue
• java.util.concurrent.SynchronousQueue
• java.util.concurrent.LinkedBlockingDeque
• java.util.concurrent.DelayQueue
• java.util.concurrent.LinkedBlockingQueue
• java.util.concurrent.PriorityBlockingQueue

java.util.NavigableSet

• java.util.concurrent.ConcurrentSkipListSet
• java.util.TreeSet

java.util.Deque

• java.util.concurrent.LinkedBlockingDeque
• java.util.ArrayDeque
• java.util.LinkedList
• java.util.concurrent.ConcurrentLinkedDeque
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java.util.concurrent.TransferQueue

• java.util.concurrent.LinkedTransferQueue

java.util.NavigableMap

• java.util.concurrent.ConcurrentSkipListMap
• java.util.TreeMap

java.util.concurrent.ConcurrentMap

• java.util.concurrent.ConcurrentSkipListMap
• java.util.concurrent.ConcurrentHashMap

java.util.List

• org.apache.commons.collections4.list.TreeList
• java.util.Vector
• org.apache.commons.collections4.list.NodeCachingLinkedList
• org.apache.commons.collections4.list.CursorableLinkedList
• java.util.LinkedList
• org.apache.commons.collections4.list.GrowthList
• java.util.Stack
• java.util.ArrayList
• java.util.concurrent.CopyOnWriteArrayList
• org.apache.commons.collections4.ArrayStack

java.util.Map

• org.apache.commons.collections4.map.SingletonMap
• org.apache.commons.collections4.map.Flat3Map
• org.apache.commons.collections4.map.LinkedMap
• java.util.concurrent.ConcurrentHashMap
• org.apache.commons.collections4.map.LRUMap
• org.apache.commons.collections4.map.ListOrderedMap
• java.util.HashMap
• org.apache.commons.collections4.map.HashedMap
• org.apache.commons.collections4.map.ReferenceMap
• org.apache.commons.collections4.map.CaseInsensitiveMap
• gnu.trove.map.hash.TCustomHashMap
• java.util.LinkedHashMap
• org.apache.commons.collections4.map.PassiveExpiringMap
• java.util.concurrent.ConcurrentSkipListMap
• org.apache.commons.collections4.map.StaticBucketMap
• java.util.TreeMap
• gnu.trove.map.hash.THashMap
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• java.util.Hashtable
• java.util.WeakHashMap
• org.apache.commons.collections4.map.ReferenceIdentityMap

java.util.Iterable

• java.util.concurrent.LinkedTransferQueue
• java.util.concurrent.SynchronousQueue
• java.util.PriorityQueue
• java.util.concurrent.CopyOnWriteArraySet
• java.util.concurrent.LinkedBlockingQueue
• java.util.TreeSet
• java.util.concurrent.ConcurrentLinkedDeque
• java.util.Stack
• java.util.concurrent.PriorityBlockingQueue
• java.util.ArrayList
• java.util.HashSet
• java.util.concurrent.ArrayBlockingQueue
• java.util.Vector
• java.util.concurrent.ConcurrentSkipListSet
• java.util.concurrent.LinkedBlockingDeque
• java.util.concurrent.DelayQueue
• java.util.ArrayDeque
• java.util.LinkedList
• java.util.LinkedHashSet
• java.util.concurrent.ConcurrentLinkedQueue
• java.util.concurrent.CopyOnWriteArrayList

java.util.Queue

• java.util.concurrent.LinkedTransferQueue
• java.util.concurrent.SynchronousQueue
• java.util.PriorityQueue
• java.util.concurrent.LinkedBlockingQueue
• java.util.concurrent.ConcurrentLinkedDeque
• java.util.concurrent.PriorityBlockingQueue
• java.util.concurrent.ArrayBlockingQueue
• org.apache.commons.collections4.queue.CircularFifoQueue
• java.util.concurrent.LinkedBlockingDeque
• java.util.concurrent.DelayQueue
• java.util.ArrayDeque
• java.util.LinkedList
• java.util.concurrent.ConcurrentLinkedQueue
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java.util.SortedMap

• java.util.concurrent.ConcurrentSkipListMap
• java.util.TreeMap

Loop�ip

<loop > ::= ’for(’ <initialization > ’;’

<condition > ’;’ <update > ’)’ ’{’

(<statement >)* ’}’

<initialization > ::= <identifier >

’=’ <expression >

<condition > ::= <identifier >

<binary_operator > <expression >

<binary_operator > ::= ’<’ |

’<=’ | ’>’ | ’>=’

<update > ::= <identifier > ’=’

<identifier > <operator > <expression >

<operator > ::= ’+’ | ’-’

We extends update statements such as i++ into i = i + 1 and i -= 2 into i 

= i - 2

comp ∈ {<,>,≥,≤}, op ∈ {+,−}

a,∀a ∈ {<,>,≥,≤} ∪ {+,−}

⎧
⎪
⎨
⎪
⎩

>,≥ ↦ ≤

<,≤ ↦ ≥

+ ↦ −

− ↦ +

ForL

comp ∈ {≥, ≤} ∧ |iend − i0| ≡ 0 (mod p)

(ForL(i = i0i comp iendi = i op p) → (ForL(i = iendi comp i0i = i op p)

ForL

comp ≥{∈� , ≤} ∨ ¬(|iend − i0| ≡ 0 (mod p))

(ForL(i = i0i comp iendi = i op p) → (ForL(i = iend op (|iend − i0| (mod p))i comp i0i = i op p)
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