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Brownian motion and normal distribution have been widely used in the Black–Scholes

option-pricing framework to model the return of assets. However, two puzzles emerge

from many empirical investigations: the leptokurtic feature that the return distribution of

assets may have a higher peak and two (asymmetric) heavier tails than those of the normal

distribution, and an empirical phenomenon called “volatility smile” in option markets. To

incorporate both of them and to strike a balance between reality and tractability, this paper

proposes, for the purpose of option pricing, a double exponential jump-diffusion model.

In particular, the model is simple enough to produce analytical solutions for a variety of

option-pricing problems, including call and put options, interest rate derivatives, and path-

dependent options. Equilibrium analysis and a psychological interpretation of the model are

also presented.

(Contingent Claims; High Peak; Heavy Tails; Interest Rate Models; Rational Expectations; Overre-

action and Underreaction)

1. Introduction
Despite the success of the Black–Scholes model based

on Brownian motion and normal distribution, two

empirical phenomena have received much attention

recently: (1) the asymmetric leptokurtic features—in

other words, the return distribution is skewed to the

left, and has a higher peak and two heavier tails than

those of the normal distribution, and (2) the volatility

smile. More precisely, if the Black–Scholes model is

correct, then the implied volatility should be constant.

In reality, it is widely recognized that the implied

volatility curve resembles a “smile,” meaning it is a

convex curve of the strike price.

Many studies have been conducted to mod-

ify the Black–Scholes model to explain the two

empirical phenomena. To incorporate the asymmet-

ric leptokurtic features in asset pricing, a variety

of models have been proposed:1 (a) chaos theory,

1Although most of the studies focus on the leptokurtic features

under the physical measure, it is worth mentioning that the

leptokurtic features under the risk-neutral measure(s) lead to the

“volatility smiles” in option prices.

fractal Brownian motion, and stable processes; see, for

example, Mandelbrot (1963), Rogers (1997), Samorod-

nitsky and Taqqu (1994); (b) generalized hyperbolic

models, including log t model and log hyperbolic

model; see, for example, Barndorff-Nielsen and

Shephard (2001), Blattberg and Gonedes (1974);

(c) time-changed Brownian motions; see, for exam-

ple, Clark (1973), Madan and Seneta (1990), Madan

et al. (1998), and Heyde (2000). An immediate prob-

lem with these models is that it may be difficult to

obtain analytical solutions for option prices. More

precisely, they might give some analytical formulae

for standard European call and put options, but any

analytical solutions for interest rate derivatives and

path-dependent options, such as perpetual American

options, barrier, and lookback options, are unlikely.

In a parallel development, different models are

also proposed to incorporate the “volatility smile” in

option pricing. Popular ones include: (a) stochastic

volatility and ARCH models; see, for example, Hull

and White (1987), Engle (1995), Fouque et al. (2000);

(b) constant elasticity model (CEV) model; see,
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for example, Cox and Ross (1976), and Davydov

and Linetsky (2001); (c) normal jump models pro-

posed by Merton (1976); (d) affine stochastic-volatility

and affine jump-diffusion models; see, for example,

Heston (1993), and Duffie et al. (2000); (e) models

based on Lévy processes; see, for example, Geman

et al. (2001) and references therein; (f) a numerical

procedure called “implied binomial trees”; see, for

example, Derman and Kani (1994) and Dupire (1994).

Aside from the problem that it might not be easy

to find analytical solutions for option pricing, espe-

cially for path-dependent options (such as perpet-

ual American options, barrier, and lookback options),

some of these models may not produce the asymmet-

ric leptokurtic feature (see §2.3).

The current paper proposes a new model with

the following properties: (a) It offers an explana-

tion for two empirical phenomena—the asymmetric

leptokurtic feature, and the volatility smile (see §§3

and 5.3). (b) It leads to analytical solutions to many

option-pricing problems, including European call and

put options (see §5); interest rate derivatives, such

as swaptions, caps, floors, and bond options (see

§5.3 and Glasserman and Kou 1999); path-dependent

options, such as perpetual American options, bar-

rier, and lookback options (see §2.3 and Kou and

Wang 2000, 2001). (c) It can be embedded into a ratio-

nal expectations equilibrium framework (see §4). (d) It

has a psychological interpretation (see §2.2).

The model is very simple. The logarithm of the

asset price is assumed to follow a Brownian motion

plus a compound Poisson process with jump sizes

double exponentially distributed. Because of its sim-

plicity, the parameters in the model can be easily

interpreted, and the analytical solutions for option

pricing can be obtained. The explicit calculation is

made possible partly because of the memoryless

property of the double exponential distribution.

The paper is organized as follows. In §2, the model

is proposed, is evaluated by four criteria, and is com-

pared with other alternative models. Section 3 studies

the leptokurtic feature. A rational expectations equi-

librium justification of the model is given in §4. Some

preliminary results, including the Hh functions, are

given in §5.1. Formulae for option-pricing problems,

including options on futures, are provided in §5.2.

The “volatility smiles” phenomenon is illustrated in

§5.3. The final section discusses some limitations of

the model.

2. The Model

2.1. The Model Formulation

The following dynamic is proposed to model the asset

price, S�t�, under the physical probability measure P:

dS�t�

S�t−�
= �dt+� dW�t�+d

(
N�t�∑
i=1

�Vi−1�

)
� (1)

where W�t� is a standard Brownian motion, N�t� is

a Poisson process with rate , and �Vi� is a sequence

of independent identically distributed (i.i.d.) nonneg-

ative random variables such that Y = log�V � has an

asymmetric double exponential distribution2� 3 with

the density

fY �y� = p ·�1e
−�1y1�y≥0�+ q ·�2e

�2y1�y<0��

�1 > 1��2 > 0�

where p� q ≥ 0, p+q = 1, represent the probabilities of

upward and downward jumps. In other words,

log�V �= Y
d=
{
�+, with probability p

−�−, with probability q

}
� (2)

where �+ and �− are exponential random variables

with means 1/�1 and 1/�2, respectively, and the nota-

tion
d= means equal in distribution. In the model,

all sources of randomness, N�t�, W�t�, and Y s, are

assumed to be independent, although this can be

relaxed, as will be suggested in §2.2. For notational

simplicity and in order to get analytical solutions

for various option-pricing problems, the drift � and

the volatility � are assumed to be constants, and

the Brownian motion and jumps are assumed to be

2 If �1 = �2 and p= 1/2, then the double exponential distribution is

also called “the first law of Laplace” (proposed by Laplace in 1774),

while the “second law of Laplace” is the normal density.
3 Ramezani and Zeng (1999) independently propose the same jump-

diffusion model from an econometric viewpoint as a way of

improving the empirical fit of Merton’s normal jump-diffusion

model to stock price data.
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one dimensional. These assumptions, however, can be

easily dropped to develop a general theory.

Solving the stochastic differential equation (1) gives

the dynamics of the asset price:

S�t�= S�0�exp

{(
�− 1

2
�2

)
t+�W�t�

}N�t�∏
i=1

Vi� (3)

Note that E�Y �= p

�1
− q

�2
, Var�Y �= pq� 1

�1
+ 1

�2
�2+ � p

�21
+

q

�22
�, and

E�V � = E�eY �

= q
�2

�2+1
+p

�1

�1−1
� �1 > 1� �2 > 0� (4)

The requirement �1 > 1 is needed to ensure that

E�V � < � and E�S�t�� < �; it essentially means that

the average upward jump cannot exceed 100%, which

is quite reasonable.

There are two interesting properties of the dou-

ble exponential distribution that are crucial for the

model. First, it has the leptokurtic feature; see Johnson

et al. (1995). As will be shown in §3, the leptokur-

tic feature of the jump size distribution is inherited

by the return distribution. Secondly, a unique fea-

ture (also inherited from the exponential distribution)

of the double exponential distribution is the memo-

ryless property. This special property explains why

the closed-form solutions for various option-pricing

problems, including barrier, lookback, and perpet-

ual American options, are feasible under the dou-

ble exponential jump-diffusion model while it seems

impossible for many other models, including the nor-

mal jump-diffusion model (Merton 1976); see §2.3 for

details.

2.2. Evaluating the Model

Because essentially all models are “wrong” and rough

approximations of reality, instead of arguing the

“correctness” of the proposed model I shall evalu-

ate and justify the double exponential jump-diffusion

model by four criteria.

1. A model must be internally self-consistent. In

the finance context, it means that a model must be

arbitrage-free and can be embedded in an equilibrium

setting. Note that some of the alternative models may

have arbitrage opportunities, and thus are not self-

consistent (to give an example, it is shown by Rogers

1997 that models using fractal Brownian motion may

lead to arbitrage opportunities). The double exponen-

tial jump-diffusion model can be embedded in a ratio-

nal expectations equilibrium setting; see §4.

2. A model should be able to capture some impor-

tant empirical phenomena. The double exponential

jump-diffusion model is able to reproduce the lep-

tokurtic feature of the return distribution (see §3)

and the “volatility smile” observed in option prices

(see §5.3). In addition, the empirical tests performed

in Ramezani and Zeng (1999) suggest that the double

exponential jump-diffusion model fits stock data bet-

ter than the normal jump-diffusion model. Andersen

et al. (1999) demonstrate empirically that, for the S&P

500 data from 1980–1996, the normal jump-diffusion

model has a much higher p-value (0.0152) than those

of the stochastic volatility model (0.0008) and the

Black–Scholes model �<10−5�. Therefore, the combina-

tion of results in the two papers gives some empiri-

cal support of the double exponential jump-diffusion

model.4

3. A model must be simple enough to be amenable

to computation. Like the Black–Scholes model, the

double exponential jump-diffusion model not only

yields closed-form solutions for standard call and

put options (see §5), but also leads to a variety

of closed-form solutions for path-dependent options,

such as barrier options, lookback options, and perpet-

ual American options (see §2.3 and Kou and Wang

2000, 2001), as well as interest rate derivatives (see

§5.3 and Glasserman and Kou 1999).

4. A model must have some (economical, physical,

psychological, etc.) interpretation. One motivation for

the double exponential jump-diffusion model comes

from behavioral finance. It has been suggested from

extensive empirical studies that markets tend to have

4However, we should emphasize that empirical tests should not be

used as the only criterion to judge a model good or bad. Empirical

tests tend to favor models with more parameters. However, models

with many parameters tend to make calibration more difficult (the

calibration may involve high-dimensional numerical optimization

with many local optima), and tend to have less tractability. This is

a part of the reason why practitioners still like the simplicity of the

Black–Scholes model.
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both overreaction and underreaction to various good or

bad news (see, for example, Fama 1998 and Barberis

et al. 1998, and references therein). One may interpret

the jump part of the model as the market response

to outside news. More precisely, in the absence of

outside news the asset price simply follows a geo-

metric Brownian motion. Good or bad news arrives

according to a Poisson process, and the asset price

changes in response according to the jump size dis-

tribution. Because the double exponential distribu-

tion5 has both a high peak and heavy tails, it can be

used to model both the overreaction (attributed to the

heavy tails) and underreaction (attributed to the high

peak) to outside news. Therefore, the double expo-

nential jump-diffusion model can be interpreted as an

attempt to build a simple model, within the tradi-

tional random walk and efficient market framework,

to incorporate investors’ sentiment.

Incidently, as a by-product, the model also suggests

that the fact of markets having both overreaction and

underreaction to outside news can lead to the lep-

tokurtic feature of asset return distribution.

2.3. Comparison with Other Models

There are many alternative models that can satisfy at

least some of the four criteria listed above. A main

attraction of the double exponential jump-diffusion

model is its simplicity, particularly its analytical tractabil-

ity for path-dependent options and interest rate derivatives.

Unlike the original Black–Scholes model, many alter-

native models can only compute prices for stan-

dard call and put options, and analytical solutions

for other equity derivatives (such as path-dependent

options) and some most liquid interest rate deriva-

tives (such as swaption, caps, and floors) are unlikely.

Even numerical methods for interest rate derivatives

and path-dependent options are not easy, as the con-

vergence rates of binomial trees and Monte Carlo

simulation for path-dependent options are typically

much slower than those for call and put options (for

a survey, see Boyle et al. 1997).

5 Interestingly enough, the double exponential distribution has been

widely used in mathematical psychology literature, particularly in

vision cognitive studies; see, for example, the list of papers on the

web page of David Mumford at the computer vision group, Brown

University.

This makes it harder to persuade practitioners to

switch from the Black–Scholes model to more realis-

tic alternative models. The double exponential jump-

diffusion model attempts to improve the empirical

implications of the Black–Scholes model while still

retaining its analytical tractability. Below is a more

detailed comparison between the proposed model

and some popular alternative models.

(1) The CEV Model. Like the double exponential

jump-diffusion model, analytical solutions for path-

dependent options (see Davydov and Linetsky 2001)

and interest rate derivatives (e.g., Cox et al. 1985 and

Andersen and Andersen 2000) are available under the

CEV model. However, the CEV model does not have

the leptokurtic feature. More precisely, the return dis-

tribution in the CEV model has a thinner right tail

than that of the normal distribution. This undesirable

feature also has a consequence in terms of the implied

volatility in option pricing. Under the CEV model the

implied volatility can only be a monotone function of

the strike price. Therefore, if the implied volatility is

a convex function (but not necessarily a decreasing

function), as frequently observed in option markets,

the CEV model is unable to reproduce the implied

volatility curve.

(2) The Normal Jump-Diffusion Model. Merton

(1976) was the first to consider a jump-diffusion

model similar to (1) and (3). In Merton’s paper

Y s are normally distributed. Both the double expo-

nential and normal jump-diffusion models can lead

to the leptokurtic feature (although the kurtosis

from the double exponential jump-diffusion model

is significantly more pronounced), implied volatil-

ity smile, and analytical solutions for call and put

options, and interest rate derivatives (such as caps,

floors, and swaptions; see Glasserman and Kou 1999).

The main difference between the double exponen-

tial jump-diffusion model and the normal jump-

diffusion model is the analytical tractability for the

path-dependent options.

Here I provide some intuition to understand why

the double exponential jump-diffusion model can lead

to closed-form solutions for path-dependent options,

while the normal jump-diffusion model cannot. To

price perpetual American options, barrier options,

Management Science/Vol. 48, No. 8, August 2002 1089
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and lookback options for general jump-diffusion pro-

cesses, it is crucial to study the first passage time of

a jump-diffusion process to a flat boundary. When a

jump-diffusion process crosses a boundary sometimes

it hits the boundary exactly and sometimes it incurs

an “overshoot” over the boundary.

The overshoot presents several problems for option

pricing. First, one needs to get the exact distribution

of the overshoot. It is well known from stochastic

renewal theory that this is only possible if the jump

size Y has an exponential-type distribution, thanks to

the special memoryless property of the exponential

distribution. Secondly, one needs to know the depen-

dent structure between the overshoot and the first

passage time. The two random variables are condi-

tionally independent, given that the overshoot is big-

ger than 0, if the jump size Y has an exponential-type

distribution, thanks to the memoryless property. This

conditionally independent structure seems to be very

special to the exponential-type distribution and does

not hold for other distributions, such as the normal

distribution.

Consequently, analytical solutions for the perpet-

ual American, lookback, and barrier options can be

derived for the double exponential jump-diffusion

model. However, it seems impossible to get similar

results for other jump-diffusion processes, including

the normal jump-diffusion model.

(3) Models Based on t-Distribution. The

t-distribution is widely used in empirical studies

of asset pricing. One problem with t-distribution

(or other distributions with power-type tails) as a

return distribution is that it cannot be used in models

with continuous compounding. More precisely, sup-

pose that at time 0 the daily return distribution X has

a power-type right tail. Then in models with continu-

ous compounding, the asset price tomorrow A��t� is

given by A��t� = A�0�eX . Since X has a power-type

right tail, it is clear that E�eX�=�. Consequently,

E�A��t��= E�A�0�eX�=A�0�E�eX�=��

In other words, the asset price tomorrow has an infi-

nite expectation. This paradox holds for t-distribution

with any degrees of freedom, as long as one considers

models with continuous compounding. Furthermore,

if the risk-neutral return also has a power-type right

tail, then the call option price is also infinite:

E
∗��A��t�−K�+�≥ E

∗�A��t�−K�=��

Therefore, the only relevant models with

t-distributed returns are models with discretely com-

pounded returns. However, in models with discrete

compounding, closed-form solutions are in general

impossible.6

(4) Stochastic Volatility Models. The double expo-

nential jump-diffusion model and the stochastic

volatility model complement each other: The stochas-

tic volatility model can incorporate dependent struc-

ture better, while the double exponential jump-

diffusion model has better analytical tractability,

especially for path-dependent options and complex

interest rate derivatives. One empirical phenomenon

worth-mentioning is that the daily return distribu-

tion tends to have more kurtosis than the distribution

of monthly returns. As Das and Foresi (1996) point

out, this is consistent with models with jumps, but

inconsistent with stochastic volatility models. More

precisely, in stochastic volatility models (or essentially

any models in a pure diffusion setting) the kurtosis

decreases as the sampling frequency increases, while

in jump models the instantaneous jumps are indepen-

dent of the sampling frequency.

(5) Affine Jump-Diffusion Models. Duffie et al.

(2000) propose a very general class of affine jump-

diffusion models which can incorporate jumps,

stochastic volatility, and jumps in volatility. Both nor-

mal and double exponential jump-diffusion mod-

els can be viewed as special cases of their model.

However, because of the special features of the

exponential distribution, the double exponential

jump-diffusion model leads to analytical solutions

for path-dependent options, which are difficult for

other affine jump-diffusion models (even numeri-

cal methods are not easy). Furthermore, the dou-

ble exponential model is simpler than general affine

6Another interesting point worth mentioning is that, for a sam-

ple size of 5,000 (20-years-daily data), it may be very difficult to

distinguish empirically the double exponential distribution from

the power-type distributions, such as t-distribution (although it is

quite easy to detect the differences between them and the normal

density).
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jump-diffusion models: It has fewer parameters that

makes calibration easier. The double exponential

jump-diffusion model attempts to strike a balance

between reality and tractability.

(6) Models Based on Lévy Processes (the pro-

cesses with independent and stationary increments).

Although the double exponential jump-diffusion

model is a special case of Lévy processes, because of

the special features of the exponential distribution it

has analytical tractability for path-dependent options

and interest rate derivatives, which are difficult for

other Lévy processes.

3. Leptokurtic Feature
Using (3), the return over a time interval �t is given

by:

�S�t�

S�t�
= S�t+�t�

S�t�
−1

= exp

{(
�− 1

2
�2

)
�t+��W�t+�t�−W�t��

+
N�t+�t�∑
i=N�t�+1

Yi

}
−1�

where the summation over an empty set is taken to

be zero. If the time interval �t is small, as in the case

of daily observations, the return can be approximated

in distribution, ignoring the terms with orders higher

than �t and using the expansion ex ≈ 1+x+x2/2, by

�S�t�

S�t�
≈ ��t+�Z

√
�t+B ·Y � (5)

where Z and B are standard normal and Bernoulli

random variables, respectively, with P�B = 1� = �t

and P�B = 0�= 1−�t, and Y is given by (2).

The density7 g of the right-hand side of (5), being

an approximation for the return �S�t�/S�t�, is plotted

7 The density

g�x� = 1−�t

�
√
�t

$

(
x−��t

�
√
�t

)

+�t

{
p�1e

��2�2
1
�t�/2e−�x−��t��1%

(
x−��t−� 2�1�t

�
√
�t

)

+ q�2e
��2�2

2
�t�/2e�x−��t��2

×%

(
−x−��t+� 2�2�t

�
√
�t

)}
�

in Figure 1 along with the normal density with the

same mean and variance. The parameters are �t =
1 day = 1/250 year, � = 20% per year, � = 15% per

year, = 10 per year, p = 0�30, 1/�1 = 2%, and 1/�2 =
4%. In this case, E�Y �=−2�2%, and SD�Y �= 4�47%. In

other words, there are about 10 jumps per year with

the average jump size −2�2%, and the jump volatil-

ity 4�47%. The jump parameters used here seem to

be quite reasonable, if not conservative, for the U.S.

stocks.

The leptokurtic feature is quite evident. The peak

of the density g is about 31, whereas that of the nor-

mal density is about 25. The density g has heav-

ier tails than the normal density, especially for the

left tail, which could reach well below −10%� while

the normal density is basically confined within −6%.
Additional numerical plots suggest that the feature of

having a higher peak and heavier tails becomes more

pronounced if either 1/�i (the jump size expectations)

or  (the jump rate) increases.

4. Equilibrium for General
Jump-Diffusion Models

Consider a typical rational expectations economy

(Lucas 1978) in which a representative investor

tries to solve a utility maximization problem

maxc E'
∫ �
0
U�c�t�� t� dt), where U�c�t�� t� is the util-

ity function of the consumption process c�t�. There is

an exogenous endowment process, denoted by *�t�,

available to the investor. Also given to the investor is

an opportunity to invest in a security (with a finite

liquidation date T0, although T0 can be very large)

which pays no dividends. If *�t� is Markovian, it can

be shown (see, for example, pp. 484–485 in Stokey

and Lucas 1989) that, under mild conditions, the ratio-

nal expectations equilibrium price (also called the

with

Eg�G� = ��t+

(
p

�1

− q

�2

)
�t�

Varg�G� = � 2�t+
{
pq

(
1

�1

+ 1

�2

)2

+
(

p

�2
1

+ q

�2
2

)}
�t

+
(

p

�1

− q

�2

)2

�t�1−�t��

where $�·� is the standard normal density function.
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Figure 1
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Notes. The first panel compares the overall shapes of the density g and the normal density with the same mean and variance, the second one details the

shapes around the peak area, and the last two show the left and right tails. The dotted line is used for the normal density, and the solid line is used for the

model.

“shadow” price) of the security, p�t�, must satisfy the

Euler equation

p�t�= E�Uc�*�T ��T �p�T � � ℱt�

Uc�*�t�� t�
� ∀T ∈ 't�T0)� (6)

where Uc is the partial derivative of U with respect

to c. At this price p�t�, the investor will never change

his/her current holdings to invest in (either long

or short) the security, even though he/she is given

the opportunity to do so. Instead, in equilibrium the

investor finds it optimal to just consume the exoge-

nous endowment; i.e., c�t�= *�t� for all t ≥ 0.

In this section I shall derive explicitly the implica-

tions of the Euler equation (6) when the endowment

process *�t� follows a general jump-diffusion process

under the physical measure P:

d*�t�

*�t−�
= �1 dt+�1 dW1�t�+d

[
N�t�∑
i=1

�Ṽi−1�

]
� (7)

where the Ṽi ≥ 0 are any independent identically dis-

tributed, nonnegative random variables. In addition,

all three sources of randomness, the Poisson process

N�t�� the standard Brownian motion W1�t�, and the

jump sizes Ṽ � are assumed to be independent.

Although it is intuitively clear that, generally

speaking, the asset price p�t� should follow a similar

jump-diffusion process as that of the dividend pro-

cess *�t�, a careful study of the connection between

the two is needed. This is because p�t� and *�t�

may not have similar jump dynamics (see the remark

after Corollary 1). Furthermore, deriving explicitly the

change of parameters from *�t� to p�t� also provides

some valuable information about the risk premiums

embedded in jump-diffusion models.

The work in this section builds upon and extends

the previous work by Naik and Lee (1990), in which

the special case that Ṽi has a lognormal distribution

is investigated. Another difference is that Naik and

Lee (1990) require that the asset pays continuous div-

idends and there is no outside endowment process,

while here the asset pays no dividends and there is an

outside endowment process. Consequently, the pric-

ing formulae are different even in the case of lognor-

mal jumps.

For simplicity, as in Naik and Lee (1990), I shall

only consider the utility function of the special forms

U�c� t�= e−-t c.

.
if 0<.< 1� and U�c� t�= e−-t log�c� if

.= 0, where - > 0 (although most of the results below

1092 Management Science/Vol. 48, No. 8, August 2002



KOU

A Jump-Diffusion Model for Option Pricing

hold for more general utility functions). Under these

types of utility functions, the rational expectations

equilibrium price of (6) becomes

p�t�= E�e−-T �*�T ��.−1p�T � � ℱt�

e−-t�*�t��.−1
� (8)

Assumption. The discount rate - should be large

enough so that

- >−�1−.��1+
1

2
�2
1 �1−.��2−.�+/

�.−1�
1 �

where the notation /
�a�
1 means /

�a�
1 1= E'�Ṽ �a−1).

As will be seen in Proposition 1, this assumption

guarantees that in equilibrium the term structure of

interest rates is positive.

Proposition 1. Suppose /
�.−1�
1 < �. (1) Letting

B�t�T � be the price of a zero coupon bond with maturity

T , the yield r 1= −�1/�T − t��log�B�t�T �� is a constant

independent of T ,

r = -+ �1−.��1−
1

2
�2
1 �1−.��2−.�

−/
�.−1�
1 > 0� (9)

(2) Let Z�t� 1= ertUc�*�t�� t� = e�r−-�t�*�t��.−1. Then

Z�t� is a martingale under P,

dZ�t�

Z�t−�
= −/

�.−1�
1 dt+�1�.−1� dW1�t�

+d

[
N�t�∑
i=1

�Ṽ .−1
i −1�

]
� (10)

Using Z�t�, one can define a new probability measure P∗:

dP∗/dP 1= Z�t�/Z�0�� Under P∗, the Euler Equation (8)

holds if and only if the asset price satisfies

S�t�= e−r�T−t�
E

∗�S�T � � ℱt�� ∀T ∈ 't�T0)� (11)

Furthermore, the rational expectations equilibrium price of

a (possibly path-dependent) European option, with the pay-

off 3S�T � at the maturity T , is given by

3S�t�= e−r�T−t�
E

∗�3S�T � � ℱt�� ∀ t ∈ '0�T )� (12)

Proof. See Appendix A. �

Given the endowment process *�t�, it must be

decided what stochastic processes are suitable for the

asset price S�t� to satisfy the equilibrium requirement

(8) or (11). I now postulate a special jump-diffusion

form for S�t�,

dS�t�

S�t−�
= �dt+�

{
4dW1�t�+

√
1−42 dW2�t�

}

+d

(
N�t�∑
i=1

�Vi−1�

)
� Vi = Ṽ

5
i � (13)

where W2�t� is a Brownian motion independent of

W1�t�. In other words, the same Poisson process

affects both the endowment *�t� and the asset price

S�t�, and the jump sizes are related through a power

function, where the power 5∈ �−���� is an arbitrary

constant. The diffusion coefficients and the Brownian

motion part of *�t� and S�t�, though, are totally differ-

ent. It remains to determine what constraints should

be imposed on this model so that the jump-diffusion

model can be embedded in the rational expectations

equilibrium requirement (8) or (11).

Theorem 1. Suppose /
�.+5−1�
1 <� and /

�.−1�
1 <�. The

model (13) satisfies the equilibrium requirement (11) if and

only if

� = r+�1�4�1−.�−�/
�.+5−1�
1 − /

�.−1�
1 �

= -+ �1−.�

{
�1−

1

2
�2
1 �2−.�+�1�4

}

−/
�.+5−1�
1 � (14)

If (14) is satisfied, then under P∗,

dS�t�

S�t−�
= r dt−∗

E
∗�Ṽ

5
i −1� dt

+� dW ∗�t�+d

[
N�t�∑
i=1

�Ṽ
5
i −1�

]
� (15)

Here, under P∗, W ∗�t� is a new Brownian motion, N�t� is

a new Poisson process with jump rate ∗ = E�Ṽ .−1
i � =

�/
�.−1�
1 + 1�, and {Ṽi� are independent identically dis-

tributed random variables with a new density under P∗:

f ∗
Ṽ
�x�= 1

/
�.−1�
1 +1

x.−1fṼ �x�� (16)
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Proof. See Appendix A. �

The following corollary gives a condition under

which all three dynamics, *�t� and S�t� under P and

S�t� under P∗, have the same jump-diffusion form,

which is very convenient for analytical calculation.

Corollary 1. Suppose the family � of distributions

of the jump size Ṽ for the endowment process *�t� satisfies

that, for any real numbers a ∈ '0�1� and b ∈ �−����,

Ṽ b ∈ � and const ·xa−1fṼ �x� ∈ � � (17)

where the normalizing constant, const, is �/
�a−1�
1 + 1�−1

(provided that /
�a−1�
1 < �). Then the jump sizes for the

asset price S�t� under P and the jump sizes for S�t� under

the rational expectations risk-neutral measure P∗ all belong

to the same family � .

Proof. Immediately follows from (7), (13), and

(16). �

Condition (17) essentially requires that the jump

size distribution belongs to the exponential family.

It is satisfied if log�V � has a normal distribution or

a double exponential distribution. However, the log

power-type distributions, such as log t-distribution,

do not satisfy (17).

5. Option Pricing
In this section I will compute the rational expectations

equilibrium option-pricing formula (12) explicitly for

the European call and put options. For notational sim-

plicity, I will drop ∗ in the risk-neutral notation, i.e.,

write �1 instead of �∗
1 , etc. To compute (12), one has to

study the distribution of the sum of the double expo-

nential random variables and normal random vari-

ables. Fortunately, this distribution can be obtained

in closed form in terms of the Hh function, a special

function of mathematical physics.

5.1. Hh Functions

For every n ≥ 0, the Hh function is a nonincreasing

function defined by:

Hhn�x� =
∫ �

x
Hhn−1�y�dy = 1

n!

∫ �

x
�t−x�ne−t2/2 dt ≥ 0�

n= 0�1�2� � � � (18)

Hh−1�x� = e−x2/2 =
√
28$�x�� Hh0�x�=

√
28%�−x�9

see Abramowitz and Stegun (1972, p. 691). The Hh

function can be viewed as a generalization of the

cumulative normal distribution function.

The integral in (18) can be evaluated very fast by

many software packages (for example, Mathematica).8

In addition,

Hhn�x� = 2−n/2
√
8e−x2/2

×
{

1F1�
1
2
n+ 1

2
� 1
2
� 1
2
x2�

√
2;�1+ 1

2
n�

−x
1F1�

1
2
n+1� 3

2
� 1
2
x2�

;� 1
2
+ 1

2
n�

}
�

where 1F1 is the confluent hypergeometric function.

A three-term recursion is also available for the Hh

function (see pp. 299–300 and p. 691 of Abramowitz

and Stegun 1972):

nHhn�x�=Hhn−2�x�−xHhn−1�x�� n≥ 1� (19)

Therefore, one can compute all Hhn�x��n ≥ 1, by

using the normal density function and normal dis-

tribution function. The Hh function is illustrated in

Figure 2.

5.2. European Call and Put Options

Introduce the following notation: For any given prob-

ability P, define

<������p��1��29a�T � 1= P�Z�T �≥ a��

where Z�t� = �t + � W�t� +∑N�t�
i=1 Yi�Y has a dou-

ble exponential distribution with density fY �y� ∼ p ·
�1e

−�1y1�y≥0� + q · �2e
y�21�y<0�, and N�t� is a Poisson

process with rate . The pricing formula of the call

option will be expressed in terms of < , which in

turn can be derived as a sum of Hh functions. An

explicit formula for < will be given in Theorem B.1 in

Appendix B.

8A short code (about seven lines) can be downloaded from

the author’s Web page. Note that the integrand in (18) has

a maxima at �x +
√
x2+4n�/2; therefore, to numerically com-

pute the integral, one should split the integral more around the

maxima.
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Figure 2 The Hh Function for n = 1�3�5 with the Steepest Curve for n = 5 and the Flattest Curve for n = 1
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Theorem 2. From (12), the price of a European call

option 9 is given by

3c�0� = S�0�<

(
r+ 1

2
�2−/��� ̃� p̃� �̃1� �̃29

log�K/S�0���T

)

−Ke−rT ·<
(
r− 1

2
�2−/����p��1��29

log�K/S�0���T

)
� (20)

where

p̃ = p

1+ /
· �1

�1−1
� �̃1 = �1−1�

�̃2 = �2+1� ̃= �/+1�� / = p�1

�1−1
+ q�2

�2+1
−1�

The price of the corresponding put option, 3p�0�, can be

obtained by the put-call parity:

3p�0�−3c�0� = e−rT
E

∗��K−S�T ��+− �S�T �−K�+�

= e−rT
E

∗�K−S�T ��= Ke−rT −S�0��

9 To give a numerical example, if �1 = 10��2 = 5�= 1� p= 0�4�� =
0�16� r = 5%� S�0� = 100�K = 98�T = 0�5� then (20) yields the call

price 9.14732. Although in the pricing formula < involves infinite

series, my experience suggests that numerically only the first 10 to

15 terms in the series are needed for most applications.

The result (20) resembles the Black-Scholes for-

mula for a call option under the geometric Brown-

ian motion model, with < taking the place of %. The

proof of Theorem 2 is similar to that of Theorem 3 in

Kou and Wang (2001), hence is omitted.

Now I consider the problem of pricing options on

futures contracts. Assume, for now, that the term

structure of interest rate is flat, and r is a constant.

Then the futures price, F �t�T ∗�, with delivery date T ∗,

is given by F �t�T ∗�= E∗�S�T ∗� � ℱt�= er�T
∗−t�S�t�.

Corollary 2. The price of the European call option on

a futures contract is given by

3c�F �D�F �0�T ∗��T �

=D ·
{
F �0�T ∗�<

(
1

2
�2−/��� ̃� p̃� �̃1� �̃29

log

(
K

F�0�T ∗�

)
�T

)
− K<

(
−1

2
�2−/���

�p��1��29 log

(
K

F�0�T ∗�

)
�T

)}
�

where D= e−rT . The put option can be priced according to

the put-call parity:

3p�F �D�F �0�T ∗��T �−3c� F �D�F �0�T ∗��T �

= e−rT �K−F �0�T ∗���
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Proof. Since �F �T �T ∗� − K�+ = er�T
∗−T��S�T � −

Ke−r�T ∗−T��+, we have

E'e−rT �F �T �T ∗�−K�+)

= er�T
∗−T�

{
S�0�<

(
r+ 1

2
�2−/��� ̃� p̃� �̃1� �̃29

log�Ke−r�T ∗−T�/S�0���T

)

−Ke−r�T ∗−T�e−rT<

(
r− 1

2
�2−/����p�

�1��29 log�Ke
−r�T ∗−T�/S�0���T

)}

= e−rT

{
F �0�T ∗�<

(
r+ 1

2
�2−/��� ̃� p̃� �̃1� �̃29

log�K/F �0�T ∗��+ rT �T

)

−K<

(
r− 1

2
�2−/����p��1��29

log�K/F �0�T ∗��+ rT �T

)}
�

from which the conclusion follows by noting that

P��r + ��T + �W�T� +∑N�T�
i=1 Yi ≥ a + rT � = P��T +

�W�T�+∑N�T�
i=1 Yi ≥ a�. �

Using the fact that for every t ≥ 0, Z�t� converges in

distribution to �t+�W�t� as both �1 →� and �2 →
�, one easily gets the following corollary.

Corollary 3. (1) As the jump size gets smaller and

smaller, the pricing formulae in Theorem 2 and Corollary

2 degenerate to the Black–Scholes formula and Black’s

futures option formula. More precisely, as both �1 → �
and �2 →� while all other parameters remain fixed,

3c�0� → S�0�%�b′+�−Ke−rT%�b′−��

3c� F �0� → e−rT �F �0�T ∗�%�b′+� F �−K%�b′−� F ���

where

b′± 1= log�S�0�/K�+ �r± ��2/2��T

�
√
T

�

b′±� F 1= log�F �0�T ∗�/K�±�2T/2

�
√
T

�

(2) If the jump rate is zero, i.e., = 0, then the pricing

formulae again degenerate to the Black–Scholes and Black’s

futures option formulae, respectively.

Figure 3 Midmarket and Model-Implied Volatilities for Japanese

LIBOR Caplets in May 1998

Notes. The parameters used in the fitted model are: for the two-year caplet

��1� = 3�7� ��2� = 1�8� p= 0�04� 	= 1�4� 
 = 0�21; and for the nine-year caplet

��1� = 2�3� ��2� = 1�8� p = 0�09� 	= 0�2� 
 = 0�09.

5.3. The “Volatility Smile”

To illustrate that the model can produce “implied

volatility smile,” I consider a real data set used first

in Andersen and Andreasen (2000) for two-year and

nine-year caplets in the Japanese LIBOR market as of

late May 1998. Figure 3 shows both observed implied

volatility curves and calibrated implied volatility

curves derived by using the futures option formula

in Corollary 2, with the discount parameter D being

the corresponding bond prices and the underlying

asset being the LIBOR rate. For details of calibration

and the theoretical justification of using the futures

option formula for caplets; see Glasserman and Kou

(1999).

I should emphasize that this example is not meant

to be an empirical test of the model; it only serves as

an illustration to show that the model can produce a

close fit even to a very sharp volatility skew.

6. Limitations of the Model
There are several limitations of the model. First,

one disadvantage of the model is that the pricing

formulae, although analytical, appear quite compli-

cated. This perhaps is not a major problem because
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the Hh function can be computed easily, and what

appears to be lengthy to human eyes might make lit-

tle difference in terms of computer programming, as

long as it is a closed-form solution.

Secondly, a more serious criticism is the difficul-

ties with hedging. Due to the jump part, the mar-

ket is incomplete, and the conventional riskless hedg-

ing arguments are not applicable here. However, it

should be pointed out that the riskless hedging is

really a special property of continuous-time Brownian

motion, and it does not hold for most of the alterna-

tive models. Even within the Brownian motion frame-

work, the riskless hedging is impossible if one wants

to do it in discrete time. For some suggestions about

hedging with jump risk, see, for example, Grünewald

and Trautmann (1996), Merton (1976), and Naik and

Lee (1990).

Finally, just like all models based on Lévy processes,

one empirical observation that the double exponential

jump-diffusion model cannot incorporate is the pos-

sible dependence structure among asset returns (the

so-called “volatility clustering effect”), simply because

the model assumes independent increments. Here a

possible way to incorporate the dependence is to use

some other point process, Ñ �t�� with dependent incre-

ments, to replace the Poisson process N�t�, while still

retaining the independence between the Brownian

motion, the jump sizes, and Ñ �t�. The modified model

no longer has independent increments, yet is simple

enough to produce closed-form solutions, at least for

standard call and put options. However, it seems dif-

ficult to get analytical solutions for path-dependent

options by using the new process Ñ �t� instead

of N�t�.

Acknowledgments
This paper was previously titled “A Jump Diffusion Model for

Option Pricing with Three Properties: Leptokurtic Feature, Volatil-

ity Smile, and Analytical Tractability.” The author is grateful to

an anonymous referee who made many helpful suggestions. The

author also thanks many people who offered insight into this work,

including Mark Broadie, Peter Carr, Gregory Chow, Savas Dayanik,

Paul Glasserman, Lars Hansen, Chris Heyde, Vadim Linetsky, Mike

Staunton, and Hui Wang. This research is supported in part by NSF

grants DMI-9908106 and DMS-0074637.

Appendix A: Derivation of the Rational
Expectations

Proof of Proposition 1.

(1) Since B�T�T �= 1, Equation (8) yields

B�t�T �= e−-�T−t� E��*�T ��
.−1 � ℱt�

�*�t��.−1
� (A1)

Using the facts that

(
*�T �

*�t�

).−1

= exp

{
�.−1�

(
�1−

1

2
� 2
1

)
�T − t�

+�1�.−1��W1�T �−W1�t��

} N�T�∏
i=N�t�+1

Ṽ .−1
i �

E

(
N�T�∏

i=N�t�+1
Ṽ .−1

i

)
=

�∑
j=0

e−�T−t� '�T − t�)j

j! �/
�.−1�
1 +1�j

= exp�/
�.−1�
1 �T − t���

Equation (A1) yields

B�t�T � = exp

[
−�T − t�

{
-− �.−1�

(
�1−

1

2
� 2
1

)

−1

2
� 2
1 �.−1�2−/

�.−1�
1

}]
�

from which (9) follows.

(2) Note that (A1) implies

e−r�T−t� = E�Uc�*�T ��T �/Uc�*�t�� t� � ℱt�� (A2)

which shows that Z�t� is a martingale under P. Furthermore,

(7) and (9) lead to

Z�t� = �*�0��.−1e�r−-�t exp

{
�.−1�

(
�1−

1

2
� 2
1

)
t

+�1�.−1�W1�t�

} N�t�∏
i=1

Ṽ .−1
i

= �*�0��.−1 exp

{{
−1

2
� 2
1 �.−1�2−/

�.−1�
1

}
t

+�1�.−1�W1�t�

} N�t�∏
i=1

Ṽ .−1
i �

from which (10) follows. Now by (8) and (A2),

3S�t� =
E�Uc�*�T ��T �3S�T � � ℱt�

Uc�*�t�� t�
= e−rT

E

{
Z�T�

Z�t�
3S�T � � ℱt

}

= e−rT
E

∗�3S�T � � ℱt�� �

Proof of Theorem 1. The Girsanov theorem for jump-diffusion

processes (see Björk et al. 1997) tells us that under P∗�W ′
1�t� 1=

W1�t�− �1�.− 1�t is a new Brownian motion, and under P∗ the

jump rate of N�t� is ∗ = E�Ṽ .−1
i �= �/

�.−1�
1 +1�� and Ṽi has a new
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density f ∗
Ṽ
�x�= �1/�/

�.−1�
1 +1��x.−1fṼ �x�� Therefore, the dynamics of

S�t� is given by

dS�t�

S�t−�
= �dt+��4dW1�t�+

√
1−42 dW2�t��+�

[
N�t�∑
i=1

�Ṽ
5
i −1�

]

= ��+�1�4�.−1�� dt+��4dW ′
1�t�+

√
1−42 dW2�t��

+�

[
N�t�∑
i=1

�Ṽ
5
i −1�

]
�

Because

E
∗�Ṽ

5
i � =

∫ �

0
x5 1

/
�.−1�
1 +1

x.−1fṼ �x�dx

= 1

/
�.−1�
1 +1

E�Ṽ .+5−1�= /
�.+5−1�
1 +1

/
�.−1�
1 +1

�

we have ∗�E∗�Ṽ
5
i �−1�= �/

�.+5−1�
1 − /

�.−1�
1 �. Therefore,

dS�t�

S�t−�
= ��+�1�4�.−1�+�/.+5−1− /.−1�� dt

−∗�E∗�Ṽ
5
i �−1� dt+��4dW ′

1�t�+
√
1−42 dW2�t��

+�

[
N�t�∑
i=1

�Ṽ
5
i −1�

]
�

Hence, to satisfy the rational equilibrium requirement S�t� =
e−r�T−t�E∗�S�T � � ℱt�� we must have �+ �1�4�.− 1�+ �/.+5−1 −
/.−1� = r� from which (14) follows. If (14) is satisfied, under the

measure P∗, the dynamics of S�t� is given by

dS�t�

S�t−�
= r dt−∗�E∗�Ṽ

5
i �−1� dt+��4dW ′

1�t�+
√
1−42 dW2�t��

+�

[
N�t�∑
i=1

�Ṽ
5
i −1�

]
�

from which (15) follows. �

Appendix B: Derivation of the < Function

B.1. Decomposition of the Sum of Double Exponential

Random Variables

The memoryless property of exponential random variables yields

��+−�− � �+ > �−�
d= �+ and ��+−�− � �+ < �−�

d=−�−� thus leading

to the conclusion that

�+−�− d=
{

�+� with probability �2/��1+�2�

−�−� with probability �1/��1+�2�

}
� (B1)

because the probabilities of the events �+ > �− and �+ < �− are

�2/��1 +�2� and �1/��1 +�2�, respectively. The following proposi-

tion extends (B1).

Proposition B.1. For every n ≥ 1, we have the following

decomposition

n∑
i=1

Yi

d=
{ ∑k

i=1 �
+
i � with probability Pn�k� k = 1�2� � � � �n

−∑k
i=1 �

−
i � with probability Qn�k� k = 1�2� � � � �n

}
� (B2)

where Pn�k and Qn�k are given by

Pn�k =
n−1∑
i=k

(
n−k−1

i−k

)(
n

i

)
·
(

�1

�1+�2

)i−k(
�2

�1+�2

)n−i

piqn−i�

1≤ k ≤ n−1�

Qn�k =
n−1∑
i=k

(
n−k−1

i−k

)(
n

i

)
·
(

�1

�1+�2

)n−i(
�2

�1+�2

)i−k

pn−iqi�

1≤ k ≤ n−1�Pn�n = pn� Qn�n = qn�

and
(
0

0

)
is defined to be one. Here �+

i and �−
i are i.i.d. exponential random

variables with rates �1 and �2, respectively.

As a key step in deriving closed-form solutions for call and

put options, this proposition indicates that the sum of i.i.d. double

exponential random variables can be written, in distribution, as a

(randomly) mixed gamma random variable.10 To prove Proposition

B.1, the following lemma is needed.

Lemma B.1.

n∑
i=1

�+
i −

m∑
j=1

�−
j

d=





k∑
i=1

�i� with prob.

(
�1

�1+�2

)n−k(
�2

�1+�2

)m
·
(
n−k+m−1

m−1

)
�

k = 1� � � � �n

−
l∑

i=1
�i� with prob.

(
�1

�1+�2

)n(
�2

�1+�2

)m−l

·
(
n− l+m−1

n−1

)
�

l = 1� � � � �m





� (B3)

Proof. Introduce the random variables A�n�m� = ∑n
i=1 �i −∑m

j=1 �̃j . Then

A�n�m�
d=
{
A�n−1�m−1�+�+� �2/��1+�2�

A�n−1�m−1�−�−� �1/��1+�2�

}

d=
{
A�n�m−1�� �2/��1+�2�

A�n−1�m�� �1/��1+�2�

}
�

via (B1). Now imagine a plane with the horizontal axis repre-

senting the number of ��+
i � and the vertical axis representing the

number of ��−
j �. Suppose we have a random walk on the integer

lattice points of the plane. Starting from any point �n�m�, n�m≥ 1,

the random walk goes either one step to the left with probability

�1/��1+�2� or one step down with probability �2/��1 +�2�, and

10A result similar to the decomposition (B2) was first discovered

by Shanthikumar (1985), although (B2) gives a more explicit cal-

culation of Pn�k and Qn�k. Furthermore, the proofs are totally dif-

ferent: A combinatorial approach is used here, while the proof in

Shanthikumar (1985) is based on the Laplace transform.
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the random walk stops once it reaches either the horizontal or ver-

tical axis. For any path from �n�m� to �k�0��1≤ k≤ n, it must reach

�k�1� first before it makes a final move to �k�0�. Furthermore, all the

paths going from �n�m� to �k�1� must have exactly n−k lefts and

m− 1 downs, whence the total number of such paths is
(
n−k+m−1

m−1

)
.

Similarly, the total number of paths from �n�m� to �0� l�, 1≤ l ≤m,

is
(
n−l+m−1

n−1

)
. Thus,

A�n�m�
d=





k∑
i=1

�i� with prob.

( �1

�1+�2

)n−k( �2

�1+�2

)m
·
(
n−k+m−1

m−1

)
�

k = 1� � � � �n

−
l∑

i=1
�i� with prob.

( �1

�1+�2

)n( �2

�1+�2

)m−l

·
(
n− l+m−1

n−1

)
�

l = 1� � � � �m





�

and the lemma is proven. �

Proof of Proposition B.1. By the same analogy used in

Lemma B.1 to compute probability Pn�k, 1 ≤ k ≤ n, the probability

weight assigned to
∑k

i=1 �
+
i when we decompose

∑n
i=1 Yi , it is equiv-

alent to consider the probability of the random walk ever reach

�k�0� starting from the point �i�n− i��0 ≤ i ≤ n, with probability

of starting from �i�n− i� being
(
n

i

)
piqn−i. Note that the point �k�0�

can only be reached from points �i� n− i� such that k ≤ i ≤ n− 1,

because the random walk can only go left or down, and stops

once it reaches the horizontal axis. Therefore, for 1 ≤ k ≤ n− 1�

(B3) leads to

Pn�k =
n−1∑
i=k

P�going from �i�n− i� to �k�0�� ·P�starting from �i�n− i��

=
n−1∑
i=k

(
�1

�1+�2

)i−k(
�2

�1+�2

)n−i(
i+ �n− i�−k−1

�n− i�−1

)
·
(
n

i

)
piqn−i

=
n−1∑
i=k

(
n−k−1

n− i−1

)(
n

i

)(
�1

�1+�2

)i−k(
�2

�1+�2

)n−i

piqn−i

=
n−1∑
i=k

(
n−k−1

i−k

)(
n

i

)(
�1

�1+�2

)i−k(
�2

�1+�2

)n−i

piqn−i�

Of course, Pn�n = pn. Similarly, we can compute Qn�k:

Qn�k =
n−1∑
i=k

P�going from �n−i�i� to �0�k��·P�starting from �n−i�i��

=
n−1∑
i=k

(
�1

�1+�2

)n−i(
�2

�1+�2

)i−k(
�n−i�+i−k−1

�n−i�−1

)
·
(

n

n−i

)
pn−iqi

=
n−1∑
i=k

(
n−k−1

i−k

)(
n

i

)(
�1

�1+�2

)n−i(
�2

�1+�2

)i−k

pn−iqi�

with Qn�n = qn. Incidentally, we have also shown that
∑n

k=1�Pn�k +
Qn�k�= 1. �

B.2. Results on Hh Functions

First of all, note that Hhn�x� → 0, as x → �, for n ≥ −1; and
Hhn�x� → �, as x → −�, for n ≥ 1; and Hh0�x� =

√
28%�−x� →√

28, as x→−�. Also, for every n≥−1, as x→�,

lim
x→�

Hhn�x�/

{
1

xn+1 e
−x2/2

}
= 1� (B4)

and as x→−�,

Hhn�x�=O��x�n�� (B5)

Here (B4) follows from Equations (19.14.3) and (19.8.1) in

Abramowitz and Stegun (1972); and (B5) is clearly true for n=−1,
while for n≥ 0 note that as x→−�,

Hhn�x� =
1

n!

∫ �

x
�t−x�ne−t2/2 dt

≤ 2n

n!

∫ �

−�
�t�ne−t2/2 dt+ 2n

n!

∫ �

−�
�x�ne−t2/2 dt =O��x�n��

For option pricing it is important to evaluate the integral

In�c9.�5�*�,

In�c9.�5�*� 1=
∫ �

c
e.xHhn�5x−*�dx� n≥ 0� (B6)

for arbitrary constants .�c, and 5.

Proposition11 B.2. (1) If 5 > 0 and . �= 0, then for all n≥−1,

In�c9.�5�*� = − e.c

.

n∑
i=0

(
5

.

)n−i

Hhi�5c−*�

+
(
5

.

)n+1√28

5
e
.*
5

+ .2

252 %

(
−5c+*+ .

5

)
� (B7)

(2) If 5 < 0 and . < 0, then for all n≥−1�

In�c9.�5�*� = − e.c

.

n∑
i=0

(
5

.

)n−i

Hhi�5c−*�

−
(
5

.

)n+1√28

5
e
.*
5

+ .2

252 %

(
5c−*− .

5

)
� (B8)

Proof. Case 1. 5 > 0 and . �= 0. Since, for any constant . and

n ≥ 0� e.xHhn�5x−*�→ 0 as x →� thanks to (B4), integration by

parts leads to

In = 1

.

∫ �

c
Hhn�5x−*�de.x

= − 1

.
Hhn�5c−*�e.c + 5

.

∫ �

c
e.xHhn−1�5x−*�dx�

11 If 5> 0 and .= 0, then for all n≥ 0� In�c9.�5�*�= 1
5
Hhn+1�5c−

*�. If 5 ≤ 0 and . ≥ 0, then for all n ≥ 0� In�c9.�5�*�=�. If 5= 0

and . < 0, then for all n ≥ 0� In�c9.�5�*� =
∫ �
c
e.xHhn�−*�dx =

Hhn�−*�e.c .
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In other words, we have a recursion, for n ≥ 0� In =
−�e.c/.�Hhn�5c−*�+ �5/.�In−1 with

I−1 =
√
28
∫ �

c
e.x$�−5x+*�dx

=
√
28

5
exp

{
.*

5
+ .2

252

}
%

(
−5c+*+ .

5

)
�

Solving it yields, for n≥−1,

In = − e.c

.

n∑
i=0

(
5

.

)i

Hhn−i�5c−*�+
(
5

.

)n+1

I−1

= − e.c

.

n∑
i=0

(
5

.

)n−i

Hhi�5c−*�

+
(
5

.

)n+1√28

5
exp

{
.*

5
+ .2

252

}
%

(
−5c+*+ .

5

)
�

where the sum over an empty set is defined to be zero.

Case 2. 5 < 0 and . < 0. In this case, we must also have, for

n≥ 0 and any constant .< 0� e.xHhn�5x−*�→ 0 as x→�, thanks

to (B5). Using integration by parts, we again have the same recur-

sion, for n≥ 0� In =−�e.c/.�Hhn�5c−*�+ �5/.�In−1, but with a dif-

ferent initial condition

I−1 =
√
28
∫ �

c
e.x$�−5x+*�dx

= −
√
28

5
exp

{
.*

5
+ .2

252

}
%

(
5c−*− .

5

)
�

Solving it yields (B8), for n≥−1. �

B.3. Sum of Double Exponential and the Normal

Random Variables

Proposition B.3. Suppose {�1� �2� � � � } is a sequence of i.i.d. expo-

nential random variables with rate �> 0, and Z is a normal random vari-

able with distribution N�0�� 2�. Then for every n ≥ 1, we have: (1) The

density functions are given by

fZ+∑n
i=1 �i

�t�= ����n
e����

2/2

�
√
28

e−t�Hhn−1

(
− t

�
+��

)
� (B9)

fZ−∑n
i=1 �i

�t�= ����n
e����

2/2

�
√
28

et�Hhn−1

(
t

�
+��

)
� (B10)

(2) The tail probabilities are given by

P

(
Z+

n∑
i=1

�i ≥ x

)
= ����n

�
√
28

e����
2/2In−1

(
x9−��− 1

�
�−��

)
� (B11)

P

(
Z−

n∑
i=1

�i ≥ x

)
= ����n

�
√
28

e����
2/2In−1

(
x9��

1

�
�−��

)
� (B12)

Proof. Case 1. The densities of Z+∑n
i=1 �i and Z−∑n

i=1 �i� We

have

fZ+∑n
i=1 �i

�t� =
∫ �

−�
f∑n

i=1 �i
�t−x�fZ�x�dx

= e−t���n�
∫ t

−�

ex��t−x�n−1

�n−1�!
1

�
√
28

e−x2/�2�2� dx

= e−t���n�e����
2/2
∫ t

−�

�t−x�n−1

�n−1�!
1

�
√
28

e−�x−�2��2/�2�2� dx�

Letting y = �x−� 2��/� yields

fZ+∑n
i=1 �i

�t� = e−t�e����
2/2�n−1�n

×
∫ t/�−��

−�

�t/� −y−���n−1

�n−1�!
1√
28

e−y2/2 dy

= e����
2/2

√
28

��n−1�n�e−t�Hhn−1�−t/� +����

because �1/�n− 1�!�
∫ a

−��a− y�n−1e−y2/2 dy = Hhn−1�−a�. The deriva-

tion of fZ−∑n
i=1 �i

�t� is similar.

Case 2. P�Z+∑n
i=1 �i ≥ x� and P�Z−∑n

i=1 �i ≥ x�. From (B9), it is

clear that

P

(
Z+

n∑
i=1

�i ≥ x

)
= ����ne����

2/2

�
√
28

∫ �

x
e−t�Hhn−1

(
− t

�
+��

)
dt

= ����ne����
2/2

�
√
28

In−1

(
x9−��− 1

�
�−��

)
�

by (B6). We can compute P�Z−∑n
i=1 �i ≥ x� similarly. �

Theorem B.1. With 8n 1= P�N �T � = n� = e−T �T �n/n! and In in

Proposition B.2, we have

P�Z�T �≥ a� = e���1�
2T/2

�
√
28T

�∑
n=1

8n

n∑
k=1

Pn�k��
√
T�1�

k

× Ik−1

(
a−�T9−�1�−

1

�
√
T
�−��1

√
T

)

+ e���2�
2T/2

�
√
28T

�∑
n=1

8n

n∑
k=1

Qn�k��
√
T�2�

k

× Ik−1

(
a−�T9�2�

1

�
√
T
�−��2

√
T

)

+80%

(
− a−�T

�
√
T

)
�

Proof. By the decomposition (B2),

P�Z�T �≥ a� =
�∑
n=0

8nP

(
�T +�

√
TZ+

n∑
j=1

Yj ≥ a

)

= 80P��T +�
√
TZ ≥ a�

+
�∑
n=1

8n

n∑
k=1

Pn�kP

(
�T +�

√
TZ+

k∑
j=1

�+
j ≥ a

)

+
�∑
n=1

8n

n∑
k=1

Qn�kP

(
�T +�

√
TZ−

k∑
j=1

�−
j ≥ a

)
�

The result now follows via (B11) and (B12) for �1 > 1 and

�2 > 0. �
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