
  

 

  

Abstract— We study a version of the Ornstein–Uhlenbeck 

bridge driven by a spectrally-positive subordinator. Our 

formulation is based on a Linear-Quadratic control subject to a 

singular terminal condition. The Ornstein–Uhlenbeck bridge, 

we develop, is written as a limit of the obtained optimally 

controlled processes, and is shown to admit an explicit 

expression. Its extension with self-excitement is also considered. 

The terminal condition is confirmed to be satisfied by the 

obtained process both analytically and numerically. The 

methods are also applied to a streamflow regulation problem 

using a real-life dataset. 

I. INTRODUCTION 

A. Study Background 

The Ornstein-Uhlenbeck (OU) process is a stochastic 
process with applications in various fields ranging from 
mathematical finance to physical sciences. It is a 
mean-reverting process which tends to drift toward a certain 
value (mean), particularly applicable in modelling asset prices 
in financial markets. The most classical and well-known OU 
process is the one driven by standard Brownian motion. 
However, because the OU process – which belongs to the 
class of affine processes – has various analytical properties, its 
generalizations and extensions are often tractable. The 
continuous-state branching process with immigration (CBI 
process) [1] can be seen as an extension of the OU process 
with self-exciting behaviors. These processes have been 
applied in a variety of industrial problems such as currency 
option pricing [2], evaluation of power markets [3], and water 
environmental assessment [4]. 

In this paper, we are interested in a (stochastic) bridge 
version of the OU process, or a modification of the OU 
process obtained by imposing a constrained terminal condition 
so that it ends at some given value at some prespecified time. 
The most classical stochastic bridge is the Brownian bridge, or 
a Brownian motion conditioned to satisfy the terminal 
constraint [5], and there also exist several examples of bridges 
obtained from other Gaussian processes. In general, a 
stochastic bridge is not unique and there are several ways to 
construct it. For example, Doob’s h-transform is used to 
construct a Brownian bridge [6], whereas a 
Brownian-motion-driven OU bridge was obtained through a 
stochastic control approach [7]. The process obtained in the 
latter has been applied in a wide variety of research fields 
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owing to their analytical tractability, such as statistical 
inference [8], commodity pricing [9], error analysis of 
stochastic partial differential equations [10], energy demand 
modeling [11], and quasi-Monte-Carlo methods [12]. A 
time-fractional version of the OU bridge has also been 
discussed in [13]. The OU bridge under additional constraints 
regarding the integrated value of the sample path has been 
analyzed by [14]. However, these papers on OU bridges and a 
majority in the existing literature focus on Gaussian cases; 
results on non-Gaussian OU bridges containing jumps are 
limited. Further, an extension driven by self-exciting 
processes, as we consider in this paper, has not been studied. 

B. Objective and Contribution 

The objective of this paper is to propose and analyze a 
subordinator-driven OU bridge. Contrary to the classical OU 
bridge driven by a Brownian motion, our version admits 
jumps in the process. This paper focuses on the process driven 
by a pure-jump subordinator with non-Gaussian noise, 
relevant to the mathematical modelling of the streamflow 
discharge such as flood control. 

To construct our OU bridge, we impose the terminal 
condition based on a certain finite-horizon linear-quadratic 
(LQ) regulator as in Chen and Georgiou [7]. More specifically, 
an LQ control problem minimizing the expected quadratic 
control cost and terminal cost (L2 norm of the difference 
between the process at the terminal time and the target) is 
firstly formulated, where the penalty of the terminal cost is 
modulated by a parameter. The OU bridge is obtained by 
taking the parameter to infinity. Note that this 
energy-minimization-based construction of a stochastic bridge 
is not, in general, equivalent to that obtained by applying 
Doob’s h-transform [14], which relies heavily on the 
closed-form representation of some conditional probabilities 
that are not available for a general process with jumps. By 
contrast, our approach via LQ control is potentially applicable 
in a wider setting driven by other (affine) processes. 

Because our OU bridge is written as a limit of the 
optimally controlled processes, precise arguments are 
necessary to confirm that the obtained process indeed satisfies 
the terminal condition almost surely (a.s.). This is verified by 
analyzing the growth speed of the control process as it 
approaches the terminal time. Similar control problems 
subject to (possibly stochastic) terminal constraints have been 
studied from the standpoint of the dynamic programming and 
backward stochastic differential equations [15-16] with some 
applications in economics [17-18]. However, the bridges of 
the form developed in this paper have not been studied. 
Various quantities of interest, including moments, can be 
computed efficiently by solving ordinary differential equation 
(ODE) systems obtained in this paper. We further consider a 
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generalization of the OU bridge having a self-exciting jump 
term, which we call the self-exciting (SE) bridge. 

Computational experiments based on a Monte-Carlo 
method are further conducted to demonstrate that our 
theoretical results agree with those computed by Monte Carlo 
simulation for both OU and SE bridges. As their applications 
in the streamflow discharge regulation problem, we calibrate 
the SE bridge using real-life discharge data and compute an 
optimal streamflow when the discharge needs to be 
maintained to be at a level at given terminal time. 

II. ORNSTEIN–UHLENBECK BRIDGE 

A. Ornstein–Uhlenbeck Process 

On a probability space ( , , ) , we define an OU 

process X  as a solution to the linear stochastic differential 
equation (SDE) 

 ( )
0

d d d ,dt tX rX t zN z t
+

= − +   for 0t  , 
0 0X x=  . (1) 

Here, 0r   is a reversion rate and N  is a Poisson random 

measure associated with a (spectrally-positive) subordinator 

whose Lévy measure v  on (0, )  admits the first two 

moments, i.e., ( )
0

: dk

kM z v z
+

=  +  ( 1,2k = ). The SDE 

(1) has a unique strong càdlàg solution defined globally in 
time (Theorem 4.76 of [19]).  

B. Linear-Quadratic Control Problem  

We construct a stochastic bridge in terms of (the limiting 
case of) an LQ control problem. We assume a fixed terminal 
time 1T = without loss of generality; cases with generic 

0T   can be handled by properly scaling parameters. The 

objective is to control the paths of the OU process (1) to satisfy 
the terminal constraint. In other words, we want to construct a 

modification of X , say 
*X , such that 

 *

1
ˆX x=  a.s. (2) 

with a prescribed deterministic constant x̂  . Following [7], 

we consider a parameterized LQ control problem and take 
their certain limit to enforce the terminal condition (2). 

An admissible control u  is an -valued process adapted 

to the filtration generated by the OU process X  with 
1

2

0
dsu s   +

   . It modifies the drift term of (1) and the 

corresponding controlled process 
( )u

X  becomes a solution to 
the SDE 

 
( ) ( )( ) ( )

0
d d d ,d

u u

t t tX rX u t zN z t
+

= − + +   for 0t  , (3) 

starting at 
( )

0 0

uX x= . We consider the minimization problem 

 
( )( )

2 1
2

1
0

1
ˆinf d

2 2

u

s
u

F
X x u s

 
− + 

 
  (4) 

over all admissible controls u . Here, 0F   is a penalization 

parameter of the terminal condition. 

We solve the control problem (4) for each 0F   and then 

consider the limit of the optimally controlled process as 

F → + , for which the constraint (2) is confirmed to hold. 

Fix 0F  . The solution to the control problem (4) can be 

explicitly written in terms of the solution ( ),t x  ( 0 1t  , 

x  ) to the following non-local Hamilton–Jacobi–Bellman 

(HJB) equation 

 

( ) ( )( ) ( )
0

2

, , d

1
inf 0

2u

rx t x z t x v z
t x

u u
x

+



 
− +  + − 

 

 
+ + = 

 


 (5) 

for 0 1t   and x   subject to the terminal condition 

 ( ) ( )
2

ˆ1,
2

F
x x x = −  for x  . (6) 

After solving this, the solution to (4) is given by ( )00, x . 

To solve (5)-(6), we guess a solution of the form 

 ( ) 2

, , ,

1
,

2
t F t F t Ft x A x B x C = + +  for 0 1 and t x    (7) 

for time-dependent deterministic coefficients , , ,, ,t F t F t FA B C  

parameterized by F . A direct substitution of (7) in (5)-(6) 
yields the Riccati equation given by, for 0 1t  ,  

 
, 2

, ,

d
2

d

t F

t F t F

A
A rA

t
= + , (8) 

 ( ),

, , 1 ,

d

d

t F

t F t F t F

B
r A B M A

t
= + − , (9) 

 
, 2

, 1 , 2 ,

d 1 1

d 2 2

t F

t F t F t F

C
B M B M A

t
= − −  (10) 

subject to the terminal conditions 

 1,FA F= , 1,
ˆ

FB Fx= − , 2

1,
ˆ

FC Fx= . (11) 

Hereafter, we set ( ) ( )
1

: 2 0,1q F F r
−

= +  . The optimal 

control, which minimizes (4) when ( )u

tX x=  is given as 

 
( )

( )

2
*

, ,

, : arg min
2

F
u

t F t F

u
u t x u

x

A x B

 
= + 

 

= − +

 (12) 

for 0 1 and t x   , with the solutions ,t FA , ,t FB  to the 

Riccati equation given by 

 
( )( ),

2

exp 2 1
t F

rq
A

r t q
=

− −
, (13) 

 

( )( ) ( )( )( )

( )( )( )
( )( ) ( )( )( )

,

1

1
ˆ

exp 1 1 exp 2 1

2 1 exp 1

exp 1 1 exp 2 1

t F

q
B Fx

r t q r t

qM q r t

r t q r t

−
= −

− − − −

− − −
+

− − − −

. (14) 



  

The optimality of the control given by (12) for the problem 
(4) can be verified rigorously following a classical argument 
since the solution (7) to the HJB equation (5) is smooth and 
grows only quadratically (see, e.g., [Theorem 5.1 of 20]). 

We now take the penalty parameter F → + and study 

the limit *u  of the optimal control *

Fu . Letting F → +  

(and hence 1q → ) in (13)-(14) yields the following 

convergence, uniform in t  on any compact subset of  )0,1 : 

 
( )( ),

2
lim :

exp 2 1 1
t F t

F

r
A A

r t→+
= =

− −
, (15) 

 

( )( )( )

( )( ) ( )( )( )

1

,

ˆ2 1 exp 1

lim :
exp 1 1 exp 2 1

t F t
F

M
r x r t

r
B B

r t r t→+

 
− + − − − 

 
= =

− − − −
. (16) 

As 1t → − , 
tA ,

tB = ( )( )1
1O t

−
− , which is a speed sufficient 

to satisfy the terminal condition, as we confirm in the next 

section. With *

Fu  defined by (12) with ,t FA  and ,t FB  

replaced by (15) and (16), respectively, we consider the 

process *

tX  that solves the SDE 

 ( )( ) ( )* *

1
0

d d d ,dt t t tX r A X B M t zN z t
+

= − + − + +  , (17) 

where ( ) ( ) ( )d ,d d ,d d dN z s N z s v z s= −  is the compensated 

measure of N . This SDE (17) is formally solved as  

 * *

t t tX X Y = +   for 0 1t  , (18) 

where 

 ( )( ) ( )
0 0

: exp d d ,d
t t

t
s

Y r A zN z s 
+

= − +    (19) 

and the mean of *

tX  given by 

 

( )( )
( )( )( )

*

0
0

1
0

exp d

exp d d

t

t s

t t

s
s

X x r A s

r A B M s 

  = − + 

+ − + − +



 
. (20) 

The process 
tY  for 0 1t   is a local martingale. In the next 

section, we show that 
*

tX  satisfies the terminal condition a.s. 

Remark 1 The ODE of 
*

tX    for 0 1t   is given by 

 ( )* *

1

d

d
t t t tX r A X B M

t
   = − + − +    . (21) 

The governing linear ODEs of higher-order moments can be 
obtained by considering the time evolution of suitable 

monomial of 
*X . For example, we have for 0 1t   

 
( ) ( ) ( )

( )

2 2
* *

*

1 2

d
2

d

2

t t t

t t

X r A X
t

B M X M

   = − +
      

 + − + + 

. (22) 

III. ANALYSIS OF THE STOCHASTIC BRIDGE 

This section shows that the obtained process (18) satisfies the 
terminal condition (2) a.s. To this end, we first show the 
convergence of the mean (20) and then use it to show the a.s. 
convergence of (18) as 1t → − . 

A.  Convergence of the expectation 

We prove Proposition 1 which is important on its own and 
is essential to obtain the pathwise convergence (Proposition 
2) in the next sub-section. The proof is technical and is long; a 
more detailed version of the proof is given in the appendix. 

Proposition 1 It follows that 

 *

1
ˆlim t

t
X x

→ −
  =  . (23) 

Proof 

By (15), an elementary calculation yields 

( )( ) ( )( )
( )( )
( )( )

1 exp 2 1
exp d exp

1 exp 2 1

t

s

r t
r A r t s

r s
 

− − −
− + = − −

− − −
 .(24) 

For the sake of brevity, we set 

 ( ) ( )( )( ): exp 1 exp 2 1tK rt r r t= − − − − − . (25) 

We use a series of technical results presented below. Firstly, 

 
( )( )

( )( ) ( )( )( )
1,

0

ˆ2 exp d
ˆd 2

exp 1 1 exp 2 1

t

t s

t t

rx r A

s rxK I
r s r s

 − +

=
− − − −


  (26) 

with 

 

( )

( )( )( )

( )

( ) ( ) ( )

1, 20

exp 2
: d

1 exp 2 1

exp 4 1 1

2 exp 2 exp 2 exp 2 1

t

t

rs
I s

r s

r

r r rt r

=
− − −

 
= − 

− −  


. (27) 

Secondly, 

 

( )( )( ) ( )( )
( )( ) ( )( )( )

1

0

1 2,

2 1 exp 1 exp d

d
exp 1 1 exp 2 1

2

t

t s

t t

M r s r A

s
r s r s

M K I

 − − − − +

− − − −

=


  (28) 

with 

 

( ) ( )( )( )

( )( )( )

( )

( )

( )

( ) ( )

( )

2, 20

exp

1

exp 2 1 exp 1
: d

1 exp 2 1

exp 3 exp1 1 1
ln

4exp exp 2 exp

t

t

rt

rs r s
I s

r s

r r u

r r r u r u

− − −
=

− − −

  +
= +   − +   



. (29) 

Finally, 



  

 ( )( ) ( )1 1 3,
0
exp d d exp

t t

t t
s

r A M s M K r I − + =   (30) 

with 

 

( )

( )( )

( ) ( )

( )

( )

3,
0

exp

1

exp
d

1 exp 2 1

exp exp
ln

2 exp

t

t

rt

rs
I s

r s

r r u

r r u


− − −

  +
=    −   


. (31) 

We then obtain the representation of the mean as 

 
( )

( )( )
( )

( )( )

*

0

1, 1 2, 1 3,

1 exp 2 1
exp

1 exp

ˆ2 2 exp

t

t t t t

r t
X x rt

rt

K rxI M I M r I

− − −
  = −  − −

+ − +

 (32) 

for 0 1t  . By taking the limit 1t → −  using (27), (29), 

and (31), we obtain the following limits: 1,
1

ˆ ˆlim 2 t t
t

rxK I x
→ −

=  

and 2, 3,
1 1

lim lim 0t t t t
t t

K I K I
→ − → −

= = . Consequently,  (23) holds. 

□ 

B. Pathwise Convergence 

We now show that the process 
*X  satisfies the terminal 

constraint of the OU bridge (18).  

Proposition 2 It follows that. 

 *

1
ˆlim t

t
X x

→ −
=     a.s. (33) 

Proof 

By Proposition 1 and (18), it suffices to prove 
2 0tY  →   as 1t → − . Indeed, this together with (19) 

written in terms of the compensated Poisson measure shows 

0 1( )t tY  
 is an 

2L -bounded martingale and thus martingale 

convergence theorem shows 0tY →  a.s. (e.g., Theorem 27.3 

of [21]). For t  close to the terminal time 1, 

( ) ( )( )  ( )exp 1 exp 2 1 1rt r t O t− − − − = − . By the isometry 

(e.g., Problem 9.4 of [22]), we have for 0 1t  , 

( )

( )( )
( )

( )

( )( )

( )
( )( )

2

0 0

2

2
0

2

2
0

exp
d ,d

1 exp 2 1

exp
d

1 exp 2 1

1
exp 2 d

1 exp 2 1

t

t

t

rs
zN z s

r s

rs
M s

r s

M r s
r s

+
  
  
  − − −  

  
 =  

  − − −  

 
  

 − − − 

 





, (34) 

which is ( )( )1
1O t

−
−  as 1t → − . Hence, we obtain, by (34), 

 ( )( ) ( )( )2 12 1 1 0tY O t O t
−

  = −  − →   (35) 

as 1t → − . Therefore, we obtain 0tY →  a.s. and together 

with Proposition 1, we arrive at (23).  
□ 

Remark 2 The theoretical approach in this section carries over 
to jump processes having bounded variations, but it is not 
straightforward to extend it to the case driven by jumps of 
unbounded variation. In particular, the first moment of jumps is 
not well-defined for the case of unbounded variation. 
Importantly, the positivity of jumps is essential for the SE 
bridge presented later. 

C. Self-exciting Bridge 

We now extend the results to study, what we call the SE 

bridge. We consider an SDE with the initial condition 
0x   

and for 0t  , given by 

 ( )
 max 1 ,0

0 0
d d d ,d ,d

tpX

t tX rX t zM z w t
−+ +

= − +    (36) 

with 0p   and a Poisson random measure M  whose 

compensator is ( )d d dv z w t for the same Lévy measure v  on 

(0, )+  as in that for the OU process. Its self-exciting feature 

is captured by the frequency of positive jumps proportional to 
the current size of the process. The SDE (36) admits a unique 
strong càdlàg solution by Theorems 2.3 (i), 3.1, and 2.8 (i) of 
[23]. The SDE (36) reduces to (1) if 0p = . The process X  

governed by (36) remains non-negative if 
0 0X   and hence 

the max operator in (36) is superficious, but we leave it for the 
SE bridge constructed below, to make sense.  

Now we consider the minimization problem (4) as in the 
OU case where the controlled process is given by 

( ) ( )( ) ( )
( ) max 1 ,0

0 0
d d d ,d ,d

u
tpXu u

t t tX rX u t zM z w t
−+ +

= − + +    (37) 

for 0t   and ( )
0 0

u
X x= . The objective is again to compute 

the optimal control to minimize (4) for each 0F  . 

Fix 0F  . The solution to the LQ control becomes 

( )00, x where   solves the HJB equation 

 

  ( ) ( )( ) ( )

2

0

1
inf

2

max 1 ,0 , , d 0

u
rx u u

t x x

px t x z t x v z



+

   
− + + 

   

+ +  + −  =

 (38) 

for 0 1 and t x    subject to the terminal condition (6). 

The solution to (38) fails to be of the quadratic form (7), but a 

modification of (38) with  max 1 ,0px+  replaced by 1 px+  

can be solved analytically. The solution of the modified HJB 
equation is of the form (7), in terms of the Riccati equation of 

the form (8)-(11) with r  replaced by R  and 1M  in (9) by m , 

where 1:R r pM= −  and 1 2: / 2m M pM= + .This modified 

version is expected to approximate the exact solution of (38) 
when 0p   is small. After taking the limit F → + , we 

arrive at the coefficients ,t tA B  with r  replaced by R  and 

1M  in (9) by m , which enables us to obtain the LQ regulator 



  

of the form (12) explicitly. We then obtain (the 
approximation of the) SE bridge given by 

 
( )( )

( )
 *

* *

max 1 ,0

0 0

d d

d ,d ,d
t

t t t t

pX

X R A X B t

zM z w t
−+ +

= − + −

+ 
. (39) 

Remark 3 If the controlled process 
*X  is larger than 1p−−  

throughout time interval [0,1]  a.s., then the max operator in 

(36) becomes superficious and the constructive argument of 
the bridge applies without approximations. This condition is 

non-trivial a priori due to the possible positivity of 
tB  near 

the terminal time. We computationally see in the next section 
that this pathwise non-negative property is satisfied when 

0p   is small. 

IV. COMPUTATIONAL EXPERIMENTS 

A. Numerical Method 

We verify the analytical results obtained in the previous 
sections via a Monte-Carlo simulation using the classical 
Euler–Maruyama discretization scheme with the fixed step 

size 1/ 200,000t =  and 200,000 sample paths. Random 

numbers for the jump noises are generated by the Mersenne 
Twister [24]. The ODEs governing the first- and second-order 
moments ((21) and (22) in Remark 1) of the bridges are 
computed numerically by the classical forward 
finite-difference Euler discretization scheme with the same 
step size, sufficiently small to achieve accurate 
approximation. Below, we use two cases for the Lévy 
measure v : finite activity case (a compound Poisson case) 

and infinite activity case. 

B. Computational Results 

We set 
0

ˆ 0x x= = . Fig. 1 shows sample paths of the OU 

( 0p = ) and SE bridges ( 2p = ) driven by a compound 

Poisson process with ( ) ( )d 2exp 50 dv z z z= −  for 0z   and 

the reversion rate 10r = . As observed in Fig. 1, the SE 

bridge involves more clustered jumps due to its self-exciting 
mechanism. We evaluated the error of the terminal condition 

*

1 0X =  using 
200,000

*

1,

1

Err : / 200,000n

n

X
=

=   where *

1,nX  is the 

terminal value of the n th sample path. We obtained Err = 
51.91 10−  for the OU bridge and is Err = 52.01 10−  for SE 

bridge, supporting the a.s. convergence as verified in 
Proposition 2. Moreover, with 2p = , all 200,000 sample 

paths of the SE bridge are valued in 
1( , )p−− + , supporting 

the conjecture in Remark 2. However, our experiment also 
showed that this condition fails when we select a larger value 
of p  such as 6p = . Figs. 2-3 plot the mean and variance of 

the OU and SE bridges computed using the finite-difference 
and Monte-Carlo methods. The differences are almost 
unrecognizable, confirming the obtained analytical results. 
The higher mean and variance in the SE bridge compared to 
the OU counterpart is due to its self-exciting behavior. 

We also apply the SE bridge driven by a subordinator with 
infinite activities for the problem of streamflow regulation. 
We assume a one-month time horizon with 1T =  (month) or 

equivalently 30 (days). The parameter values we use here 
were calibrated using the discharge time series data at the 
Kamiyasuda Station of the Gono River, Hiroshima Prefecture, 
Japan. This station is located at the upstream of the Haidzuka 
Dam for flood control and water supply. The dam is also 
serving as a habitat for the landlocked Ayu Sweetfish 
Plecoglossus altivelis altivelis as a major fishery resource of 
Gono River [25]. Thus, controlling the inflow discharge to the 
dam is vital for regional resource, environmental, and disaster 
management. The one-year hourly discharge data at the 
station (Fig. 4) was obtained from Water Information System 
by Ministry of Land, Infrastructure, Transport and Tourism, 
Japan (http://www1.river.go.jp/). Based on the time series 
data, r  is calibrated by least-squares regression of the 
autocorrelation function to be 15.8 (1/month). By the moment 
matching method under a stationary condition [4] fitted to a 

 

Figure 1.  Sample paths of the OU (red) and SE (blue) bridges driven by a 

compound Poisson process. 

 

Figure 2.  Comparison of the means of the OU (red) and SE bridges (blue) 

between theoretical finite-difference (lines) and Monte-Carlo results 

(circles). 

 

Figure 3.  Comparison of the variances (Var) of the OU (red) and SE 

bridges (blue) between theoretical finite difference (lines) and Monte-Carlo 

results (circles). 

http://www1.river.go.jp/


  

tempered-stable type Lévy measure, we obtained 

( ) ( ) 1.87d 3.23exp 0.031 z dv z z z−= −  and 0.14p = .  

We consider a scenario where the discharge needs to be 
maintained to be moderately high at the terminal time 

( ˆ 4 or 8x = (m3/s)) by implementing a controllable weir at the 

observation station. For Monte-Carlo simulation, the 
infinite-activity jump noise is generated using the 
acceptance-rejection method (Algorithm 0 of [26]). Fig. 5 
plots computed sample paths and the comparison of the mean 
between the finite-difference and Monte-Carlo results, 
justifying the obtained theory even for an infinite activity case. 

All 200,000 sample paths are valued in (0, )+ , and hence, in 

view of Remark 2, the approximation of (38) is practical 
with this choice of p . Err of the terminal condition is almost 

negligible with 45.11 10−  (m3/s) for ˆ 4x = (m3/s) and is 
45.65 10−  (m3/s) for ˆ 8x = (m3/s). 

Fig. 6 shows the coefficients ,A B  of the OU bridge in 

Fig. 2. Similarly, Fig. 7 plots ,A B  of the SE bridge in Fig. 5 

for ˆ 8x =  (m3/s). As shown in these figures, both A and B 

stay near zero in the early state and grow sharply as it 
approaches the terminal time. In particular, from Fig. 7, the 
implication of this is that the streamflow should be controlled 
intensively near the terminal time so that the designed 
terminal condition is met with the energetic optimality. This 
kind of control strategies would be important especially for 
the flood control where the rapid decision-making is required. 
As a function of t , the mean first increases, flattens and then 

increases to satisfy the terminal condition. In other words, the 
obtained SE bridge has a turnpike property [e.g., 28]. The 
streamflow would be stabilized in most of the time horizon. 

In reality, the capacity of control is limited and it makes 
sense to consider a problem with regularization or saturation. 
However, this extension is out of scope of this paper, because 
our objective in this paper is to obtain an explicit solution 
which is easy to implement. Importantly, it is of mathematical 
value to obtain a bridge satisfying the terminal condition. It is 
also noted that this paper also studies the case with relaxed 
condition with finite penalizing parameter F . Nonetheless, 
the extension with regularization or saturation is indeed 
important and hence we leave this extension a future work. 
This requires a completely different, numerical approach 
because the solution to the corresponding HJB equation no 
longer admits a quadratic form. 

 

Figure 4.  Hourly discharge time series data at Kamiyasuda Station. 

 

Figure 5.   Sample paths (black: x̂ =8, grey: x̂ =4) and means of the SE 

bridge between finite difference (blue line: x̂ =8, red line: x̂ =4) and 

Monte-Carlo results (blue circles: x̂ =8, red circles : x̂ =4). 

 

Figure 6.   The coefficients ,A B  for the OU bridge in Figure 2. 

 

Figure 7.   The coefficients ,A B  for the SE bridge for x̂ =8 in Figure 5. 

V. CONCLUSION 

This paper studied subordinator-driven stochastic bridges, 
written in terms of a certain limit of the solution to LQ control 
problems. The terminal condition was confirmed to be 
satisfied both analytically and numerically. There are several 
venues for future work. First, it is of interest to consider 
additional constraints on the maximum and integrated value 
of the path until the terminal time and develop bridges 
satisfying these conditions. This extension is applicable to, 
for example, the control of a dam-reservoir system where the 
water storage level needs to be controlled while satisfying 
several operational constraints. Another direction is to 
consider stochastic bridges driven by more general processes. 
The mathematical framework to construct stochastic bridges 
in this paper is extendible to, for example, multi-dimensional 
and long-memory cases, but the resulting Riccati equation 
will not admit analytical solutions. For these extensions, it is 



  

vital to develop efficient computational methods. 
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Appendix of “A Jump Ornstein–Uhlenbeck Bridge Based on Energy-optimal Control and Its 

Self-exciting Extension” by H. Yoshioka and K. Yamazaki 

 

In this appendix, we prove Proposition 1 in the main text with more technical details. 

 

Proposition 1 It follows that 
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For brevity, we set 

 ( ) ( )( )( ): exp 1 exp 2 1tK rt r r t= − − − − − . (43) 

Then, we have 
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We use a series of technical results presented below. Firstly, 
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Secondly, we have 
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and 
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Finally, we have 
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Consequently, we obtain 
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By taking the limit 1t → −  using (46), (50), (52), we obtain the following limits. Firstly, we 

obtain 
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Similarity, we obtain 
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and 
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Consequently, we obtain the desired result (40).  

□ 


