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A K-ENERGY CHARACTERIZATION
OF EXTREMAL KÄHLER METRICS
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(Communicated by Leslie Saper)

Abstract. We show that for any polarized compact Kähler manifold, the
extremal Kähler metrics that represent the given cohomology class can be
characterized as critical points of a suitably defined K-energy functional.

Let (M,J,Ω) be a polarized Kähler manifold of complex dimension n. Thus,
(M,J) is a complex manifold of Kähler type, and Ω is a cohomology class in H1,1

that can be represented by the Kähler form of a Kähler metric. One may hope to
find a canonical metric that represents Ω by studying critical points of a suitable
Riemannian functional. Since the set Ω+ of Kähler metrics of fixed Kähler class Ω
is parametriced by (an open set of) functions, Calabi [2, 3] proposed the functional

Ω+ −→ R

ω 7→
∫
M

s2
ωdµω.

Here sω and dµω are the scalar curvature and volume form of ω, respectively. Calabi
computed the Euler-Lagrange equation, and showed that the critical metrics of
this functional are those for which the gradient of the scalar curvature is a real-
holomorphic vector field. He called these metrics extremal.

Inspired by the work of Donaldson on Yang-Mills connections on stable bundles,
Mabuchi [7] introduced the K-energy functional on Ω+ for polarized manifolds with
positive first Chern class. The critical points of this functional are Kähler Einstein
metrics, and it has played a significant role in the study of these metrics for this type
of manifolds [1, 4]. The purpose of this note is to show that extremal Kähler metrics
can also be defined as critical points of a functional analogous to the K-energy.

Let G be a maximal compact subgroup of the biholomorphism group of (M,J),
and let g be a Kähler metric on M with Kähler class Ω. Without loss of generality,
we assume that g is G-invariant. We denote by L2

k,G the real Hilbert space of G-
invariant real-valued functions of class L2

k, and consider G-invariant deformations
of this metric preserving the Kähler class:

ω̃ = ω + i∂∂ϕ , ϕ ∈ L2
k+4,G , k > n.(1)

In this expression, the condition k > n ensures that L2
k,G is a Banach algebra,

making the scalar curvature of ω̃ a well-defined function in the space.
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Recall that C⊗ TM decomposes into the ±i-eigenspaces of J ,

C⊗ TM = T 1,0M ⊕ T 0,1M .

This decomposition induces a splitting of sections of this bundle as vector fields of
type (1, 0) and (0, 1), respectively. In fact, we may express any tensor field in terms
of the corresponding decomposition

⊗rC⊗TM =
⊕

p+q=r

⊗p
T 1,0M⊗

⊗q
T 0,1M .

Given any Kähler metric g̃, a smooth complex-valued function f gives rise to a
vector field of type (1, 0) by the rule f 7→ ∂#f = ∂#

g̃ f , where ∂#
g̃ f := (∂f)# is the

type (1, 0) piece of the gradient of f with respect to g̃. This vector field is not, in
general, holomorphic. For that, we need to require that f satisfies the fourth-order
equation

(∂∂#)∗∂∂#f =
1
4

∆2f +
1
2
r̃µν∇µ∇νf +

1
2

(∇`s̃)∇`f = 0 ,(2)

where the adjoint, Ricci tensor r̃, scalar curvature s̃ and other relevant quantities
are those for the metric g̃.

Every complex-valued solution f of (2) is therefore associated with a holomorphic
vector field Ξ = ∂#f , and since the operator is elliptic, the space of such functions
is finite dimensional. However, since (∂∂#)∗∂∂# is not a real operator, in general,
the real and imaginary part of a solution will not be solutions. It has been proven
elsewhere [6] that if f is a real-valued solution of this equation, then the imaginary
part of ∂#f is a Killing field of g̃, and that a Killing field arises in this way if, and
only if, it has a zero somewhere on the manifold.

Let z ⊂ g denote the center of g, the Lie algebra of G, and let z0 = z∩ g0, where
g0 ⊂ g is the ideal of Killing fields which have zeroes. If g̃ is any G-invariant Kähler
metric on (M,J), then each element of z0 is of the form J gradf for a real-valued
solution of (2). In fact, z0 corresponds to the set of real solutions f which are
invariant under G, since

∂# : ker[(∂∂#
g̃ )∗∂∂g̃]→ h0

is a homomorphism of G-modules. Here, h0 is the ideal of vector fields with zeroes
in the Lie algebra h(M) of the group of biholomorphism of (M,J).

The restriction of ker(∂∂#
g̃ )∗∂∂g̃ to L2

k+4,G depends smoothly on the G-invariant
metric g̃. Indeed, choose a basis {X1, . . . , Xm} for z0, and, for each (1, 1)-form χ
on (M,J), consider the set of functions

p0(χ) = 1,
pj(χ) = 2iG∂

∗
g((JX + iX) χ) , j = 1, . . . ,m,

where G is the Green’s operator of the metric g. If ω̃ is the Kähler form of the
G-invariant metric g̃, then ∂#

g̃ pj(ω̃) = JX+ iX, and the set {pj(ω̃)}m=0 consists of
real-valued functions and form a basis for ker(∂∂#

g̃ )∗∂∂g̃. Furthermore, for metrics
ω̃ as in (1), the map ϕ 7→ pj(ω+ i∂∂ϕ) is, for each j, bounded as a linear map from
L2
k+4,G to L2

k+3,G.
With respect to the fixed L2 inner product, let {f0

ω̃, . . . , f
m
ω̃ } be the orthonormal

set extracted from {pj(ω̃)} by the Gram-Schmidt procedure. We then let

πω̃ : L2
k,G → L2

k,G

u 7→
m∑
j=0

〈f jω̃, u〉L2f jω̃(3)
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denote the associated projector. In fact, by the regularity of the functions {p1, . . . ,
pm}, this projection can be defined on L2

k+j,G for j = 0, 1, 2, 3, and for metrics as
in (1), the map ϕ 7→ πω̃ is smooth from a suitable neighborhood of the origin in
L2
k+4,G to the real Hilbert space End(L2

k+j,G) ∼=
⊗2 L2

k+j,G.
Let us denote by ∧1,1

k,G the space of real forms of type (1, 1), invariant under G
and of class L2

k.

Proposition 1. Given any G-invariant metric g̃, there exists a unique continuous
linear map

Πg̃ : ∧1,1
k+2,G 7→ ∧

1,1
k+2,G ,(4)

which intertwines the trace and the projection map πω̃ in (3), and such that η−Πg̃η

is cohomologous to zero for all η ∈ ∧1,1
k+2,G. For metrics ω̃ as in (1), the map

ϕ 7→ Πω̃ from L2
k+4,G to End(∧1,1

k+2,G) is smooth.

Proof. Let η ∈ ∧1,1
k+2,G. Since Πω̃ η must be of the form η+i∂∂f for some real-valued

function f , the intertwining property of the projection and trace gives that

traceω̃ η −
1
2

∆ω̃f = πω̃ traceω̃ η ,

and so

∆ω̃f = −2(πω̃ − 1)traceω̃η .

The right side of this expression is a G-invariant real-valued function in the com-
plement of the constants. We can then solve the equation for f and obtain a
real-valued solution which is invariant under G. By the continuity properties of the
map πω̃ , for metrics as in (1) the map ϕ 7→ Πω̃ is a smooth map from a suitable
neighborhood of the origin in L2

k+4,G to the real Hilbert space End(∧1,1
k+2,G).

We now adapt ideas of T. Mabuchi [7] to produce another characterization of
extremal Kähler metrics. Mabuchi was interested in the study of Kähler Einstein
metrics on manifolds with positive first Chern class. These metrics have constant
positive scalar curvature, and therefore, are extremal in the sense of Calabi. How-
ever, more generally, an extremal metric on the polarized Kähler manifold (M,J,Ω)
is a Kähler metric that represents the class Ω, and for which the gradient of the
scalar curvature is a real-holomorphic vector field, that is, ∂#

ω sω is a holomorphic
vector field.1 Metrics of constant scalar curvature are extremal, but after Calabi’s
initial result [2], there are now many known examples of extremal metrics which do
not have constant scalar curvature [6].

For the polarized Kähler manifold (M,J,Ω) and maximal compact subgroup G,
we define

MΩ,G = {ω : ω is Kähler, G-invariant and [ω] = Ω} .
Given any two metrics ω0 and ω1 in MΩ,G, there exists a G-invariant function ϕ,
unique modulo constants, such that

ω1 = ω0 + i∂∂ϕ .

1Though our notation doesn’t indicate it, the vector field ∂#
ω πωsω only depends on Ω and not

on the particular metric ω in Ω+ chosen to represent it [5]. If ω is extremal, this vector field

coincides with ∂#
ω sω .
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Let ϕ(t) be a curve of G-invariant functions such that ω(t) = ω0 + i∂∂ϕ(t) ∈MΩ,G

and ω(0) = ω0, ω(1) = ω1. We set

M(ω0, ω1) = −
∫ 1

0

dt

∫
M

ϕ̇(t)(s(t) − π(t)s(t))dµ(t) ,

where s(t) and dµ(t) are the scalar curvature and volume form of the metric ω(t),
π(t) is the projection (3) onto the space of G-invariant holomorphic potentials

associated with this metric, and ϕ̇(t) =
dϕ

dt
(t). We now see how the argument in

[7] adapts to obtain the following

Lemma 1. The definition of M above is independent of the curve t → ϕ(t).
Furthermore, M satisfies the cocycle conditions M(ω0, ω1) = −M(ω1, ω0) and
M(ω0, ω1) +M(ω1, ω2) +M(ω2, ω0) = 0.

Proof. Let ρ(t) be the Ricci form of the metric ω(t). By Proposition 1, the 2n form
(s(t)−π(t)s(t))dµ(t) is equal to 2n(ρ(t)−Π(t)ρ(t))∧ωn−1(t), and therefore closed.
This closed form can be thought of as a closed 1-form on MΩ,G. The definition of
M(ω0, ω1) is nothing but the line integral of this one-form from ω0 to ω1. The rest
of the proof is straightforward.

Fix any Kähler metric ω0 in MΩ,G and define the K-energy function by

µω0 : MΩ,G −→ R
µω0(ω) = M(ω0, ω) .(5)

Proposition 2. Let ωt = ω0 + i∂∂ϕt be a one-parameter family of smooth Kähler
metrics in MΩ,G. Then,

d

dt
µω0(ωt) =

∫
M

∇tϕ̇t(ft)dµt ,

where ft is the function, unique up to a constant, determined by the relation

ρt = Πtρt + i∂∂ft .

Here ρt and Πt are, respectively, the Ricci form and projection (4) associated to ωt.

Proof. By the previous lemma, it follows that

d

dt
µω0(ωt) = −

∫
M

ϕ̇t(st − πtst)dµt .

Using the properties of the projection Πt, we see that the integrand above can be
written as ϕ̇t∆tff . The result is now a consequence of integration by parts.

Theorem 1. Let (M,J,Ω) be a compact polarized Kähler manifold, and G a maxi-
mal compact subgroup of the biholomorphism group of (M,J). A metric is extremal
iff it is a critical point of the K-energy µω0 functional, calculated by fixing an ar-
bitrary reference metric ω0 ∈ MΩ,G. In that case, the identity component of its
isometry group is G.

Of course, by the results of Calabi [3] we know that two extremal metrics, whose
isometries groups have identity components equal to G and G′, are conjugated by
a biholomorphism which conjugates the subgroups G and G′.
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Proof. By the previous proposition, if ω(t) = ω0 + i∂∂ϕ(t) is an arbitrary curve in
MΩ,G such that ω(0) = ω ∈MΩ,G, then

d

dt
µω0(ω(t)) |t=0=

∫
M

∇ωϕ̇(0)(fω)dµω ,

where fω is a function such that

ρω = Πωρω + i∂∂fω .

Thus, ω is a critical point of µω0 if and only if the function fω is a constant. But
then

ρω = Πωρω ,

which implies that ω is extremal [2] because, when computing the contraction with
ω, we obtain

sω = πωsω ,

and so the vector field ∂#
ω sω is holomorphic.

The natural question to ask is if the functional µω0 is proper (in the sense of
Tian [4]), and furthermore, if this leads to an a-priori C0 estimate for the Kähler
potential of an extremal Kähler metric ω̃ = ω0 + i∂∂ϕ in the class Ω. Even if one
assumes the existence of an extremal metric representing this class, it is not clear
how to generalize the argument of Bando and Mabuchi [1] to prove that µω0 is
bounded below. The Monge-Ampère equation that one must solve to deform ω0 to
an extremal metric is given by

det (gı + ϕı)
det (gı)

= e−cϕ+f+G̃(πg̃sg̃−2traceg̃ρ
⊥) .

Here c is a constant whose sign is equal to the sign of the total scalar curvature,
the metric g̃ is given by the Kähler form ω̃ = ω0 + i∂∂ϕ, G̃ is its Green’s operator,
and the Ricci curvature of ω0 is written as ρ0 = cω0 + ρ⊥ + i∂∂f with ρ⊥ a ω0

trace-free harmonic (1,1) form. It remains to be seen what geometric conditions
could lead to the successful analysis of this equation.
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