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Abstract

Cross-validation type of methods have been widely used to facilitate model estimation and 

variable selection. In this work, we suggest a new K-fold cross validation procedure to select a 

candidate ‘optimal’ model from each hold-out fold and average the K candidate ‘optimal’ models 

to obtain the ultimate model. Due to the averaging effect, the variance of the proposed estimates 

can be significantly reduced. This new procedure results in more stable and efficient parameter 

estimation than the classical K-fold cross validation procedure. In addition, we show the 

asymptotic equivalence between the proposed and classical cross validation procedures in the 

linear regression setting. We also demonstrate the broad applicability of the proposed procedure 

via two examples of parameter sparsity regularization and quantile smoothing splines modeling. 

We illustrate the promise of the proposed method through simulations and a real data example.
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1 Introduction

Cross-validation (CV) has been widely used for model selection in regression problems. Its 

theoretical properties and empirical performance have been extensively discussed in the 

literature including the pioneering work of Stone (1974, 1977) and Geisser (1975). Burman 

(1989) studied the properties of leave-one-out CV and K-fold CV procedures. Shao (1993) 

and Rao and Wu (2005) provided theoretical insights and asymptotic theories of model 

selection with a fixed number of variables for linear models. Wong (1983) examined 

consistency of CV in kernel nonparametric regression. Zhang (1993) showed superiority of 

leave-K-out CV over leave-one-out CV in linear regression. Kohavi (1995) assessed the 

performance in terms of model estimation and variable selection at various values of K1 and 

K2 respectively in K1-fold CV and leave-K2-out CV. For robust model selection, Ronchetti 

et al. (1997) suggested a robust loss function to measure the prediction error. Substantial 

practical and theoretical results of traditional and newer CV approaches were summarized in 

a review paper by Arlot and Celisse (2010).

In a typical K-fold CV procedure for a linear model, the data set is randomly and evenly 

split into K parts (if possible). A candidate model is built based on K − 1 parts of the data 
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set, called a training set. Prediction accuracy of this candidate model is then evaluated on a 

test set containing the data in the hold-out part. By respectively using each of the K parts as 

the test set and repeating the model building and evaluation procedure, we choose the model 

with the smallest cross-validation score (typically, the mean squared prediction error MSPE) 

as the ‘optimal’ model. Given p independent variables, there are in total of 2p − 1 possible 

models. In the K-fold CV procedure, each model is in fact evaluated K times. Therefore, a 

single ‘optimal’ model is selected via K(2p − 1) times of model evaluation.

In this work, we propose a new cross-validation procedure with the core idea of first 

choosing K candidate ‘optimal’ models to build the ultimate model. On each training set, the 

2p − 1 models are fitted and the candidate ‘optimal’ model is selected with the smallest 

cross-validation score obtained from the corresponding test set. This procedure is repeated 

on K training and test sets to obtain K candidate ‘optimal’ models. At last, the ultimate 

model is obtained with its parameter estimates as the average values across K candidate 

‘optimal’ models. Therefore, we call the proposed method K-fold averaging cross-validation 

(ACV). Due to the averaging effect, efficiency of the final parameter estimates obtained by 

ACV improves over that of the traditional K-fold CV. We note that parameter estimates of 

CV and ACV are identical when all the candidate ‘optimal’ models from ACV are identical 

to the model selected by the traditional CV.

The proposed ACV procedure is also applicable to high dimensional data to determine the 

amount of penalty imposed by a regularization method, e.g., LASSO (Tibshirani; 1996). In 

fact, the ACV procedure has broad applications as CV to problems wherein regularization 

parameters associated with a penalization method need to be determined. This will be 

demonstrated via an application to smoothing spline based nonparametric modeling (Nychka 

et al.; 1995).

The paper is organized as follows. We describe the explicit expression of the ACV estimator 

and its asymptotic property in linear regression models in Section 2. We discuss the 

connection and distinction between ACV and CV in the applications of LASSO and 

smoothing spline based modeling in Section 3. We illustrate the proposed method through 

simulation studies in Section 4 and through application to a real data set in Section 5. And 

we provide some concluding remarks in Section 6.

2 K-fold averaging cross-validation in a linear model

2.1 Basic setting

Consider a linear model

where Y = (y1, …, yn)′ is the response vector, X = {xij} is an n × p design matrix for the full 

model, and ∊ = (∊1, …, ∊n)′ is a vector of iid random variables with mean 0 and variance 

σ2. We assume that p is fixed. All the observations are divided into K parts such that every 

part is mutually exclusive. Throughout this paper, we assume that K is finite and fixed. In 
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this paper, we consider deterministic predictors, but when X is random, the results are valid 

almost surely if the two assumptions in Section 2.3 and the assumption on ∊ are satisfied 

almost surely for given X.

We use nk to denote the sample size in the kth fold, where . We define Mk as the 

selected model based on the kth hold-out fold (test set), and let its corresponding design 

matrix be Xk with all observations. We further assume that Xk is full rank for any k.

When the kth fold is a test set, a design matrix in the kth fold is defined as Xnk, and the 

design matrix of the corresponding training set is denoted as X−nk. Yk and Y−k are the 

response observations corresponding to Xnk and X−nk, respectively.

The choice of a candidate ‘optimal’ model is made based on the mean squared prediction 

error in the hold-out fold. The Mk can be represented as a subset of {1, …, p}. Let |Mk| be 

the number of elements (or, equivalently the number of independent variables) in Mk. 

Further, let XMK,−nk be the design matrix composed of variables of Mk in the training set 

which has a size of n − nk by |Mk|. And we denote β˜k as an estimator of β with Mk. For 

example, the β˜k obtained from the least squares method can be expressed as 

, which is a length-|Mk| vector.

Since the β˜ks are averaged over k to obtain the ultimate parameter estimates, we need to 

ensure that each of them is of length p. For this purpose, we introduce the transformation 

matrix Tk, which is of size p × |Mk|. Each column vector of Tk is composed of a 1 and (p 
− 1) 0s. For example, if x2 and x4 are selected and p = 6, then Mk = {2,4}, and Tk contains 

two column vectors of (0, 1, 0, 0, 0, 0)′ and (0, 0, 0, 1, 0, 0)′, where the position of 1 in the 

ith column is specified in the ith element of Mk, and the variables not contained in Mk are 

indexed as 0. As a result, the size of β˜k is changed to p via multiplying by Tk. Going back 

to the example, β˜k = (1,2)′ yields Tkβ˜k = (0, 1, 0, 2, 0, 0)′. And Tk also indicates the 

selected model with XTk = Xk.

To measure the discrepancy between the observations and the predicted values, we use a 

squared error loss. The MSPE evaluated with the data Yk can be written as

(1)

where the least squares estimate . Note that 

β−̂nk depends on the variables contained in Mk. Because β̂−nk is not our final estimator, 

convergence of (1) to 0 does not necessarily deduce consistency of the estimator defined in 

(2); whereas it does in the method of leave-nk-out cross-validation described in Zhang 

(1993) and Shao (1993). Rather, we choose Mk or equivalently Xk by minimizing (1), and 

use it to construct the ultimate estimator. The explicit form of the proposed parameter 

estimator based on the least squares method is provided below.

Jung and Hu Page 3

J Nonparametr Stat. Author manuscript; available in PMC 2016 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 A new estimator

In the traditional K-fold CV, a selected model is what produces smallest prediction error 

where the number of predicted values is the same as sample size. That is, K-fold CV selects 

a model which minimizes .

The fundamental distinction of our method is to choose a candidate ‘optimal’ model Xk 

based on the hold-out fold, and then iterate this procedure for k = 1, …, K. Note that the 

model selection at each iteration provides an opportunity to choose different (up to K) 

plausible models, which is not the case in K-fold CV. At last, the K candidate ‘optimal’ 

models are averaged to yield an ultimate model.

The regression coefficient estimator of the model optimally chosen by the kth fold is

where Xk is an n × | Mk| design matrix containing all the n values of the explanatory 

variables in Mk selected by the kth fold according to (1). Note again that Tk is the 

transformation matrix to ensure the length of β̂k to be p. Then, the ultimate estimator of the 

regression coefficients in the K-fold ACV procedure is defined as

(2)

Accordingly, the fitted value of Y by ACV is

Let , then . Since X is deterministic predictors, 

we have,

(3)

Although each Pk is a projection matrix, HACV is not a projection matrix in general. This 

implies that β̂ACV is likely a biased estimator (Hoaglin and Welsch; 1978). However, 

efficiency of the estimator can be substantially gained from averaging. To account for 

variability induced by randomly splitting the data, we repeat the splitting step several times 
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in both CV and ACV procedures. Alternatively, we can use a balanced split. Note that there 

are n!/(n1!n2!⋯nK!) different ways of splitting data. Then, all observations have equal 

probability of being included in the training set and in the test set, thus there is no random 

variation arises from the splitting. In practice, the random variation from the split is 

ignorable, and only a few times of splitting observed to be enough in the simulation studies.

Connection with Bagging—The bootstrap aggregating approach (Bagging) suggested by 

Breiman (1996) is similar to our proposed method in terms of the repeated parameter 

estimation and variable selection steps. The Bagging procedure first generates a sample of 

size n. Based on the generated sample, it performs model selection according to a criterion 

such as K-fold CV and obtains the least squares estimator, . After repeating this 

process B times,  are obtained and averaged to form a final estimate. 

The distinction is that Bagging procedure requires generating bootstrap samples from the 

original data set, while the proposed ACV always use original data set and average only 

‘optimal’ models obtained from each hold-out fold to form a final model.

Connection with BMA—The ACV method also shares some similarity with Bayesian 

model averaging (BMA) (Raftery et al.; 1997) where the posterior distribution of β given 

data D is

where V = 2p − 1. This is a weighted average of the posterior distribution of β, wherein the 

weight corresponds to the posterior model probabilities. Based on this formulation, we can 

view ACV as a special case of BMA by setting Pr(Mυ|D) = 1/K if Mυ ∈{M1, …, MK} and 

Pr(Mυ|D) = 0 otherwise. Thus, we average those ‘optimally’ selected models based on the 

MSPEk defined in (1) with the equal weight, instead of averaging across all 2p − 1 possible 

models as in BMA. In fact, ACV can be modified to obtain the similar form of BMA. We 

define , where β̂k,υ is the estimate of the υth model and its 

corresponding weight is wk,υ. Because we concern finding the smallest MSPEk among 2p 

− 1 possible ones using data in the kth hold-out fold, we use the MSPEk values from the υth 

model, MSPEk,υ, to estimate wk,υ. For example, we can use  that is 

normalized to sum up to 1. Hence, we can build a new version of model averaging as 

. The properties of this model averaging method will not be pursued in this 

work.

Remark: The ACV procedure can be integrated with robust model estimation. For example, 

instead of the mean one may consider using a component-wise median estimation among the 

candidate models. M-estimator (Huber and Ronchetti; 2009) or other types of robust 

estimators can also be used.
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2.3 Theoretical Properties

We denote the true model as M*. A model M can be classified into two categories (Shao; 

1993):

• Category I: M ⊇ M*

• Category II: At least one component of M* is not contained in M.

Now, we introduce the following assumptions:

Assumption A. n/nk → K for all k = 1, …, K.

Assumption B. For Mk in Category II,

Assumption B is adopted from Zhang (1993). Notice that bk is non-zero when Mk is in 

Category II, but becomes zero when Mk is in category I.

We define the mean squared error (MSE) of ACV as

(4)

Note that MSEACV is defined based on the ultimate parameter estimates and uses all the 

explanatory variables, which is different from MSPEk used to select the candidate ‘optimal’ 

model in the hold-out fold k. Using (3), (4) is expressed as

(5)

where In is an identity matrix of size n, and tr(·) is a trace.

Now, let the model chosen by the traditional K-fold CV as Xo. Then, the MSE of the 

traditional K-fold CV (MSECV) is obtained by replacing HACV with the projection matrix of 

Xo.

(6)

Jung and Hu Page 6

J Nonparametr Stat. Author manuscript; available in PMC 2016 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where d = tr(PCV) ≤ p and . Then, it is readily seen that 

 when Xo is in Category I, since the second term on the right-hand 

side (RHS) of equation (6) is 0. When Xo is in Category II, MSECV is dominated by 

, which is greater than 0 by Assumption B.

In Theorem 1, we show that the two estimates chosen by CV and ACV are asymptotically 

equivalent as the sample size increases.

Theorem 1—Let  be a union of Mk for k = 1, …, K. Under Assumptions A 

and B,

a. MSEACV = MSECV + O(n−1) if Mf and Xo are in Category I.

b. MSEACV = MSECV + o(1) if Mf and X0 are in Category II.

Note that the rate of decrease in both MSEACV and MSECV is subject to inclusion of the true 

model. This implies that inclusion of the true model will determine the asymptotic behavior 

of ACV and CV, even though the two sets of parameter estimates are asymptotically 

equivalent.

Remark: Some existing work use a slightly different but more realistic definition of MSE, 

since β is unknown in practice, which can be written as 

 and 

 Using this definition, we can derive the same 

asymptotic equivalence of β̂ACV and β̂CV.

Now, we show the reduced variance of β̂ACV under the finite sample.

Lemma 1—Under the setting in Section 2.1, we have

The inequality holds when βk̂s are all identical.

This implies that the variance of β̂ACV is smaller than β̂CV (as  measures the 

volume of Ak) due to the averaging effect except for the case when βk̂s are all identical. 

Under our empirical experiments in Section 4, the magnitude of the reduced variance tends 

to be larger than the allowed bias, thus results in more accurate model selection by ACV. 

This indicates the proposed method could take advantage of bias-variance tradeoff.
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3 Integration of ACV with other methods

Lasso penalization

we introduce some applications of ACV beyond the traditional linear regression problem 

with a fairly small p as discussed in Section 2. When the number of variables p is large, it is 

impractical to fit all 2p − 1 models. Rather, we use a penalization method such as LASSO 

(Tibshirani; 1996), which is widely used for handling high-dimensional data. Such 

penalization methods convert a model selection problem to controlling the amount of 

regularization applied to the parameter estimates. Specifically, LASSO is defined as

Because λ takes a real number in [0, ∞), we cannot consider all the possible models. We 

examine some candidate values of λ in a reasonable range. With K-fold CV, a λ̂
CV that 

produces the smallest cross validated score is claimed as ‘optimal.’

In this case, ACV intends to select K candidate ‘optimal’ values of λ̂
k based on the cross-

validated score from hold-out fold k = 1, …, K. Let  be a LASSO estimate that is 

obtained based on all the samples excluding the ones in the kth fold. The ultimate estimate of 

λ follows as , where

Such way of averaging enables obtaining a more stable estimate of the penalization 

parameter. Because the possible number of λ values is infinite, a manageable solution is to 

use several values of λ on a discrete grid for assessment. Note that λ̂
ACV is likely to be more 

accurate than the estimate of CV using the same grid, due to the averaging effect of ACV.

Moreover, the computational efficiency of ACV is similar to CV. In both the methods, the 

major computation comes from estimating model with the (K − 1) folds of training data and 

from evaluating the performance with the hold-out fold. For ACV, the additional steps of 

choosing K candidate ‘optimal’ values and averaging could significantly improve the 

performance at trivial additional computation cost. We make comparisons between 

β̂LASSO(λ̂
CV) and β̂LASSC(λ̂

ACV) via simulation studies that will be described later.

Quantile smoothing splines

The cross-validation method is also frequently used in many different versions of smoothing 

splines to control the amount of roughness of the fitted function. Quantile smoothing splines 

are developed for targeting conditional quantiles in a nonparametric fashion. There are 

several different definitions of such smoothing splines; we use the method proposed by 
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Bloomfield and Steiger (1983) and Nychka et al. (1995). Basically, a quantile smoothing 

spline is taken as the minimizer of

where ρq(u) = u{q − I(u < 0)} is the check function of Koenker and Bassett (1978) and 0 < q 
< 1. With a conditional probability density of fY|X(Y|X), the qth conditional quantile function 

gq(x) is a function of x such that . Here, the roughness of the fitted 

curves is determined by the value of λ. We define  as the minimizer of the cross-

validated score where the check loss function is used for validation. Similar to the procedure 

of conducting ACV under LASSO, we can obtain the ACV version of  for quantile 

smoothing splines. We use simulations to investigate the empirical properties of  and 

.

4 Simulations

In empirical studies, it is desirable for K, the number of folds, to be reasonably large in order 

to receive the benefit of averaging. We consider K = 5 and 10 throughout the simulation 

studies. We investigate the performance of CV and ACV in three scenarios: the traditional 

linear regression model, LASSO regularization method, and quantile smoothing splines. For 

these scenarios, the corresponding ACV methods described in Section 2 and Section 3 are 

used. The classical CV procedure is described as follows.

The CV Procedure

1. Randomly and evenly split the data set into K folds.

2. Use K −1 folds of data as a training data set to fit the linear model (or, 

LASSO, and quantile smoothing splines).

3. With the fitted models in (2), predict the value of the response variable in 

the hold-out fold.

4. From the response variable in hold-out fold (say, kth fold), calculate mean 

squared prediction error by , where 

is the predicted value for yi and ℵk is the data set in kth fold.

5. Repeat (2) through (4) for K times so that each of K fold is used as a hold-

out fold from which we obtain MSPE1, …, MSPEK.

6. Each candidate model obtains a prediction performance measure 

. The ‘optimal’ model which minimizes 

 will be selected.
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4.1 Linear model

Assume a linear model Y = Xβ + ∊ as described in Section 2.1 with ∊is following an iid 
standard normal distribution. We consider the number of samples n = 200. The X is 

generated from a multivariate normal distribution with mean 0 and the correlation between 

the ith and jth covariates ρ = 0.5|i−j|. We consider three cases of the true values of β: (i) β = 

(3, 0, 0, 0, 0, 0, 0, 0)′; (ii) β = (3, 1.5, 0, 0, 2, 0, 0, 0)′; and (iii) β = (2, 2, 2, 2, 2, 2, 2, 2)′ 
that represent sparse, intermediate, and dense parameter space, respectively.

To measure accuracy of the estimates, we use the mean squared error (MSE) defined as

(7)

With L Monte Carlo (MC) samples (L = 1000), the estimate  can be computed as 

 where β̂l is the estimate of β for the lth MC sample.

In addition, Bagging procedure is applied to the same MC samples. Since CV and ACV 
choose a model from 28 −1 = 255 possible models, we let Bagging procedure to select from 

255 re-sampled (with replacement) data sets from one MC sample. The size of re-sampled 

data set is 200. The results of both CV and ACV are reported in Table 1. In Table 1, 

“reduction(%)” denotes the reduction of MSE achieved by ACV in comparison to CV. We 

see that the largest reduction is attained in case (i) which is the sparse scenario, while no 

reduction is made in the dense case (iii). In the dense case (iii), ACV is able to select the true 

model K times which leads to the accurate ultimate model via averaging, and thus results in 

the identical values of MSE as CV. Performance of Bagging is consistent over the three 

cases, and thus relatively works fine in the dense case, but is outperformed by CV and ACV.

4.2 Lasso penalization

We also investigate the performance of CV and ACV in the case of large p with the usage of 

sparsity penalization. We use the similar simulation set-up with n = 200 in the previous 

section, but increase p to 1000 and set ρ = 0. The β is set to have 50 non-zero values and 950 

zeros. Two different sets of non-zero values are considered as follows: (i) 25 values are 

randomly generated from Unif(1, 2), and the other 25 from Unif(−2, −1); and (ii) 25 values 

are taken to be 1 and the others are with values of −1. We interrogate 200 equally spaced 

values of λ in (0.001, 0.4) with K = 10.

We compare CV and ACV in terms of parameter estimation and identification of true non-

zero parameters. We again use MSE in (7) to measure the estimation accuracy. The mean 

and its standard error of 1000 MSE values, respectively, obtained from 1000 MC samples in 

each case are reported in Table 2. We see that ACV reduces MSE by about 30% comparing 

to CV in each case. To investigate accuracy of detecting the 50 true non-zero parameters, we 

focus on the 50 variables with the largest absolute values of the parameter estimates, and 

record the number of detected true non-zero ones among them. In Table 3, we report the 

distribution of the number of detected true non-zero βs of CV subtracted from that of ACV. 
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In case (i), ACV and CV show the identical detection accuracy for 352 times out of 1000 

runs. Note that ACV performs better than CV for 426 times, while CV outperforms ACV for 

222 times. In case (ii), ACV detects more true non-zero βs than CV for 466 times, but fewer 

for 228 times. It is also noticeable that ACV outperforms CV with the number of accurate 

detection as high as 15, while CV outperforms ACV with no more than 6 accurate detection.

4.3 Quantile smoothing splines

In this section, we investigate applicability of the proposed method ACV in the problem of 

quantile smoothing splines. We consider the mean of the observations from a sinusoid curve 

with period 1, which is expressed as

where xis are iid from the standard uniform distribution with n = 200. We consider two 

distribution settings for the iid ∊i's: (i) N(0,0.22); and (ii) shifted exponential distribution 

with the median 0 and the standard deviation 0.2. A fine grid search of the smoothing 

parameter is conducted to select the ‘optimal’ value by CV and ACV with L MC samples (L 
= 1000) and K = 5. We adopt the empirical estimate of MSE by MC samples as,

where g(xi) is the true underlying function, and ĝl(xi) indicates the fitted value at xi from the 

lth MC sample. The results at several quantiles are shown in Table 4, where reduction(%) 

stands for the percentage of reduction in the average value of MSE achieved by ACV 
comparing to CV. Under the normal error distribution in case (i), the result for q > 0.5 is not 

reported because of the similarity to q < 0.5. The considerable reductions achieved by ACV 
indicate that its averaging strategy results in better selection of the penalization parameter. 

For both the cases, quantiles in the region of high conditional density of the errors lead to 

greater reduction (%) in MSE, comparing to the low density regions. The rationale is that 

fewer observations are available to estimate the targeted quantile in the low density regions, 

and thus the advantage of ACV is not as prominent. This can be seen at q = 0.9 in case (ii) 

that the performances of these two methods are very similar with n = 200. To verify this 

finding, we increase the sample size to 400 and observe 5% reduction in MSE by using 

ACV. Thus, it is important to keep a sufficient number of observations in the hold-out fold 

to take advantage of ACV.

Another phenomenon often observed is data over-fitting by CV. In Figure 1, we demonstrate 

this point by two plots of the fitted curves that produce the maximum (left panel) and 

minimum (right panel) values of MSEACV/MSECV among 1000 MC samples, respectively. 

In the left panel, ACV in fact performs similarly to CV. In contrast, the right panel shows the 

obvious over-fitting by CV, manifested by its jagged curve.
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5 A real example

Isaacs et al. (1983) established the reference percentiles of children for the serum 

concentrations of immunoglobulin-G (IgG) in grams per liter, based on 298 children of ages 

6 months to 6 years. They considered various polynomial regressions treating IgG as the 

response and age (in month) as an explanatory variable. The best-fit model provided by 

Isaacs et al. (1983) is  for the 50th percentile, 

which is drawn as a dashed line in Figure 2. Royston and Altman (1994) revisited this data 

and used additive polynomial regressions with smoother fitted lines to eliminate the 

jaggedness near the boundary ages of 6 months and 6 years. Herein, we target selecting an 

appropriate smoothing penalty parameter for quantile smoothing splines to obtain well-

behaved reference percentiles.

To find the ‘optimal’ λ̂, we examined 2000 log(λ) values within (−35, −0.2). First, the data 

is randomly divided into 5 (nearly) equal parts, among which one contains 58 observations 

and each other part contains 60 observations. To account for the variability due to random 

split, we iterate the procedure 200 times for both ACV and CV. The penalization parameter 

values, denoted by λ̂ACV and λ̂CV, are obtained by averaging their respective 200 estimates 

of λ. The fitted conditional quantile lines of the IgG data at q = 0.05, 0.1, 0.25, 0.5, 0.75, 

0.9, and 0.95 are plotted in blue from the bottom to the top in Figure 2.

In the data set, we find mild heteroscedasticity of increasing variance as Age increases. It is 

reflected by the fit from both CV and ACV. It is clear that the fitted line at q = 0.5 provided 

by CV appears to be less smooth than ACV. We notice that ACV shares more similarity with 

the model given by Isaacs et al. (1983) which is the dashed line. At q = 0.25, the non-

monotonic fitting line of CV implies that the IgG level of 3-year-old children is higher than 

that of 4-year-old children, which seems insensible from the perspective of biology. Overall, 

ACV provides smoother fit to data than CV. We also summarize the logarithm-transformed 

λ̂
CV and λ̂

ACV at various quantiles in Table 5. We can see that λ̂CV changes considerably 

across the quantiles, whereas λ̂
ACV is stable (around −1.5) due to the averaging effect.

6 Conclusion

In this work, we propose a K-fold averaging cross-validation procedure for model selection 

and parameter estimation. We establish its theoretical property and show its promise via 

empirical investigation. Since cross-validation is actively employed in many areas of 

statistics, ACV can also be applied to a broad range of modeling procedures. For example, 

ACV can be easily used with penalized model selection method, for which selection of 

penalty parameters is of interest. Demonstrated through simulations with usage of LASSO, 

the ACV method outperforms the CV method in terms of mean squared error and selection 

accuracy. We also investigate its applicability in quantile smoothing splines, and demonstrate 

its capability of providing more smooth data fit than the traditional CV method.

One shall pay attention to the size of the test set and selection of K when implementing 

ACV. A large value of K combined with a small sample size may cause insufficient fit of the 

data since K-fold ACV performs model selection based on 1/K of the data. We recommend 
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including a sufficient number of observations in a test set. Note that the desirable size of the 

test set also depends on complexity of the underlying true model.
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Appendix

Proof of Theorem 1

Proof

(8)

Since  and tr(Pk) = | Mk|, we have,

(9)

where  is the mean number of selected variables from ACV. Thus, |d − 

d*| ≤ p, which leads to . The second term on the RHS of (5) will 

disappear when Mf is in Category I, which completes the proof of (a).

When Mf is in Category II, the second term on the RHS of (5) will be

(10)

When it is subtracted by the second term on the RHS of equation (6), we have

(11)

By Assumption B, the RHS of equation (11) is o(1), which completes the proof of (b).
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Proof of Lemma 1

Proof

First, define max1≤k≤KAk to be Ak with maximum determinant for k = 1, …, K, where Ak is 

a positive definite matrix. Note that det(Ak) > 0 as a property of positive definite matrix, and 

this is the case here since we assume Xk is full column rank. From the facts that the value of 

correlation is always between −1 and 1, and det(AkAk′) = det(Ak)det(Ak′), we have

where the last inequality directly comes from the definition. Therefore, we have,

When βk̂s are identical for k = 1, …, K, the above inequality becomes equality. Further, 

when the selected models from all the folds {β̂k} are identical, it is in fact the same as a 

selected model by the traditional K-fold CV. Thus, we have β̂ACV = β̂CV, which confirms 

the last equality.
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Figure 1. 
Under a normal error distribution, the fitted model selected by ACV performs relatively 

‘worst’ compared to that selected by CV (left), and ACV performs relatively ‘best’ 

compared to CV (right) among 1000 simulated data sets.
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Figure 2. 
Fitted quantile smoothing splines at q=0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95, highlighted in 

blue from the bottom to the top, in the immunoglobulin-G data set. The dashed fitting line is 

obtained from the model given by Isaacs et al. (1983). The results of CV and ACV are 

shown in the left and right panels, respectively.
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Table 1

Estimate of MSE (multiplied by 102) and its standard error (in parentheses, multiplied by 102) based on 1000 

MC samples for CV, ACV and Bagging.

β=(3,0,0,0,0,0,0,0)′ β=(3,1.5,0,0,2,0,0,0)′ β=(2,2,2,2,2,2,2,2)′

CV, K = 5 516.4 (13.6) 593.1 (13.3) 806.3 (13.0)

ACV, K = 5 405.8 (8.7) 521.1 (5.8) 806.3 (13.0)

reduction(%) 21.43 12.15 0

CV, K = 10 509.3 (13.7) 590.9 (13.3) 806.3 (13.0)

ACV, K = 10 370.1 (7.6) 553.4 (5.8) 806.3 (13.0)

reduction(%) 27.34 6.35 0

Bagging 811.4(13.1) 808.3(13.1) 810.6(13.0)
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Table 2

Estimates of MSE and its standard error (in parentheses) based on 1000 MC samples for CV and ACV.

CV ACV reduction(%)

case (i) 573.2 (17.8) 381.3 (6.3) 33.5

case (ii) 487.4 (13.3) 342.8 (5.6) 29.7
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