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A K-NEAREST NEIGHBOURS APPROACH TO UNSUPERVISED SPOKEN TERM

DISCOVERY

Alexis Thual, Corentin Dancette, Julien Karadayi, Juan Benjumea, Emmanuel Dupoux

EHESS, ENS, PSL University, CNRS, INRIA

ABSTRACT

Unsupervised spoken term discovery is the task of finding

recurrent acoustic patterns in speech without any annotations.

Current approaches consists of two steps: (1) discovering

similar patterns in speech, and (2) partitioning those pairs of

acoustic tokens using graph clustering methods. We propose

a new approach for the first step. Previous systems used var-

ious approximation algorithms to make the search tractable

on large amounts of data. Our approach is based on an op-

timized k-nearest neighbours (KNN) search coupled with a

fixed word embedding algorithm. The results show that the

KNN algorithm is robust across languages, consistently out-

performs the DTW-based baseline, and is competitive with

current state-of-the-art spoken term discovery systems.

Index Terms— spoken term discovery, word discovery,

unsupervised, word segmentation

1. INTRODUCTION

Current automatic speech recognition pipelines require con-

siderable textual resources to train acoustic and language

models. Several approaches have been pursued to address

the challenge of building useful technology for languages

where few textual resources are available. The ”zero re-

source” setting [1] tackles the most extreme case, where no

textual resource is available at all, and aims at extracting use-

ful linguistic units from raw speech in an unsupervised way.

Spoken term discovery focuses on discovering word-sized

units; it can be used for document classification [2], seg-

mentation [3] or retrieval [4, 5], and idiolect recovery [6]. It

can also help other zero resource objectives, such as learning

phonetic unit or representations [7, 8, 9].

Searching for all matching motifs in a speech corpus

scales quadratically and can be impractical for large cor-

pora. Here, we separate spoken term discovery into two

subproblems: representing candidate motifs as a fixed-sized

vector, and similarity-based search. For the latter, we use a

high performance k-nearest neighbours library developed by

Facebook [10], which can scale to billion of search terms.

We test our systems on datasets from the Zero Ressource

Challenges [11, 12], and compare it to the state-of-the-art.

2. RELATED WORK

Spoken term discovery systems can be sorted in two classes.

The first class attempts to discover recurring motifs in the

speech signal by using a DTW-based distance metric over mo-

tifs, and clustering these motifs to form a lexicon [13, 14, 15,

16, 17, 18]. The focus of these algorithms is not to discover

all of the words, but to discover a subset of good candidates.

This is why they typically set a lower bound on the duration of

the motifs, in order to avoid short words, which tend to have

many neighbors and be hypo-articulated. The second class

attempts to exhaustively parse the input signal into words,

thereby leveraging the additional constraints that word can-

didates cannot occupy the same portion of speech. These al-

gorithms both segment the speech and construct a lexicon at

the same time [19, 20]. They are variants of text-based algo-

rithms based on the idea of minimizing the length (or max-

imizing the probability) of the corpus and its accompanying

lexicon [21, 22, 23].

In the present work, we aim at adding a new element to the

first class, but simplify the pipeline by getting rid of the DTW

step, which requires to compute a very large matrix of frame-

wise similarity of the corpus by itself. The system proposed

by Jansen and van Durme [16], which was used as baseline of

the Zerospeech Challenge 2015 [11], proposes to avoid com-

puting the whole matrix by binarizing it using random projec-

tions, an indexation technique yielding a large gain in speed,

but a decrement in performance due to the approximations

performed by the algorithm [16]. Here, we propose to use

another indexation tool, based on product quantization [24],

and specifically the FAISS library which can perform efficient

exact or approximate search on CPUs or GPUs [10].

3. DESCRIPTION OF THE PIPELINE

Our pipeline is presented in Figure 1. After extracting speech

features, we segment the input speech and construct a fixed-

length representation of each segmented term. We then use a

KNN algorithm to systematically find a set of matching pairs,

which we narrow down by a variant of Non Maximal Suppres-

sion to avoid overlap. This is followed by an optional step of

graph clustering, before the output is evaluated.
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Fig. 1. Steps in our KNN pipeline

3.1. Features extraction

Because we compare our system with Jansen van Durne’s

DTW system, we use the same input features, Perceptual Lin-

ear Prediction (PLP) features [25]. PLP features are designed

to compress the input signal in a way that is inspired by hu-

man hearing. Thirteen PLP features are computed every 10

ms based on an analysis window of 25ms, and concatenated

with first and second order temporal derivatives.

3.2. Term pre-segmentation

Our pipeline extracts every possible segmentation of the input

speech into motifs and constructs a fixed length embedding

for it. We restrict these motifs to span over the parts of the

input data that only contain speech, using the voice activity

detection (VAD) temporal alignment in the dataset. In order

to avoid unnecessary computations with redundant motifs that

only differ in a couple of frames, we only generate a possible

segmentation point every a frame, with a > 1. Experiments

showed that a = 4 is a good compromise and corresponds

approximately to 2 segmentation points per phoneme.

When it comes to discovering potential words, too short

motifs are not useful because difficult to cluster, and too long

motifs tend to occur only once in a corpus. Therefore, we

only consider terms for which the length is between lmin and

lmax. This yields a total number of presegmented motifs T :

T =
1

a
(lmax − lmin) ×

N

a

Where N is the total number of speech frames in the corpus.

For instance, for length bounds between 20 and 50 frames

with a step of 4 frames, the number of terms is only 1.8 times

the number of frames of the original speech file. In this paper,

we test several length bounds.

3.3. Fixed-length term embedding

Each term is encoded as a fixed-length vector in order to en-

able KNN search. Previous work has devised various frame-

works for deriving such embeddings [26].

Here, we use a simple Gaussian smoothed down-sampling

method, typically used in [20] and studied in [26]. The idea

is to represent each segmented term using only d frames: in

order to do so, one averages adjacent frames using a gaussian

kernel. Let fi be the i-th frame of the output, then

fi = N

(

i · nf

d
; r · nf + s · gd(i)

)

· t

where gd : i 7→ d
2
− |d

2
− i|, t is the feature representation of

the term being down-sampled, nf is the number of frames of

t, r and s two parameters which we here set to 0.07 and 0.1

respectively, as recommended in [26]. We set the value of d

to 20 for all experiments reported in this paper.

We had tested several values of d (from 10 to 30), r (from 0

to 1) and s (from 0 to 1), but none of these changes had strong

positive or negative impact on our results.

3.4. KNN search

The pre-segmented embedded terms are stored in a large in-

dex. Then, for each term, we search the entire index for it’s

k nearest neighbours using FAISS [10], where the similarity

is based on the dot product of the embedded terms. In our

pipeline, we use an exact search method, parallelized on 10

CPUs, with k set to 200. Searching the index against itself

takes 98% of the overall run-time.

We tested several values for k, ranging from 50 to 500.

The idea is using a reasonably large value for k (instead of

k = 1) is to take into account self-overlapping pairs which

may also tend to be very self-similar. In addition, if a good

match is found between two different parts of the corpus,

several overlapping matches will also have a good similar-

ity match. Therefore our strategy was to allow a large number

of matches to be returned, and prune this number down in a

selection step. Experiments showed that all values above 100

yield the same results for a dataset of the size of a few hours.

We set the value of k to 200 in order to handle larger datasets

while keeping the run-time reasonable.

3.5. Selection of top pairs

Generating T × k pairs, where T is the number of previously

segmented terms, obviously yields too many pairs, most of

which are of poor quality. In addition, as we said above, many

pairs are redundant and partially overlapping. In order to re-

duce the number of pairs, we perform the following 4 steps

for each of the input speech files:

1. Sorting: we recover the totality of the KNNs for each

segmented term an input file, and sort the resulting pairs

of terms by decreasing similarity.
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2. Thresholding: we keep only the top δ % of the pairs for

a given file; in this paper, δ is the main control param-

eter and manipulated systematically (typically between

0.5% and 3%).

3. Self-overlapping pairs removal: given a pair p =
(t1, t2), we discard p if t1 and t2 overlap more than

a given threshold τself where τself equals 50% in our

experiments. This selection phase is very efficient and

discards a large proportion of the pairs (around 90%).

4. Non Maximal Suppression (NMS): to remove the re-

maining overlapping pairs, we perform a variant of

NMS by sequentially inspecting the pairs starting from

the most similar ones. We only keep a new pair if it is

not overlapping with an already selected pair. We use a

threshold τother of 50%. NMS helps discarding around

50% of the remaining pairs. Practically, we distribute

the selected pairs into slots, one for each by pair of

utterances in the original corpus (defined as contiguous

stretches of speech) and perform NMS within each

slot only. This allows for faster computations in our

implementation.

In this paper, we define temporal overlap between two

pairs of terms p = (t1, t2) and p′ = (t′
1
, t′

2
) as follows:

o(p, p′) =
l(t1 ∩ t′

1
) · l(t2 ∩ t′

2
)

l(t1) · l(t2)

where l yields the length of a given term and t∩ t′ designates

the overlapping part of terms t and t′. It is important to no-

tice that o(p, p′) is not necessarily equal to o(p′, p) and that

the order in which pairs are seen during the NMS actually

has an impact. Self-overlapping of a given pair p = (t1, t2),
with t1 = [a1, b1] and t2 = [a2, b2], is computed using the

following formula:

so(p) =
min(b1, b2)−max(a1, a2)

min
(

l(t1), l(t2)
)

3.6. Clustering

Once pairs of word-units have been selected, one can perform

a clustering step in order to group those pairs together. The

goal is that each cluster would account for one word-unit of

the discovered lexicon, and that each member of a given clus-

ter represents one occurrence of the aforementioned word-

unit. Several clustering methods were documented [17]. We

did not try to use them here and rather focused on the quality

of the output pairs of our pipeline. This can be interpreted as

if each pair was a cluster on it’s own.

4. EXPERIMENT I

The aim of this Experiment is to test systematically the ef-

fect of two important parameters in the KNN pipeline de-

scribed above: (lmin, lmax) the range of durations selected

in the presegmentation step, and δ, the percentage of pairs

that are kept after the KNN search. The range of duration is

important because too long terms can lead to useless compu-

tations, while too short terms could give rise to very noisy re-

sults. To choose the range of durations to study, we had a peek

of the distribution of word durations across the languages of

the Zero Resource Challenges, and chose the following parti-

tion of durations: 100-200ms, 200-300ms, 300-500ms, 500-

1000ms, each of which approximately accounts for 25% of

the word tokens across these languages. We also used 200-

500ms, which covers the middle range, and about 50% of the

word tokens. The δ threshold commands a tradeoff between

the number of pairs and the quality of these pairs, and we

vary this threshold systematically to explore the whole range

of this tradeoff.

This is conducted in the Mandarin dataset of the Zero

Ressource Speech Challenge 2017 [12], which we consid-

ered to be our development dataset to setup and test our KNN

pipeline. Previously mentioned parameters remained fixed to

the values described in the pipeline description.

4.1. Dataset

The dataset, available in the Zero Resource Speech Challenge

2017, includes 12 Mandarin speakers, each of whom speaks

for a duration from 10 to 25 minutes. The overall duration

of this dataset is 2 hours and 30 minutes. It has been forced

aligned to enable phoneme-based evaluation metrics.

4.2. Evaluation

To study the effect of duration and δ, we only focus on the

subset of the Zero Resource Speech Challenge 2015 met-

ric devoted to measuring the quality of the similarity-based

search, namely:

• Normalized Levenshtein Distance (NED): given a pair

p = (t1, t2), one can read the phonetic transcriptions of

t1 and t2 using the gold temporal alignments; the nor-

malized Levenshtein distance between these two tran-

scriptions yields the NED for this pair

• Coverage (COV): it indicates the proportion of input

speech which was discovered; for instance, a coverage

of 0.5 indicates that half the input phones were involved

in computed pairs of terms

• Number of pairs: simply the number of pairs of terms

yielded by the pipeline

4.3. Results and discussion

Results are reported in Figure 2. They confirm the expected

effects of duration range on the tradeoff between number and

quality of the pairs. Articulation for short words is on average

worse than it is for longer terms. This is indeed what we
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(a) NED / COV for Mandarin using PLPs with various term

lengths

(b) NED / Number of Pairs for Mandarin using PLPs with

various term lengths

Fig. 2. Results comparison using various lengths for seg-

mented terms on mandarin using PLPs (labels account for

length’ range in ms)

observe here: for a small COV or number of pairs, longer

terms yield much better results that short ones. However, for

larger COV and number of pairs, short terms yield a much

better NED than long ones. This is because the frequency of

a long term is usually low, thus, when a high number of pairs

is required (by setting δ to a permissive value for instance),

our structure pairs long words with other long words and the

chances of these being different occurrences of the same word

get lower. On the contrary, small words’ frequency is much

higher (words lasting between 100ms and 200ms are almost

syllables) and it is still plausible to find theoretically good

pairs even when δ is very permissive.

As expected, results for terms of length ranging between

200ms and 500ms approximately behave like terms of length

300-500ms for low COV and number of pairs, and roughly

follow terms of length 200-300ms for high COV and number

of pairs.

Wider ranges allows for better results but only up to a

point. A range between 200ms to 1000ms, for instance, (not

shown in the Figure) yields results which are almost com-

parable to 200-500ms for all COV values, with much longer

computation time. This is why in the following, we stick to

the 200-500ms range.

5. EXPERIMENT II

The aim of this experiment is to compare our KNN pipeline to

the Zero Ressource 2015 DTW-based baseline. To do this, we

picked our best system as evaluated in the Mandarin dataset

in Experiment 1 and applied it without changing any param-

eter to the two datasets of the ZR15 Challenge: English and

Xitsonga.

We first run the same evaluation as in Experiment 1 on

the duration range of 200-500ms, systematically varying the

threshold parameters of both algorithms in order to compare

their quality/quantity tradeoffs. Next, we pick a value for the

threshold parameter δ of the KNN system so that the NED

is comparable to that of the DTW-baseline and points with

higher NED. We then evaluate the results using the standard

metrics of the challenge and compare them to state-of-the-art

implementations.

5.1. Datasets

The English dataset comes from the Buckeye corpus and in-

cludes 12 speakers speaking between 16 and 30 minutes each,

for a total duration of 5 hours. The Xitsonga corpus includes

24 speakers speaking between 2 and 30 minutes each, for a

total duration of 2 hours and 30 minutes.

5.2. Evaluation

We use the full set of evaluation metrics of the second

Track of the Zero Resource Challenge 2017. This includes

Ned and Cov (already described above), and a set of 4

precision/recall/F-score metrics each of them dedicated to a

particular aspect of spoken term discovery: Grouping, Type,

Token and Boundary. The Grouping precision and recall

metrics are similar to cluster purity and collocation scores,

respectively, except they are computed on a pair by pair basis

and do not require a majority decision (each pair is labelled

as belonging to the ’same cluster’ or ’different cluster’ set).

The Type metrics compare the discovered clusters to the gold

lexicon (also pair-wise). The token metrics compare the set of

discovered terms with the set of gold tokens, and the bound-

ary metrics compare the discovered and gold boundaries. The

Fscores are the harmonic means of precision and recall.

5.3. Results and discussion

Figure 3 shows the NED / COV and NED / Number of pairs

graphics for the DTW baseline system and the KNN system

on the two test languages of the Zero Ressource Challenge
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(a) NED / COV comparison to baseline for Buckeye,

Mandarin and Xitsonga using PLPs

(b) NED / Number of Pairs comparison to baseline for

Buckeye, Mandarin and Xitsonga using PLPs

Fig. 3. Results comparison using various lengths for seg-

mented terms on mandarin using PLPs (labels account for

length’ range in frames)

2015. We also show the results on Mandarin for comparison

purposes. The results show that for every language, the KNN

system yields better/more numerous pairs than the DTW sys-

tem. In English, for a NED of 25% for instance, the KNN

system finds between 2 and 2.5 more pairs in English and

Xitsonga in the COV metrics. The difference is ever larger

in the number of pairs metrics (between 20 and 100). This

is all the more remarkable that the KNN system was not fine

tuned for these two languages, whereas the DTW system was.

For Mandarin, the difference between the two systems even

larger, mainly due to very poor performance of the DTW sys-

tem in this language, suggesting an over-fitting of the param-

eters for the languages of the Zero Resource Challenge 2015.

The interesting discrepancy between COV and number of

pairs across the two algorithms suggests that the KNN dis-

cover many more pairs per region of speech. This could be

because it reports more overlapping pairs (redundant pairs),

or because it manages to find more of the pairs related to the

same word (less fragmented clusters). Regarding the perfor-

mance of the KNN algorithm across the three languages, we

see similar performances up to 20% coverage, and a diver-

gence thereafter, mandarin giving worst results, followed by

English and Xitsonga. Despite these differences, the perfor-

mance is much more stable than for the DTW algorithm.

Finally, we selected the value of the δ threshold such that

the NED value for the KNN algorithm would cover the range

of NED found in the the DTW baseline system. The values

tested were 15%, 20% and 30%. We then analyzed the results

with the suite of metrics of the Challenge as shown in Table

1.

We found that for all three languages, the KNN algorithm

was able to beat the DTW baseline on the grouping preci-

sion (corresponding to cluster purity), but not on recall (which

corresponds to the inverse of cluster fragmentation). This is

not surprising because we did not apply a clustering algo-

rithm and only took the raw pairs from the output of the KNN

pipeline. Interestingly, the segmentation and lexical F-scores

were better for the KNN algorithm, which is probably due to

its larger coverage.

The KNN algorithm was competitive with the state-of-

the-art DTW system [18], which performs exact DTW using

a highly optimized DTW search over a GPU. The GPU-DTW

algorithm presented was set on a different NED/COV trade-

off than our KNN algorithm, resulting in better grouping and

boundary performance. Interestingly, our KNN still beast the

DTW on type and token F-scores.

The final comparison is with exhaustive algorithms. We

compare our KNN algorithm with the Bayesian segmental al-

gorithm of [20] and the Kmeans version of the algorithm [27].

Unsurprisingly, these exhaustive algorithms outperform KNN

on all segmentation and lexical metrics (except for the Type

and Token F-Scores in Mandarin). However, this high cov-

erage and good segmentation comes at a cost in clustering

purity (very high NED and poor grouping precision). In light

of these tradeoffs, further work would be needed to compare

these different algorithms back to back.

6. GENERAL DISCUSSION

We present a new pipeline for spoken term discovery which

bypasses the need of performing DTW on the speech data,

and rather uses a performant KNN library on fixed-words em-

beddings. The results, optimized on Mandarin, transfer to two

new languages, and beat a DTW-based baseline that had been

optimized for these two languages.

The datasets that were used here were small enough that

we could used the exact search mode of the KNN library. Us-

ing 10 CPUs, our searches run approximatively in real ime (2

to 3 hours for Mandarin - 5 hours for the Buckeye) and ne-

cessitate the storage of an index of 1 to 2 GB depending on

the dataset’s size. For larger datasets, we would have to resort

to the approximate mode and/or the parallelized GPU mode
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Grouping Type Token Boundary

Clusters Pairs NED Cov Pr Re F Pr Re F Pr Re F Pr Re F

Mandarin

Topline 1240 1 742 931 0.0 100 100 100 100 29.3 29.3 29.3 28.1 46.1 34.9 66.2 100 79.7

Baseline 156 160 30.7 2.9 30.2 96.7 44.7 4.5 0.1 0.2 4.0 0.1 0.1 37.5 0.9 1.8

ES-KM 88.1 100 / / / 2.5 4.1 3.1 2.5 3.4 2.9 36. 47.1 41.1

KNN-20 25 488 25 488 20.9 17.8 64.8 17.6 27.7 6.5 3.0 4.1 2.7 3.5 3.0 16.1 13.1 14.4

KNN-30 78 532 78 532 29.8 36.8 50.9 12.5 20.1 6.4 6.4 6.4 2.8 8.6 4.2 16.3 28.8 20.9

English - Buckeye

Topline / / 0.0 100 99.5 100 99.7 50.3 56.2 53.1 68.2 60.8 64.3 88.4 86.7 87.5

Baseline 3149 4305 21.9 16.3 21.4 84.6 33.3 6.2 1.9 2.9 5.5 0.4 0.8 44.1 4.7 8.6

O 39.4 92.1 76.2 100 82.7 5.6 5.1 5.3 10.2 1.9 3.2 71.1 22.5 34.3

BES-GMM 56.0 100 22.7 29.6 25.5 14.0 28.6 18.8 26.6 2.5 17.0 80.7 50.4 62.0

ES-KM 71.6 100 / / / / / 18.9 / / 18.1 / / 62.2

KNN-20 464 491 464 491 20.7 32.7 41.5 15.0 22.1 5.5 17.4 8.4 2.6 5.9 3.6 25.4 22.3 23.7

KNN-30 1 319 411 1 319 411 31.4 58.9 27.0 13.6 18.1 4.1 29.7 7.3 2.2 10.2 3.6 25.4 40.0 31.1

Xitsonga

Topline / / 0.0 100 100 100 100 15.1 18.1 16.5 34.1 49.7 40.4 66.6 91.9 77.2

Baseline 1782 1818 12.0 16.2 52.1 77.4 62.2 3.2 1.4 2.0 2.6 0.5 0.8 22.3 5.6 8.9

O 39.6 95.5 19.1 100 31.7 1.6 2.2 1.9 1.5 0.5 0.8 49.9 27.6 35.5

BES-GMM 58.6 100 8.3 10.3 9.2 3.8
¯

9.8 5.5 4.3 4.0 4.1 44.5 42.0 43.2

ES-KM 80.3 100 / / / / / 4.9 / / 3.7 / / 42.1

KNN-15 61 818 61 818 15.2 21.2 66.3 5.9 10.8 3.6 3.8 3.7 1.2 4.1 1.9 13.0 16.7 14.6

KNN-20 351 899 351 899 20.8 54.8 53.0 2.9 5.5 3.3 8.3 4.7 1.3 16.8 2.4 13.0 47.6 20.4

KNN-30 1 852 520 1 852 520 30.4 84.8 36.9 1.7 3.3 4.1 17.2 6.7 1.2 42.5 2.4 12.8 80.5 22.1

Table 1. Zero Resource Track 2 evaluation results for the Topline (gold phonemes plus Adaptor Grammar), the DTW Baseline

system, O: parallelized DTW system [18], ES-KM: Embedded Segmental Kmeans [27], BES-GMM: BayesSegMinDur’s model

of [20], and KNN (our system) with 15%, 20%, or 30% of NED.

of the KNN library. What’s important, though, is that because

we have separated the problem of representing the speech mo-

tifs from the problem of search, the scaling up problems can

be addressed by generic systems without having to make par-

ticular tweaks about speech.

The pre-segmentation and representation steps are of

course critical for the quality and efficiency of the algorithm.

Further work would need to explore other pre-segmentation

ideas, in particular the idea of using syllabic boundaries as

in Rasanen et al.[28]. If this turns out to be reliable, we

could expect a speed up factor of about 10-20. As for the

representation, down-sampling is not the most efficient way

to represent spoken terms. Other work has shown that recur-

rent NNs can achieve even better results, on some occasions

overtaking DTW methods [26] and would need to be tested

in this framework.
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