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Abstract—Patient movement during the acquisition of mag-
netic resonance images (MRI) can cause unwanted image arte-
facts. These artefacts may affect the quality of clinical diagnosis
and cause errors in automated image analysis. In this work,
we present a method for generating realistic motion artefacts
from artefact-free magnitude MRI data to be used in deep
learning frameworks, increasing training appearance variabil-
ity and ultimately making machine learning algorithms such
as convolutional neural networks (CNNs) more robust to the
presence of motion artefacts. By modelling patient movement as
a sequence of randomly-generated, ‘demeaned’, rigid 3D affine
transforms, we resample artefact-free volumes and combine these
in k-space to generate motion artefact data. We show that
by augmenting the training of semantic segmentation CNNs
with artefacts, we can train models that generalise better and
perform more reliably in the presence of artefact data, with
negligible cost to their performance on clean data. We show
that the performance of models trained using artefact data on
segmentation tasks on real-world test-retest image pairs is more
robust. We also demonstrate that our augmentation model can
be used to learn to retrospectively remove certain types of motion
artefacts from real MRI scans. Finally, we show that measures
of uncertainty obtained from motion augmented CNN models
reflect the presence of artefacts and can thus provide relevant
information to ensure the safe usage of deep learning extracted
biomarkers in a clinical pipeline.

Index Terms—MRI, motion artefacts, deep learning, segmen-
tation, data augmentation, artefact correction, uncertainty.

I. INTRODUCTION

PATIENT movement during the acquisition of magnetic

resonance images (MRI) can result in unwanted image

artefacts, which manifest as blurring, ringing or ghosting

effects, depending on both timing and spatial changes during

a scan [1]. Motion artefacts can affect the interpretability of
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images, potentially affecting the quality of a patient’s diagno-

sis, and/or leading to increased cost if the images are judged

unusable and the acquisition has to be repeated. Artefacts can

also affect the performance of post-processing algorithms, and

it has been shown that motion artefacts consistently affect

segmentation measurements on structural MR images [2].

Furthermore, in the context of research cohorts, artefacts may

lead to inclusion bias in statistical analysis as more impaired

subjects tend to have difficulties staying still, resulting in

poorer quality scans more likely to be excluded [3]. Even

if included, biomarker measures may be biased by artefacts

leading to spurious findings [2].

The type of motion artefacts that appear in MR images

depends on the amount and timing of patient movement with

regards to the k-space acquisition trajectory. Movements that

occur close to the k-space centre correspond to low image

frequencies and tend to result in ghosting artefacts, where

the image is repeated, as does quasi-periodic motion e.g.

respiration [4]. Movements toward the edges of the k-space

corresponding to the acquisition of high image frequencies,

often lead to ringing artefacts. Most commonly observed

MRI motion artefacts introduce minor blurring due to small

movements spanning a range of frequencies during k-space

acquisition. Additionally, motion artefact appearance depends

on the k-space scanning strategy and notably whether the

acquisition is performed in 2D or 3D.

Prior work on motion artefacts in MRI has mainly focused

on designing ways of correcting for them, for example [5],

[6], [7], [8], [9] and [10]. This work, however, addresses the

problem of motion artefacts under a different perspective –

attempting to make automated systems of image analysis more

robust to their presence. In recent years, deep learning frame-

works have demonstrated high performance when applied to

segmentation and classification tasks. In a deep learning setup,

data augmentation is a classical way to artificially increase

data variability and thus increase the network’s potential for

generalisation [11]. While classical data augmentation usually

involves random geometric transformations and/or intensity

changes, biologically and physically plausible augmentation

models would be beneficial to better sample the space of

possible variations.

II. MOTION ARTEFACTS IN DEEP LEARNING

FRAMEWORKS

Deep learning frameworks dealing with motion artefacts

have so far proposed to either recognise corrupted images
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or attempted to correct for the presence of artefacts. Meding

et al. [13] used convolutional neural networks to classify

MR magnitude images as artefacted or not. Going beyond

the binary classification task, Duffy et al. [14], also using

CNNs, attempted to learn how to retrospectively remove

artefacts from MR images. Their network, however, trained

on synthetic data proposes an unrealistic motion model that is

limited to axial translation. Using a Generative Adversarial

Network, Armanious et al. proposed MedGAN [15] with

the objective of ‘translating’ motion-corrupted MR images to

their corresponding motion-free images, but restricted their

work to 2D slices. Pawar et al. [16], with the objective of

learning to remove artefacts, modelled 3D motion in the

image domain and reconstructed the k-space from multiple

resampled images using however only 2D axial slices. In

contrast to these approaches, we argue that it is ultimately

more useful to optimise frameworks in an end-to-end manner,

rather than generating intermediate motion-corrected images,

thus enforcing robustness to artefacts at the level of the

internal representation of the data. Such strategy inherently

avoids caveats of GANs, that may wrongly introduce non-

existing information (hallucination), or of artefact removal

strategies that may only account for part of the existing

artefacts thus resulting in data that is unusable for further

processing. Moreover, end-to-end learning allows for model

artefact-induced task uncertainty to be learned directly from

raw artefact inputs.

III. MOTION ARTEFACT MODEL

We propose a k-space augmentation method to generate

motion artefacts from artefact-free magnitude MR image vol-

umes. Our proposed method is illustrated in Fig. 1 [17].

The procedure is summarised by the five following steps: (1)

Generate a random movement model by sampling movements

from different probability distribution functions (PDFs). (2)

Demean the generated movement transforms. (3) Resample

the artefact-free volume according to the demeaned movement

model. (4) Reconstruct a composite k-space from the k-spaces

of multiple resampled volumes. (5) Transform the combined

k-space back to the image domain to produce the final artefact

sample.

Taking each of these steps in turn, we first sample move-

ments from different probability distribution functions, mod-

elling a patient’s head motion throughout the scan as a

sequence of independently occurring small and large motions

(e.g. twitches/nodding). Each movement is modelled by a 3D

affine A matrix comprising of a rigid 3D rotation and transla-

tion in the image domain, where the angles of rotation θ are

sampled between (−30o, 30o) and the translation δ between

(-10mm, 10mm) in all three axes. Poisson distributions are

used to sample the magnitude of rotation and translation of

each of the N movements – small movements are assumed

to occur more often and large movements less frequently

– while a uniform distribution is used to sample the time

t in k-space at which each movement occurs (assuming k-

space scans in the phase encoding direction). This means that

a movement occurring at time t corresponds to a specific

location in the k-space volume kt = (kx, ky, kz) depending

on the scan trajectory, such that the brain remains in position

i between k-space elements kti and kti+1
. The sequence

of movement transforms {A}Ni=1
is composed incrementally

in log-Euclidean space [18], using the matrix exponential

exp(A) =
∑

∞

k=0

Ak

k!
and corresponding matrix logarithm. By

transferring to the log-Euclidean domain this provides us with

the ability to create weighted combinations of transformations

and to linearly interpolate between them.

With the motion model defined, the second step is to

‘demean’ the movements. When applying our augmentation

model to a clean magnitude image I0, we expect the barycenter

of the imaged object to remain in approximately the same

position within the 3D volume as this is the position of the

tissue segmentation. This is achieved by ‘demeaning’ each

affine transform Ai by pre-multiplying by the inverse of the

average transform Aavg , computed as the weighted sum of the

Fig. 1. Motion artefact augmentation framework: The artefact-free input volume is resampled according to a randomly sampled movement model, defined
by a sequence of ‘demeaned’ 3D affine transforms. Their 3D Fourier transforms are combined to form a composite k-space, which is transformed back to
the image domain producing the final artefact volume.
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sequence of N affine transformations in log-Euclidean space,

given by Equation 1,

Aavg = exp

(

N
∑

i=1

ŵi log(Ai)

)

, (1)

where ŵi is the weighting given to the i-th movement.

Since movements at different parts of the k-space contribute

different spatial frequencies, we weight each Ai by its signal

contribution to the final image. This means that movements

at the k-space centre (low frequencies) have a higher weight

since their impact on the final 3D position of the brain, and

the overall Fourier power spectrum, is much greater. Each

weight is estimated by masking the 3D k-space of I0 with

a binary mask Mi corresponding to the k-space elements

acquired while at position i, transforming back to the image

domain, and summing the resulting voxel intensities, as given

by wi =
∑

voxels FFT−1(Mi ⊙ FFT (I0)), with the weights

then normalised to sum to 1.

The third step is to apply each demeaned affine transform

Ad
i to the original artefact-free image volume I0 and resample

using b-spline interpolation. Note that we always resample

the original image volume to reduce propagating interpolation

errors throughout the sequence. The i-th demeaned affine

transformation is therefore given as the sum in log-Euclidean

space of all demeaned transforms up to this point, as given by

Equation 2,

Ad
i = exp

(

log(Ad
i−1) + log(A−1

avg) + log(Ai)
)

(2)

where the initial transform Ad
0 is set to the demeaned identity

transform, i.e. log(A−1
avg). Following each transformation, we

compute the k-space Ki as the 3D Fourier Transform of each

resampled image Ii.

The fourth step is to combine the 3D Fourier transforms

a) Input volume b) No demeaning c) With demeaning

Fig. 3. Effect of demeaning on the position of the brain: a) the input image
volume, b) the final position of the brain without demeaning, c) the demeaned
position. Demeaning keeps the artefacted brain in roughly the same position
as the input, while without demeaning the brain moves out of field of view.

corresponding to each position of the brain in the sequence,

joined together at sampled times t, forming a complete k-space

of the scan containing movement, i.e. Kc =
∑N

i Mi ⊙ Ki.

Finally, the inverse 3D Fourier Transform of the composite k-

space is derived, and the magnitude image provides the final

artefact sample. The steps of the augmentation method are

more formally outlined in Algorithm 1 and examples of our

artefact augmentation are shown in Fig. 2. The effect of the

demeaning process on the brain position is shown in Fig. 3.

Implementation Details

Although the proposed movement model is a simplified

approximation to patient motion within the scanner, in practice

the augmentation procedure is quite computationally expen-

sive, but not prohibitively so. This is due to resampling

the input image volume to generate different head positions,

especially when each volume in our dataset is around 2563

voxels in size. A significant time component is also a result

Fig. 2. Motion artefacts generated by our augmentation model as a result of rotation of the head forwards and backwards around the coronal axis, simulating
patient nodding motion. Changing artefact appearance due to changing the time during acquisition at which the movement occurs, later in the k-space scan
trajectory from left to right, therefore retaining more lower spatial frequencies. Best viewed zoomed in on digital copy.
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of the 3D FFT of resampled images and the inverse 3D FFT

of the combined k-space. As the number of times an image is

resampled is randomised, the time taken to generate motion

artefacts varies between samples. However, on average, it takes

roughly 30 seconds to generate an artefact sample from a

clean input volume on the CPU. This will slow down the

training of neural networks if this is done on-the-fly, but

artefacts can be pre-computed before training. Modern deep

learning frameworks are also starting to allow for Fourier

domain operations such as FFTs on the GPU, meaning that

the proposed augmentation is likely to see significantly speed-

ups in future.

Algorithm 1: Motion artefact augmentation algorithm.

Input: Artefact-free image volume I0
Result: Artefacted image volume Ia

⊲ Sample N movements

1: {θ, δ, t}Ni=1

⊲ Construct 3D affine matrices

2: {A}Ni=1
, Ai = [R(θi)|δi]

⊲ Construct k-space masks

3: {M}Ni=0
,M [kx, ky, kz] =

{

1 if kti < k < kti+1

0 otherwise

⊲ Compute weights

4: wi =
∑

voxels FFT−1(Mi ⊙ FFT (I0))

5: ŵi = wi/
∑N

i wi

⊲ Average affine transform

6: Aavg = exp
(

∑N

i=1
ŵi log(Ai)

)

⊲ Demean and resample sequence

7: Init: Ad
0 = A−1

avg

8: for i = 1, ..., N do

9: Ad
i = exp

(

log(Ad
i−1

) + log(A−1
avg) + log(Ai)

)

10: Ii ← Resample(I0, A
d
i )

11: Ki = FFT (Ii)

12: end

⊲ Combine k-spaces

13: Kc =
∑N

i=0
Mi ⊙Ki

14: Ia = FFT−1(Kc)

IV. EXPERIMENTS

We evaluate our motion artefact augmentation model

on both simulated and real-world data containing artefacts

in the context of three segmentation tasks: cortical gray

matter (CGM), hippocampus and total intracranial volume

(TIV). Data used in this work was obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). Launched in 2003, ADNI attempts to

assess whether medical imaging and biological markers and

clinical assessment can be combined to measure progression

of Alzheimer’s Disease. More information can be found at

www.adni-info.org.

A. Network Architecture and Implementation Details

We used the HighRes3DNet [19] architecture implemented

in NiftyNet [20], with Dice loss [21], a patch size of 803

and batch size of 1, trained on a single GPU with Adam

optimiser [22] and a learning rate of 10−4. In the context

of segmentation, due to imbalance between foreground and

background elements, the sampling strategy is essential to

the training performance. Therefore we employed a weighted

patch sampling with higher weight given to regions defined by

the Gaussian blurred ground-truth segmentation labels, such

that the foreground/background weight ratio is roughly equal

to the ratio of foreground/background voxels. Each model

was trained until overfitting was observed or when reaching

100,000 iterations.

B. Simulated Dataset

For experiments on simulated data, we use 272 MPRAGE

scans from ADNI and generate 15 artefacted volumes per scan.

The data was split into 80% training, 10% validation and 10%
testing and separate CNNs were trained to segment CGM,

hippocampus and TIV. For each segmentation task, five models

were trained with varying levels and types of augmentation.

One was trained only on ‘clean’ data, i.e. the original artefact-

free scans. Another was trained with ‘classical’ augmentation,

consisting of random rotation, translation and scaling. The

remaining three models were trained with increasing amounts

of motion artefact augmentation: where 25%, 40% and 50%
of images seen in the training set contain movement artefacts,

in addition to classical augmentations. Each model includes

bias field augmentation by default to account for variability in

image intensity across samples. All models are tested on the

same hold-out test set containing both clean and artificially

artefacted data.

Segmentation performance for the three tasks across all

models is evaluated with Dice score, positive predictive value

(PPV), sensitivity and average distance (avgDist) metrics and

presented in the first row of Fig. 4. Results of Bonferroni

corrected matched pair Wilcoxon tests between models are

presented on the bottom row. Generally, across the metrics,

models trained with artefacts show improved performance

on the test set, with lower variance. In the case of CGM,

motion augmented models show a statistically significant

improvement over the clean model (particularly 40% and

50% artefact models), and similar improvement over classical

augmentation, except for average distance for which classical

augmentation performs better. For hippocampus, motion aug-

mentation improves upon the clean model in all metrics but is

outperformed by classical augmentation, suggesting artefacts

have less impact on the hippocampal region. For TIV, the

50% augmented model consistently performs the best and is

statistically significant in terms of Dice and average distance.

Since the distribution and severity of artefacts in the data is

randomised, the impact on model performance varies across
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Fig. 4. Segmentation results on simulated data for CGM, hippocampus and
TIV across models. Top: Boxplots of different error metrics for 5 models
with different augmentation: clean, classically augmented, 25%, 40%, 50%
artefacts. Bottom: Bonferroni corrected pairwise Wilcoxon tests for Dice and
average distance between column and row models - Green: significantly better,
White: no statistically significant difference; Red: significantly worse.

the metrics, but overall increased artefact variability translates

to better performance on the test set.

C. Real-world Dataset

Robustness of CNNs trained with the proposed motion aug-

mentation to real-world movement artefacts was then evaluated

in a test-retest setting. 106 quality-controlled (QC) pairs of

MPRAGE test-retest images from ADNI on which only one

of the images was considered artefacted by an expert human

rater were used for this purpose.

The criteria for the QC is described in detail on the

ADNI website. T1 images are manually graded subjectively

by trained analysts into categories: 1-3 is acceptable and 4 is

failure (unusable). Images graded as “excellent” contain no

artefacts and these are used as ground-truth, while images

graded as “good,” “poor” or “unusable” may contain artefacts.

Images indicated as “containing artefacts” are used if they

have a corresponding artefact-free retest scan. We specifically

chose images for which the rater had commented: “contains

artefacts due to motion”, “blurring due to motion”, “ringing”

or “ghosting”. Image pairs were chosen if it was mentioned

that one scan was significantly better quality than the other,

amounting to 106 test-retest pairs, a selection of which are

shown in the Appendix.

Each test-retest image pair was rigidly registered together in

a group-wise space to avoid interpolation bias. For comparison

purposes, a benchmark label fusion algorithm [23] was used

to perform the segmentation tasks on each pair of images.

For each trained CNN model and the benchmark method,

Dice score, PPV, sensitivity and average distance were used as

evaluation measures between test and retest images, with the

results obtained on the clean image being used as reference.

Fig. 5 presents in the top row the corresponding boxplots

for each segmentation task, while the second row displays

the Bonferroni corrected matched-pair Wilcoxon tests across

models. On the real-world data, the boxplots show generally

improved robustness (higher score and smaller variance) for

increasing amounts of simulated movement augmentation dur-

ing training. This suggests our augmentation model translates

well to a real-world setting. In terms of Dice score, the 50%

artefact model performs the best across all tasks and shows

a statistically significant improvement. The model also shows

improvements for PPV and sensitivity but not average distance.

The 40% artefact model is similar but performs poorly on

TIV, perhaps due to the distribution of artefacts in the data.

The clean model consistently performs the worst for all tasks

and is even outperformed by the benchmark method. This is

because the clean model has seen only “perfect” clean data

and is therefore unable to generalise to poor-quality artefact

images. The largest performance increase is between the clean

and classically augmented models since spatial changes are

the dominating cause of appearance variability in the data.

Increasing amounts of artefact augmentation on top of classical

augmentation generally show further improvements.

V. TASK-SPECIFIC UNCERTAINTY ESTIMATION

Deep learning models for segmentation tasks classically

provide for each voxel a point-estimate probability of belong-
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Fig. 5. Segmentation robustness on real-world test-retest data for CGM,
hippocampus and TIV across models. Top: For each task, boxplots of different
error metrics for the 5 CNN models in addition to a non-deep learning “bench-
mark” method. Bottom: Bonferroni corrected pairwise Wilcoxon tests for Dice
and average distance between column and row models - Green: significantly
better, White: no statistically significant difference; Red: significantly worse.

ing to a certain class. Being able to provide in addition a

calibrated measure of the uncertainty of a given prediction has

become essential in applications for which safety is paramount

such as medical applications.

As theorised by Gal and Gharhamani [24], uncertainty can

be estimated by sampling at inference time from multiple

outputs of the network trained with dropout. Adapting the

approach from [25], uncertainty over the segmentation result

is obtained as the variance over the predictions made from

multiple forward passes of the dropout network. For training,

the dropout rate was set at 0.5 everywhere except the initial

layer, which was set to 0.05, and the final layer for which no

dropout was used. Uncertainty estimates were made from 100

forward passes of the dropout network. Mean and variance

results obtained on the CGM and hippocampus segmentation

tasks for the aforementioned models trained with dropout are

shown in Fig. 6. Considering the uncertainty predictions for

CGM segmentation, in models trained with motion augmenta-

tion, higher variance of predictions are observed in artefacted

regions, especially close to the cortical surface, in comparison

to the predicted uncertainty given the clean image. It is clear

that uncertainty predictions made by the motion augmented

model reflect the presence of motion artefacts in the data.

Note that this is a behaviour that the clean and classically

augmented models do not exhibit.

To further investigate the behaviour of segmentation un-

certainty estimation in the presence of motion artefacts, with

respect to the type of augmentation applied at training, per-

voxel Kullback-Leibler divergence (KLD) maps comparing

the sampled distributions for clean and artefacted images

were calculated, as shown in the bottom rows of Fig. 6. By

associating KLD with uncertainty, as measured by the sampled

variance (std), we can examine this relationship for each model

and mode of augmentation, visualised by the histogram plots

of uncertainty on the artefacted image vs KLD in Fig. 7.

From the histograms, different modes of association be-

tween uncertainty and KLD can be interpreted as follows: 1)

low std - low KLD: the model gives similar predictions on

clean and artefacted images in a confident fashion; 2) high std

- low KLD: the model provides highly similar distributions

but overestimates uncertainty 3) low std - high KLD: the

model provides mismatching answers with high confidence,

a clinically unsafe behaviour 4) high std - high KLD: the

probability distributions are different from each other but

the model is aware that it cannot ascertain the results with

certainty. Note that, in the presence of heavily artefacted

images (Fig. 7 a)), models trained on clean data or with

only classical augmentation behave unsafely more often, i.e.

more predictions with high KLD and low uncertainty. Models

trained with motion augmentation were found to be safer.

VI. ARTEFACT REMOVAL

While not the main focus of this work, in this section we

demonstrate that our artefact augmentation model can be also

used to train CNNs to learn to retrospectively remove, to a

limited extent, motion artefacts from MR images. Previously,

we have argued that it is generally more useful to learn a
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Fig. 6. Per-voxel mean and uncertainty estimations on CGM (top) and
hippocampus (bottom) segmentation tasks for clean (no augmentation), classi-
cally augmented and motion augmented models for a test-retest pair for which
one scan is heavily artefacted. The segmentation produced by a benchmark
method is shown for reference. Bottom row of each block: KL-divergence
(KLD) between the probability distributions produced by each model on clean
and artefacted scans.

a) Severe artefacts

b) Minor artefacts

Fig. 7. Histograms of per-voxel KLD associated to the uncertainty estimates
as measured by the sample variance, shown for models trained with different
augmentations on a) severe artefacts and b) minor artefacts. Note that the clean
and classically augmented models produce a much higher number of estimates
with high KLD and high variance (bottom-right corner of the histograms)
compared to the motion augmented model.

task such as segmentation in an end-to-end manner so that

it is robust to the presence of motion artefacts, rather than

learning an intermediate step of an artefact-free image as this is

essentially compressing the output of the bottleneck. However,

in some cases it may be useful to work with an artefact-

corrected image. For instance, a radiologist may wish to see

an artefact-corrected image for visual inspection. Furthermore,

many non-deep learning algorithms would not work within

an end-to-end framework and therefore would require the

artefact-corrected images as input.

Using our motion augmentation model, we trained CNNs to

remove first synthetic artefacts from 3D image volumes, where

the inputs to the network are simulated artefact images and the

ground-truth labels are the corresponding artefact-free images.

Model performance is evaluated by computing the average

reconstruction error between artefacted and clean images since

our augmentation model preserves the alignment of the object.

We then applied the artefact correction model trained only on

simulated artefacts to a dataset of unseen real-world artefacts

and similarly evaluated the reconstruction performance. Since

our dataset of real-world images containing artefacts have been

rigidly aligned to their corresponding ground-truth artefact-

free images, we can directly compute the resulting error

between them. To quantitatively evaluate the accuracy of the

motion-corrected images, we compute the following error

metrics between the ground-truth artefact-free images and the

artefact-corrected output images from the CNN model: the

mean absolute error (MAE) and the structural similarity index

(SSIM), where SSIM is computed as given by Equation 3.

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3)
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Simulated

Uncorrected Corrected

MAE
0.00434

[0.00323, 0.00599]

0.00343

[0.00271, 0.00452]

SSIM
0.96835

[0.94835, 0.98338]

0.98989

[0.98193, 0.99377]

Real-world

Uncorrected Corrected

MAE
0.00302

[0.00231, 0.00340]

0.00297

[0.00230, 0.00338]

SSIM
0.98566

[0.98001, 0.98886]

0.98604

[0.98105, 0.98960]

TABLE I
ARTEFACT REMOVAL PERFORMANCE ON HOLD-OUT SIMULATED AND

REAL-WORLD ARTEFACTS PRESENTED AS MEDIAN [1ST QUARTILE, 3RD

QUARTILE]. PAIRWISE STATISTICALLY SIGNIFICANT ACCORDING TO

PAIRED SAMPLE WILCOXON TESTS (BONFERRONI CORRECTED)
IMPROVEMENTS ARE INDICATED IN BOLD.

A. Network Architecture and Implementation Details

As in our previous experiments, we utilised the High-

Res3DNet architecture implemented in NiftyNet, however,

modified for the regression task with a skip connection joining

the input to the output. We trained with an L1 loss function on

voxel intensities, a patch size of 803 and batch size of 1, on a

single GPU with Adam optimiser and a learning rate of 10−4

for 100,000 iterations. As this is primarily an investigation of

the effect of simulated artefact augmentation, other network

parameters were not explored. Better artefact removal perfor-

mance may be achievable with network/parameter searching

and more sophisticated loss functions such as L1 on image

gradients and/or SSIM which are commonly used for image

reconstruction tasks, but this is beyond the scope of this paper.

B. Simulated Dataset

Using the same 272 scans from the ADNI dataset, we

generated 300 random artefact samples per scan, with varying

degrees of artefacts. Fig. 8 shows a sample of results for a

hold-out synthetic test set. Table I (top) shows the results

for MAE and SSIM between the uncorrected and motion-

corrected images. For the corrected data, we observe a sta-

tistically significant lower median MAE, and a statistically

significant higher median SSIM (indicated by the bold values).

For both metrics the interquartile ranges are smaller for the

corrected data.

C. Real-world Dataset

Using the motion artefact correction model trained using

only simulated data, inference was then performed on real-

world artefacts from the ADNI dataset of 106 rigidly aligned

quality-controlled MPRAGE test-retest image pairs. Fig. 9

shows a sample of our results on real-world artefact images

not seen in training.

Table I (bottom) shows the results for MAE and SSIM met-

rics on the real-world hold-out set. The artefact removal model

produces lower MAE and higher SSIM values as desired,

however the improvement is only marginal and not statistically

significant. Examining the motion-corrected images in Fig. 9,

we observe a noticeable change in appearance as the model

attempts to remove the artefacts, however mainly by blurring

the image and it is unable to recover image details lost by

severe motion artefacts. We find that for many artefacts in

the real-world dataset, the artefact correction CNN is unable

to completely remove the artefact, particularly in comparison

to the model’s strong performance on simulated data. When

computing the MAE, we discovered that the error is dominated

by misalignment between the rigidly registered ground-truth

artefact-free images and their corresponding artefact images.

This is because it can be difficult to rigidly align images

containing very severe artefacts, and so even after an attempted

registration, some misalignment of the brains still remains.

Therefore, in table I (bottom), we only compute results for

images that are sufficiently well-aligned by rejecting image

pairs with a before-correction error in the 90th percentile of

the data (confirmed as misaligned by visual inspection) such

that we can compute a reasonable estimate of the error caused

Fig. 8. A sample of artefact removal results for a hold-out synthetic test
set. Top row: input artefacted image volumes. Middle row: artefact-corrected
images as outputted from the CNN. Bottom row: ground-truth artefact-free
images. Best viewed by zooming in on digital copy.
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by the artefacts alone. This results in 98 real-world artefacts.

We also mask the image volumes by dilated TIV masks, as

shown in Fig. 9, to ignore differences outside of the brain.

The fact that, using CNNs, we are data and GPU memory-

bound, means our models have limited capacity. It is likely

the network underfits the problem and therefore the choice of

network architecture, number of parameters and loss function

are key factors in the algorithm’s ability to remove specific

types of artefacts. Currently, we have chosen a generic form

of motion model to cover many and varied types of movement

artefacts using a single CNN, but one could tailor the sam-

pling strategy to focus on specific artefact sub-types, such as

“ringing” or “ghosting” artefacts. We can, however, note that

because of the limited effective receptive field of the proposed

network, spatially-limited artefacts such as “ringing”, are more

easily removed than global artefact such as “ghosting”.

Considering the reconstruction results from the artefact

removal CNN, we have seen that real-world artefacts can be

sometimes only partially removed from images. Consequently,

in an effort to illustrate that it is indeed better to learn

the segmentation task end-to-end, in Fig. 10 we estimate

Fig. 9. A sample of artefact removal results for an unseen real-world test set.
Top row: input artefacted image volumes. Middle row: corrected image from
the output of the CNN model. Bottom row: ground-truth artefact-free images.
Best viewed by zooming in on digital copy.

the uncertainty of the CGM segmentation given the motion-

corrected images as input to the network. Using the same

dropout method as discussed in Section V, the artefact-

corrected images are passed through the segmentation CNN

model that has been trained with only classical augmentations

(rotation, translation, scaling) since if the motion artefact

has been successfully removed from the image then only

classical augmentations should be required to account for

image appearance variability. The model uncertainty given the

artefact-corrected image is estimated from multiple forward

passes of the network and is shown in Fig. 10 by the plots

of mean and standard deviation (std) over the segmentation

predictions. For comparison, we also show the uncertainty of

the motion augmented model given the uncorrected image as

input. In Fig. 10 we observe that the variance of the classically

augmented model output given the motion-corrected image is

generally of similar value to the model’s variance given the

ground-truth artefact-free image, i.e. the classically augmented

model is similarly confident in its predictions on the ground-

truth artefact-free image as it is given the motion-corrected

image. However, the KL-divergence (KLD) between the output

distributions of the two images of the classically augmented

model is very high, as shown by the regions of high KLD

in the KLD map on the bottom row of Fig. 10. This is

much higher than the corresponding KLD of the motion

augmented model. These regions of high KLD imply that

the classically augmented model makes predictions that are

very different between the two input images, even though the

artefact should have been removed by the artefact-correction

CNN if it was successful. Given that the ground-truth image

is the correct one, the model’s prediction on the motion-

Fig. 10. Per-voxel mean and uncertainty estimations on the CGM segmenta-
tion task for classically augmented and motion augmented models. Results
are shown for a test-retest pair for which one scan is heavily artefacted
and for the corresponding motion-corrected image, as output by the artefact
removal CNN. Bottom row: KL-divergence (KLD) between the probability
distributions produced by each model.
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corrected image must be inaccurate, despite the fact that the

artefact has been corrected for. In comparison, the motion

augmented model produces output distributions with generally

lower KLD overall, even when the input to the network is the

original artefact image, and has not been motion-corrected.

This implies that the motion augmented model gives more

statistically similar results on artefacted images as it does on

artefact-free images, and is, therefore, able to more robustly

perform the CGM segmentation task given artefacted input

data in comparison to trying to remove the artefact first and

then attempting the segmentation using a model that has not

been trained with artefact augmentation but only classical

augmentations.

VII. DISCUSSION

Considering the results on data with synthetic artefacts,

in the tasks of CGM, hippocampus and TIV segmentation,

models trained with motion artefact augmentation perform

generally better than models without any augmentation or with

only classical augmentation (rotation, translation and scaling).

For CGM and TIV segmentation, in terms of Dice, PPV and

sensitivity metrics, the model that observes the most artefacts

during training (50% artefacts) consistently performs signif-

icantly better than the others, with a lower result variance.

For the hippocampus, the benefit of artefact augmentation is

less clear. This is likely related to the location of the object

(medial brain), thus being less affected by extra-cranial fat

ringing artefacts. For example, ringing artefacts mainly impact

the cortical surface, and ghosting typically affects the TIV. For

the average distance metric, the classically augmented model

appears to perform better on CGM and hippocampus, whereas

for TIV the artefact model is statistically significantly better.

On real-world data we observe a similar benefit to perfor-

mance when training with simulated data. In terms of Dice

score coefficient, PPV and sensitivity, the motion augmented

models mostly perform better. This suggests the proposed

motion artefact generation is realistic and contributes to in-

creased robustness to artefacts of models trained with this

augmentation. Additionally, it appears that the larger the

artefactual variability encountered at training the better the

performance of the model.

Limitations

Although artefact augmentation shows promising results for

segmentation, there are limitations with the proposed model:

First, our motion augmentation model uses only magnitude

images as input to enable its use on a wide variety of input

data and supervision problems. Without phase information,

generated artefacts are an approximation to the true artefact

appearance. Phase information, if available, should be incor-

porated into the model to improve the realism of generated

artefact patterns. This could potentially lead to bias in the

neural network outputs, but, as shown through real-world

data experiments, even without phase information we observe

improved robustness and generalisation to real-world artefacts.

Second, the augmentation model assumes that a valid seg-

mentation exists, but this may not always be true. With heavy

artefacts caused by large movements, it is difficult to say

with certainty where in space the true segmentation should

be. If the subject’s head was in one place for 50% of the

scan and in another position for the remaining time, where

should the ground-truth segmentation be located? In this case,

an uncertain segmentation is the only hypothetically correct

answer.

Third, our CNN models are parameter-deprived due to

memory constraints, as training with artefacts sometimes de-

creases inference performance on clean data. Note, however,

that this drop in performance on clean data is not statistically

significant, while often providing significant improvements on

artefact data. While performance is a key goal, robustness

to data artefacts is paramount to enable the safe clinical

translation of such technique.

Fourth, our motion model is randomly sampled from PDFs,

but human motion in MRI is not completely random and

certain motions are more common, e.g. nodding when the

patient swallows, and nor does it capture non-rigid motions.

Additionally, motion is much more likely to appear between

repetitions, and not within a short echo readout. Therefore

the appearance and distribution of artefacts in our simulated

dataset is not entirely representative of the distribution of

observed real-world artefacts. With more consideration of the

types of movements that occur, adaptation of the model could

see a potential further increase in performance on real data.

Overall, we must appreciate that the MR imaging process is

complex, with many moving parts, making it difficult to simu-

late accurately. Coil sensitivities/arrangements/count, sequence

timings (TR/TE), gradient ramp-up and cooling times, k-space

trajectory, B1/B0 inhomogeneities, patient spatial location, lo-

cal magnetisation transfer effects etc. are all factors that affect

artefact appearance. It would be unrealistic, however, given the

volume and variability of data that is necessary to train deep

learning systems to have a simulation system that encompassed

all these factors. The proposed model is only approximate, and

any attempt at generating such a simulator would most likely

also be approximate even with more complex modelling and

at the expense of increased computational time. The question

that remains is: what is the sufficient amount of realism that

transfers synthetic artefact patterns to real-world data? We

have demonstrated in real-world experiments that, while being

a rough approximation, the proposed model does confer the

robustness that we expect, while ensuring the simulation is

scalable and fast, and the data is large and varied.

VIII. CONCLUSION

Our main contributions are threefold. Firstly, we propose

a realistic, fully 3D, motion model of MRI acquisitions

to augment training data, improving the performance and

robustness of semantic segmentation CNNs to real-world

artefacts. Training on simulated artefacts has been shown

to successfully translate to improved performance on real-

world artefacts, while the performance on artefact-free data

is largely unaffected by the use of augmented data during

training. Secondly, by training the different tasks end-to-end

with motion augmentation, a new internal data representation
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is created allowing the model to become robust to the presence

of artefact, instead of requiring an explicit intermediate step of

artefact removal likely to destroy important image information.

Lastly, our augmentation model provides more calibrated and

informative uncertainty estimates for segmentation predictions

in the presence of real-world motion-corrupted data. This is

of utmost importance when addressing the question of safe

clinical translation of such models.

What humans deem acceptable scan quality for radiological

assessment is different to the quality required for automated

analysis. With this in mind, we observe that scan quality is

intrinsically related to the task being solved. This observation,

as opposed to a human-perceived notion of image-wide scan

quality, is a concept rarely recognised by machine learning

researchers, systems and datasets.
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[6] F. Godenschweger, U. Kägebein, D. Stucht, U. Yarach, A. Sciarra, R.
Yakupov, et al., “Motion correction in MRI of the brain,” Physics in
Medicine and Biology, 61(5), R32-56, 2016.

[7] D. Atkinson, D. L. G. Hill, P. Stoyle, P. E. Summers, S. Clare, R. Bowtell,
et al., “Automatic compensation of motion artifacts in MRI,” Magnetic
Resonance in Medicine, 41(1), 163-170, 1999.

[8] M. Medley, H. Yan, and D. Rosenfeld, “An improved algorithm for 2-D
translational motion artifact correction,” IEEE Transactions on Medical
Imaging, 10(4), 548-553, 1991.

[9] P. J. Bones, J. R. Maclaren, R. P. Millane, and R. Watts, “Quantifying and
correcting motion artifacts in MRI,” Proceedings of SPIE, 6316, 2006.

[10] A. Loktyushin, H. Nickisch, R. Pohmann, and Bernhard Schölkopf,
“Blind retrospective motion correction of MR images,” Magnetic Res-
onance in Medicine, 70(6), 1608-1618, 2012.
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et al., “MedGAN: Medical Image Translation using GANs,” International
Conference on Learning Representations, 2018.

[16] K. Pawar, Z. Chen, N. J. Shah, and G. F. Egan, “MoCoNet: Motion Cor-
rection in 3D MPRAGE images using a Convolutional Neural Network
approach,” International Conference on Learning Representations, 2018.

[17] R. Shaw, C. H. Sudre, S. Ourselin, and M. J. Cardoso, “MRI k-
Space Motion Artefact Augmentation: Model Robustness and Task-
Specific Uncertainty,” Proceedings of The 2nd International Conference
on Medical Imaging with Deep Learning, 102, 427-436, 2019.

[18] M. Alexa, “Linear combination of transformations,” ACM Transactions
on Graphics, 21(3), 380-387, 2002.

[19] W. Li, G. Wang, L. Fidon, S. Ourselin, M. J. Cardoso, and T. Ver-
cauteren, “On the compactness, efficiency, and representation of 3D
convolutional networks: Brain parcellation as a pretext task”, IPMI, 2017.

[20] E. Gibson, W. Li, C. H. Sudre, L. Fidon, D. I. Shakir, G. Wang, et
al., “NiftyNet: a deep-learning platform for medical imaging,” Computer
Methods and Programs in Biomedicine, 2018.

[21] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso,
“Generalised Dice overlap as a deep learning loss function for highly
unbalanced segmentations,” Deep Learning in Medical Image Analysis
and Multimodal Learning for Clinical Decision Support, 240-248, 2017.

[22] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
International Conference on Learning Representations, 2014.

[23] M. J. Cardoso, M. Modat, R. Wolz, A. Melbourne, D. Cash, D. Rueckert,
et al., “Geodesic information flows: spatially-variant graphs and their
application to segmentation and fusion,” IEEE Transactions on Medical
Imaging, 34(9), 1976-1988, 2015.

[24] Y. Gal and Z. Ghahramani, “Dropout As a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” Proceedings of the
33rd International Conference on International Conference on Machine
Learning, 48, 1050-1059, 2016.

[25] Z. Eaton-Rosen, F. J. S. Bragman, S. Bisdas, S. Ourselin, and M. J.
Cardoso, “Towards safe deep learning: accurately quantifying biomarker
uncertainty in neural network predictions,” MICCAI, 2018.



IEEE TRANSACTIONS ON MEDICAL IMAGING 12

APPENDIX

TEST-RETEST IMAGES


