
A k-way Graph Partitioning Algorithm Based on
Clustering by Eigenvector

Tae-Young Choe1 and Chan-Ik Park2

1 School of Computer Engineering, Kumoh National Institute of Technology, 188,
ShinPyung Dong, Gumi, KOREA 730-701. choety@kumoh.ac.kr

2 Department of Computer Science and Engineering, Pohang University of Science
and Technology, San 31, HyoJa Dong, Pohang, KOREA 790-784.

cipark@postech.edu

Abstract. The recursive spectral bisection for the k-way graph parti-
tion has been underestimated because it tries to balance the bipartition
strictly. However, by loosening the balancing constraint, the spectral bi-
section can identify clusters efficiently. We propose a k-way graph par-
titioning algorithm based on clustering using recursive spectral bisec-
tion. After a graph is divided into a partition, the partition is adjusted
in order to meet the balancing constraint. Experimental results show
that the clustering based k-way partitioning generates partitions with
83.8 ∼ 108.4% cutsets compared to the strict recursive spectral bisec-
tions or multi-level partitions.

1 Introduction

Given a graph G = (V, E), where V is the set of |V | = n vertices and E is
the set of |E| = e edges, the k-way graph partition is composed of disjoint k
subsets, where the union of the subsets is V . We assume all vertices and edges
are same size one. An edge whose endpoints are located in different subsets
is called the cut edge. The cutset of a partition is the set of cut edges. The
graph partitioning problem is to divides V into a balanced partition with the
minimum cutset size. The graph partitioning problem is known as NP-hard even
in 2-way partitioning [1]. Therefore, the partitioning algorithms heuristically find
approximated solutions within acceptable computation time.

The multi-level partitioning algorithm, one of the clustering-based algo-
rithms, partitions a graph in three phases: coarsening phase, partitioning phase,
and uncoarsening phase [2]. They rely on local information like adjacent vertices
and edges to determine candidates to be merged. The spectral method parti-
tions graph using eigenvectors of the Laplacian matrix of the graph. It utilizes
global information and have been widely used [3]. Because many graphs are not
balanced, balanced partitions by the spectral method can be local optima.

If we do not stick on the balancing constraint, the spectral method is es-
pecially efficient for clustering. From the position of vertices expressed by the
Fiedler vector, some relations between vertices are revealed: dense areas and
parse areas. Based on these facts, we divide a graph into clusters by setting a
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sparse area as a border between clusters. The remainder of the paper is orga-
nized as follows; Section 2 presents the clustering methods and a partitioning
algorithm. Section 3 provides experimental results. Finally, Section 4 concludes
the paper.

2 The Proposed Algorithm

Our partitioning algorithm is just composed of three sequential steps: given
graph is clustered considering vertices connectivity in clustering step, the clusters
are fitted to balanced blocks in balancing step, and finally, a simple partitioning
algorithm refines the balanced blocks in refinement step.

2.1 Clustering Step

The base architecture of the clustering step is the recursive spectral method
[4]. The main difference between the proposed step and other recursive spectral
bisection algorithms is that our clustering step attaches more importance to
clustering with smaller cutset rather than balanced partition.

Figure 1 shows function Clustering() for the clustering step. Element fi in the
Fiedler vector FC is considered as an one-dimensional coordinate of vertex vi in
GC . By projecting the vertices into one-dimension, we can see relative positions
and connectivities between vertices. That is, as two vertices are more strongly
connected each other, they are laid more closely in the one-dimension, and vise
versa.

Function Clustering(G, k)
//INPUT: graph G = (V, E) to be clustered and k the number of clusters
//OUTPUT: a set of clusters C
//CONSTANT l: the number of subregions
C ← {V };
while |C| < k do

C ← the largest cluster in C;
GC ← subgraph composed of C;
compute Fiedler vector FC of GC ;
divide section [minfi∈FC fi,maxfi∈FC fi] to l subregions;
partition GC into C1, C2, . . . , Ck according to partition policy;
C ← C ∪ {C1, C2, . . . , Ck} − {C};

end while
return (C);

Fig. 1. Clustering step

In order to find clusters in a graph, we simplify the method proposed by
Hagen and Kahng [5]. Our algorithm divides the entire region of the vertices
coordinates into same sized subregions and counts the number of vertices in
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Table 1. The cutset size and execution time of result partition of each algorithm

measure cutset run time
No. graph Chaco Sanchis Metis Proposed Metis Proposed
subset
2 hammond 105 233 109 104 0.02 1.25

barth5 164 204 149 147 0.09 5.28
brack2 747 1886 779 1006 0.62 23.85

8 hammond 590 414 376 383 0.03 4.90
barth5 733 970 744 823 0.09 44.00
brack2 8986 10934 8802 8341 0.68 111.03

32 hammond 1174 1250 1066 1047 0.05 8.46
barth5 1853 2160 1823 1716 0.13 66.34
brack2 21674 24705 18898 20690 0.77 243.75

each subregion. The routine sets the initial number of subregions as the number
of vertices |C|. Adjacent two subregions are merged until every subregions has
one or more vertices. After the merge operations, we identify a cluster boundary
which is a subregion with the least vertices If there are two or more subregions
with the least vertices, a border that generates most balanced clusters is selected.

2.2 Balancing Step

In general, clusters generated during clustering step are unbalanced, even some
cluster could be splited. Thus balancing step is indispensable for partition to
meet the balancing constraint. We modify and combine Sanchis algorithm [6]
and P-P algorithm [7]. Gain of a movement for a vertex to a subset is the
number of removed cutsets and improvement in degree of balance [7]. The gain
is managed by bucket data structure [6].

2.3 Refinement Step

The refinement step runs on the partition that satisfies the balancing constraint.
The remainder is to reduce the cutset size further. Thus, Sanchis algorithm is a
good refinement algorithm to reduce the cutset size. Since the partition becomes
globally near optimal by the clustering step, it is not needed to consider escape
from local optima. Thus movement of cells with negative gain is not necessary.

3 Experimental Results

The algorithms are implemented in C language. Since the programming code uses
the standard C libraries, it can run in almost all systems. The Chaco, Sanchis
algorithm, and the Metis algorithms are executed to compare the performance
with our algorithms. Among the many options of the Chaco partitioning algo-
rithm, recursive spectral octal-partition and K-L refinement are used. The Metis
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runs with default options. The balancing constraint is 3% of |V |/k. Three test
graphs are used: hammond with 4720 vertices and 13722 edges, barth5 with
15606 vertices and 45878 edges, and brack2 with 62631 vertices and 366559
edges.

The results of the algorithm executions are shown in Table 1. The data in
Sanchis column show partition without clustering step. That is, it starts with a
partition that all vertices are in one subset, runs the min-bal balancing steps,
and finishes with Sanchis refinement. Each bold fonted number means that the
number is the smallest cutset given mesh and the number of subsets. Execution
times of Metis and the proposed algorithm are compared. A large proportion
the execution times in the proposed algorithm is the refinement step. It shows
that the refinement step need some performance tuning as future works.

4 Conclusions

We proposed an effective partitioning algorithm that generates a partition with
a relatively small cutset. The algorithm clusters the graph using the recursive
unbalanced bipartition.
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