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A Kalman Filter Approach to Direct Depth
Estimation Incorporating Surface Structure

Y.S. Hung, Member, IEEE, and H.T. Ho

Abstract—The problem of depth-from-motion using a monocular
image sequence is considered. A pixel-based model is developed for
direct depth estimation within a Kalman filtering framework. A method
is proposed for incorporating local surface structure into the Kalman
filter. Experimental results are provided to illustrate the effect of
structural information on depth estimation.

Index Terms—Depth-from-motion, Kalman filter, gradient method,
surface structure, image sequence.
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1 INTRODUCTION

IN this paper, we will consider the depth-from-motion problem,
which has applications in mobile robot navigation. Common
methods for depth estimation are optical-flow based [1], [3], [11],
[15], [13] and feature-based [14], [16]. It is well-known that the
estimation of optical flow is an ill-posed problem solvable only by
the introduction of additional (e.g., smoothness) constraints [9],
and the reconstructed depth and motion are very sensitive to er-
rors in optical flow. Feature-based methods rely on feature corre-
spondence between images and produce only a sparse map at the
locations of image features. Another class of methods, namely,
gradient-based techniques (also called the direct method) [6], [10],
estimates depth directly from the spatiotemporal derivatives of the
intensity function and is well-suited for pixel-based (iconic) proc-
essing with the advantage of producing a dense depth map. The
technique can be used with or without knowledge of camera mo-
tion [2], [7], [12].

As depth estimated using two frames is bound to be sensitive
to image noise, the Kalman filter is increasingly being used to pro-
cess a sequence of images [5], [8], [18]. Heel [5] has used the Kal-
man filter for gradient-based depth estimation where motion is
deduced by least-squares estimation. Matthies et al. [8] have in-
vestigated Kalman-based algorithms for both optical-flow and
feature-based methods for depth-from-motion. In [18], a combina-
tion of optical-flow and gradient methods are used to obtain a
depth map from known camera motion using the Kalman filter.
All these works use image warping techniques in the predictive
stage of the Kalman filter.

We will propose in this paper a Kalman-filter-based gradient
method for recovering a dense depth map from a sequence of mo-
nocular images with known camera motion. Like [5], our method
is a direct approach which does not require the estimation of opti-
cal flow as an intermediate step, but unlike [5] (and also [8], [18]),
we do not use image warping and spatial resampling in our Kal-
man filter. Instead, our model is based on a local smoothness as-
sumption and the image warping is approximated by first order
terms in a Taylor expansion. Furthermore, we exploit the local
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smoothness condition by incorporating surface structure as an
additional “measurement” into the pixel-based Kalman filter. This
is in contrast with existing methods which perform smoothing
either as a separate process outside the Kalman filter [8], [18], or
treat a number of pixels together as an image patch [5]. The ad-
vantages of our method are that it is algorithmically simple, and it
offers a means for making a direct compromise between measured
depth information and a priori known structural information
within the same filtering process.

The paper is organized as follows. The direct depth estimation
problem is introduced in Section 2. In Section 3, a pixel-based
model is developed for depth estimation using the Kalman filter,
together with a proposed method for integrating surface structure
into the filtering process. Some implementation issues are dis-
cussed in Section 4. Experimental results are provided in Section 5.
Some concluding remarks are given in Section 6.

2 DIRECT DEPTH ESTIMATION
Fig. 1 shows a pinhole camera model with perspective projection.

A 3D camera-centered coordinate frame is defined with origin O,
at the centre of projection and the Z-axis along the optical axis of
the camera. The image plane, normal to the optical axis at unit
focal length f = 1, has a 2D coordinate frame with origin on the Z-
axis and x and y axes parallel to those of the 3D frame.

Consider an object point P = [X Y Z]T in the 3D frame with a
projection p = [x y]" on the image plane. We will regard the Z-
coordinate of the object point P corresponding to the image point p
as a function of the image coordinates (X, y), and refer to Z(x, y) as
the depth at the image point p. In our depth estimation problem,
we will assume that the camera is moving with known motion in a
static environment, and a sequence of monocular images is cap-
tured. A moving camera-centered coordinate frame will be
adopted. Let I(x, y, t) be the intensity of the image point (x, y) at
time t. Our problem is to estimate the depth Z(x, y, t) for all points
(x, y) on the image plane using the intensity function I(x, y, t). For
notational simplicity, we will suppress the spatial or temporal
variables and write Z(x, y, t) as Z(x, y) or Z(t) if appropriate.

Suppose the camera is moving with translational velocity t© =
%7y z'z]T and rotational velocity o = [&, @, a)z]T about O,. Let I, 1,
and |, denote the partial derivatives of the intensity function I(x, y, t)
with respect to x, y, and t, respectively. Horn [6] has shown that
depth and motion can be related in terms of spatiotemporal de-
rivatives of the intensity function through the Brightness Change
Constraint Equation (BCCE):
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Fig. 1. Camera coordinate system.
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If the camera motion t and o are known, (1) can be written as
ST

ST @
Hence the depth Z can be estimated directly from the intensity
derivatives. The depth estimates given by (2), based on the current
frame (and neighboring frames required for time derivative com-
putations), are however bound to be sensitive to image noises and
quantization errors. A Kalman filter can be used to integrate the
depth information contained in an image sequence.

3 KALMAN FILTER FOR DEPTH ESTIMATION

A state-space model is needed for formulating the depth estima-
tion problem in a Kalman filter framework. We will use the dy-
namics of the camera motion to formulate the state equation and
the BCCE as a measurement equation for the state-space model.

3.1 State-Space Model

For an image of N, x N, pixels, the system state will consist of the
depths of all n (= N;N,) pixels. Since a full-order Kalman filter is
computationally undesirable and pixels not in close proximity of
each other are likely to be very weakly coupled, we will assume
for simplicity that neighboring pixels are independent of each
other. As a result, the full-order n-dimensional Kalman filter can be
replaced by n scalar filters attached to individual pixels. Consider
a scene point P(t) = [X(t) Y(t) Z(t)]T. At time t + At, the position of P
is given by

P(t+At) = P(t) - (t + o x P(t))At. 3)

Denote the interframe translational displacement by T = [T, T, TZ]T
and rotational displacement by Q = [Q, Q, QZ]T, ie, T = 1At and
Q = wAt. The Z-component of (3) is

Z(t+ At) = Z(t) - [T, + Q,Y(t) — QX(1)]. 4)

As the projection of the scene point P on the image plane
changes from (x, y) at time t to (x + AX, y + Ay) at time (t + At) due
to camera motion, the depths Z(t) and Z(t + At) of P are in gen-
eral system states associated with different image points. More
explicitly, we will express Z(t) and Z(t + At) in (4) as Z(x, y, t) and
Z(x + AX, y + Ay, t + At), respectively, and write

Z(X+AX, Y+ Ay, t+A) =Z(x,y, 1) - [T,+ QY(X, y, ) - QX(x, y, )] (5)

In the image warping approach (e.g., see [5]), the depth map is
warped according to the (known or estimated) motion to obtain
Z(x + AX, y + Ay,t + At). The warped depth map is then resam-
pled spatially at the image pixel grid to give a predicted value
of Z(x, y, t + At). We will, however, take a different approach here.
Assuming local smoothness, a Taylor series expansion in the first
two arguments of the left-hand side of (5) gives

Z(x+ AX,y + Ay, t+ At) =

0z oZ
Z(x,y,t+At)+a—XAx+WAy+g(x,y,t+At) (6)

where £X, y, t + At) represents the approximation error. Equating
(5) and (6), and making use of X(x, y, t) = Z(x, y, t)x and Y(X, y, t) =
Z(x, Yy, t)y (under the assumption that f = 1) yields

Z(xy,t+A0) =[1-Qy + @ x[Z(x,y,1) - T, -
0Z 9z

WAx—a—yAy—g(x,y,t+At) 0

Since (7) now represents the evolution of the depth Z from t to t + At
for a fixed image point (X, y), we will suppress the spatial depend-

ency of Z. Further, taking t and t + At to be the kth and (k + 1)th
sampling instant, we will replace t and t + At by k and (k + 1), re-
spectively. Hence, (7) shows that the depth at (x, y) satisfies a dis-
crete state equation of the form

Z(k+1) = ©(K)Z(K) + u(k) + ¢(k), ®)
where we have defined
OK) =1-Qy+Qx 9)
0Z 0Z
u(k) = =T, 5 X —a—yAy (10)

In (8), the system matrix ®(k) and the term —T, in u(k) can be de-
termined if camera motion is known. ¢(k) will be taken to include &
as well as error generated when estimating the terms g—fo and

3—§Ay in u(k). Since (g—f%) is the gradient of the depth map and

(Ax, Ay) represents image motion, g—fo +g—§Ay is the depth
variation seen at the fixed image point (x, y) due to motion.
These terms can be regarded as a first-order approximation to
the image warping and resampling operation. We note that the
estimation of 2 and 3—5 is computationally simpler than image
warping, but these terms can only be sensibly estimated after
the depth map has attained some degree of smoothness. Ex-

perimental results suggest that the estimation errors for
(%%> are fairly random. We will therefore assume that ¢ is

approximately Gaussian white with zero mean and variance
var({) = Q. To complete the state-space model, we need a
measurement equation. For this purpose, we introduce a meas-
urement noise 7, (assumed Gaussian with zero mean) into
BCCE and rewrite (1) as

—s-t=(+q-w)Z+m, var(n) =R, (11)

Defining Y,(k) = —s - T as the measurement and H,(k) = I, + g - o,
(11) can be written as
Y1(K) = Hy(K)Z(k) + (k). (12)

Equations (8) and (12) together form a state-space model for the
depth Z at the image point (x, y). Clearly, there are other ways of
defining the measurement. For example, we can use (2) (i.e.,

Z= ;—11) directly as a depth measurement. This is, however, bound

to be unreliable when both Y, and H, are small. The choice of (12)
has the advantage that Z is scaled by H, to produce the output Y/,
which helps to reduce the measurement noise when H, is small.
Although the use of Z instead of the disparity () as the system

state may cause conditioning problems when the scene contains
points with large Z, but Z has the advantage of providing a more
direct appeal when we consider the addition of a structural condi-
tion in the Kalman filter.

3.2 Kalman Filter

A set of Kalman filter equations for generating an estimate Z(k)
for Z(Kk) is given by [8]:

Z7(k) = ®(k - 1)Z(k — 1) + u(k - 2) (13)
P(K) = ®(k — 1) P(k - 1)®"(k - 1) + Q(k — 1) (14)
K(k) = P(H] (K[H (P (OHT () + R(K)] (15)
2(k) = 2 (k) + K(K)[ Y, (k) = Hy(k), 2" (k)] (16)
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P(k) = P (k) — K()H, (k)P (K), a7

where 2’(k) represents the predicted depth at time k before the

arrival of the kth measurement, P~ (k) and P(k) are the variances of
2‘(k) and Z(k), respectively, and K(k) is the Kalman gain.

3.3 Integrating Structure Into Kalman Filter

Because the Kalman filters attached to different image pixels are
decoupled, the estimated depths of neighboring pixels, say Z(x, y)
and Z(x + 1, y), are not related in any explicit manner. If the inten-
sity of each pixel is corrupted by independent white noise, the
estimated depth for each pixel will contain a random component.
As a result, a planar surface may appear as a rugged surface with
spikes projecting from some mean position of the surface. A com-
mon practice (e.g., [8], [18]) is to perform spatial smoothing to
remove excessive depth variations.

We will propose a different approach for handling spatial rela-
tionships between the depth of neighboring pixels. Our method is
based on the assumption that the depth function Z(x, y) satisfies
some local structural property which can be expressed as

Z(x,y) = 9(Z(X + Py, y + ), ..., ZX+ P,y + ) -6 (18)
where g is defined over a mask indexed by p;, ¢; (i=1, ..., s) around
the pixel (x, y), and J represents permissible variations in the local
surface structure with variance Rs. For example, if Z(x, y) is a
“continuous” function of (x, y) with bounded variations (less than
an upper limit M) between neighboring pixels, we may impose the
condition that

Z(x,y) = %[Z(x ~Ly)+Z(x,y -1+ Z(x +1,y) + Z(x, y + l)] -5, (19

where 4] < M. In (19), g(-) is simply an averaging function.
Other functions can be devised for different kinds of surface
structures. We wish to recast (18) as a measurement equation. By
(18), if the estimated depths of neighboring pixels are known, we
can take

Y, = g(ﬁ(x+p1,y+q1), 2(x+p5,y+qs)) (20)

as an estimate for Z(x, y) based on a priori known structure of the
surface. Let p be the error in estimating Z(x, y) arising from the
replacement of Z by Zin g(-), that is,

p= g(ﬁ(x+p1,y+q1), 2(x+ps,y+qs))—

g(z(x * pl’y + ql)’ e Z(X + ps'y + qs))
Subtracting (18) from (20) yields

Y= Z(X, Y) + 1, (21)

where 77, = 6+ p represents the total noise in using Y, as a “meas-
urement” for Z(x, y). With the extra measurement Y,, (12) and (21)
can be combined to give

Y=HZ+7,

Y= Pﬂ H = Fﬂ 7= [Zﬂ

The measurement equation (12) of the state-space model will now
be replaced by (22). The Kalman filter equations (13) to (17) given
in Section 3.2 remain applicable if we replace H, by H and R, by
the noise variance matrix:

R = var(n) = diag{R,, R,}. (24)

Note that in (24) we have assumed that 7; and 7, are uncorrelated,
so that R is diagonal. The parameter R, = var(7,) determines the
significance of the surface structure equation in the filtering proc-
ess. If R, is large, indicating a lack of confidence in the surface

(22)
where

(23)

structure, then (21) will have little effect on the depth estimates. If
R, is chosen to be small, (21) will have a heavier weighting relative
to the BCCE measurement, and the depth estimates will quickly
settle down into some surface structure satisfying (21). This is dis-
cussed further in the next subsection.

3.4 Compliance of Depth Estimates With Surface
Structure

Consider the innovation process

. |:j/1] Y- Hlﬁ
72 Y,-Z
associated with the Kalman filter. It is well-known that yis a whit-

ened process with variance var(j) = HPH' + R. It follows from (23)
and (24) that

(25)

var(y,) = HP + R, (26)

var(y,) =P +R,. 27)

var(y) can be taken as an indication of how far the depth estimates
deviate from the surface structure defined by (21). We shall show
that if R, is chosen sufficiently small, the depth estimates can be
forced to comply with the surface structure equation. By the ma-
trix identity

(A+BCD) ' =A'-AT'B(C™'+ DA™'B)'DA™,
(15) and (17) can be written

K(k) = % H'R™, (28)
P(K) = P k) 29)

N - Hi 1
1+ P (k) &+ Ry

From (28) and (29), we see that if R, — oo, then the surface structure
plays no role in the filtering process and the Kalman filter reduces
to the case when BCCE is the only measurement. Clearly, R,
should take a small value for the surface structure equation to
have a significant effect on the filtering process. Let

If R, is small so that
1 H?
R 7R
then g = R—12 Making use of (14), (29) can be written as
®*(k-1)P(k -1)+Q

k)= 1+ A0 (k- )P(k- 1) +Q]

(30)

It follows that
P(k) <P(k— 1) & ADP(k—1) + [AQ + (1 - ®)] P(k-1)— Q> 0. (31)

The right-hand side of (31) is a quadratic form in P(k — 1) admitting
a positive root at

2
\/[ﬂQ (1= c1>2)] +45D°Q — [ﬂQ +(1- c1>2)]
P =
+ Zﬂbz
If P(k — 1) > P,, then the sequence P(k) will decrease towards P,.
From (27), we have

(32)

var(y,) - P, +R,.

Hence, if R, is chosen sufficiently small (relative to R, / Hf), then
P, as well as var(y) can be reduced to some appropriately small
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value, thereby forcing the depth estimates from the Kalman filter
to comply with the surface structure equation. This provides some
guidance as to how Z(k) and P(k) behave in accordance with the

choice of R,.

4 IMPLEMENTATION ISSUES

4.1 Computation of Y,

In (20), Y, is determined in terms of the current depth estimates of
neighboring pixels. In practice, the Kalman filters of individual
pixels are updated sequentially, and some neighboring pixels re-
quired for computing Y, may not have been updated yet. If the
local continuity condition (19) is to be integrated into the filtering
process, then Y, should be computed as

%[2(x—1,y)+2(x,y—1)+2(x+1,y)+2(x,y+l)] (33)

Suppose the Kalman filters are updated in a row-by-row manner
starting from the upper-left corner. Then, the last two terms of (33),

namely, Z(x +1,y) and Z(x,y + 1), will not be available at the time
when the pixel (X, y) is being updated. To overcome this, one ap-
proach is to use a combination of updated estimates Z and pre-
dicted estimates Z~ and modify (33) as

Yy(x,y) =

%[2(x —Ly)+2Z(x,y-1)+Z (x+1y)+ 2 (x,y + 1)] (34)

Alternatively, we may consider replacing the four-sided continuity

condition (33) by a two-sided condition based only on depth esti-
mates which have been updated in the current frame, i.e.,

Y,(x,y) = %[2(X ~Ly)+2(x.y - 1)]

This measurement is, however, spatially biased and may produce
diagonal effects in the propagation of depth estimates. To over-
come this, each image frame can be filtered four times starting
from different corners, producing with four different versions of

Y, say, Y,, Y72, Yy, andY, . The final estimate is then taken to be

(35)

1
Y, =[G+ 4. (36)

4.2 Estimation of Measurement Noise Variances

As the measurement noise variance R, determines the weight-
ing between previous and current measurements in the Kalman
filter (see (15) and (16)), identification of R, is crucial. It is,
however, difficult to determine R, prior to filtering because of
the complex nature of the measurement noise (including errors
in numerical differentiation, image noise, and uncertainties in
camera motion). We have adopted an online method for esti-
mating the noise covariance matrix for a general time-varying
linear system given in [4], which is based on an innovations
sequence obtained by running the Kalman filter with an initial
guess for R; and then reestimating R, using least-squares tech-
niques. It remains to determine the variance R, for the surface
structure. Assuming that the two components §and p are inde-
pendent, we have

R, =var(7,) = Rs+ var(p). (37)

If the function g(-) is linear in the depth estimates, then var(p) can
be expressed in terms of the variances of the estimation errors. For
example, for the two-sided continuity condition given by (35),

p= %[(Z(X -1y)-Z(x-1, y)) + (Z(X, y-1)-2Z(x,y - 1))]

and hence

var(p) = %[P(x ~1y)+P(x,y-1)]

where the factor A is introduced to compensate for any underesti-
mation of var(p) due to the assumption that neighboring pixels are
decoupled. By empirical means, it is found that a suitable range for
Ais 1.6-2.0. Substituting (38) into (37) gives

(38)

R, = R5+i[P(x—1,y)+P(x,y—1)]. (39)

4
When the depth estimates of neighboring pixels are accurate (with
small P), R, is small and the surface structure equation (21) will
have a significant effect on the filtering process. However, when
the depth estimates of neighboring pixels are noisy (with large P),
R, is large, thus reducing the effect of the surface structure equa-
tion and leaving the BCCE to have a more dominant effect among
the two measurement equations. By the space-varying nature of R,
as given in (39), we note that pixels with small variance will be
able to influence their neighbors with large variance through the
surface structure equation, but less so the other way around.
Hence, the determination of R, through (39) has two desirable
features. First, it allows the surface structure to be imposed only
when the depth estimates are good, and second, it enables the
depth estimates to propagate from “good” regions (with small
variances) to “bad” regions (with large variances) through the
assumed structure of the surface.

4.3 Occluding Boundaries

As occlusion is characterized by discontinuity in depth, we can
detect occluding boundaries by estimating the local gradient

(g—f%) for each pixel and thresholding the magnitude of the gra-

dient. For the Kalman filter incorporating structure, the structural
relationship should be regarded as broken across an occluding
boundary. In practice, this can be readily implemented by sup-
pressing the structural relationship (in the direction of large gradi-
ent) in the Kalman filter at pixels detected to be on an occluding
boundary. We note however that occlusion detection and spatial
smoothing are opposing objectives, as the former relies on depth
discontinuities whereas the latter tends to smooth out discontinui-
ties in depth. Within the proposed framework, the gradient
thresholding can be expected to successfully detect occluding
boundaries having large jumps in depth, but boundaries with a
small step change in depth may be missed and the boundary
smoothed by the Kalman filter.

5 EXPERIMENTAL RESULTS

The Kalman filter incorporating surface structure is evaluated
using an image sequence captured from a scene shown in Fig. 2a
consisting of a soda can and a small box placed in front of a planar
poster featuring the drawing Relativity by M.C. Escher. The planar
poster is located at Z = 1,200 mm. The soda can is placed with its
nearest point at a distance of 1,100 mm from the camera. The box,
of depth 120 mm, is placed against the poster. Fig. 2b shows the
depth map of the ground truth. A 30-frame image sequence is
captured as the camera undergoes uniform lateral translation of
0.65 mm per frame. The images are digitized to 180 x 300 pixels in
256 gray levels.

The first 20 frames of the image sequence is processed using the
Kalman filter without the surface structure equation. The follow-
ing initial values and filter parameters are adopted:

Z(0) = 10*, P(0) = 10°, Q = 100, R,(0) = 10°. (40)
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Fig. 2. Experimental results. (a) Frame 1 of the image sequence. (b) Ground truth at frame 20. (c) Depth map at frame 20 using Kalman filter
without smoothness condition. (d) Frame 20 showing points (marked in black) with relative error greater than 5 percent. (e) Depth map at frame
28 using Kalman filter with smoothness condition. (f) Depth map at frame 28 with smoothness outside the Kalman filter.

Fig. 2c shows a 3D plot of the estimated depth map at frame 20.
The reconstructed depth map is very rugged with large spikes and
the 3D structure of the scene is hardly recognizable. Using knowl-
edge of the ground truth, regions of poor estimation with a relative
error greater than 5 percent, that is,

|Z(x, y)-Z(x, y)| > 0.05Z(x,y),

are identified and marked in “black” at frame 20 of the sequence,
as shown in Fig. 2d. The area above the soda can is poorly esti-
mated because of the lack of intensity variations. A direct verifica-
tion shows that there is a good match between the marked points
1 1
shown in Fig. 2d and points where P(x,y)? is large. Thus P(x,y)?
serves as an indication of the reliability of the depth estimates.
We next proceed to incorporate surface structure into the Kal-
man filter. Since it is not sensible to impose surface structure dur-
ing the initial stage of the filtering process when depth estimates

fluctuate wildly, the Kalman filter is first run with the BCCE as the
only measurement equation generating the results given in Fig. 2c,
and the surface structure is then incorporated into the Kalman
filter starting from frame 21. The observation Y, is computed ac-
cording to (35) and (36), and the parameters associated with
smoothing are chosen to be

Rs=100, 2=2. (41)

Since 2%, % can only be reasonably estimated after smoothing

X ’W
has been performed, the terms —g—fo—%sz in (10) are in-

cluded in the model only after frame 22. Fig. 2e shows the recon-
structed surface at frame 28. It can be seen that the spatial
smoothing within the Kalman filtering has been effective in re-
constructing the surface structure of the 3D scene with the shape
of the box and the soda can reasonably recovered. Some further
remarks follow.
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Remark 1: Choice of Filter Parameters
The parameters that need to be chosen are listed in (40) and (41). Q
was chosen to reflect the expected errors in the estimation of

(;—f%) Our experiments suggest that the results are not sensitive

to the choice of Q by up to an order of magnitude. The choice of
P(0) (provided that it is large) and Z(0) has little influence on the

outcome either. R; is determined by an online algorithm as dis-
cussed in Section 3.2. Rsis a user parameter that requires tuning to

achieve the desired smoothing. The effect of Rgsis very apparent in
the Kalman filtering process as it directly controls the compromise
between the BCCE measurement and structural information. It

should be noted that if Rsis chosen to be small, the variance P can
become correlated dominantly with the smoothness condition, and
it may be desirable to reset P to reinstate its correlation with the
BCCE.

Remark 2: Computation of I, I, and I,

It is necessary to perform a preliminary spatial smoothing to re-
move noise before computing these derivatives. We have used a
5 x 5 Gaussian mask to filter the image before applying a central
difference equation based on a fourth-order polynomial interpo-
lation to compute the spatial and temporal derivatives. We have
found that a higher (sixth-) or a lower (second-) order polyno-
mial interpolation does not make any significant difference to the
results.

Remark 3: Comparison With Other Methods

The depth map for the above image sequence was estimated using
two other techniques. First, we consider replacing the system
equation (8) by an image warping and resampling model. We note
that the warping and resampling operation tends to produce false
occlusions at the initial stage of depth estimation when the depth
map contains noisy spikes. Hence, it seems sensible to perform
image warping in combination with some form of smoothing. If
the image warping and resampling model is used after frame 21
together with the proposed smoothing scheme, then the estimated
depth map at frame 28 is similar to that shown in Fig. 2e. Second,
we remove the smoothness equation from the Kalman filter and
instead perform the smoothing outside the filter. In the smoothing
operation, Z(x, y) is replaced by the weighted average

A _1 _1
20e)= S| pl03 2000 /S P00,
]

where the summation is taken over the pixel (x, y) plus its four
neighbors. As in the case of smoothing within the Kalman filter,
the smoothing is started at frame 21. The resultant depth map at
frame 28 is shown in Fig. 2f, which shows that smoothing outside
the Kalman filter is less effective in removing spikes in areas of
poor estimation. With a small Rs, the depth estimates can con-
verge in fewer number of frames if the smoothing is performed
within the Kalman filter rather than outside. In terms of computa-
tion time, our Matlab implementation running on a 200-MHz
Pentium 1l processor requires ~2 seconds to process one image
frame without smoothing, but filtering with the smoothness con-
dition is more expensive at ~30 seconds for each pass over the
entire image plane.

6 CONCLUSION

We have developed a pixel-based model using the gradient
method for direct depth estimation within a unified Kalman fil-
tering framework. A method is proposed for incorporating local
surface structural information into the filtering process without
sacrificing the simplicity of the iconic filtering algorithm. The ex-
ample shows that the surface structure equation can make a sig-

nificant contribution to the recovery of surface structure from an
ensemble of depth estimates of individual pixels. We have as-
sumed perfect knowledge of camera motion. In practice, camera
motion, even if measured, could be noisy. It would be appropriate
to include the estimation of camera motion in the Kalman filtering.
Possible approaches would be to formulate the depth estimation as
an extended Kalman filter problem to include motion parameters,
or use least-squares techniques for motion estimation (e.g., see [5],
[17]). An automatic and adaptive method for choosing the pa-
rameter Rgscould be another area for further investigation.
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