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A Kalman-Filter-Based Method for Pose Estimation in
Visual Servoing

Farrokh Janabi-Sharifi and Mohammed Marey

Abstract—The problem of estimating position and orientation (pose) of
an object in real time constitutes an important issue for vision-based control
of robots. Many vision-based pose-estimation schemes in robot control rely
on an extended Kalman filter (EKF) that requires tuning of filter parame-
ters. To obtain satisfactory results, EKF-based techniques rely on “known”
noise statistics, initial object pose, and sufficiently high sampling rates
for good approximation of measurement-function linearization. Deviations
from such assumptions usually lead to degraded pose estimation during
visual servoing. In this paper, a new algorithm, namely iterative adaptive
EKF (IAEKF), is proposed by integrating mechanisms for noise adaptation
and iterative-measurement linearization. The experimental results are pro-
vided to demonstrate the superiority of IAEKF in dealing with erroneous
a priori statistics, poor pose initialization, variations in the sampling rate,
and trajectory dynamics.

Index Terms—Adaptation, Kalman filter (KF), control, pose estimation,
robotic manipulator, visual servoing.

I. INTRODUCTION

In computer vision, the problem of pose estimation is to determine
the position and orientation (pose) of a camera with respect to an ob-
ject’s coordinate frame using the image information. The problem is
also known as extrinsic camera-calibration problem with its solution
playing a crucial rule in the success of many computer-vision applica-
tions, such as object recognition [1], intelligent surveillance [2], and
robotic visual servoing (RVS) [3]. Estimation of the camera displace-
ment (CD) between the current and desired pose for RVS [4], [5] is
also relevant to this problem. However, the focus of this study will be
on pose estimation for RVS where the relative pose between a camera
and an object is used for real-time control of a robot motion [3].

In RVS, the control error can be calculated in the image space,
Cartesian space, or both (hybrid) spaces [3], [6], [7]. While partial
estimation of the pose vector (e.g., depth) is required for image-based
and hybrid visual-servoing schemes [8], [9], an important class of
visual-servoing methods, namely the position-based visual-servoing
(PBVS) scheme, requires full pose estimation to calculate Cartesian
error of the relative pose between the endpoint and the object [10].
Two major difficulties with pose estimation for RVS are related to the
requirements for efficiency and robustness of pose estimation [11].

The solutions to pose-estimation problem usually focus on using
sets of 2-D–3-D correspondences between geometric features and their
projections on the image plane. Although high-level geometric fea-
tures, such as lines and conics, have been proposed, point features
are typically used for pose estimation due to their ease of availability
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in many objects [12]. Solutions for three points [13], and more than
three points [14] have already been presented. However, exact and
closed-form solutions are only available for three or four noncollinear
points [15]. Such methods, although simple to implement, are often ex-
posed to difficulty in point matching in crowded environments. Besides,
point-based solutions are not robust and demonstrate high susceptibility
to noise in image coordinates [16]. For three-point solutions, it has been
shown that the points configuration and noise in the points coordinates
can drastically affect the output errors [13]. It has also been demon-
strated that when the noise level exceeds a knee level or the number of
points is below a knee level, least-squares-based methods, which are
commonly used for points solutions, become unstable leading to large
errors [17]. Addition of more points would enhance pose-estimation
robustness with the cost of increased computational expense. Nonlin-
ear, iterative, and/or recursive methods are then recommended for more
than four points as well as high-level features.

The iterative approaches formulate the problem as a nonlinear least-
squares problem. Such solutions offer more accuracy and robustness,
yet they are computationally more intensive than closed-form ap-
proaches, and their accuracy depends on the quality of the initial pose
estimates [18], [19]. The iterative methods usually rely on nonlinear
optimization techniques, such as the Gauss–Newton method [1]. To
reduce the problem complexity, approximate methods have also been
proposed by simplifying the perspective camera model, e.g., relaxing
the orthogonality constraint on the rotation matrix [19], [20]. The sur-
vey of both exact and approximate pose-estimation methods can be
found in the literature [15], [21]. In short, this class of methods ex-
hibits convergence problems and does not effectively account for the
orthonormal structure of rotation matrices [22]. Furthermore, with this
class of techniques, noisy visual-servo images usually lead to poor
individual pose estimates [23], thus requiring temporal filtering.

A class of recursive methods relies on temporal-filtering methods,
and in particular, Kalman-filtering techniques, to address robustness
and efficiency issues. Since a 3-D pose and its time rate constitute a
12-D state vector to be estimated in real time, many of these filter-
ing methods, such as particle filters [24], can hardly model the true
distribution in real time. A true 3-D pose estimation using Kalman
filter (KF) for RVS has been realized in [10]. With KFs, photogram-
metric equations are formed by first mapping the object features into
the camera frame and then projecting them onto the image plane. A
KF is then applied to provide an implicit and recursive solution of the
pose parameters. Since the filter output model for RVS is nonlinear in
the system states, an extended KF (EKF) is usually applied, in which the
output equations are linearized about the current state estimates. The
use of a KF in RVS is motivated by its several advantages, including its
recursive implementation, capability to statistically combine redundant
information (such as features) or sensors, temporal filtering, possibility
of using lower number of features, and the possibility for changing
the measurement set without disrupting the operation [3], [10]. For in-
stance, an EKF-based platform has been proposed in [11] to integrate
range sensor with vision sensor for robust pose estimation in RVS.
Additionally, an EKF implementation facilitates dynamic windowing
of the features of interest by providing estimation of the next time-step
feature location. This allows only small window areas to be processed
for image-parameter measurements and leads to a significant reduc-
tions in image-processing time. It has been shown that, in practice, an
EKF provides near-optimal estimation [10].

Despite its advantages, there are a few issues with the application of
EKF to pose estimation in RVS. First, a known object model is usually
assumed to be available. Model-free approaches based on Euclidean
reconstruction have been proposed for CD estimation [4], [5]. These
approaches typically rely on fundamental, essential, and/or homogra-

phy matrix estimation, e.g., in [5] and [25] and, hence, face the issue of
degeneration of the epipolar geometry in some cases, thus leading to
unstable estimation [4]. Despite some treatments [4], they remain sus-
ceptible to outliers. In addition, majority of them require several images
for reconstruction and, hence, are more appealing for postproduction
applications [26]. The assumption of known object model is not a ma-
jor issue in many industrial setups since computer-aided-design (CAD)
models of the objects are usually available. For uncertain environments
with a poor (or unknown) model of the object, an EKF-based approach
for real-time estimation of combined target model and pose has been
proposed in [27] and [28]. Therefore, this issue will not be the subject
of our focus. Second, while a KF provides optimal solution under the
assumption of zero-mean Gaussian noise for a linear problem, the EKF
formulation may not provide optimal results. In fact, linearization can
generate unstable filters when the assumption of local linearity is not
met [29]. In the previous work, it has been recommended to take a
sufficiently high sampling rate to enforce accuracy of the linearization
over the sampling period [10]. However, in practice, RVS-system band-
width would limit the sampling rate for the filter. As it has been shown
in [30], an EKF-based system might easily diverge under fast and non-
linear trajectory dynamics, even with a relatively high sampling rate.
Third, statistics of the measurement and dynamic noise are assumed
to be known in advance and to remain constant. Poor measurement
and dynamic models or poor noise estimates would degrade the system
performance and might even lead to the filter divergence. In particular,
while the measurement noise-covariance matrix can be tuned through
experiments, dynamic covariance matrix is difficult to tune [23]. This
is because dynamics of the object motion with respect to the camera
cannot be accurately predicted in a dynamic environment. Fourth, the
convergence of EKF depends on the choice of initial state estimate and
tuning of filter parameters. In many RVS applications, such as assem-
bly industry, initial pose of the object with respect to the camera can
be readily approximated. Yet, sufficiently good pose estimates cannot
be initially available in unstructured and uncertain environments. This
paper will contribute by formulating an EKF method to address the last
two aforementioned issues.

Several methods have been proposed in the literature to deal with
varying statistics and poor filter initialization of EKF for RVS sys-
tems. An adaptive EKF (AEKF) with a fixed set of image features has
been formulated for the first time in [30] to update the dynamic-noise-
covariance matrix in order to address the issue of varying and/or uncer-
tain dynamic noise. The AEKF-based approach has later been extended
in [31] to have a variable set of image features during the servoing for
improving servoing robustness. Despite the adaptation capability of
AEKF to unknown noise statistics, the presented AEKF methods do not
provide robust and accurate pose estimation in the presence of poor filter
initialization and camera calibration, particularly when tracking a fast
and nonlinear trajectory is desired. This aspect will be investigated ex-
perimentally in this paper. While tuning EKF noise-covariance matrices
were addressed in the aforementioned AEKF-based approaches [30],
[31], tuning and initialization of other EKF parameters and mechanisms
to enhance output linearization for RVS did not receive much attention.
To address tuning of other filter parameters and to facilitate its initial-
ization, an initial proposal for iterative EKF (IEKF) use in RVS has been
provided in [32]. As a matter of fact, Lefebvre et al. [33] have studied
several modifications of KFs for general nonlinear systems. They have
categorized all the different versions of KFs such as the central differ-
ence filter (CDF), unscented KF (UKF), and the divided difference filter
(DD1) as linear regression KFs (LRKFs) and have compared them with
EKF and IEKF [34]. They have concluded that EKF and IEKF generally
outperform LRKFs, yet they require a careful tuning. An interesting
result of their study is that IEKF outperforms EKF, because it uses the
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Fig. 1. Projection of an object feature onto the image plane.

measurements to linearize the measurement function, whereas in EKF
and LRKFs, the measurement is not used for the same purpose. Despite
its advantages, lack of adaptive noise estimation mechanism would de-
grade the performance of IEKF. In this paper, for the first time, an
iterative AEKF (IAEKF) for RVS is proposed to overcome limitations
of IEKF and AEKF. The presented work in this paper is continuation of
the previous works on EKF for RVS [3], [11], [27], [28], [30], [32]. This
study contributes by detailed formulation of IAEKF and experimental
comparison of EKF, AEKF, IEKF, and IAEKF for RVS.

II. FEATURE-POINT TRANSFORMATION

The commonly used perspective projection model of the camera
is shown in Fig. 1. Image frame is located at F (i.e., effective focal
length) along the ZC -axis with its Xi - and Y i -axes parallel to the
XC - and Y C -axes of the camera frame, respectively. In this study,
similar to many iterative methods, point features will be used for pose
estimation. Let the relative pose of the object to the camera (or end-
effector) frame be W = (T ,Θ)T , where T = [X, Y, Z ]T denotes the
relative position vector of the object frame with respect to the camera
frame, and Θ = [φ, α, ψ]T is the relative orientation vector with roll,
pitch, and yaw parameters, respectively. Let P C

j = (XC
j , Y C

j , ZC
j )T

and P o
j = (Xo

j , Y o
j , Zo

j )T represent the coordinate vectors of the jth
object feature point in the camera and object frames, respectively (see
Fig. 1). The vector of P o

j is available from the CAD model of the object
or measurements and can be described in the camera frame using the
following transformation:

P C
j = T + R(φ, α, ψ)P o

j (1)

where the rotation matrix is given in [3] and [10]. For control error
calculations, the Euler angles can be approximately related to the total
angles in a PBVS structure using a transition matrix [10]. The coordi-
nates of the projection of a feature point on the image plane using a
pin-hole camera model will be xi

j and yi
j given by (see Fig. 1)

[ xi
j yi

j ]T =
F

ZC
j

[
XC

j

PX

Y C
j

PY

]T

(2)

where PX and PY are interpixel spacing in Xi - and Y i -axes of the
image plane, respectively. This model assumes that the origin of the
image coordinates is located at the principal point, and |ZC

j | 
 F .
For short focal lengths, lens distortion can have a drastic effect on the
feature-point locations. For details of distortion model and its relation to
projection model, see [30] and [35]. The perspective projection model
requires both intrinsic and extrinsic camera parameters. The camera

intrinsic parameters (PX , PY , F ), coordinates of optical axis on the
image plane (principal point) Oi , radial and tangential distortion pa-
rameters, and aspect ratio are all determined from camera-calibration
tests [30]. The camera extrinsic parameters include the pose of the
camera with respect to the end-effector or the robot base frame, which
are calculated by inspection of camera housing and kinematic calibra-
tion [36]. Excellent solutions to the camera-calibration problem exist
in the literature [37].

Substituting (1) into (2) results in two nonlinear equations with six
unknown pose parameters of W . Therefore, at least three noncollinear
features are required for pose estimation (i.e., p = 3) [38]. However,
to obtain a unique solution, at least four features will be needed. It has
been shown that the inclusion of more than six features will not improve
the performance of EKF estimation significantly [23]. In addition, the
features need to be noncollinear and noncoplanar to provide good
results. Therefore, in many RVS applications, 4 ≤ p ≤ 6.

III. EXTENDED KALMAN FILTER

For pose estimation, the state vector of dynamic model is defined to
include pose and velocity parameters, i.e.,

x =
[
X, Ẋ, Y, Ẏ , Z, Ż, φ, φ̇, α, α̇, ψ, ψ̇

]T
. (3)

The relative target velocity is usually assumed to be constant during
each sample period. This is a reasonably valid assumption for suf-
ficiently small sample periods in RVS systems. A discrete dynamic
model will be then

xk = Axk−1 + γk (4)

with A being a block diagonal matrix with 2 × 2 blocks of the form[
1 T
0 1

]
, T being the sample period, k being the sample step, and γk

being the disturbance noise vector described by a zero-mean Gaussian
distribution with covariance Qk , i.e.,

E[γ i ] = qi , E
[
(γ i − qi )(γ j − qj )

T
]

= Qiδij (5)

where qi and Qi are true mean and true moments about the mean of
state noise sequences, respectively, and δ is the Kronecker delta. The
output model will be based on the projection model given by (1) and
(2) and defines the image-feature locations in terms of the state vector
xk as follows:

zk = G(xk ) + νk (6)

with measurements for p feature points

zk = [xi
1 , y

i
1 , x

i
2 , y

i
2 , . . . , x

i
p , yi

p ]Tk (7)

and

G(xk ) = F

[
XC

1

PX ZC
1

,
Y C

1

PY ZC
1

, · · · ,
XC

p

PX ZC
p

,
Y C

p

PY ZC
p

]T

. (8)

Here, XC
j , Y C

j , and ZC
j are given by (1), and νk denotes the image-

parameter measurement noise that is assumed to be described by a
zero-mean Gaussian distribution with covariance Rk , i.e.,

E[ν i ] = ri , E
[
(ν i − ri )(ν i − ri )T

]
= Ri δij (9)

where ri and Ri are true mean and true moments about the mean
of measurement-noise sequences, respectively. Since (6) is nonlinear,
an optimal solution cannot be obtained through a KF implementation.
Instead, an extension of KF (i.e., EKF) can be formulated by linearizing
the output equation about the current state.
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Let xk be the state at step k, x̂k ,k−1 denote the a priori state es-
timate at step k given the knowledge of the process or measurement
at the end of step k − 1, and let x̂k ,k be the a posteriori state es-
timate at step k given measurement zk . Then, a priori and a poste-
riori estimate errors, and their corresponding covariances are defined
as ek = xk − x̂k ,k , P k ,k = E[ek eT

k ], ek ,k−1 = xk − x̂k ,k−1 , and
P k ,k−1 = E

[
ek ,k−1e

T
k ,k−1

]
, respectively. It is well known that the

recursive EKF algorithm consists of two major parts of prediction and
estimation as follows.

Prediction:

x̂k ,k−1 = Ax̂k−1 ,k−1 (10)

P k ,k−1 = AP k−1 ,k−1A
T + Qk−1 . (11)

Linearization:

Hk =
∂G(x)

∂x

∣∣
x= x̂k , k −1 . (12)

Kalman gain update:

Kk = P k ,k−1H
T
k (Rk + Hk P k ,k−1H

T
k )−1 . (13)

Estimation updates:

x̂k ,k = x̂k ,k−1 + Kk (zk − G(x̂k ,k−1 ) (14)

P k ,k = P k ,k−1 − Kk Hk P k ,k−1 . (15)

Here, Kk is the Kalman gain matrix at step k. The measurement-
and process-noise covariances Qk and Rk are usually assumed to
be constant during servoing and obtained through tuning [10]. While
Rk can be determined through the experiments [23], matrix Qk is
difficult to determine a priori due to unknown object’s and/or camera’s
motions. In general, the aim of adaptive filtering in RVS is to estimate
not only the state but the time-varying statistical parameters given by
Υi = {ri , Ri , qi , Qi} as well. An AEKF has been introduced in [30]
and [31] to estimate Rk and Qk in real time. The adaptation capability
of AEKF with poor initialization of noise-covariance matrices has been
demonstrated in our previous work [30]. However, the results also
showed that in quicker changes of the pose, the error of AKEF will
increase. This is mainly due to the time required by AEKF to react to
such a sudden change. Linearization approximation in (12) cannot be
treated by AEKF properly and is another source of errors, especially
in tracking the trajectories with faster and higher dynamics. Besides,
the linearization approximation errors would lead to high sensitivity
to poor initialization and camera-calibration error. An IEKF has been
proposed in our previous work [32] to alleviate this issue.

In the next section, adaptive and iterative mechanisms are combined
to address the aforementioned issues simultaneously and to establish a
robust framework for pose estimation in RVS.

IV. ITERATIVE ADAPTIVE EXTENDED KALMAN FILTER

The proposed approach combines advantages of AEKF and IEKF.
After initialization and prediction stages, iteration is started for m
iterations by first setting x̂0

k = x̂k ,k−1 , i.e., for i = 0, and then

H i
k =

∂G(x)
∂x

∣∣∣x= x̂i
k

(16)

r̂i
k ≡ zk − G(x̂i

k ) (17)

Γi
k ≡ H i

k P k ,k−1H
iT

k (18)

r̄i
k = r̄k−1 +

1
N

(r̂i
k − r̂k−N ) (19)

Ri
k = Rk−1 +

1
N − 1

((
r̂i

k − r̄i
k

) (
r̂i

k − r̄i
k

)T

−
(
r̂k−N − r̄i

k

) (
r̂k−N − r̄i

k

)T

+
1
N

(
r̂i

k − r̂k−N

) (
r̂i

k − r̂k−N

)T
+

N − 1
N

(Γk−N − Γi
k )
)

(20)

K i
k = P k ,k−1H

iT

k

(
Ri

k + H i
k P k ,k−1H

iT

k

)−1
(21)

x̂i+1
k = x̂i

k + K i
k (zk − G(x̂i

k ). (22)

At the end of iterations, the iteration output is propagated as follows:

x̂k ,k = x̂m
k , r̄k = r̄m

k , Rk = Rm
k ,

Γk = Γm
k , Kk = Km

k (23)

and a posteriori error-covariance estimate is updated according to (15).
Here, a window of past measurements of size N is selected for adapta-
tion of Rk . The observation noise sample r̂j is assumed to be represen-
tative of ν j , and for j = k − N → k to be independent and identically
distributed.

Finally, the state noise statistics are estimated adaptively as follows:

q̂j = x̂j,j−1 − Ax̂j−1 ,j−1 (24)

and for j = k − N → k, it is assumed to be independent and identically
distributed. In addition, let

∆k ≡ AP k−1 ,k−1A
T − P k ,k . (25)

Then, the process-noise-covariance matrix will be updated according
to

q̄k = q̄k−1 +
1
N

(q̂k − q̂k−N ) (26)

Qk = Qk−1 +
1

N − 1

(
(q̂k − q̄k )(q̂k − q̄k )T

− (q̂k−N − q̄k )(q̂k−N − q̄k )T

+
1
N

(q̂k − q̂k−N )(q̂k − q̂k−N )T +
N − 1

N
(∆k−N − ∆k )

)
(27)

followed by predictions stage, which is represented by (10) and (11).
However, it must be noted that the above algorithm is computationally
intensive when compared with EKF, IEKF, and AEKF. In order to
improve computing time, adaptation steps are performed outside the
iterations. After initialization and prediction steps, the first limited filter
algorithm [30] to estimate the measurement-noise statistics is applied
to find Rk before the iterations (using (16)–(20) without index i).
Next, the iteration is established for m cycles to obtain Kalman gain
and estimation updates according to (16), (21), and (22). State noise
statistics are estimated outside the iterations, according to (24)–(27).
To ensure positive definiteness of Rk and Qk , the diagonal elements
of covariance estimators are reset to their absolute values. In addition, a
fading-memory approach is applied to give low weights to initial (i.e.,
less reliable) samples of length and growing weight to successive noise
samples as follows [30]:

�k = (k − 1)(k − 2) · · · (k − η)/kη , if k ≥ η (28)

with the property of limk→∞ �k = 1.
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TABLE I
COMPUTATIONAL COST FOR POSE ESTIMATION WITH

p = 5, N = 10, m = 10(20, 30)

In our experiments with IEKF [32], the optimal number of iterations
were found to be m = 30, where m = 20 also provided reasonably
good results. It should also be noted that for computational efficiency,
a fixed number of iterations is not necessary for pose-estimation tasks.
The iteration can be stopped if the iterated state estimate is close to
the previous value, i.e., (K i

k (zk − G(x̂i
k ))T (K i

k (zk − G(x̂i
k )) < τ ,

where τ is a threshold that could be found from experiments.
Table I shows the computational costs for different EKF-based al-

gorithms used for pose estimation. For flops calculation flop option of
MATLAB 5.0 has been used. The CPU times were obtained using a P4
1.7-GHz PC with 256-MB RAM. Given the current technology of PCs,
the increased computational costs with IEKF and IAEKF do not nec-
essarily imply major disadvantages and a bottleneck as the total time
of the filter computations with moderate number of iterations is much
less than the time required for feature selection and image processing
in RVS.

V. EXPERIMENTAL RESULTS

Extensive simulations and experiments were conducted to inves-
tigate and compare the performance of various Kalman-filtering ap-
proaches for pose estimation.

The default filter parameters were as follows: R0 is a diagonal matrix
with diagonal elements of 0.01 (in pixels square) measured through the
experiments, P 0 ,0 is a block diagonal matrix with 2 × 2 blocks of the
form diag[0.02 0.01] (in meters square, in (meters per second) square,
in degrees, in (degrees per second) square), N = 20, m = 30, η = 5,
and p = 5.

To evaluate the accuracy of estimation, the results of estimations
were compared with the relative pose calculations through the robot
forward kinematics using the joint encoders. Another measure of accu-
racy was the inspection of the Kalman-estimate output errors that are
the errors between the true image-feature locations and those obtained
from KF estimates, i.e., filter residues: zk − G(x̂k ,k−1 ).

A 6-degree-of-freedom (DOF) Cartesian manipulator, i.e., AFMA-
6, with an endpoint mounted AVT-MARLIN F-033C CCD camera
(at IRISA-INRIA, Rennes) and a target object shown in Fig. 2 were
used. The robot was calibrated and operated under Linux with visual-
servoing software, i.e., VISP [39]. The camera images were sent at
50 fps (frames/s) to the host PC with Intel Core 2–2.93 GHz running
under Linux on which frame grabbers had been installed. The images
had the size of 128× 182 pixels and had an effective focal length of F =
12.5 mm. The image processing and control computations were carried
out on the host, and then, the control output was transmitted to the robot
controller via a PCI-VME bus-adapter board. About 10 ms was required
for control action. The camera parameters, namely image center and
interpixel spacings, were obtained from the calibration program. Initial
estimate of the pose was obtained using DeMenthon’s method [19].
The sampling period was T = 0.06325 s.

The robot was commanded to travel through a predefined trajectory
over a stationary object. The maximum velocity of the AFMA-6 end-
point was set through VISP. Therefore, for a given set of nodal points,

Fig. 2. (a) Experimental system for set 3 consisting of AFMA-6 manipulator
and target object. (b) Image of the target object with its coordinate frame and
features used.

Fig. 3. Dynamic performance of pose estimation by EKF and forward kine-
matics estimators (experiment 1).

different trajectories with various dynamics were designed. A good
estimation power of tuned EKF in relatively slow motion has already
been shown [3], [10]. Therefore, EKF formed the comparison base.

The purpose of experiment 1 was to compare the performance of vari-
ous KF-based methods under an accurately calibrated robot framework.
The maximum-velocity components of the endpoint trajectory were set
to 50 mm/s and 5◦/s, for translational and rotational coordinates, re-
spectively, to generate a moderate motion dynamics. A null-state noise-
covariance matrix was initially introduced to simulate the case of poorly
tuned KF-based estimators for variety of trajectories. The endpoint rela-
tive trajectory was designed to incorporate sudden-velocity changes and
significant nonlinearities. The purpose was to investigate the adaptation
capability of AEKF and IAEKF to deviations from constant-velocity
assumption of KF process model, and to evaluate the iterative per-
formance of IEKF and IAEKF in approximating the output-model lin-
earization. The inspection of the results (see Figs. 3–6 and Tables II and
III) indicates that estimation accuracy of all algorithms is better in X ,
Y , and roll than in depth parameters Z , pitch, and yaw. The results also
show that sudden changes in the velocity lead to divergence of EKF (see
Fig. 3). This is due to the assumption of constant velocity in the state
model. However, both AEKF and IAEKF were able to adapt to velocity
changes (see Figs. 4 and 5). Fig. 5 shows that, although IEKF perfor-
mance is superior to that of EKF, lack of a noise-adaptation mechanism
in IEKF leads to significant errors and divergence toward the end of the
relative pose trajectory. Table II shows pose-estimate-error statistics
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Fig. 4. Dynamic performance of pose estimation by AEKF and forward kine-
matics estimators (experiment 1).

Fig. 5. Dynamic performance of pose estimation by IEKF and forward kine-
matics estimators (experiment 1).

Fig. 6. Dynamic performance of pose estimation by IAEKF and forward
kinematics estimators (experiment 1).

TABLE II
POSE ERROR STATISTICS FOR DIFFERENT KF-BASED ESTIMATORS WHEN

COMPARED WITH KINEMATIC ESTIMATOR (EXPERIMENT 1)

TABLE III
IMAGE-PLANE-ERROR VARIANCE FOR DIFFERENT KF-BASED ESTIMATORS IN

PIXELS SQUARE (EXPERIMENT 1)

when different KF-based estimates are compared with kinematic esti-
mates. Table III lists Kalman-estimate-output-error variances for five
image-feature locations used in different KF-based methods. High lev-
els of error can be observed for EKF estimates; however, both AEKF
and IAEKF show good and comparable levels of accuracy, with IAEKF
indicating slightly advantageous performance. Tracking accuracies of
IAEKF for X and Y were approximately within ±1.3 and ±1 mm,
respectively, and those for Z , roll, yaw, and pitch were within ±4 mm,
±0.3◦, ±0.5◦, and ±0.3◦, respectively.

In experiment 2, the same condition, as in experiment 1, was used
except that the magnitude of the maximum velocity of the robot end-
point was increased first ten times and next 27 times of the one used in
the previous experiment, thereby resulting in experiments 2a and 2b,
respectively (see Figs. 7 and 8). The resulting kinematic trajectories
were almost the same as the trajectories in experiment 1, except that
they were completed in shorter times. Consequently, faster dynamics
and increased nonlinearities per sampling period would be expected.
In both scenarios, EKF remained divergent with further degraded per-
formance. The performance of AEKF was also degraded with the in-
creased velocity. For instance, the mean errors of the AEKF estimator
in experiment 2b along X- and Y -directions were approximately three
and ten times more than those in experiment 1. Similarly, the standard
deviation in the same directions increased 14 and 24 times in exper-
iment 2b compared with experiment 1. This can be explained by the
AEKF lag and its disability to keep up a good approximate for output
linearization under faster and added nonlinear dynamics per sampling
period. However, the performances of IEKF and IAEKF remained
comparable with their performance in experiment 1.

In experiment 3, the same condition as experiment 1 was applied,
but instead of null covariance matrices, tuned covariance matrices were
used. The noise-covariance matrices were approximated using offline
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Fig. 7. Dynamic performance of pose estimation by AEKF and forward kine-
matics estimators (experiment 2a).

Fig. 8. Dynamic performance of pose estimation by AEKF and forward kine-
matics estimators (experiment 2b).

tuning with q = 10−5 (in (meters per second) square, in (degrees per
second) square) for

Q = diag[0, q, 0, q, 0, q, 0, q, 0, q, 0, q] (29)

and r = 0.01 pixel2 for

R = diag[r, r, r, r, r, r, r, r, r, r]. (30)

The results are summarized in Tables IV and V. As it would be
expected, carefully tuned covariance matrices in relatively moderate
dynamic conditions enabled EKF to remain convergent. Compared
with oscillating and divergent behavior of EKF in experiment 1, signif-
icant improvement was gained with tuned covariance matrices. AEKF
also provides good results, which are superior to the EKF results in
terms of mean error, standard deviation, and maximum error. The
image-plane-error variance for EKF is not significantly different than
that for AEKF (see Table V). Again, IAEKF provides the best results
in terms of all comparison categories. It is also noted that with fine
tuning of noise-covariance matrices, IEKF performance approaches
that of IAEKF, as IEKF gives very similar results to those of IAEKF

TABLE IV
POSE-ERROR STATISTICS FOR DIFFERENT KF-BASED ESTIMATORS WHEN

COMPARED WITH KINEMATIC ESTIMATOR (EXPERIMENT 3)

TABLE V
IMAGE-PLANE-ERROR VARIANCE FOR DIFFERENT KF-BASED ESTIMATORS IN

PIXELS SQUARE (EXPERIMENT 3)

(see Tables IV and V). Interestingly, while the performance of EKF,
AEKF, and IEKF improves with tuning of the noise-covariance matri-
ces, the results of IAEKF remains approximately the same as those in
experiment 1. This result again highlights the robustness of IAEKF to
tuning errors of the measurement-noise-covariance matrices. The re-
sults were also obtained for various covariance matrices by varying q
and r values according to q ∈ {103 , 10, 10−1 , 10−3 , 10−5 , 10−20}, and
r ∈ {0.05, 0.1, 1, 10, 100, 1000}. The results again confirmed robust-
ness of IAEKF to changes in Q and R matrices. The results of IEKF
were also acceptable. However, AEKF, and particularly EKF, demon-
strated high levels of sensitivity, as observed in [32]. For instance,
mean-error values for IAEKF remained within ±10% of the values
obtained with a null-process-noise-covariance matrix (see Table I).

In experiment 4, the sensitivity of KF-based estimators to the sam-
pling rate was compared under dynamic conditions. The same con-
dition as the previous experiment with the tuned measurement-noise-
covariance matrices (with q = 10−5 in (29), and r = 10−2 in (30))
was applied, but the sampling time was changed to T = 0.020 s from
the default value of 0.06325 s. Results consistent with the previous
experiments [32] were obtained. The results for all estimators were
improved with a higher sampling rate. However, IAEKF results were
not significantly different than the results reported in Tables II and IV.
For instance, mean-error values for IAEKF remained within ±15% of
those reported in Table II. The results for IEKF were also relatively
consistent, e.g., mean-error values remained within±20% of the values
reported in Table II. However, changes in EKF and AEKF results were
more significant and, often, an order of magnitude different than those
in Table II.

In experiment 5, the sensitivity of estimators to errors in initial poses
was investigated by changing the initial positions 100, 200, 300, and
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400 mm in all position coordinates. While IEKF and IAEKF provided
acceptable results upto 200 mm deviation from the initial position,
other methods failed at 100 mm deviation. The mean-error values for
IAEKF and IEKF remained within +10% of those reported in Table II
(i.e., almost-perfect pose initialization).

VI. CONCLUSION

Different KF-based methods of pose estimation have been discussed.
A new pose-estimation method, namely the IAEKF algorithm, has also
been introduced. All methods have been compared for their perfor-
mance under different experimental conditions. It has been shown that
mechanisms of noise adaptation and iterative-measurement lineariza-
tion can be integrated within a novel IAEKF algorithm to obtain a
superior performance in comparison with other KF-based methods. In
particular, robustness of IAKEF has been established through exper-
iments, and it has been demonstrated that IEAKF can improve pose-
estimation performance in the presence of erroneous a priori statistics,
nonlinear and fast-tracking trajectories and measurement function, slow
sampling rates, and erroneous pose initialization. The improvements
have been obtained at an additional computational cost, which are, in
general, modest given the current PC technology and when compared
with feature selection and image-processing time in RVS.
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Autonomous Behavior-Based Switched Top-Down and
Bottom-Up Visual Attention for Mobile Robots

Tingting Xu, Student Member, IEEE, Kolja Kühnlenz, Member, IEEE,
and Martin Buss, Member, IEEE

Abstract—In this paper, autonomous switching between two basic atten-
tion selection mechanisms, i.e., top-down and bottom-up, is proposed. This
approach fills a gap in object search using conventional top-down biased
bottom-up attention selection, which fails, if a group of objects is searched
whose appearances cannot be uniquely described by low-level features used
in bottom-up computational models. Three internal robot states, such as
observing, operating, and exploring, are included to determine the visual
selection behavior. A vision-guided mobile robot equipped with an active
stereo camera is used to demonstrate our strategy and evaluate the per-
formance experimentally. This approach facilitates adaptations of visual
behavior to different internal robot states and benefits further develop-
ment toward cognitive visual perception in the robotics domain.

Index Terms—Vision-guided robotics, visual attention control.

I. INTRODUCTION

To achieve efficient processing of visual information about the en-
vironment, humans select their focus of attention (FOA), such that
the most interesting regions will be processed first in detail. Stud-
ies about human visual perception show that visual attention selec-
tion is affected by two distinct mechanisms: top-down and bottom-
up. Top-down signals are derived from the task specification or the
previous knowledge and highlight the task-relevant information. It
is goal-directed and essential for task accomplishment. In contrast,
bottom-up attention is driven by distinct stimuli based on primary
visual features. Interaction and coordination of both enable gaze-
fixation-point selection and guide the visual behavior. To deal with
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Fig. 1. ACE robot.

the limited processing capability of most technical systems, espe-
cially autonomous mobile robots, a biologically plausible and tech-
nically applicable visual attention system is to be developed in or-
der to fill the gap between the fundamental studies and the robotics
research.

Normally, when operating in the real world, a robot has a task such
as detecting and manipulating a target object. For a mobile robot, a
typical task is to find a target and move toward it. In a simple scenario
with unique target objects, a conventional top-down biased bottom-up
strategy can help a lot in terms of efficiency [1]. However, it fails if
a group of objects is searched whose appearances cannot be uniquely
described by low-level features used in a primary bottom-up computa-
tion model. For example, different traffic signs are all salient in color
but different in geometry and have different patterns on them. They
are, therefore, not distinguishable from each other and only rely on
low-level features used in bottom-up attention selection. An exhaus-
tive search is still needed. To lower the computational cost, a search
window is usually defined for exhaustive search as the robot FOA, in
which the exhaustive search is conducted.

A search window based on bottom-up attention can predict image
regions with higher probability to contain a target object, while a search
window based on top-down attention is efficient for task accomplish-
ment. Both bottom-up attention and top-down attention are essential
for robot-attention control. On the one hand, if a task-relevant object is
not located in the robot field of view (FOV), pure top-down attention
selection can also use position data in the 3-D task space to direct
robot attention toward the target, while bottom-up or top-down biased
bottom-up attention selection only relies on the 2-D image data. On
the other hand, if there is no task-relevant information in the FOV
at all, pure bottom-up attention can guide the robot attention to ex-
plore the environment in a flexible way. In this paper, autonomous
switching between top-down and bottom-up attention mechanisms is
proposed, which enables autonomy of robots in terms of adaptations
of visual behavior to different internal robot states and which fills the
gap for object search not solvable using conventional combination of
them. A vision-guided mobile robot, which is the Autonomous City
Explorer (ACE) [2] developed at our institute (see Fig. 1), is used
to demonstrate our strategy and evaluate the performance experimen-
tally. It is equipped with an activevision system, which consists of a
Bumblebee XB3 stereo camera from Point Grey Research, Inc., and a
high-performance pan-tilt platform [3].

This paper is organized as follows: In Section II, related works
about combination of top-down and bottom-up attention selections
are introduced. In Section III, the proposed autonomous switching
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