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A Kalman Filter for Amplitude Estimation in

High-Speed Dynamic Mode Atomic Force

Microscopy
Michael G. Ruppert, Student Member, IEEE, Kai S. Karvinen, Member, IEEE, Samuel L. Wiggins and

S. O. Reza Moheimani, Fellow, IEEE

Abstract—A fundamental challenge in dynamic mode atomic
force microscopy (AFM) is the estimation of the cantilever
oscillation amplitude from the deflection signal which might
be distorted by noise and/or high-frequency components. When
the cantilever is excited at resonance, its deflection is typically
obtained via narrowband demodulation using a lock-in ampli-
fier. However, the bandwidth of this measurement technique
is ultimately bounded by the low-pass filter which must be
employed after demodulation to attenuate the component at twice
the carrier frequency. Furthermore, to measure the amplitude
of multiple frequency components such as higher eigenmodes
and/or higher harmonics in multifrequency AFM, multiple lock-
in amplifiers must be employed. In this work, the authors propose
the estimation of amplitude and phase using a linear time-varying
Kalman filter which is easily extended to multiple frequencies.
Experimental results are obtained using square-modulated sine
waves and closed-loop AFM scans, verifying the performance of
the proposed Kalman filter.

Index Terms—Atomic force microscopy, amplitude estimation,
state estimation, Kalman filter, high-bandwidth, FPGA imple-
mentation

I. INTRODUCTION

IN atomic force microscopy (AFM) [1] a microcantilever

with a sharp tip is coupled to the sample’s surface via

nonlinear tip-sample forces. Nanometer-resolution images of

a wide variety of materials [2] can be obtained by utilizing

feedback control; the controller performs disturbance rejection

and estimates the sample topography. The ability to study

dynamic biological processes is considered one of the major

driving forces behind the development of high-speed tapping-

mode AFM (TM-AFM) [3], which requires low tip-sample

interaction forces, fast positioning stages and high-speed can-

tilevers in order to capture dynamics on these time scales [4].

In this operational mode, the cantilever is usually excited near

its fundamental resonance frequency and the tapping ampli-

tude is kept constant at a predefined setpoint by a controller

commanding the nanopositioner in its vertical direction. When

the output of the controller is mapped against the horizontal

trajectory of the nanopositioner, a three dimensional image of

the sample’s topography is obtained. High-speed AFM setups

therefore require every component in the feedback loop to
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be optimized; a fast cantilever (high resonance frequency and

low quality factor), a fast x-, y- and z-axis nanopositioner,

a high-bandwidth z-axis controller and high-speed amplitude

estimation are essential [5]. Common methods of amplitude

estimation, such as RMS to DC conversion and the lock-in

amplifier, are typically not suitable for high-speed operation

and their limitations have led to the development of fast single

wave detectors based on the peak-hold method [6], [7], Fourier

technique [8] and real-time integration [9], [10].

One common drawback to the use of RMS to DC con-

version, the peak-hold technique and the real-time integra-

tion technique is their inability to produce accurate ampli-

tude estimates in the presence of noise and/or higher har-

monic/eigenmode contributions. As a result, these techniques

are incompatible with multifrequency AFM methods [11]. The

lock-in amplifier – a narrowband technique – is more suitable

at rejecting unwanted frequency components, but at the ex-

pense of the measurement bandwidth. A high-bandwidth lock-

in amplifier was recently proposed and implemented to address

this issue, improving upon the measurement bandwidth of

the lock-in amplifier [12]. However, the bandwidth is still

ultimately limited by the low-pass filters, which are required

to account for mismatches in the phase.

The application of advanced estimation techniques has

proved successful in dynamic mode atomic force microscopy.

The mathematical and systems viewpoint considering the

cantilever and the tip-sample force as separate subsystems in

a feedback loop employs methods from harmonic analysis

and power balance [13], [14] promoting the idea that an

observer can be constructed to estimate the states position and

velocity of the cantilever. Moreover, since the observer does

not contain an explicit model of the unknown and nonlinear

tip-sample force, the error signal will contain information of

the disturbance profile during the transient response of the can-

tilever [15]–[17]. An analog implementation of the observer

was proposed for which the signal-to-noise ratio increases

with increasing observer gain whereas the measurement noise

increases as well [18].

In addition, it is possible to directly estimate the tip-sample

force in tapping-mode AFM by assuming it takes the form of

an impulse train [19]. Formulating the estimation problem as a

Kalman filter, the tip-sample force is estimated directly; thus,

potentially enabling high-bandwidth z-axis control. Assuming

zero-mean Gaussian white noise processes, the Kalman filter

produces the optimal state estimate, however, even for general
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noise sources, the Kalman filter still yields the best linear

estimator.

In this contribution the authors propose the use of a linear

Kalman filter to estimate the amplitude and phase of the

cantilever deflection without a model of the cantilever itself.

Unlike the lock-in amplifier, which is usually employed to

recover the cantilever amplitude from a possibly noisy back-

ground, the Kalman filter is not limited by the demodulation

low-pass filters and can therefore achieve significantly higher

measurement bandwidth. Furthermore, the flexible system

representation allows for the simultaneous estimation of mul-

tiple frequency components such as higher eigenmodes and/or

harmonics for which usually a number of lock-in amplifiers

must be employed.

The remainder of this paper is organized as follows. Section

II contains a review of amplitude estimation techniques used

in dynamic mode AFM, highlighting the limitations in their

measurement bandwidth and multifrequency capabilities. In

Section III the model of a sinusoidal signal is derived which

forms the basis of the Kalman filter approach proposed in this

contribution and Section IV outlines the discrete Kalman filter

equations. Experimental results highlighting square-modulated

sine waves and closed-loop AFM scans are presented in

Section V.

II. AMPLITUDE ESTIMATION IN ATOMIC FORCE

MICROSCOPY

A. RMS to DC Conversion and Mean Absolute Deviation

One of the earliest forms of amplitude estimation is RMS

to DC conversion. The RMS value srms of a sinusoidal signal

s(t) with period T is proportional to the amplitude of the

signal spk and is defined as

srms =

√

1

T

∫ t+T

t

s2(t)dt =
spk√
2
. (1)

In TM-AFM, regulation of the amplitude of oscillation of the

excited mode is required for the estimation of the surface

topography. However, in the presence of other frequency

components, such as higher eigenmode contributions and/or

higher harmonics, RMS to DC conversion is unable to accu-

rately determine the oscillation amplitude of the excited mode.

Methods of true RMS to DC conversion include thermal RMS

to DC conversion; direct computation, where amplifiers are

used to perform the squaring, averaging and square rooting

functionality; and indirect computation, which utilizes feed-

back [20]. A number of analog and digital true RMS to DC

converters are available commercially.

In TM-AFM, RMS to DC conversion was typically per-

formed using a rectifier circuit and a low-pass filter [5].

However, it must be stressed that this is not RMS to DC

conversion, but mean absolute deviation [20], which calculates

the AC average of the waveform 2spk/π. For a pure sinusoidal

signal the output is proportional to the oscillation amplitude,

but this technique also suffers from the same drawbacks as

RMS to DC conversion. Inaccurate amplitude estimates are

obtained when additional frequency components are present

in the displacement signal and high-frequency oscillations

must be removed from the low-bandwidth amplitude estimate.

As a result, these techniques often require many cycles for

convergence, which severely limits the achievable imaging

bandwidth in TM-AFM.

B. Peak-Hold Technique

The peak-hold technique [6] was developed specifically for

high-speed TM-AFM imaging. It utilizes sample and hold

circuitry to hold both the positive and negative peaks for the

duration of a cycle. While this technique offers high measure-

ment bandwidth, it is more susceptible to noise as there are

only two measurements per cycle. Furthermore, the presence

of harmonics will result in erroneous amplitude estimates

and complicates the synchronization of the sample and hold

circuitry. Nonetheless, this technique was successfully used to

obtain video rate imaging of Myosin V by employing very

small tip-sample forces [21].

C. Lock-In Amplifier

In comparison to the preceding techniques, the lock-in

amplifier is advantageous since it can extract the amplitude

of a specific frequency component from a noisy background.

The lock-in amplifier mixes the input signal consisting of a

carrier sine wave and a slowly time-varying amplitude signal

S0(t) of the form

s(t) = S0(t) sin (ωt+ φ) (2)

with in-phase and quadrature sinusoids to obtain

si(t) = S0(t) sin (ωt+ φ) sinωt

=
1

2
S0(t) cosφ

︸ ︷︷ ︸

X

− 1

2
S0(t) cos (2ωt+ φ)

︸ ︷︷ ︸

low-pass filtered

(3)

and

sq(t) = S0(t) sin (ωt+ φ) cosωt

=
1

2
S0(t) sin (φ)

︸ ︷︷ ︸

Y

+
1

2
S0(t) sin (2ωt+ φ)

︸ ︷︷ ︸

low-pass filtered

. (4)

With suitable low-pass filtering, the undesirable frequency

content at 2ω can be rejected and accurate amplitude and phase

estimates can be calculated by

S0(t) = 2
√

X2 + Y 2 (5)

φ = arctan

(
Y

X

)

, (6)

where X is the in-phase component and Y is the quadrature

component. However, since the low-pass filters must separate

the slow time-varying component from the high-frequency

oscillations, the measurement bandwidth is limited. This is

illustrated in Fig. 1a which shows the 2ω-component resulting

from the mixing process. The low-pass filter bandwidth must

be chosen as a compromise between good tracking of S0(t)
and adequate filtering of the high-frequency component.
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TABLE I
SUMMARY OF AMPLITUDE ESTIMATION METHODS

Method Amplitude Phase Convergence Robustness Reference

(Cycles) to Noise

Fourier Technique Yes Yes 20 Yes [8]

Lock-In Amplifier Yes Yes 6-10 Yes [22]

RMS to DC Yes No 5 No [20], [6]

High-Bandwidth Lock-In Amplifier Yes Yes 2-3 Yes [12]

Peak Hold Yes No 1 No [6]

Real-Time Integration Yes Yes 1 No [9], [10]

Prior Mixing

Post Mixing

0−4ω −3ω −2ω −ω ω 2ω 3ω 4ω
(a)

Prior Mixing

Post Mixing

0−4ω −3ω −2ω −ω ω 2ω 3ω 4ω
(b)

Fig. 1. Comparison of frequency spectra using (a) a standard lock-in amplifier
and (b) a high-bandwidth lock-in amplifier.

D. High-Bandwidth Lock-In Amplifier

The high-bandwidth lock-in amplifier [12] is a novel tech-

nique inspired by image rejection mixers [23] and modulated-

demodulated control [24]. Here, phase cancellation is em-

ployed to exactly cancel the 2ω-component for a pure sinu-

soidal input signal. In practice, a post-mixing low-pass filter is

still required since circuit mismatches will prevent the exact

cancellation. However, since the high-frequency oscillations

have been attenuated significantly, the bandwidth of the low-

pass filter can be increased which leads to an increase in

measurement bandwidth. Fig. 1b highlights the reduction in

the high-frequency components situated at 2ω by employing

the high-bandwidth lock-in amplifier technique.

E. Real-Time Integration

The Fourier method is conceptually similar to the lock-in

amplifier, but involves the direct computation of the Fourier

series coefficients. While this technique is more robust than

the peak-hold technique, it requires accurate timing and

integration over an integral number of oscillations [8]. If

the Fourier series coefficients are determined digitally, the

speed and resolution of the analog-to-digital converter will

affect the accuracy of the calculation. For microcantilevers

with megahertz resonances, such an implementation could be

challenging. Another low-latency demodulation method has

been proposed based on mixing and post-integration [9], [10]

of the in-phase and quadrature components. It was shown

that if the integration period is chosen to be an integer

multiple of the drive signal period, the integral of the high

frequency terms goes to zero. While such precise control over

the integration period is only achievable in digital systems,

the implementation of this method is challenging but can be

done using FIR filters. While simulation results show that

low latency can be achieved for a pure sinusoid, in order

to reject white noise, multiple oscillation periods must be

integrated resulting in a lower measurement bandwidth. The

authors are not aware of published reports on experimental

implementations of this method, in closed loop.

F. Summary

Table I compares the amplitude estimation techniques dis-

cussed so far. It can be seen that while a few specialized

methods are able to obtain amplitude estimates in a single

cycle, these methods lack the flexibility to either reject back-

ground noise or to estimate higher frequency components

simultaneously. The high-bandwidth lock-in amplifier offers

a good compromise between measurement bandwidth and

robustness. The following sections will introduce a Kalman

filter estimation method which is capable of achieving high-

bandwidth estimation of the amplitude and phase and is easily

extended to estimate an arbitrary number of higher frequency

components.

III. MODELING SINUSOIDAL SIGNALS

A. Time-invariant Models

1) Observable Canonical Form: The homogeneous differ-

ential equation describing the motion of a simple harmonic

oscillator with resonance frequency ω is given by

ẍ(t) + ω2x(t) = 0. (7)

This equation can be transformed into the standard phase

variable state-space model by choosing position x1 = x(t)
and velocity x2 = ẋ(t) as the state variables and position as

the output, yielding the following representation

ẋ = Ax =

[
0 1

−ω2 0

]

x

y = Cx =
[
1 0

]
x. (8)
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2) Modal Canonical Form: Since A in (8) has two distinct

eigenvalues λ1,2 = ±jω, there exists a time-invariant similar-

ity transformation V which maps it into diagonal form. This

transformation is given by the set of independent eigenvectors

and takes the complex form

V =
[
v1 v2

]
=

[
1 jω
jω ω2

]

. (9)

Applying this transformation yields

˙̃x = V −1AV x̃ =

[
jω 0
0 −jω

]

x̃

ỹ = CV x̃ =
[
1 jω

]
x̃. (10)

Even though the canonical forms (8) and (10) are useful in

the analysis and understanding of the state equations, they are

generally ill-conditioned for numerical computations. This can

be seen by calculating the condition number κ which can be

defined with respect to a matrix norm ‖·‖ of a square matrix

M as [25]

κ(M) = ‖M‖
∥
∥M−1

∥
∥ . (11)

B. Time-variant Model

Consider the time-variant transformation

T =

[
cos (ωt) sin (ωt)

−ω sin (ωt) ω cos (ωt)

]

(12)

and its inverse

T−1 =

[
cos (ωt) − 1

ω
sin (ωt)

sin (ωt) 1
ω
cos (ωt)

]

(13)

such that

x̄ = T−1x. (14)

A time-variant state-space representation can be obtained by

˙̄x =
d

dt

(
T−1x

)

=
d

dt

(
T−1

)
T x̄+ T−1ATx̄

ȳ = CTx̄ (15)

where

d

dt

(
T−1

)
=

[
−ω sin (ωt) − cos (ωt)
ω cos (ωt) − sin (ωt)

]

(16)

and

d

dt

(
T−1

)
T =

[
0 −ω
ω 0

]

(17)

T−1AT =

[
0 ω
−ω 0

]

(18)

which converts (8) into the following form

˙̄x =

[
0 0
0 0

]

x̄

ȳ =
[
cos (ωt) sin (ωt)

]
x̄. (19)

In other words, since the solution of the standard phase

variable model takes the known form of a sinusoid

x(t) = A sin (ωt+ φ) (20)

= x(0) cos (ωt) +
ẋ(0)

ω
sin (ωt),

where amplitude A and phase φ are determined by the initial

conditions, the new state variables and output can be chosen

as random variables such that x̄1 = x(0), x̄2 = ẋ(0)
ω

and

ȳ = x(t). Notice that the output still resembles position and

is represented by the time-varying output vector, but in contrast

to (8) the amplitude and phase can be readily recovered via

A =
√

x̄2
1 + x̄2

2 (21)

φ = arctan

(
x̄2

x̄1

)

. (22)

IV. THE DISCRETE KALMAN FILTER

A. Single Frequency

The continuous model (19) can be discretized exactly for

t = kTs, where Ts is the sampling period, by calculating

Ak = eAkTs = L
−1

{
(sI −A)−1

}
∣
∣
∣
t=kTs

= L
−1

{[
1
s

0
0 1

s

]}

= I

Ck = C
∣
∣
∣
t=kTs

, (23)

which leads to the discrete time-variant model of a single

sinusoid

xk+1 = Akxk =

[
1 0
0 1

] [
x1

x2

]

k

yk = Ckxk =
[
cos (ωkTs) sin (ωkTs)

]
[
x1

x2

]

k

, (24)

where the states x1k and x2k represent random variables

describing amplitude and phase. Assuming that the state

and output equations are corrupted by zero-mean Gaussian

white noise processes wk and vk, respectively, the system

representation is in the form of the discrete Kalman filter:

xk+1 = Akxk + wk

yk = Ckxk + vk

E[wkw
T
k ] = Qk

E[vkv
T
k ] = Rk

E[wkv
T
k ] = 0 (25)

where Qk is the covariance of the process noise and relates to

the quality of the model and Rk is the covariance of the mea-

surement noise and relates to the quality of the measurements.

The recursive Kalman filter implementation then consists of

initializing the estimation with a prior estimate of the state x̂
and the covariance matrix P

x̂0|0 = E[x0] (26)

P0|0 = E[(x0 − x̂0|0)(x0 − x̂0|0)
T ] (27)
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and then iterating between the prediction step

x̂k|k−1 = Akx̂k−1|k−1 (28)

Pk|k−1 = AkPk−1|k−1A
T
k +Qk (29)

and the measurement update step by calculating the Kalman

gain Kk

Kk = Pk|k−1C
T
k

(
CPk|k−1C

T +Rk

)−1
. (30)

The estimated state must then be corrected

x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1

)
, (31)

and the covariance matrix can be updated as follows

Pk|k = (I −KkC)Pk|k−1(I −KkC)T +KkRkK
T
k . (32)

A similar system description was successfully used in tracking

power system voltage phasors [26]. For an in-depth review of

the linear Kalman filter, the interested reader is referred to

references [27], [28]. Note that (30) has one more equivalent

form and (32) has two more equivalent forms [27] which

should be chosen to either optimize the speed or the stability

of the numerical computations. In this case, (32) was chosen

such that the property of symmetry and positive definiteness

of the covariance matrix is not lost during computations.

B. Multiple Frequencies and DC Offset

For accurate amplitude estimation in multifrequency AFM

it is necessary to include higher frequency components such as

higher harmonics and/or eigenmodes in the Kalman filter. This

allows for the simultaneous estimation of higher harmonics

[29] or higher eigenmodes as is typical in bimodal AFM

experiments [30]. Furthermore, the output of the position

sensitive detector usually contains a DC-offset related to a

static deflection of the cantilever or misalignment of the laser

and this can lead to systematic errors in the estimate. For a

sinusoidal signal containing multiple frequency components

and a dc offset of the form

x(t) = C +

n∑

i=1

Ai sin (ωit+ φi)

= C +

n∑

i=1

x1,i cos (ωit) + x2,i sin (ωit), (33)

the discrete state-space representation (24) can be extended to

yield

xk+1 =












1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 1 0 0
0 0 · · · 0 1 0
0 0 · · · 0 0 1























x1,1

x2,1

...

x1,n

x2,n

xdc












k

yk =












cos (ω1kTs)
sin (ω1kTs)

...

cos (ωnkTs)
sin (ωnkTs)

1












T 










x1,1

x2,1

...

x1,n

x2,n

xdc












k

, (34)

FPGA

Cantilever

Actuation

Cantilever

Deflection

16-bit DAC 14-bit ADC

Reference

Signal
Floating Point

Conversion

Measurement Update

Kk x̂k|k Pk|k

Prediction Step

x̂k|k−1 Pk|k−1

Magnitude and Phase

Calculation

Floating Point

Conversion

16-bit DAC

Analog

Output

yk

k = k + 1

x̂k|k

Ak,Φk

Fig. 2. Block diagram of the main modules implemented on the FPGA and
the interface to the cantilever.

which is capable of estimating the amplitude of n frequencies

and an unknown dc offset. These frequencies can relate to ei-

ther the mechanical resonance frequencies of the cantilever or

the higher harmonics of the fundamental resonance frequency

or both. It should be emphasized that all significant frequencies

to be estimated must be known and accounted for, however

this is not a stringent condition as the resonance frequencies

and the higher harmonics can be easily determined.

V. EXPERIMENTAL RESULTS

A. Implementation

The discrete Kalman filter was implemented recursively on

a Xilinx Kintex7 Field Programmable Gate Array (FPGA)

clocked at 245MHz and interfaced with an FMC150 high-

speed DC-coupled Input/Output (I/O) card. The FMC150 is an

external I/O card featuring a dual channel, 14-bit 250MSa/s
analog to digital converter (ADC), along with a dual channel

16-bit 800MSa/s digital to analog converter (DAC). These

ports maintain a very high sampling rate which is required for

the application of a high-speed Kalman filter. The FMC150 is

configured on the Kintex7 with a range of ±1V for the ADC

and likewise for the DAC to represent values at [−1, 1] and

an output of ±1V . A block diagram of the main components

implemented on the FPGA and their interface to the cantilever

is shown in Fig. 2. The Xilinx block Direct Digital Synthesizer

(DDS) is used to generate the reference sine and cosine

signals, which can also be used to drive the cantilever. The

Kalman filter loop is closed through the use of registers, each

storing a 32-bit floating point value for one period. At each

cycle, the measurement update is fed to the prediction step

and the state estimates are passed through a magnitude and

phase calculation block, which converts the data into a form

compatible with the digital to analog converter.
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Time [ms]

A
m

p
li

tu
d
e
[V

p
k
]

(a) (b) (c)

0.8 1.21.2

0.2

0.4

0.5

1.3

0.3

1.11.4 1.61 1.8

2

2 2.2

Fig. 3. Carrier sine wave with fc = 137 kHz amplitude modulated by a square wave with fm = 500Hz (−), amplitude estimate from Kalman filter (−)
and demodulated amplitude signal with lock-in amplifier (−) having a low-pass cutoff frequency of (a) f = 1kHz, (b) f = 10 kHz and (c) f = 30 kHz.

AFM

Aset Z-Axis
Controller

Disturbance
Estimate

Z-Axis
Actuator

Cantilever
Deflection
Sensor

Lock-In Amplifier /
Kalman Filter

A(t)

D(t)

Fd(t)

+

−

(a)

AFM

Aset Z-Axis
Controller

Topography
Estimate

Z-Axis
Actuator

Cantilever
Deflection
Sensor

Internal Lock-In

A(t)

Fts(t)

Fd(t)

External Lock-In

Kalman Filter

+

−

(b)

Fig. 4. Block diagram of the AFM operating in tapping-mode (a) with external
disturbance modulation D(t) and (b) parallel external lock-in amplifier and
Kalman filter. Fd(t) is the excitation force acting on the base of the cantilever
and Fts(t) is the tip-sample force acting on the tip of the cantilever.

B. Square-Modulated Sine Waves

To validate the filter performance, a test bench was set up

consisting of external function generators to produce square

amplitude modulated sine waves and a Zürich Instruments

HF2LI lock-in amplifier was employed to provide the bench-

mark amplitude estimate. The carrier frequency was chosen

to be fc = 137 kHz, which resembles the typical fundamental

resonance frequency of non-contact cantilevers such as the

NT-MDT NSG01. The modulation frequency was chosen to

be fm = 500Hz which resembles a very high scan speed in

tapping-mode AFM. In Fig. 3 it can be seen that the Kalman

filter is able to produce a high-bandwidth amplitude estimate

while rejecting signal noise. However, the bandwidth of the

post-mixing low-pass filter of the lock-in amplifier has to be

increased to at least 30 kHz in order to obtain a similar high-

bandwidth amplitude estimate. Noticeable oscillations can be

observed in Fig. 3 (c) since the 2ωc component cannot be

adequately filtered.

C. Dynamic Mode Atomic Force Microscopy

To compare the quality of the amplitude estimates dur-

ing tapping-mode AFM operation, an experiment utilizing

a Nanosurf Easyscan2 AFM was set up to simulate a tip-

sample disturbance from regularly spaced rectangular sample

features. A schematic of this setup is shown in Fig. 4(a). A

Budget Sensor TAP190 cantilever with a resonance frequency

of 189 kHz was used; the quality factor was set to 141
using Q-control [31] (not shown) resulting in an approximate

bandwidth of 4.2 kHz. To maintain the cantilever’s oscillation

amplitude at a setpoint of 50% of its free-air amplitude and to

compensate for the sample’s simulated topography D(t), the

z-axis controller commands the z-axis actuator, in this case, a

custom-built high-bandwidth piezoelectric nanopositioner with

a resonance frequency of 65 kHz [32], [33]. The z-axis PI

controller has been tuned to achieve minimum rise time with

no overshoot for each experiment. The disturbance rejection

performance of the closed loop can be assessed by the speed at

which the disturbance profile is tracked and additional noise

introduced. Fig. 5(a)-(c) highlight that tracking performance

can be improved substantially with higher filter bandwidths

when using the lock-in amplifier in order to increase the

overall closed-loop bandwidth. However, as shown in Fig. 5(c),

when the cutoff frequency is too high, the filter is unable

to significantly attenuate the 2ω component. The Kalman

filter is advantageous since it offers high-bandwidth amplitude

estimation and therefore the smallest tracking error without the

unwanted high-frequency components which can be seen in

Fig. 5(d). The minimal offset and drift which can be observed

is due to hysteresis and creep in the z-axis actuator.

Furthermore, experiments were conducted with the lock-

in amplifier and Kalman filter set up adjacent to the AFM

control loop as shown in Fig. 4(b). An NT-MDT NTEGRA
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Fig. 5. Cantilever input disturbance with fm = 150Hz (−), error signal (−) and z-axis controller output (−) representing the disturbance estimate based
on the demodulated amplitude signal with lock-in amplifier having a low-pass cutoff frequency of (a) f = 1kHz, (b) f = 30 kHz and (c) f = 80 kHz and
(d) using the Kalman Filter for amplitude estimation.
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Fig. 6. Scaled estimated topography (−) of a TGZ3 calibration grating and
the demodulated amplitude signal (error signal) with the lock-in amplifier (−)
and Kalman filter (−).

(a) (b)

(c) (d)

Fig. 7. 2D and 3D images obtained from the scan of a TGZ1 grating at
20µm/s with (a),(b) lock-in amplifier and (c),(d) Kalman filter in closed
loop.

AFM was used for these experiments which houses a built-in

XYZ piezoelectric tube scanner and z-axis PI-controller. An

NT-MDT TGZ3 calibration grating with periodic rectangular

features of height h = 520 ± 3 nm was scanned at 20µm/s.

Fig. 6 shows that the external lock-in amplifier and Kalman

filter yield almost identical amplitude estimates and no perfor-

mance degradation can be observed. Since the scan speed is

AFM

SAM

FPGA

HVA

PI

LIA
PC

Fig. 8. Experimental setup to demonstrate the Kalman filter implemented on
the FPGA in closed loop. The signal access module (SAM) of the AFM
provides the cantilever deflection output, cantilever drive input and high
voltage z-axis piezotube input.

low, the low-pass filter of the external demodulator could be

set to 3 kHz.

As the NT-MDT AFM does not allow for external demod-

ulators to be used in the z-axis feedback loop, the existing

system was altered to allow the Kalman filter to be tested

in closed loop. The internal PI-controller and electronics

were bypassed with an external PI-controller (PI) and high-

voltage amplifier (HVA) to drive the piezoelectric tube. The

experimental setup is shown in Fig. 8. Two Zürich Instruments

HF2LI were used, one as a reference lock-in amplifier (LIA)

and the other one as the external PI-controller. With this

setup, images of a NT-MDT TGZ1 calibration grating with

periodic features of heights h = 21.6±1.5 nm were obtained.

Fig. 7 highlights that there is no loss of image quality when

comparing scans obtained with the external Zürich Instruments

lock-in amplifier with low-pass filter of 3 kHz and the Kalman

filter in closed loop.
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VI. CONCLUSIONS AND FUTURE WORK

This contribution outlines the implementation of a Kalman

filter for high-bandwidth amplitude estimation in dynamic

mode atomic force microscopy. In order to demonstrate the

true high-bandwidth nature of the Kalman filter and its su-

periority with respect to the lock-in amplifier, a high-speed

tapping-mode AFM system is necessary. One of the major

difficulties with setting up such a system is related to min-

imizing the time-delay associated with every component in

the z-axis feedback loop as shown in Fig. 4. In particular,

assuming a fast nanopositioning stage and z-axis controller, the

highly resonant cantilever is usually the bottleneck for high-

speed tapping-mode operation; the response of the cantilever

to sudden topographical changes can be approximated by ω0

2Q
[5] where ω0 and Q are the cantilever resonance frequency

and Q-factor, respectively. This limitation demands cantilevers

with resonance frequencies in the MHz range and/or lowering

the Q-factor which can be obtained via Q-Control [34], [35] or

by performing experiments in liquid. The authors believe that

the proposed Kalman filter will find its way into high-speed

AFM setups where the significance of the presence of mul-

tifrequency components in the cantilever deflection demands

greater flexibility in the amplitude estimation technique.
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