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A KAM-Theorem

for some

Nonlinear Partial Differential Equations

JURGEN POSCHEL

Introduction

In this paper a KAM-theorem about the existence of quasi-periodic motions
in some infinite dimensional hamiltonian systems is proven. In [5] and [8] this
theorem is applied to some nonlinear Schr6dinger and wave equation on the
interval [0, x], respectively, and we refer to these sources for motivation and
background. Here we concern ourselves with the basic KAM-theorem, wliich is
the very foundation of these applications.

The first theorem of this kind is due to Eliasson [2], who proved the
existence of invariant tori of less than maximal dimension in nearly integrable
hamiltonian systems of finite degrees of freedom. Thereafter, the result was
extended to infinite degrees of freedom systems by Wayne [10], the author [7]
and, independently of Eliasson’s work, by Kuksin - see [4] and the references
therein. We refer to [4, 7] for more historical remarks, and to [4] for further
applications. The relations of the present paper to [4] and [7] will be discussed
in the last section.

1. - Statement of Results

We consider small perturbations of an infinite dimensional hamiltonian in
the parameter dependent normal form

Pervenuto alla Redazione il 28 Ottobre 1994 e in forma definitiva il 18 Febbrario 1995.
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on a phase space

where T n is the usual n-torus with 1  n  oo, and is the Hilbert space of
all real (later complex) sequences W = (WI, w2, ...) with

where a &#x3E; 0 and p &#x3E; 0. The frequencies w = (wi , ... , wn) and Q = (Qi , Q2, ...)
depend on n parameters (E n c R, n a closed bounded set of positive
Lebesgue measure, in a way described below.

The hamiltonian equations of motion of N are

where (Qu)j = Qjuj. Hence, for each ~ E II, there is an invariant n-dimensional
torus To = Tn x {O, 0, O} with frequencies w(~), which has an elliptic fixed point
in its attached uv-space with frequencies U(~). Hence ?’on is linearly stable.
The aim is to prove the persistence of a large portion of this family of linearly
stable rotational tori under small perturbations H = N + P of the hamiltonian
N. To this end the following assumptions are made.

Assumption A: Nondegeneracy. The map ç 1-+ w(~) is a lipeomorphism
between II and its image, that is, a homemorphism which is Lipschitz continuous
in both directions. Moreover, for all integer vectors (l~, l) C Z’~ x Zoo with

and

where ] . I denotes Lebesgue measure for sets, 111 = Ej I for integer vectors,
and ( ~ , ~ ) is the usual scalar product.

Assumption B: Spectral Asymptotics. There exist d &#x3E; 1 and 6  d - 1 such
that 

- -

where the dots stand for fixed lower order terms in j, allowing also negative
exponents. More precisely, there exists a fixed, parameter-independent sequence
S2 with SZ~ = ~ +... such that the tails fij = Qj - Qj give rise to a Lipschitz
map 

-

where tP. is the space of all real sequences with finite norm = sup. IWjljP.
- Note that the coefficient of jd can always be normalized to one by rescaling
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the time. So there is no loss of generality by this assumption. Also, there is no
restriction on finite numbers of frequencies.

Assumption C: Regularity. The perturbation P is real analytic in the space
coordinates and Lipschitz in the parameters, and for each £ E n its hamiltonian
vector space field Xp = (Py, -Px, Pv, -Pu)T defines near To a real analytic map

We may also assume that p - p  b  d - 1 by increasing 6, if necessary.
To make this quantitative we introduce complex Ton-neighbourhoods

where ] . I denotes the sup-norm for complex vectors, and weighted phase space
norms

for W = (X, Y, U, V). Then we assume that Xp is real analytic in D(s, r) for
some positive s, r uniformly in ~ with finite norm 
and that the same holds for its Lipschitz semi-norm 

’ ’ ’

where Ag,Xp = Xp(., ~) - Xp(’, ~-), and where the supremum is taken over n.
The main result decomposes into two parts, an analytic and a geometric

one, formulated as Theorem A and B, respectively. In the former the existence
of invariant tori is stated under the assumption that a certain set of diophantine
frequencies is not empty. The latter assures that this is indeed the case.

To state the main results we assume that

where the Lipschitz semi-norms are defined analogously to lxpil-. Moreover,
we introduce the notations

where T &#x3E; n + 1 is fixed later. Finally, let

THEOREM A. Suppose H = N + P satisfies assumptions A, B and C, and
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where 0  a  1 is another parameter, and 1 depends on n, T and s. Then there
exists a Cantor set Ila C II, a Lipschitz continuous family of torus embeddings
(D : ~’~ x Ila - and a Lipschitz continuous map c,~* : R7, such that

for each ~ in IIa the map (D restricted to T n X {~} is a real analytic embedding
of a rotational torus with frequencies W*(~) for the hamiltonian H at ç.

Each embedding is real analytic on llmxl  , and2

uniformly on that domain and IIa, where (Do is the trivial embedding Tn X II -

Ton, and c  ï-l depends on the same parameters as ï.
Moreover, there exist Lipschitz maps Wv and Qv on II for v &#x3E; 0 satisfying

Wo = w, QO=Q and

such that : 
"

and the union is taken over all v &#x3E; 0 and (k, l ) E Z such that Ikl &#x3E; for
v &#x3E; 1 with a constant Ko &#x3E; 1 depending only on n and T.

REMARK 1. We will see at the end of Section 4 that around each torus
there exists another normal form of the hamiltonian having an elliptic fixed
point in the uv-space. Thus all the tori are linearly stable. Moreover, their

frequencies are diophantine.

REMARK 2. The role of the parameter a is the following. In applications
the size of the perturbation usually depends on a small parameter, for example
the size of the neighbourhood around an elliptic fixed point. One then wants
to choose a as another function of this parameter in order to obtain useful
estimates for See [5, 8] for examples.

REMARK 3. Theorem A only requires the frequency map 1---+ w(ç) to be
Lipschitz continuous, but not to be a homeomorphism or lipeomorphism. This
only matters for Theorem B. -

We now verify that the Cantor set IIa is not empty, and that indeed

IITBITal I - 0 as a tends to zero. In the case d = 1, let K be a positive number
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such that the unperturbed frequencies satisfy

uniformly on fl. Without loss of generality, we can assume that -6  K by
increasing 6, if necessary.

THEOREM B. Let Wv and Qv for v &#x3E; 0 be Lipschitz maps on II satisfying

and define the sets as in Theorem A choosing T as in (22). Then there
exists a finite subset X C Z and a constant c such that

for all sufficiently small a, where p = diam rl. The constant c and the index set
X are monotone functions of the domain TI: they do not increase for closed
subsets of n. In particular, if 8 ~ 0, then X c I (k, l ) : 0  

By slightly sharpening the smallness condition the frequency maps of
Theorem A satisfy the assumptions of Theorem B, and we may conclude that
the measure of all sets tends to zero.

COROLLARY C. If in Theorem A, the constant 1 is replaced by a smaller
constant 1 ~ depending on the set X, then

In particular, if 8 ~ 0, then one may take

The point of choosing 1 is to make sure that Ko, so that
for (J~, l ) E .x we only need to consider the sets R k~ (a), which are defined
in terms of the unperturbed frequencies. Then ~ 0 as a --+ 0 by
Assumption A.

In the applications [5, 8] the unperturbed frequencies are in fact affine
functions of the parameters. In the case d &#x3E; 1, as it happens in the nonlinear
Schr6dinger equation, we then immediately obtain In the case
d = 1, however, a appears with the exponent a.  1, and it happens that for
the nonlinear wave equation the present estimate is not sufficient to conclude
that the set of bad frequencies is smaller than the set of all frequencies (which
also depends on a small parameter). The following better estimate is required,
which we only formulate for the case needed.
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THEOREM D. Suppose that in Theorem A the unperturbed frequencies are
affine functions of the parameters. Then

for all sufficiently small a, where 7r is any number in 0  7r  min(p - p, 1). In
this case the constant c also depends on ~r and p - p.

The rest of the paper consists almost entirely of the proofs of the preceding
results, which employs the usual Newton type iteration procedure to handle small
divisor problems. In Section 2 the relevant linearized equation is considered,
and in Section 3 one step of the iterative scheme is described. The iteration
itself takes place in Section 4, and Section 5 provides the estimates of the
measure of the excluded set of parameters. In Section 6 some refinement of
these measure estimates is undertaken, and in Section 7 we finally observe that
the results imply that a certain class of normal forms is structurally stable. The
paper concludes with a few remarks relating this paper to previous work, in
particular [4] and [7].

2. - The linearized equation

The KAM-theorem is proven by the usual Newton-type iteration procedure,
which involves an infinite sequence of coordinate changes and is described in
some detail for example in [7]. Each coordinate change C is obtained as the
time-1-map of a hamiltonian vectorfield XF. Its generating hamiltonian
F as well as some correction N to the given normal form N are a solution of
the linearized equation 

"

which is the subject of this section. One then finds that (D takes the hamiltonian
H = N + R into H = N+ + R,, where N+ = N + N is the new normal form
and R+ = 10 {(1 - t)N + tR, F} o XtFdt the new error term.

We suppose that in complex coordinates z = ~ (u - iv) and i (u + iv)
we have N = ~w(~), y) + (~(0, zz-) and 

NF2 12-

with coefficients depending on ~ E II, such that XR : ~ pa,p is real

analytic and Lipschitz in ~. The mean value of such a hamiltonian is defined as

and is of the same form as N.
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LEMMA 1. Suppose that uniformly on TI,

where a &#x3E; 0 and 1. Then the linearized equation (F, N~ + N = R has a
solution F, N that is normalized by [F] = 0, [N] = N, and satisfies

The estimates hold in fact with 101’1’-d - in place of but this slightly
better result is not needed later. Concerning the dependence on u the above
estimates are very crude but sufficient for our purposes. Much better estimates
have been obtained by Russmann - see for example [9].

PROOF. Writing expansions for F and 1V analogous to that for R and

using the nonresonance assumptions one finds by comparison of coefficients
that 1V = [R] and

otherwise,

for all ~, which is not indicated. With the chosen normalization this solution is
also unique.

For the estimates we decompose R = RO + R + R2, where Ri comprises
all terms with I q + q ) = j , and furthermore

where the Rij depend on x, ~, and R°° depends in addition on y. With a similar
decomposition of F and N, the linearized equation decomposes into

and it suffices to discuss each term individually. In the following we do this
for R = RIO and R = R". To shorten notation, = 11 - IIa,p.
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Consider the term F’ = Fl°. We have R = and thus

where D(s) =  s } . This is an analytic map into with a Fourier

series expansion whose coefficients ilk satisfy the usual L’-bound

Each coefficient is a Lipschitz map n ~ and the corresponding coefficient
of F is given by

By the small divisor assumptions we have a/Ak and thus

IIFkl1 c uniformly on 11. It follows that

To control the Lipschitz semi-norm of .

The small divisor assumptions give Therefore,

and hence

Summing up the Fourier series as before we obtain
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Dividing I and taking the supremum over çfç in II we arrive at

Consider now the term F = Fll. We have R = azazR, hence by the
generalized Cauchy inequality of Lemma A.3,

in the operator norm for bounded linear operators £a,p ~ £a,p. This is equivalent
to the statement that 8 = is a bounded linear operator of £2 into itself
with operator norm IIIRIIID(s) = where Vi, Wj are certain weights whose
explicit form does not matter here.

Expanding R into its Fourier series with operator valued coefficient we

have, as before, Lk 2nIIIRIIID(s)’ The corresponding coefficient of
8k = is given by

while 80,jj = 0, and the coefficients are absorbed by N. The small divisor
assumptions imply that since d &#x3E; 1. Hence,
by Lemma A.1 we obtain uniformly in II, and summing
up as before, 3(Bl1 / a)IIIRIIID(s)’ Going back to the operator norm
I I - I I and multiplying by z we arrive at

The Lipschitz estimate follows the same lines as the one for F. So we

the small divisor assumptions imply

We thus obtain

and
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This leads to

and

The terms F1° and F11 exhibit all the difficulties involved with infinitely
many degrees of freedom. All the other components F2~ admit the same

estimates, or even better ones. To each component of the hamiltonian vectorfield
XF, at most eight such terms are contributing. The estimates of XF thus follow.

The estimates of XN follow from the observation that Ny is the T n -mean
value of Ry, and is the diagonal of the T n-mean value of Rzz..

For our purposes the estimates of Lemma 1 may be condensed as follows.
For A &#x3E; 0, define 

_

Since we will always use the symbol ’A’ in this rôle, there should be no

confusion with exponentiation. Also, I. I; stands for or I . If.
LEMMA 2. The estimates of Lemma 1 imply that

with some absolute constant a. Moreover, if

with some constant b &#x3E; 1 depending on n and T.

3. - The KAM Step

At the general v-th step of the iteration scheme we are given a hamiltonian
Hv = Nv + Pv, where Nv = y) + (Qt.(0? z2) is a normal form and Pv is
a perturbation that is real analytic on D(sv, rv). Both are Lipschitz in ç, which
varies over a closed set rlv, on which Iwvl.c + Mv and

For the duration of this section we now drop the index v and write ’+’

for ’v + I’ to simplify notation. Thus, P = Pv, P+ = and so on. Also,
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we write  in estimates in order to suppress various multiplicative constants,
which depend only on n and T and could be made explicit, but need not be.
Indeed, the only dependence on T enters through the constant b in (4).

To perform the next step of the iteration we assume that the perturbation
is so small that we can choose 0  1/  1 and 0  Q  s, ~  1, such that

where t = 2T + n + 2 and co is some sufficiently large constant depending only
on n and T. On the other hand, for the KAM step we need not assume that
the frequency map W is a homeomorphism or lipeomorphism.

Approximating P. We approximate P by its Taylor polynomial R in y, z,
z of the form (3). This amounts to corresponding approximations of the partials
Pz, Py, Pz, Pz which constitute the vectorfield Xp. Since P is analytic, all
these approximations are given by certain Cauchy integrals, and the estimates
are the same as in a finite dimensional setting. We obtain

Solution of the linearized equation. Since the small divisor estimates (5)
are supposed to hold, we can solve the linearized equation ~F, N} +.1V = R with
the help of Lemmata 1 and 2. Together with the preceding estimate of XR we
obtain

for 0  a  a/M. Furthermore we have
where on the left we use the operator norm 

’

with I - Ip,r defined in (1), defined analogously. This follows by the
generalized Cauchy estimate of Lemma A.3 and the observation that every point
in D(s - 2~, r/2) has at least I - to the boundary of D(s - 0’, r).

Coordinate transformation. The preceding estimates and assumption (6)
imply that
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is small. Hence the flow 4 exists on D(s - 3u, r/4) t  1 and takes
this domain into D(s - 2u, r/2), and by Lemma A.4 we have

for -1  t  1. Furthermore, by the generalized Cauchy estimate,

since any point in D(s - 4u, r/8) has ) - r -distance greater than u /32 to the
boundary of D(s - 3u, r/4).

The new error term. Subjecting H = N+P to the symplectic transformation
0 = we obtain the new hamiltonian H = N+ + P+ on D(s - 5~, Tlr),
where N+ = N + N and "

with R(t) = (I - + tR. Hence, the new perturbing vectorfield is

We will show at the end of this section that for 0  t  1,

We already estimated Xp - XR, so it remains to consider the commutator

[XR(t), XF]. To shorten notation we write R for R(t).
On the domain D(s - 2u, r/2) we have, using p &#x3E; p,

Using the generalized Cauchy estimate and (7) we get

Similarly, on the same domain,
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Finally, we have
obtain

for any vectorfield Y. So altogether we

for 0  A  a/M. Collecting all terms we then arrive at the estimate

0  A  a/M, for the new error term.

The new normal form. This is 1

rl. The same holds for their Lipschitz semi-norms. With -S  p - p we get

In order to bound the small divisors for the new frequencies w+ = w + W
and Q+ = Q + C2 for I  K, K to be chosen later, we observe that

hence

with some â where Ak- = K Ak and the dot represents
some constant. Using the bound for the old divisors, the new ones then satisfy

on n with a+ = a - a. In the next section we will make sure that a+ is positive.

Proof of estimate (12). Fix (D = X-’F and consider = o 1&#x3E;. Then
(D maps U = D(s - 5u,,qr) into V = D(s - 4u, 2TJr) by the estimate (9). Hence,

by (11) and (9). So we have
As to the Lipschitz semi-norm ~we observe that both (D and Y depend on

parameters. Therefore,
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It follows that

with W = D(s - 211, 4?7r), using the generalized Cauchy estimate and (10), ( 11 ).
by (8) and (9), we obtain

as we wanted to show.

4. - Iteration and Proof of Theorem A

To iterate the KAM step infinitely often we now choose sequences for the
pertinent parameters. The guiding principle is to choose a geometric sequence
for u, to minimize the error estimate by choice of ?7, and to keep a and M
essentially constant.

Let c 1 be twice the maximum of all implicit constants obtained during the
KAM step and depending only on n and T. For v &#x3E; 0 set

and

where Furthermore, and

As initial value fix so that and assume

where co appears in (6). Finally, let with

ITERATIVE LEMMA. Suppose Hv = Nv + Pv is given on Dv x llv, where
is a normal form satisfying

on flv, and
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Then there exists a Lipschitz family of real analytic symplectic coordinate

transformations Dv+l x nv --~ Dv and a closed subset

where

such that for Hv+1 = Hv 0 = Nv+1 + the same assumptions are satisfied
with v + 1 in place of v.

PROOF. By induction one verifies that Ev  for all v &#x3E; 0.

With the definition of Tlv this implies So the smallness
condition (6) of the KAM step is satisfied, and there exists a transformation

DV+l x Dv taking Hv into Nv+1 The new error
satisfies the estimate

In view of (14) the Lipschitz semi-norm of the new frequencies is bounded by -

as required. Finally, one verifies that hence

So by (15) the small divisor estimates hold for the new frequencies with

parameter up to Ikl  Kv . Removing from IIv the union of the resonance
zones for Ikl &#x3E; Kv we obtain the parameter domain rlv+l C flv with
the required properties..

With (10), (11) and (14) we also obtain the following estimates.

ESTIMATES. For v &#x3E; 0,
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PROOF OF THEOREM A. Suppose the assumptions of Theorem A are sa-
tisfied. To apply the Iterative Lemma with v = 0, set so = s, ro = r,..., No = N,
Po = P and 1 = The smallness condition is satisfied, because

&#x3E;

The small divisor conditions are satisfied by setting IIo l Then

the Iterative Lemma applies, and we obtain a decreasing sequence of domains
Dv x nv and transformations = o ... o Dv x Dv-1 I for v &#x3E; 1,
such that H o = Hv + Pv. Moreover, the estimate (18) hold.

To prove convergence of the we note that the operator norm I - Ir,s
satisfies We thus obtain

and

for all v &#x3E; 0. Also,

where the first factor is uniformly bounded in a similar fashion. It follows that

So the converge uniformly on n Dv x nv = D(s/2) x IIa to a Lipschitz
continuous family of real analytic torus embeddings C : ‘~n x IIa ~ Pae, for
which the estimates of Theorem A hold. Similarly, the frequencies W, and
SZv converge uniformly on na to Lipschitz continuous limits w* and with
estimates as in Theorem A. The embedded tori are invariant rotational tori,
because

whence in the limit, XH = DC - Xw. for each ~ e TIa, where Xw. is the
constant vectorfield w* on 71.

It remains to prove the characterization of the set TIa. By construction,
IIBIIa is the union of the inductively defined resonance zones for
v &#x3E; 0 and I &#x3E; Kv-i, where the involved frequencies wv, SZ~ are Lipschitz
on and K-1 1 = 0, 1-1-1 = n. By Lemma A.2, each coordinate function of
wv - w on Hv has a Lipschitz continuous extension to n preserving minimum,
maximum and Lipschitz semi-norm. Since we are using the sup-norm for w,
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doing this for each component we obtain an extension Wv : R~ of wv with

The same applies to It follows that

The latter are the resonance zones described in Theorem A, if we drop the ".

This completes the proof of Theorem A. ·

Actually, more information may be extracted from the preceding
construction. On the domain D* x rl,,,, D* = D(s/2, r/2), the normal forms

Nv converge to N* = (W* ( ~), y ) + (E2. (~), z2) with frequencies satisfying

on IIa . Also, the transformations (Dv converge to a Lipschitz family of real
analytic, symplectic coordinate transformations

because each ~v is of first order in y and second order in z, z only, and the
corresponding jets can be shown to converge uniformly on D(s/2) x IIa with
appropriate estimates - see [7]. The limit jet then defines CP. Finally, one checks
that (D*XH = XN. +X~,, where R* is of order 3 at ?’o . That is, the Taylor series
expansion of R* only contains monomials with + &#x3E; 3. Thus,
the perturbed normal form is transformed back into another normal form up to
terms of higher order. In particular, the preserved invariant tori are all linearly
stable.

5. - Measure Estimates and Proof of Theorem B

In estimating the measure of the resonance zones it is not necessary to

distinguish between the various perturbations wv and SZv of the frequencies,
since only the size of the perturbation matters. Therefore, we now write w’ and
Q’ for all of them, and we have

Similarly, we write Rii rather than Rkl for the various resonance zones.
Let A = 11 : 1  2}. We can fix a &#x3E; 0 and a constant D &#x3E; 1 such

that
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for 1 c A where For example, one may take Q = min(d, d-
9

1 - ö) and D = 2 but such specific choices are not important here.) 
2 p p

The proof of Theorem B requires a couple of lemmata.

LEMMA 3. There exists a positive constant ,Q depending on SZ such that

on rI for all l E 11, provided

PROOF. Consider the case = S2i - QJ., which is the subtlest. As to
the unperturbed frequencies, (l, Q) f0 on II by assumption A, and

uniformly in ~ by assumption B. Hence there exists a ~3 &#x3E; 0 such that

~ (l, S2) ~ &#x3E; on II for all lEA. The result for the perturbed frequencies
then follows with

LEMMA 4. If and a  ~3, then

with

PROOF. If is not empty, then at some

point ~ in n, and thus
by Lemma 3. ·

LEMMA 5. If ~k~ &#x3E; 8LMlllö, then

with and p = diamn.

PROOF. We introduce the unperturbed frequencies ~ = w(~) as parameters
over the domain A = w (IZ) and consider the resonance zones R k = in A.

Keeping the old notation for the frequencies we then have w = id,

for the perturbed frequencies as functions of ~ by (19) and LM &#x3E; 1.

Now consider Let Choose a vector
such that and write with As
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a function of r, we then have, for t &#x3E; s,

and

Hence, uniformly in w. It follows that

with ro depending miserably on w, and hence

by Fubini’s theorem. Going back to the original parameter domain Il by
the inverse frequency map and observing that diama  2Mdiamn and
(l)d  19-1lkl, the final estimate follows..

Now let

where 3 and a are defined in Lemma 4 and (20), respectively. Assume a  ~3
from now on. The preceding three lemmata then lead to the following conclusion.

The same holds for 1~ ~ 0, l = 0.
PROOF. If is not empty and &#x3E; L*, then

But if  L*, then Ikl &#x3E; K* also implies Ikl &#x3E; 8LMlllö. So in both cases,
Lemma 5 applies. The case l = 0 follows directly from Lemma 5..

Next we consider the "resonance classes"

where the star indicates that we exclude the finitely many resonance zones with
0  K* and 0  Illu  L*. Note that is empty for k = 0 and a  ,~
by Lemma 3.
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LEMMA 7. If d &#x3E; 1, then

with and

PROOF. By Lemma 4 we may restrict the star-union to (l)d  19-1lkl, and
since 2(L)d &#x3E; 

The result now follows with Lemma 6. ·

Recall that for d = 1 we have a x &#x3E; 0 and a constant a &#x3E; 1 such that

LEMMA 8. If d = 1, then

PROOF. Write A = A+ U A-, where A- contains those l E A with two
non-zero components of opposite sign, and A+ contains the rest. For 1 e A’ we
have (1)d = Ill, hence cardfl E A+ : (L)d  9-Zk2 and

as in the previous proof.
The minus-case, however, requires more consideration. For t E A- we have

~l, SZ’) = and = Ii 2013 ~, and up to an irrelevant sign, l is uniquely
determined by the two integers We may suppose that i - j = m &#x3E; 0. Then

) (I, Q’ - S2) ~ c 0:(i6 + j6) and ~l, S2) - Therefore
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Moreover, C QkmJo for j &#x3E; jo. For fixed m  we then obtain

By choosing either 1d-6 = Ak or = Ak, whichever gives the better estimate,
and using the assumption 2013we arrive at

Summing over m,

The two cases together give the final estimate. ·

PROOF OF THEOREM B. We can choose T so that

For example,

Letting we then obtain

by the definition of the resonance classes Rk(a) with it as in Theorem B and
a constant c6 of the form where c does not increase when the

parameter domain n decreases. This gives the required estimate. Finally, if
6  0, then  2 for all 1 and hence K*  16LM. This proves Theorem B..

PROOF OF COROLLARY C. By choosing %y  -il2LM the frequencies wv
and SZ~ satisfy the assumptions of Theorem B, and thus
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Choosing, in the definition
then

also in addition to (17),

so the remaining resonance zones are all defined in terms of the unperturbed
frequencies. Hence, by Assumption A, the monotonicity of in a and the
boundedness of 11, we have - 0 as a ~ 0 for each (k,l) e X . Since
x is finite, also 

I ,

which gives the claim. Finally, if 6  0, then K*  16LM. ~

6. - Proof of Theorem D

To prove Theorem D we precede the KAM iteration by one modified
KAM step. For this preparatory step the small divisor estimates (5) are used
with a parameter 

4 

where w &#x3E; 0 is chosen later. Moreover, for (l, Q) = S2i - Qj, if j, we use the
modified estimate

with positive 7r  p - p. The upshot is that the measure estimates are improved
at the expense of deteriorating the regularity of the vectorfield.

Using the modified small divisor estimates in the solution of the linearized
equation we obtain

Since &#x26; &#x3E; a, the KAM step applies under the same assumptions as before, but
now the estimates of XF are to be understood in terms of the weaker norm

Accordingly, the vectorfield of the next perturbation Po - the starting
point for the iteration - is also bounded in this norm only. Using the notation
of Section 4 we obtain

by choosing With the assumption the choices

(as for the first step of the iteration) and &#x26; = a 1-3~’ we obtain
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For the frequencies wo, SZo of the new normal form No the usual estimates (14)
hold with -6  p - p. It is not necessary, however, to keep track of the small
divisor estimates for the new frequencies, since the KAM scheme now starts
from scratch, with parameters a and p instead of a and p, respectively.

We estimate the measure of the resonance zones eliminated in the first

and the subsequent steps. To this end fix T as in (22) assuming -b  p - p. For
brevity, the notation ’ ’ now includes also constants that depend on and are
of the same form as the constants c3, ... in Section 5.

Let Sû = U z be the union of the resonance zones eliminated in the

preparatory step and defined in terms of the modified small divisor estimates.

LEMMA 9. 
,

PROOF. We first show that the estimate of Lemma 8 changes to

The estimate for 1 c A+ is the same as before, giving a contribution of the

and 7r &#x3E; 1 we have and the sum over all

j converges to a similar contribution. For I E=- A- and 1r  1, however, the
modified small divisor estimate (23) gives

There is no contribution from S~’ - Q here, since we are dealing with the
unperturbed frequencies. For fixed m we then obtain

by choosing jo +1-" - Then (24) follows by symming over m.
Summing (24) over k we obtain one contribution to the estimate of 13&#x26;/.

The other contribution is due to the finitely many resonance zones with

(k, l) In each of them, (k, w) + (l, Q) is a nontrivial affine function of ç,
so one has  a. This proves the lemma. ·
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The iteration now starts with the parameter set IIo - and

parameter a = a 1+w .

LEMMA 10. For sufficiently small a,

PROOF. We show that now the estimate of Lemma 8 changes to

Again, the estimate for 1 E A’ is the same. For 1 E A-, there is a contribution
of order a to the estimate of SZ’ - Q from the preparatory step. So instead of
(21) we have 

I I

By proper choice of jo this gives the bound max(a, and hence the
estimate of I P, 1 k (61) 1. The rest of the proof is analogous to the preceding one.
Just note that the functions (k, w’) + (l, Q’) are Lipschitz close of order a to
nontrivial affine functions of g..

The proof of Theorem D is now almost complete. The two lemmata com-
bined give 

.

For 7T  p - p  1 the right hand side is minimized by choosing 1
so that 

, ^ ,

hence with This proves Theorem D.

7. - Structural Stability

The results may be used to show that a certain class of hamiltonians is

structurally stable. Let

be a hamiltonian on some phase space depending on parameters G n c R7,
n a closed bounded set of positive Lebesgue measure. Let us say that H is
a regular normal form if the following three conditions are satisfied, with
notations as in Section 1.
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Condition A*: Nondegeneracy and Nonresonance. The map ~ H w(Ç’) is a
lipeomorphism between II and its image. Moreover, there exist positive constants
ao and To such that

for all (l~, l ) E Z and ~ E IT, where d is defined in condition B*.

Condition B*: Spectral Asymptotics. There exist d &#x3E; 1, 6  d - 1 and a
fixed sequence Q with SZ~ = j d +..., such that Qj = Q + C2j, where the tails my
define a Lipschitz continuous map L2: II -~ .~~ .

Condition C*: Regularity. For each ~ E II the hamiltonian vectorfield XÑ
defines near ?’on a real analytic map

which is Lipschitz in C and where 9 is of order 3 at Ton as defined at the end
of Section 4.

THEOREM E. A regular normal form N is structurally stable under

sufficiently small perturbations of the same regularity as R. That is, for every
such perturbation H of N, there exists another Cantor set II* c 1-1 of positive
Lebesgue measure and a Lipschitz family of real analytic, symplectic coordinate
transformations (D near such that = XN. with another regular normal
form N* with respect to TI*.

PROOF. Let N be a regular normal form. Then assumptions A and B are
satisfied, and the parameters L, M, T and r. are fixed. Theorem B implies that
for the union of resonance zones R (a) = U R kl (a) C rl defined in terms of
arbitrary but sufficiently small perturbations of the frequencies w and K2 as in
Theorem A, we have IR(o:)1 - 0 as a - 0. Hence, the measure of any of the
sets IIa in Theorem A converges uniformly to the measure of rI as a tends to
zero.

Now fix a small enough to make this measure positive. By condition C*,

for all small positive r and s. Then Theorems A and B apply to every pertur-
bation H = N + P of N, where P is of the same regularity as N and satisfies
the same estimate (26) for some positive r and s. We obtain a Cantor set

II* c II of positive measure and, by the remark at the end of Section 4, a
family of real analytic, symplectic coordinate transformations 0 near Ton such
that where li+ is of order 3 at ?’on . Moreover, the fre-
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quencies of N+ satisfy the diophantine conditions (25) with parameters a/2 and
T. It follows that the hamiltonian N* = N+ + R+ is a regular normal form. ·

8. - Concluding Remarks

REMARK 1. The regularity condition may be written in the form

In the framework of differential operators on Sobolev spaces, d and p - p may
be identified with the orders of the linear and nonlinear part of the associated
differential operator L, respectively. Thus, L has to be quasi-linear by the first
condition, and its nonlinear part has to be bounded by the second condition.

The first assumption is rather natural. Nonlinearities of the same order
as the linearity may cause the blow up of every nontrivial solution [6], so

quasi-periodic solutions may not exist at all. The second condition, however, is
not necessary, but makes the proof and the result more transparent. It happens
to be satisfied by the nonlinear Schr6dinger and wave equations in [5, 8]. It

may be removed for d &#x3E; 1 at the expense of a more convoluted proof, so that
the theorem also applies for example to perturbations of the KdV equation. See
[3] as well as a forthcomming publication by S. Kuksin for more details.

REMARK 2. The results of this paper improve on the results obtained in [7]
in many ways: - the phase space can be chosen appropriately to suit applica-
tions to nonlinear partial differential equations; - the nondegeneracy condition is
weaker; - the dependence on the parameters ~ need only be Lipschitz; - the fre-
quencies Q may only grow linearly, thus violating the finiteness condition in [7].

Moreover, a flaw in the proof of Lemma 8.1 in [7] is fixed, that was

pointed out to the author by H. Russmann. There not only the t-derivative of
the function + tv), but also its Lipschitz semi-norm needs to be controlled
in order to obtain the desired measure estimate. Such an estimate is provided
here.

Due to the weaker nondegeneracy assumption the result above gives no
control over the rate of convergence in the measure estimate (2). However,
with more information about the unperturbed frequencies such control is easily
obtained. For example, suppose that w and Q are differentiable on II, that
w : II - A is a diffeomorphism, and that for some ao &#x3E; 0, for each

(k, l ) E x for which lies in the closed convex hull of the set of gradients
1,9~ (1, K2 0 w - 1 (~)) : ~ E 0 } . Then the arguments of Lemma 5 and Lemma 8.1 in
[7] show that .

I I

recovering the result of [7].
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REMARK 3. We finally compare our results with those of Kuksin in

[4]. By and large, the basic KAM theorems are the same, with the same

range of applications to partial differential equations. There are, however, some
differences: - the nondegeneracy condition of Assumption A is weaker, as a
certain collection of exact resonances is only required to be of measure zero;
- we can allow for Sobolev spaces of exponentially decreasing sequences
by letting a &#x3E; 0, which avoids a posteriori arguments about the analyticity of
the solutions obtained by the KAM theorem; - the dependence of the measure
estimates on the asymptotic properties of the eigenvalues Aj in the case d = 1
is made explicit in terms of the exponent it in Theorem B. Indeed, in [4] this
point was overlooked, and the estimates for this case such as (4.11) on page 77
are not correct. This was later corrected in An Erratum available from Sergej
’Kuksin; see also Appendix 2 in [1].

Another difference is in the proofs. Here, in Theorem A as well as in its
proof, the unperturbed hamiltonian N describes a linear system of equations,
and higher order integrable terms are simply considered as perturbations as

well. In Kuksin’s set up, the unperturbed system also may contain nonlinear
terms. This considerably complicates the handling of the linearized equation,
and many more careful estimates are required. On the other hand, it provides
some greater flexibility in applying the results.

This, however, seems to be of advantage only in the subtle case of small
amplitude solutions u of the nonlinear wave equation

on [0, 7r]. Here, one has d = 1, and the problem is to find sets of nonresonant
frequencies of positive measure in the presence of a "small twist". Still, the
results of Bobenko and Kuksin [1] ] for this equation are not better than in [8],
because on the other hand, they had to cope with worse asymptotic properties
of the frequencies, namely = 1 instead of x = 2 as in [8]. - Combining both
approaches, one could also handle But such a small improvement
requires quite a big effort.
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A. - Utilities

LEMMA A.1. If A = bounded linear operator then also
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B = with

and Bii = 0 is a bounded -linear operator on .~2, and

PROOF. By the Schwarz inequality, we have

for all i and j. Hence, again by Schwarz,

LEMMA A.2. Let F c R7 be closed and u : F --~ R a bounded Lipschitz
continuous function. Then there exists an extension U : R7 - II~ of u, which
preserves minimum, maximum and Lipschitz semi-norm of u.

PROOF. Let A = and define

for x E R~. This is an extension of u to all of R7. By the triangle inequality,
for all ~ E F and hence

Interchanging x and x’, we get

It follows that Replacing u above maxF u by maxF u does not
change its Lipschitz semi-norm, and similarly below minF u. The resulting
function U has all the required properties

Let E and F be two complex Banach spaces with norms 11 - ’ IIE and
~~ ’ and let G be an analytic map from an open subset of E into F. The
first derivative dvG of G at v is a linear map from E into F, whose induced
operator norm is --

The Cauchy inequality can be stated as follows.
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LEMMA A.3. Let G be an analytic map from the open ball of radius r
around v in E into F such that M on this ball. Then

PROOF. Let in E. Then f (z) = G(v + zu) is an analytic map from
the complex disc Izl  r/IIUIIE in C into F that is uniformly bounded by M.
Hence, 

_ _

by the usual Cauchy inequality. The above statement follows, since u ~ 0 was
arbitrary..

Let V be an open domain in a real Banach space E with norm  -  n a
subset of another real Banach space, and X : V x n ~ E a parameter dependent
vectorfield on V, which is C’ on V and Lipschitz on n. Let Ot be its flow.

Suppose there is a subdomain U c V such that 

LEMMA A.4. Under the preceding assumptions,

, for -1  t  1, where all norms are understood to be taken also over n:

PROOF. Let 0  t  1. We have qi - id = f, so the first estimate
is clear. To prove the second one, let dØt = ~t ( , , ç) - ~t ( . , ~) for ~, ~ E n. Then

hence

With Gronwall’s inequality it follows that

Dividing by the norm of ~ - ~ and taking the supremum over ~ ~ ~ in II the
Lipschitz estimate follows
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