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A kepstrum (or complex-cepstrum) approach to minimum-phase Wiener filtering of
stationary scalar processes is proposed and solved for the case of signal plus coloured
noise, where the noise possibly includes a white-noise component. A general solution
is found in an innovations form. The spectral factorization of the noise model and
of the signal-plus-noise model required for the solution are determined from data
using the kepstrum technique with the fast Fourier transform. This approach avoids
dependence on any form of multidimensional state-space or polynomial-based model
and so avoids use of recursive parameter estimation or of Diophantine equations.

Keywords: kepstrum; complex cepstrum; smoothing; prediction; coloured noise

1. Introduction

As is well known, the solution of the minimum mean-square filtering problem was
originally found by Kolmogorov (1939, 1941) in discrete time and by Wiener (1949)
in continuous time. While these solutions are quite general, they do not result in
a convenient closed form for the solution. Instead, they involve awkward spectral
factorization and the separation of causal from uncausal terms. It is always possible
to work out the solution in any particular case, but for computational ease in the
general case and especially for the extension to time-varying systems, new methods
have been developed. The first was the Kalman filter in 1960, requiring solution of
the matrix-Riccati equation. A later approach was the direct parameter estimation of
the innovations model using extended least squares and similar algorithms (Hagan-
der & Wittenmark 1977; Ljung & Söderström 1982). Still another approach was the
use of polynomial Diophantine equations (Grimble 1985; Roberts & Newmann 1988;
Dabis & Moir 1993). The direct estimation and use of the innovations model has
the advantage that algebraic spectral factorization is no longer necessary, the spec-
tral factor being estimated directly from the data. The same method can equally
be applied to non-stationary signals by sectioning the signal plus noise into small
intervals (assumed to be quasi-stationary). However, when tackling such problems
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Figure 1. Signal-and-noise generating model.

as speech enhancement (as covered in this paper), the model order rapidly increases,
depending on the particular characteristics of the noise. Furthermore, the speech
itself requires a high-order model, so that the composite model requires a very large
number of parameters, which can be a computational burden for real-time appli-
cations. Moreover, algorithms based on the generic recursive least-squares (RLSs)
approach do not track very well and require ad hoc approaches such as exponential
forgetting factors and so-called ‘jacketing software’ to avoid possible instability with
erroneous data. Similarly, Diophantine equations (which for some problems require
simultaneous solution of two such equations (Grimble 1988; Dabis & Moir 1993))
also give a computational problem with higher-order systems. These approaches give
rise to the infinite-impulse-response (IIR) adaptive filter or self-tuning filter.

An alternative approach, which has proved more popular in practice, is to use
finite-impulse-response (FIR) adaptive filtering based on least-means squares (LMSs)
(Widrow & Stearns 1985; Haykin 1986). The tracking ability of LMS-based adaptive
filters is generally better than those of RLS and the stability is assured provided the
step size is kept below a critical value depending on signal-plus-noise power. Such a
method can be thought of as implicit in that, unlike the previous explicit case, the
filter is estimated directly via LMS by minimizing the mean-square error rather than
computing a filter based on individually estimated component parts (spectral factor,
noise variances, etc.). The only slight disadvantage is that the LMS method can also
give rise to high-order models (i.e. a large number of weights) in realistic problems
and more so in that an FIR model must be larger than an equivalent IIR model, as
the latter has both poles and zeros to model the dynamics. This is offset by the fact
that the LMS method is by far computationally simpler than the RLS method.

It is also possible to perform optimal estimation using the Kalman (1960) approach.
This has been applied to speech processing by Popescu & Zeljkovic (1998), but this
also has its drawbacks, since a high-order Riccati equation then needs to be solved
iteratively. There are, of course, many other approaches to the problem, e.g. spectral
subtraction (Stahl et al . 2000; Martinez et al . 2001).

The approach used in the present paper is explicit: it does not rely on RLS,
but is based around the identification of the spectral factor (and noise variances)
using kepstrum (complex-cepstrum) methods and the resulting estimators (filter,
smoother and predictor) are innovations based. A distinction is made here between
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‘kepstrum’ (Silvia & Robinson 1978) and ‘complex cepstrum’ (Oppenheim et al .
1968; Oppenheim & Schafer 1975), in that the kepstrum coefficients, as given by the
Kolmogorov power series, are theoretical values, while the complex cepstra using the
fast Fourier transform (FFT) are estimates of these. The same symbol ‘k’ is used
for both throughout the paper, however, to avoid confusion. For the purposes of
this paper, which defines the theoretical framework, it is assumed that the noise can
be measured accurately when no signal component is present. The same approach
is used as in the LMS method, in that the noise is assumed to be measured sepa-
rately from the signal plus noise with a second sensor. The FFT approach leads to
a computationally sound and stable method for adaptive estimation.

2. Problem statement

The problem we consider is that of filtering a scalar stationary signal from a message
process of signal plus additive coloured noise, which may also include white noise.
The model is quite general in that it is also valid for the white-noise-only case.

(a) Signal and noise models

Consider a signal yk corrupted with additive coloured noise vk giving a message

sk = yk + vk. (2.1)

As illustrated in figure 1, the signal and coloured noise are assumed to be gener-
ated from stable minimum-phase transfer functions driven by stationary uncorrelated
white-noise sources ξ, µ:

yk = W (q−1)ξk, (2.2)

vk = Γ (q−1)µk. (2.3)

For the white-noise case, Γ (ζ) is constant. In practice, there will be usually be a
white-noise component to the noise as well as a coloured component, but in this case
it will be assumed that the noise spectra have been combined, giving a resulting
rational transfer function Γ (ζ) shaping the noise.

The colouring transfer functions W (ζ), Γ (ζ) may, without loss of generality, be
assumed to be such that W (0), Γ (0) = 1, since any constant multiplier may be
absorbed into the variances σ2

ξ , σ2
µ of the white-noise processes ξk, µk. These processes

are then innovations processes.
The signal spectrum transform is

gss(ζ) = W (ζ)W (ζ−1)σ2
ξ , (2.4)

which is also the cross-spectrum transform gys(ζ) of message and noise, since signal
and noise are uncorrelated. The noise spectrum transform is

gvv(ζ) = Γ (ζ)Γ (ζ−1)σ2
µ (2.5)

and the spectrum transform of the message (signal plus noise) is

gss(ζ) = W (ζ)W (ζ−1)σ2
ξ + Γ (ζ)Γ (ζ−1)σ2

µ. (2.6)
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In the case when signal is absent (e.g. in a so-called noise-only period), the message
spectrum transform reduces to the noise spectrum. This gives information about
the noise during silence periods of speech or simply if the signal is switched off
intentionally for a duration.

The message spectrum transform can be factorized as Λ(ζ),

gss(ζ) = Λ(ζ)Λ(ζ−1), (2.7)

where here Λ(ζ) will reduce to Γ (ζ)σµ when the signal is absent. The correspond-
ing normalized spectral factor Z(ζ) is defined by Λ(ζ)/Λ(0), leading to the noise
representation of the message process as

sk = Z(q−1)εk, (2.8)

which is the innovations model where εk is the white innovations sequence for the
message process having variance σ2

ε , where Λ(0) = σε and

Λ(ζ) = Z(ζ)Λ(0). (2.9)

This gives the relation

Z(ζ)Z(ζ−1)σ2
ε = W (ζ)W (ζ−1)σ2

ξ + Γ (ζ)Γ (ζ−1)σ2
µ (2.10)

between the normalized spectral transforms of message, signal and noise.

(b) Wiener filter

The optimal Wiener estimator of a signal y from a message s may be represented
as

ŷk = H(q−1)sk, (2.11)

where the transfer function H(ζ), assumed physically realizable, is chosen to mini-
mize the mean-square error

E[e2
k] = E(yk − ŷk)2. (2.12)

The solution may be found explicitly as

H(ζ) =

[

gys(ζ)

Λ(ζ−1)

]

+

1

Λ(ζ)
. (2.13)

Here, the notation [·]+ is normally interpreted as meaning that in the expansion of
the function inside the brackets into positive and negative powers of ζ, only those
terms in ζi are kept for i = 0, 1, 2, . . . .

The same solution may be shown to apply when the estimator has the form

H(ζ) =
∑

i∈ℑ

hiζ
i, (2.14)

where the estimation takes place over some interval ℑ of integers, the bracket [·]+
then meaning that, in the expansion of the function inside the bracket, only those
terms in ζi are kept for i ∈ ℑ (Barrett & Moir 1987). This leads to a general solution
covering lagged filters, prediction and truncation.
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Figure 2. Innovations form of optimal Wiener filter.

On putting

F (ζ) =
gys(ζ)

Λ(ζ−1)
, (2.15)

the optimal filter may be represented as illustrated in figure 2. Here, the first oper-
ation is a whitening filter, giving the innovations process, and the second operation
is the spectrum-shaping function [F (ζ)]+. This interpretation of the optimal filter
derives from the approach of Kolmogorov (1941).

(c) Special cases of the Wiener filter

From the equations

gys(ζ) = gyy(ζ) = gss(ζ) − gvv(ζ), (2.16)

and using the normalized spectral factors Z(ζ), Λ(ζ), we can write the optimal filter
as

H(ζ) =

[

Z(ζ) −
Γ (ζ)Γ (ζ−1)σ2

µ

Z(ζ−1)σ2
ε

]

+

1

Z(ζ)
. (2.17)

We now consider the three possible cases.

(i) Filtering, ℑf = {0, 1, 2, . . . }

This corresponds to instantaneous estimation ŷk/k, i.e. information up to and
including time k. The estimator becomes

H(ζ) = 1 −

[

Γ (ζ)Γ (ζ−1)

Z(ζ−1)

]

+

1

Z(ζ)

σ2
µ

σ2
ε

. (2.18)

This solution involves the two spectral factors: Z(ζ) when there is signal and Γ (ζ)
when the signal is removed. Since both can be estimated using the kepstrum method,
it remains to find a method of simplifying the [·]+ brackets.

(ii) Fixed-lag smoothing and estimation, ℑs = {−d, −d + 1,−d + 2, . . . }, d > 0

This case gives ŷk/k+d, i.e. an estimate of the signal at time k with information up
to and including time k + d. As this involves future values, it may be reinterpreted
as giving ŷk−d/k. The estimator becomes

H(ζ) = 1 −

[

Γ (ζ)Γ (ζ−1)

Z(ζ−1)

]

+

1

Z(ζ)

σ2
µ

σ2
ε

, (2.19)

which looks identical to (2.18) except that the observation interval is different. The
difference does not show itself in the form of (2.19) above and a further simplification
using innovations representations must be sought.
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(iii) Prediction, ℑp = {d, d + 1, d + 2, . . . }, d > 0

This case gives the predicted estimate ŷk/k−d, i.e. an estimate of the signal at
time k with information up to and including time k − d. The estimator becomes

H(ζ) = [Z(ζ)]+
1

Z(ζ)
−

[

Γ (ζ)Γ (ζ−1)

Z(ζ−1)

]

+

σ2
µ

σ2
ε

1

Z(ζ)
. (2.20)

From (2.18)–(2.20), the classical Wiener filter is expressed entirely in terms of the
two unique spectral factors Z(ζ) and Γ (ζ), and the problem becomes one of providing
innovations models for the three estimators and that of estimating the spectral factors
themselves. The innovations models that naturally give rise to the removal of the [·]+
brackets are considered first.

(d) Innovations form for estimators

The estimators (2.18)–(2.20) in the preceding section are of little computational
use, as they require the removal of the [·]+ brackets. It is possible, however, to proceed
further by separating the terms within the brackets. Since all three equations have
a similar expression, consider the following two power-series expansions

Γ (ζ−1)

Z(ζ−1)
= 1 + p1ζ

−1 + p2ζ
−2 + · · · (2.21)

and

Γ (ζ) = 1 + γ1ζ + γ2ζ
2 + · · · . (2.22)

Here, we may use p0 and γ0 (equal to 1) for the initial constant term. The pi,
i = 0, 1, 2 . . . , are then impulse-response coefficients of an uncausal sequence, whereas
the γi, i = 0, 1, 2 . . . , are impulse-response coefficients of a causal sequence. Multi-
plication of (2.21) by (2.22) gives

Γ (ζ)Γ (ζ−1)

Z(ζ−1)
=

∞
∑

k=−∞

ckζk, (2.23)

where the coefficients ck may be found for positive values of k as

ck =

∞
∑

i=0

piγk+i, k = 0, 1, 2, . . . , (2.24)

and, for negative values,

ck =
∞
∑

j=0

p−k+jγj , k = −1,−2, . . . . (2.25)

Having found the coefficients of the Laurent series, the bracket [·]+ may be evaluated
for a general interval ℑ thus:

[

Γ (ζ)Γ (ζ−1)

Z(ζ−1)

]

+

=
∑

i∈ℑ

ciζ
i. (2.26)

This formula includes the effect of truncation. In this case, the interval ℑ is of finite
length and includes values up to ℓ, where ℓ ≫ d. Typically, for most applications,
ℓ should be at least 16, but need not be more than 64.
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(e) Formulae using the innovations process

We now reconsider the three cases using equation (2.8).

(i) Filtering, ℑf = {0, 1, 2, . . . }, d > 0

Using (2.18) and (2.26) results in

ŷk/k = sk −
σ2

µ

σ2
ε

ℓ
∑

i=0

ciεk−i. (2.27)

(ii) Fixed-lag smoothing and filtering, ℑs = {−d, −d + 1, . . . , ℓ}, 0 < d < ℓ

Use of (2.19) and (2.26) results in

ŷk−d/k = sk−d −
σ2

µ

σ2
ε

ℓ
∑

i=−d

ciεk−d−i. (2.28)

(iii) Prediction, ℑp = {d, d + 1, . . . , ℓ}, 0 < d < ℓ

The coloured-noise predictor has two parts. The first part is similar to the white-
noise-predictor case. We use the expansion

Z(ζ) = 1 + a1ζ + a2ζ
2 + · · · . (2.29)

Then, from (2.20), (2.26) and (2.29) comes the overall result:

ŷk+d/k =

ℓ
∑

i=d

{

ai −
σ2

µ

σ2
ε

ci

}

εk+d−i. (2.30)

3. Kepstrum identification

This section describes the kepstrum technique and its application to the analysis
and identification of spectral factors. The basic ideas here go back to Kolmogorov’s
fundamental work; they were later restated and developed by Silvia & Robinson
(1978), who coined the word ‘kepstrum’. The detailed application of this method
in system analysis has been demonstrated in two previous papers (Barrett & Chen
1983; Barrett & Moir 1986).

(a) Definition of kepstrum

If a general discrete-time transfer function H(ζ) is both stable and minimum phase,
i.e. with no poles or zeros inside or on the unit circle, then it is possible to define the
kepstrum

K(ζ) = lnH(ζ) (3.1)

as a regular function within the unit circle. This can also be called kepstrum gen-
erating function, as it defines the kepstrum coefficients, which are the coefficients in
the expansion

K(ζ) = k0 + k1ζ + k2ζ
2 + · · · (3.2)
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valid within the unit circle. The use of the letter k here should cause no confusion
with the previous use of subscript k as a discrete-time variable.

The kepstrum has, by virtue of the logarithm, the following properties.

(i) Additivity for cascading,

ln{H1(ζ)H2(ζ)} = lnH1(ζ) + lnH2(ζ). (3.3)

(ii) Negation for inversion,

ln{1/H(ζ)} = − lnH(ζ). (3.4)

From these it follows that the kepstrum coefficients are also added and negated under
cascading and inversion.

(b) Determination of transfer function from kepstrum coefficients

Suppose that the kepstrum function K(ζ) corresponds to a minimum-phase trans-
fer function H(ζ). The kepstrum series for K(ζ) being known, the series for H(ζ)
may be reconstructed from the equation

H(ζ) = exp(k0 + k1ζ + k2ζ
2 + · · · ). (3.5)

It is convenient to take out the constant multiplier and write this in the form

H(ζ) = CZ(ζ), (3.6)

so that

C = exp k0, (3.7)

Z(ζ) = exp(k1ζ + k2ζ
2 + k3ζ

3 + · · · )

= a0 + a1ζ + a2ζ
2 + a3ζ

3 + · · · , (3.8)

where a0 = 1. From this equation for Z(ζ), the coefficients are conveniently deter-
mined by a recursive method described by Silvia & Robinson (1978). Differentiation
gives

dZ(ζ)

dζ
= (k1 + 2k2ζ + 3k3ζ

2 + · · · )Z(ζ). (3.9)

Then, substituting the series representation of Z(ζ), we get the recursive relations

nan =
n

∑

r=1

rkran−r, n = 1, 2, 3, . . . . (3.10)

(c) Determination of kepstrum coefficients for a spectrum

The discrete-time spectral density S(θ) is related to the spectrum transform by

S(θ) = g(ejθ). (3.11)

It is a periodic function of the normalized frequency θ. If g(ζ) has a factorization

g(ζ) = Λ(ζ)Λ(ζ−1), (3.12)
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with Λ(ζ) being both stable and minimum phase, then

S(θ) = |Λ(ejθ)|2. (3.13)

From this equation, we have

ln |Λ(ejθ)| = 1
2

lnS(θ). (3.14)

Now, using the kepstrum expansion for Λ(ζ), we find

lnΛ(ejθ) = k0 + k1e
−jθ + k2e

−2jθ + · · · . (3.15)

Taking the real part gives

ln |Λ(ejθ)| = k0 + k1 cos θ + k2 cos 2θ + · · · , (3.16)

from which there follow the Fourier formulae for the kepstrum coefficients of Λ(ζ):

k0 =
1

π

∫ 2π

0

ln |Λ(ejθ)|dθ, (3.17)

kn =
1

π

∫ 2π

0

ln |Λ(ejθ)| cos(nθ) dθ, n = 1, 2, 3, . . . . (3.18)

Equally, in terms of spectrum, taking into account that it is a symmetrical function:

k0 =
1

4π

∫ 2π

0

lnS(θ) dθ, (3.19)

kn =
1

2π

∫ 2π

0

lnS(θ) cos(nθ) dθ, n = 1, 2, 3, . . . . (3.20)

Here, by the last section, k0 gives the value of log σ, σ2 being the innovations variance.
There follows the formula of Kolmogorov,

σ2 = exp

{

1

2π

∫ 2π

0

lnS(θ) dθ

}

, (3.21)

while the remaining coefficients k1, k2, k3, . . . determine the expansion of Z(ζ), the
normalized spectral factor Λ(ζ)/Λ(0).

4. Determination of the filter from data using the kepstrum

It has been shown that all three estimation problems in coloured noise can be solved,
provided the two spectral factors of signal plus noise and noise alone, as well as the
ratio σ2

µ/σ2
ε of innovations variances, can be determined. In this section we show how

these quantities are calculated from observed data.

(a) Estimation of kepstrum coefficients by the cepstrum

The cepstrum is normally defined as the logarithm of the spectrum estimated from
a data sample by using the FFT. This is closely related to the kepstrum, the two ideas
being similar but not identical. The cepstrum is an empirical quantity approximating
and estimating the theoretical kepstrum.
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Suppose that [x0, x1, x2, . . . , xN−1] is a data vector of a sample of a stationary
process. Use of the FFT gives a data vector [X0, X1, X2, . . . , XN−1], where

Xm =

N−1
∑

n=0

xnwmn, m = 0, 1, 2, . . . , N − 1, (4.1)

and w is the so-called twiddle factor exp(2πj/N).
The periodogram estimate of spectral density Sm at each frequency-bin m is

Ŝm =
1

N
|Xm|2, m = 0, 1, 2, . . . , N − 1. (4.2)

Here, the quantity on the right-hand side is the sum of the squares of the amplitudes
of the quadrature components of the data for that frequency. It is known that these
components may be considered to be independent Gaussian variables of zero means
and equal variances. From this, it may be shown that

ln Ŝm = lnSm + fm, m = 0, 1, 2, . . . , N − 1, (4.3)

where fm are independent random variables having identical distributions with
mean −γ and variance 1

6
π2, γ (equal to 0.577 215 . . . ) being Euler’s constant (Bar-

rett & Moir 1986). The plot of ln Ŝm against frequency 2πm/N shows a downward
bias of −γ, as illustrated in Wahba (1980). This bias shows itself in a corresponding
bias in the estimation of k0, which gives the variance. The higher-order kepstrum
coefficients k1, k2, k3, . . . are unaffected by it. To eliminate the bias, the estimates of
the kepstrum coefficients are found by inverse FFT of the vector

Xm = ln Ŝm + γ, m = 0, 1, 2, . . . , N − 1, (4.4)

these coefficients satisfying ki = kN−i, i = 0, 1, 2 . . . , 1
2
N − 1.

For smoother estimates and also to take into account time-varying conditions, it is
normal to overlap the FFT windows and provide some form of exponential smoothing
to the periodogram, as described in Appendix A (Allen et al . 1977).

(b) Spectral factor determination from estimated kepstrum coefficients

The estimated kepstrum expansion of the normalized spectral factor Z(ζ) for signal
plus noise is found from (3.8) as

lnZ(ζ) = k1ζ + k2ζ
2 + · · · , (4.5)

and the innovations variance is found from (3.7) and (2.9) with C = Λ(0) = σε,

σ2
ε = exp(2k0), (4.6)

where here the coefficients k0, k1, k2, . . . , kN−1 represent estimated coefficients for
the signal. Similarly for noise-only signals,

lnΓ (ζ) = k′
1ζ + k′

2ζ
2 + · · · , σ2

µ = exp(2k′
0), (4.7)

where k0, k1, k2, . . . , kN−1 are the estimated kepstrum coefficients for the noise-only
case. The transfer functions for the individual spectral factors can be found by the
recursion method of Silvia & Robinson (1978). For the two series, we find the recur-
sions as follows.
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(i) Signal-plus-noise spectral factor, Z(ζ) = a0 + a1ζ + a2ζ
2 + · · · (a0 = 1),

nan =

n
∑

r=1

rkran−r, n = 1, 2, . . . . (4.8)

(ii) Noise-alone spectral factor, Γ (ζ) = γ0 + γ1ζ + γ2ζ
2 + · · · (γ0 = 1),

nγn =
n

∑

r=1

rk′
rγn−r, n = 1, 2, . . . . (4.9)

(c) Removal of the [·]+ brackets

A little ingenuity now leads to an efficient way of determining the coefficients in the
expansion of Γ (ζ−1)/Z(ζ−1). Using the results of (4.8) and (4.9) it would, of course,
be possible, with the change of variable from ζ to ζ−1, to divide the two polynomials
Γ (ζ−1) and Z(ζ−1). However, since division of transfer functions is performed in the
kepstrum domain by subtraction of the kepstrum coefficients, it is only necessary
to subtract the kepstrum coefficients for Z(ζ−1) from those of Γ (ζ−1) and convert
them back to the transfer function by using the previous recursive formula. Hence,
with p0 = 1, we find

npn =
n

∑

r=1

r(k′
r − kr)pn−r, n = 1, 2, . . . . (4.10)

Once these coefficients have been found, it remains only to perform the computations
to find the coefficients of the Laurent series as given by (2.24) and (2.25).

(d) Innovations estimation

To estimate the innovations sequence, we use the inverse of the spectral factor Z(·),

εk = Z−1(q−1)sk. (4.11)

In the expansion
Z−1(ζ) = 1 + α1ζ + α2ζ

2 + · · · , (4.12)

the coefficients α1, α2, α3, . . . , follow from the recursion

nαn = −
n

∑

r=1

krrαn−r, n = 1, 2, 3, . . . , (4.13)

since, using (3.4), inversion changes the sign of the kepstrum coefficients. The inno-
vations estimate now becomes

ε̂k =
ℓ

∑

n=0

αnsk−n, (4.14)

where the coefficients have been truncated at some suitable number ℓ of points.
These results give rise to the algorithms of the next section.
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5. Algorithms for adaptive filtering, smoothing
and prediction in coloured noise

Here we use the classical Wiener estimators with the kepstrum approach to perform
spectral factorization. Innovations forms are used throughout. This is by no means
essential, but is computationally convenient.

It is assumed that there is a period when the noise-only signal can be measured,
i.e. when the signal is zero (or near zero) between spoken words of speech (Agaiby
& Moir 1997) or, alternatively, a separate measurement is available where a sensor
is placed near the noise source in a similar manner to that in conventional noise
cancellation (Widrow & Stearns 1985).

Algorithm 5.1 (filtering (d = 0) and smoothing (d > 0)). For each batch
of data sk, k = 0, 1, . . . , N − 1, and nk, k = 0, 1, . . . , N − 1, where N is the FFT
length, we do the following.

Step 1. For i = 1, 2, . . . , N − 1, estimate the complex-cepstrum coefficients for the
message ki from (4.4) and the complex-cepstrum coefficients k′

i of the noise-only
signal.

Step 2. The coefficients in step 1 are preserved up to some point ℓ �
1
2
N − 1 and

the rest set to zero (it is assumed that ℓ ≫ d). The zeroth coefficients k0 and k′
0 are

halved. Calculate the variance ratio

σ2
µ

σ2
ε

= exp 2(k′
0 − k0).

Step 3. Estimate the impulse response of the inverse of the signal-plus-noise spectral
factor αi, i = 1, 2, . . . , ℓ, from (4.13).

Step 4. Estimate the innovations sequence ε̂k from (4.14).

Step 5. Estimate the impulse-response coefficients γi, i = 1, 2, . . . , ℓ, from (4.9) and
the impulse-response coefficients pi, i = 1, 2, . . . , ℓ, from (4.10).

Step 6. Find the Laurent series from (2.24) and (2.25), with the summations trun-
cated at some integer ℓ, where ℓ ≫ d. That is,

ck =



























ℓ
∑

i=0

piγi+k for k � 0,

ℓ
∑

j=0

p−k+jγj for k < 0,

and only the first of these is required in the filtering case when d = 0.

Step 7. The filtered (d = 0) or d-steps-smoothed estimate of the signal is found
from (2.28):

ŷk−d/k = sk−d −
σ2

µ

σ2
ε

ℓ
∑

i=−d

ciε̂k−d−i.

Algorithm 5.2 (prediction (d > 0)). For each batch of data sk, with k =
0, 1, . . . , N − 1, where N is the FFT length, perform the following computations.
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Figure 3. Performance of smoothing filter, d = 5 steps. (True signal shown with broken line.)

Steps 1–6. Identical to that of the filtering-and-smoothing case, except in step 6
k = d, d + 1, d + 2, . . . , so only (2.24) is required.

Step 7. Estimate the impulse response ai, i = 1, 2, . . . , ℓ, of the signal-plus-noise
spectral factor from (4.8).

Step 8. Estimate the d > 0-steps-ahead predicted estimate from (2.30)

ŷk+d/k =
ℓ

∑

i=d

{

ai −
σ2

µ

σ2
ε

ci

}

ε̂k+d−i.

6. Illustrative examples

The overall performance of the kepstrum method can be illustrated with the following
three examples, which were chosen to best illustrate the theoretical framework and
the practical aspects of this method.

(a) Stationary signal and noise

First consider the problem of a stationary signal and stationary coloured noise plus
white noise. To simulate the signal, unit variance white noise was passed through
an eighth-order low-pass IIR Butterworth filter of cut-off frequency 400 Hz. The
sampling frequency was 22 050 Hz and 8 bits per sample were used. To this an
uncorrelated white-noise sequence of variance 0.2 and a coloured-noise signal were
added. The coloured noise was simulated by passing uncorrelated white noise of vari-
ance 0.5 through a sixth-order IIR Butterworth bandpass filter. The bandpass filter
had lower and upper corner frequencies of 3 and 6 kHz, respectively. An FFT length
of N = 1024 was used and the signal-to-noise ratio (SNR) was measured as −6.0 dB.
Figure 3 shows the signal plus noise, the true signal and the corresponding smoothed
estimate for a lag of d = 5 steps. A further improvement can be made by averaging
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Figure 4. Performance of smoothing filter after averaging and d = 12 steps.
(True signal shown with broken line.)

Table 1. SNR improvement for smoothing (dB), stationary example

SNRin 3 0 −3 −6 −9 −12 −15 −18

SNRout 40 35 30 25 23 15 10.6 4.7

the cepstrum coefficients from overlapping frames (Appendix A). This is shown in
figure 4, with d = 12 steps, and gives an excellent result.

It is not possible to calculate the SNR improvement directly, as this requires the
signal to be of an intermittent nature with periods of ‘noise alone’. However, the
signal can be manually switched off after convergence and a measurement of SNR
improvement made as follows. The SNR at the input to the estimator is defined
in dB as

SNRin = 10 log10

(

σ2
y

σ2
v

)

,

where both signal and noise variances are directly measurable in this type of simula-
tion. At the output of the estimator, a measure σ̂2

y+σ̂2
v of the variance of the estimated

signal plus residual noise can be made. When the signal is manually switched off,
only the component representing the residual noise of variance σ̂2

v remains. Hence
some measure, say, P dB, can be made, where

P = 10 log10

(

σ̂2
y + σ̂2

v

σ̂2
v

)

,

from which the SNR at the output can be calculated as

SNRout = 10 log10(10P/10 − 1),

which was estimated as 25 dB for this case. A table of results for this example with
various SNRs are shown in table 1.
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Figure 5. Performance of predictor, d = 5 steps. (True signal shown with broken line.)
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Figure 6. Performance of predictor after averaging, d = 12 steps.
(True signal shown with broken line.)

For the predictor case, consider the previous signal-and-noise model, but for a five-
steps-ahead predictor. The results are shown in figure 5. Although quite good, the
results are not as good as those for the smoothing case, since there is less information
in the impulse response (i.e. no ‘uncausal’ information is included).

To illustrate the predictor case further, consider the same problem as the previous
example, but with a prediction of d = 12 steps. Figure 6 shows the signal plus
noise, the true signal and its 12-steps-ahead predicted value. The results are shown
a zoomed time-axis to highlight the performance of the predictor.
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Figure 7. Performance of smoothing filter (d = 10 steps) on speech plus helicopter noise.
(a) Original clean speech. (b) Speech plus helicopter noise. (c) Smoothed speech signal.

The averaging of the complex-cepstrum coefficients results in a form of convergence
of the algorithm, but is not suitable for more realistic environments where the signal
and noise are non-stationary. For such problems, the filter and kepstrum coefficients
will be time varying for each frame and such an example is considered next with a
speech signal and additive helicopter noise.

(b) Speech signal plus helicopter noise

The clean speech signal shown in figure 7a had helicopter noise added. The compos-
ite signal plus noise waveform is shown in figure 7b. A sampling frequency of 22 050 Hz
was used, with an FFT length of 4096 points and 75% overlapping frames. The
periodogram was averaged using the method of Appendix A. The SNR before pro-
cessing was measured as an average −1 dB across the whole waveform. The smooth-
ing algorithm was used to enhance the speech and the result for a lag of 10 steps
is shown in figure 7c. The helicopter noise was still present, but very much audibly
attenuated. The SNR after processing was measured as ca. 20 dB across the wave-
form. This was measured in a similar manner as before by measuring the variance
of the signal between utterances (i.e. noise alone) and the variance in the signal plus
noise. Knowing this information enables the segmented SNR to be calculated for var-
ious utterances and gives an average improvement in SNR of ca. 21 dB. However, the
above example is somewhat artificial and contrived, as the noise is seldom available
in a pure form. A better understanding of the performance of the algorithm is given
in the next example.
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Figure 8. Recording of a speech signal and noise in a real environment.

1.0

0.5

0

−0.5

−1.0

am
p
li

tu
d
e

0 20 40 8060 100 120 140 160

time (samples × 1000)

1.0

0.5

0

−0.5

−1.0

am
p
li

tu
d
e

1.0

0.5

0

−0.5

−1.0

am
p
li

tu
d
e

(a)

(b)

(c)

Figure 9. (a) Speech plus noise (message), (b) kepstrum estimate and
(c) LMS estimate for real environment.

(c) A noise-cancellation comparison

Consider the classic noise-cancellation set-up shown in figure 8. Such a configura-
tion has been well known since the early days of noise cancellation and the work of
Widrow & Stearns (1985). The room was ca. 4 m × 4 m and a typical office environ-
ment. The noise source was a radio playing music. A recording was made onto disk
and the kepstrum method was compared with that of LMS. The results are shown
in figure 9.
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A sampling frequency of 22 050 Hz was used, with an FFT length of 4096 samples.
The delay was d = 10, with ℓ = 64. The FFT window overlap was 75%. The LMS
algorithm was employed using 64 weights so as to make some form of comparison.
The average segmented SNR of the signal plus noise was found to be 3.87 dB. The
segmented SNR of the kepstrum estimate was found to be 7.08 dB and that of the
LMS algorithm 3.52 dB. This indicates an improvement in SNR by using LMSs
of 0.35 dB, and 3.2 dB when using the kepstrum method. This result, of course,
cannot be said to be definitive, as there are many factors to consider when performing
such comparisons.

7. Conclusions

A kepstrum method of spectral factorization has been applied to the general Wiener
estimation problem with coloured noise. The algorithms are relatively straight for-
ward, computationally easy to implement and have been shown to give good results
on two speech-enhancement examples. Further work needs to be done to compare in
more detail these algorithms with existing noise-cancellation and prediction methods
and to apply them to real-world problems.

Appendix A. Some comments about averaging

The periodogram is the estimate of spectral density at each frequency-bin m given
as

Ŝm =
1

N
|Xm|2, m = 0, 1, 2, . . . , N − 1, (A 1)

but can also be found by the following exponential smoothing method at each adja-
cent or overlapping FFT frame j = 1, 2, . . . ,

Sm(j) = βSm(j − 1) + (1 − β)Xm(j)X∗
m(j), (A 2)

where Xm(j) is the FFT frequency vector at frame j and X∗
m(j) is its complex

conjugate; 0 < β < 1 is a forgetting factor. This method is used here to average
the periodogram when the signal and noise are non-stationary. For the special case
of stationary signals discussed in § 6, the complex-cepstrum coefficients are averaged
across FFT frames according to the recursive mean

k̄i(j) = k̄i(j − 1) +
1

j
[ki(j) − k̄i(j − 1)], i = 0, 1, 2, . . . , N − 1, (A 3)

where k̄i(j) is the mean value of the ith coefficient evaluated at frame j. Using (A 3),
the complex-cepstrum coefficients will converge to the (theoretical) kepstrum coeffi-
cients. Of course, equation (A 3) can only be used for the stationary case, as there is
no form of forgetting factor included.

Nomenclature

ζ transform variable z−1

q−1 backward shift operator

E[·] expectation operator
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yk, sk signal and message processes

vk coloured-noise process

ξk, µk white-noise processes

εk white innovations process

gys(ζ) cross-spectral density transform between signal and message

gss(ζ) spectral density transform of message process

Λ(ζ), Z(ζ) spectral factor and normalized spectral factor of signal plus noise

Γ (ζ) normalized noise-only spectral factor
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