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A Kernel Affine Projection-Like Algorithm in

Reproducing Kernel Hilbert Space
Qishuai Wu, Yingsong Li, Senior Member, IEEE, Yuriy V. Zakharov, Senior Member, IEEE, Wei Xue, Wanlu Shi

Abstract—A kernel affine projection-like algorithm (KAPLA)
is proposed in reproducing kernel Hilbert space in non-Gaussian
environments. The cost function for the developed algorithm is
constructed by using the correntropy approach and Gaussian
kernel to deal with nonlinear channel estimation. The devised
algorithm can efficiently operate in the impulse noise. As a
consequence, the proposed KAPLA algorithm provides good
performance for nonlinear channel equalization in impluse-
noise environments. Simulations results in different mixed noise
environments verify the superior behavior of KAPLA compared
to known algorithms.

Index Terms—correntropy; reproducing kernel Hilbert space;
kernel affine projection-like algorithm; non-Gaussian environ-
ments

I. INTRODUCTION

Kernel method is powerful non-parametric modeling tech-

nique, which is popular in nonlinear adaptive filtering (AF) [1].

The kernel AF (KAF) algorithm employs the kernel learning

method implemented in reproducing kernel Hilbert spaces

(RKHS). The kernel least-mean-square (KLMS) algorithm [2]

and its multiple variants were developed for non-linear signal

processing [3]–[8]. Furthermore, the kernel affine projection

(AP) algorithm (KAPA) has been proposed [8], which can

reduce the gradient noise. However, the KLMS algorithm and

KAPA are constructed by minimizing the squared error, which

might result in performance degradation in scenarios with non-

Gaussian noise [9], [10], which might result in performance

degradation.

To improve the estimation performance in non-Gaussian

environments, the AP sign (APS) algorithm, the maximum

correntropy criterion (MCC) algorithm and their variants have

been proposed and investigated in recent works [11]–[18]. The

APS and MCC-based algorithms converge fast and achieve low

mean square error (MSE) in non-Gaussian noisy environments.

The kernel MCC (KMCC) algorithm [19] is developed

Manuscript received on June 12, 2019; revised on Aug. 30, 2019, and
revised on .

This work was supported in part by the Fundamental Research Funds for
the Central Universities under Grants HEUCFG201829 and 3072019CFG0801
and the National Key Research and Development Program of China under
Grant 2016YFE0111100, and the China Postdoctoral Science Foundation
under Grants 2017M620918 and 2019T120134.

Qishuai Wu, Yingsong Li, Wei Xue, Wanlu Shi are with the College of
Information and Communication Engineering, Harbin Engineering University,
Harbin 150001, China. (e-mail: liyingsong@ieee.org).

Yingsong Li is also with the Key Laboratory of Microwave Remote
Sensing, National Space Science Center, Chinese Academy of Sciences,
Beijing 100190, China

Yuriy V. Zakharov is with the Department of Electronic Engineering,
University of York, York YO10 5DD, U.K.

for identifying non-linear systems under non-Gaussian in-

terference by introducing the kernel method into the MCC

algorithm. Exploiting the RKHS, the kernel APS (KAPS)

algorithm has been developed [20]. One can notice that from

the KLMS algorithm to the KAPA and KMCC algorithms,

the kernel theory was successfully employed to enhance the

algorithm behavior in noisy non-Gaussian environments.

In this paper, the nonlinear channel equalization (NCE)

problem in non-Gaussian noise is considered. Herein, the AP

approach and MCC are combined to devise a cost function

for development of a novel robust algorithm in non-Gaussian

environments. The gradient descent principle and the Lagrange

multiplier method are used to derive the update recursion for

an affine projection-like algorithm (APLA). Then, the kernel

method in RKHS is incorporated into the recursionfor the NCE

problem. Finally, the update recursion for the new algorithm,

namely the kernel APLA (KAPLA), is proposed. Simulated

results show that the KAPLA outperforms the KAPA, KLMS,

KAPS and KMCC algorithms in the convergence speed and

steady state estimation error.

The structure of the manuscript is presented below. Sec-

tion II introduces the KAPA algorithm. Section III presents

the derivation of the proposed KAPLA. Section IV verifies

the KAPLA’s behavior via computer simulations. Finally, in

Section V, the conclusion is given.

II. REVIEW OF THE KAPA ALGORITHM

In the classical AP adaptive filter, the input

matrix U (n) = [u (n) ,u (n− 1) , ...,u (n−M + 1)]
groups M most recent signal vectors u(n) =
[u (n) , u (n− 1) , u (n− 2) , ..., u (n− L+ 1)]

T
, where

n indicates the time slot, and L represents the filter length.

In the APA, the output M × 1 vector y(n) is

y (n) = UT (n)w (n− 1) , (1)

and the a priori error vector e (n) is given by

e (n) = d (n)− y (n) , (2)

where the desired signal vector is d (n) =
[d (n) , d (n− 1) , d (n− 2) , ..., d (n−M + 1)]

T
, d(n)

denotes the desired signal, and w (n− 1) ∈ RL×1 denotes

the AF weighting vector at instant n − 1. The APA update

recursion is expressed as [21]

w (n) = w (n− 1)

+ ξU (n)
[

UT (n)U (n) + εIM
]−1

e (n) ,
(3)
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where ε > 0 is a regularization factor, IM is an M -order

identity matrix and ξ is the step-size.

The idea of the kernel method is to map the input signal

vector space U into a high-dimensional featured space F,

where the mapping ϕ is constructed as ϕ : U → F. Then, the

kernel method is integrated into linear AF algorithms with the

help of the Mercer’s theorem [1]

κ (u,u′) = ϕT (u)ϕ (u′) , (4)

which defines the relationship between the kernel κ (u,u′) and

the mapping ϕ, and where (4) is also regarded as the kernel

trick. Usually, the Gaussian kernel defined as [1]

κ (u,u′) = exp

(

−
‖u− u′‖

σ2

)

(5)

is considered. Herein, σ denotes the kernel width. According

to the kernel method, u(n) is mapped into a featured space F

as ϕ (u (n)); below, we denote ϕ (n) = ϕ (u (n)). Straight-

forward calculations transform the recursion (3) into

w (n) = w (n− 1) + ξΦ (n) [G (n) + εIM ]
−1

e (n) , (6)

where Φ (n) = [ϕ (n) ,ϕ (n− 1) , ...,ϕ (n−M + 1)], and

e (n) represents a priori-error in RKHS given by e (n) =
d (n)−ΦT (n)w (n− 1), and G (n) = ΦT (n)Φ (n).

Based on (6), the recursion can be factorized and described

as follows.


























































w (0) = 0,
w (1) = ξd (1)ϕ (1) = a1 (1)ϕ (1) ,

...

w (n− 1) =
n−1
∑

m=1

am (n− 1)ϕ (m),

w (n) =

n−1
∑

m=1

am (n− 1)ϕ (m)

+ ξΦ (n) [G (n) + εIM ]
−1

e (n) ,

(7)

where am(n−1) is the mth element in a(n−1), which is the

expansion coefficient vector. According to (7), the weighting

vector in the featured space is modified to be

w (n) =

n
∑

m=1

am (n)ϕ (m). (8)

From the above derivation, elements of the expansion coeffi-

cient vector can be obtained as:

aj (n) =















ξen+1−j (n) [G (n) + εIM ]
−1

, if j = n,

aj (n− 1) + ξen+1−j (n) [G (j) + εIM ]
−1

,

if n−M+1 ≤ j ≤ n− 1,
aj (n− 1) , if 1 ≤ j < n−M + 1,

(9)

where en+1−j (n) is obtained as

en+1−j (n) = d (j)−

n−1
∑

m=1

am (n− 1)κn,m, (10)

where κn,m = κ (u (n) ,u (m)) and en+1−j (n) is the a

priori error of {u (j) , d (j)} using w (n− 1). Equation (9)

is interpreted as follows. Firstly, a new element an (n)

is set to ξe1 (n) [G (n) + εIM ]
−1

. Then, the coefficients

are updated for (M − 1) most recent elements by adding

ξen+1−j (n) [G (j) + εIM ]
−1

for (n−M+1) ≤ j ≤ (n− 1),
and the other coefficients are unchanged.

III. KERNEL AFFINE PROJECTION-LIKE ALGORITHM

In this section, the KAPLA is derived. The algorithm is

devised via finding the solution of the following minimization

problem [22], [23]

min
w(n)

‖w (n)−w (n− 1)‖
2

s.t. ẽ (n) = [1M − ξb (n)]⊙ e (n) ,
(11)

where 1M = [1, 1, ..., 1]
T

represents a unity M × 1 vector,

b (n) = exp
(

−e(n)⊙e(n)
2δ2

)

, δ represents a specified kernel

width, ⊙ denotes the Hadamard product, ẽ (n) = d (n) −
UT (n)w (n) are posteriori errors and ‖·‖

2
represents the

Euclidean vector norm. According to the Lagrange multiplier

method [21], the created new cost function is obtained as

J (n) = ‖w (n)−w (n− 1)‖
2

+ λ {ẽ (n)− [1M − ξb (n)]⊙ e (n)} ,
(12)

where λ = [λ1, λ2, ..., λM ] acts as the Lagrange multiplier

vector. Taking the gradients

∂J (n)

∂w (n)
= 2 [w (n)−w (n− 1)]−U (n)λT ,

∂J (n)

∂λ
= ẽ (n)− [1M − ξb (n)] ,

(13)

and setting them to zero results in

w (n) = w (n− 1) +
1

2
U (n)λT , (14)

d (n) = UT (n)w (n) + [1M − ξb (n)]⊙ e (n) . (15)

The vector λT is then given by

λT = 2ξ
[

UT (n)U (n)
]−1

b (n)⊙ e (n) . (16)

Substituting λT from (16) into (14), one can obtain the

updating recursion for the APLA:

w (n) = w (n− 1)

+ ξU (n)
[

UT (n)U (n)
]−1

b (n)⊙ e (n) .
(17)

More generally, the updating recursion is generalized as:

w (n) = w (n− 1)

+ξU (n)
[

UT (n)U (n) + εIM
]−1

b (n)⊙ e (n) .
(18)

Taking the kernel method into account, (18) becomes

w (n) = w (n− 1)

+ξΦ (n) [G (n) + εIM ]
−1

b (n)⊙ e (n) .
(19)

According to (7) and (19), w (n) is given by

w (n) =
n−1
∑

m=1

am (n− 1)ϕ (m)

+ξΦ (n) [G (n) + εIM ]
−1

b (n)⊙ e (n) .

(20)
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The estimate of d (n) is given by

d̂ (n) = ΦT (n)w (n− 1) . (21)

Noticing the kernel trick in (4), d̂ (n) can be transformed into

d̂ (n) =

[

n−1
∑

m=1
am (n− 1)κn,m,

n−1
∑

m=1
am (n− 1)κn−1,m,

...,
n−1
∑

m=1
am (n− 1)κn−M+1,m

]T

.

(22)

The a priori error vector is then obtained as

e (n) = d (n)− d̂ (n) . (23)

Substituting (22) into (23) yields

e (n) = d (n)−

[

n−1
∑

m=1

am (n− 1)κn,m,

n−1
∑

m=1

am (n− 1)κn−1,m, ...,

n−1
∑

m=1

am (n− 1)κn−M+1,m

]T

.

(24)

Comparing (8) and (21), the expansion coefficient vector is

aj (n) =















ξpn+1−j (n) [G (n) + εIM ]
−1

, if j = n,

aj (n− 1) + ξpn+1−j (n) [G (j) + εIM ]
−1

,

if n−M+1 ≤ j ≤ n− 1,
aj (n− 1) , if 1 ≤ j < n−M + 1,

(25)

where pn+1−j (n) is found from

pn+1−j (n) = en+1−j (n) exp

(

−
(en+1−j (n))

2

2δ2

)

. (26)

The equation (25) can be interpreted as follows. Firstly, a new

element an (n) is set to ξp1 (n) [G (n) + εIM ]
−1

. Then, the

M − 1 most recent elements are updated by adding terms

ξpn+1−j (n) [G (j) + εIM ]
−1

for (n − M+1) ≤ j ≤ (n −
1), and the remaining coefficients are kept unchanged. The

KAPLA is summarized in Algorithm 1.

TABLE I: Parameters of algorithms

Algorithm ξ M δ σ ε

KLMS 0.02 - - 1 -

KAPA 0.02 10 - 1 0.1

KMCC 0.02 - 0.55 1 -

KAPS 0.01 10 - 1 0.1

KAPLA 0.02 10 0.55 1 0.1

KAPLA 0.02 10 0.4 1 0.1

nonlinearity +H(z)
s(n) x(n)

v(n)

r(n)

Fig. 1: Classic nonlinear channel structure.

Algorithm 1 KAPLA

Input: ξ, σ, δ, ε

Output: a

Initialisation :

1: a1 (1) = ξd (1)
2: while {u (n) , d (n)} are available do

3: an (n− 1) = 0
4: for j = max(1, n−M + 1) : n do

5: compute elements of the vector d̂(j)

d̂ (j) =
n−1
∑

m=1
am (n− 1)κj,m

6: compute elements of the vector e (n):
en+1−j (n) = d (j)− d̂ (j)

7: update min {n,M} most recent elements aj (n) as

in (25)

aj (n) = aj (n− 1) + ξpn+1−j (n) [G (j) + εIM ]
−1

8: end for

9: if n > M then

10: for j = 1 : n−M do

11: aj (n) = aj (n− 1)
12: end for

13: end if

14: end while

IV. SIMULATION RESULTS AND DISCUSSIONS

A NCE problem is now considered in different noise

environments to analyze the robustness and estimation perfor-

mance of the proposed KAPLA. In Fig. 1, a non-linear channel

model consisting of a memoryless nonlinearity and a linear

filter is presented. This channel should be equalized. A binary

signal s(n) is transmitted through the channel. The received

signal r(n) is observed in the presence of additive noise v(n).
The NCE is regarded as a regression problem with input-output

data {[r (n) , r (n+ 1) , r (n+ 2) , . . . , r (n+ l)] , s (n−D)}.

Herein, D and l are equalization lag time and the time

embedding length [1], respectively; l = 3 and D = 2 are

selected in the simulation. The linear filter has a transfer-

function H(z) = 1 − 0.5z−1. The received x (n) is obtained

as x (n) = 0.5s (n− 1) + s (n). The output signal r(n) is

given by r (n) = −0.9x2(n) + x (n) + v (n). The noise v (n)
is generated by mixing two noise signals, namely v1 (n) and

v2 (n) [24]. Four noise models with zero-mean are considered

as follows.

1) Bernoulli-distributed noise v1 (n) that has a power of 0.45

mixed with a Gaussian-distributed noise v2 (n) with power of

0.08 are employed in Simulation-1.

2) Laplace-distributed noise v1 (n) that has a power of 0.45

mixed with Gaussian-distributed noise v2 (n) that has a power

of 0.08 are employed in Simulation-2.

3) Bernoulli-distributed noise v1 (n) that has a power of

0.45 mixed with uniformly distributed noise v2 (n) that has a

power of 1 are employed in Simulation-3.

4) Bernoulli-distributed noise v1 (n) that has a power of

0.45 is used in Simulation-4.

In these simulation experiments, the total noise power is

0.1 and other parameters are given in Table I. The simulation

results are obtained by computing the average error from 50
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Simulation-3 Bernoulli-uniform noise
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Fig. 2: Performance of the KAPLA under the mixed noise.

independent Monte-Carlo runs. The size of training data and

testing data are set to 1000 and 100, respectively. The behav-

iors of the devised KAPLA compared with KLMS, KAPA,

KMCC and KAPS algorithms in the four noise environments

are presented in Fig. 2. It can be seen that the KAPLA provides

the fastest convergence in all the scenarios. Moreover, the

steady-state MSE of the KAPLA are lower than that of the

other mentioned algorithms.

Next, the KAPLA is investigated to establish how the

kernel-width δ influences its behavior. The kernel bandwidth

σ is set to 1, and other KAPLA parameters are the same as

those in TABLE I. The noise model in this experiment is the

same as in Simulation-1, and the MSEs are obtained from

the last 100 iterations, which are supposed to operate in the

steady state. The obtained results are shown in Fig. 3, where

it is seen that the MSE behavior of KAPLA is improved with

the reduction of the kernel width δ within a certain range, and

the value of δ has significant effect on the steady state MSE

of the KAPLA.

Finally, the tracking ability of KAPLA is tested via intro-

ducing an abrupt change of the channel in the training [8].

Simulation results in the experiment are calaulated by averag-

ing over 200 independent Monte-Carlo runs, and the size of the

training data is 1500. The KAPLA parameters are the same as

those in TABLE I, but δ = 0.4. At the initial stage, the channel

model is described as r (n) = −0.9x2(n) + x (n) + v (n),
while after 500 iterations, the channel is switched to r (n) =
0.9x2(n) − x (n) + v (n). The results are presented in Fig.

4. It is seen that the KAPLA provides the best performance

compared with the other mentioned algorithms.

V. CONCLUSIONS

A kernel affine projection-like algorithm in reproducing

kernel Hilbert space has been proposed and investigated for
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Fig. 3: MSE performance of KAPLA against δ.
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Fig. 4: Learning performance for non-linear equalization with

an abrupt change of the channel at iteration 500.

nonlinear channel equalization in scenarios with non-Gaussian

noises. The proposed algorithm (KAPLA) is implemented via

the correntropy scheme to construct a novel affine projection-

like algorithm, and then, the kernel method is incorporated

into the algorithm for dealing with the non-linear channel.

The results of simulations have demonstrated that KAPLA

achieves the best MSE behavior compared with popular kernel

algorithms.
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