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A b s t r a c t .  Suppose a two-dimensional spatial process z(x) with generalized 
covariance function G(x, x') c( Ix - x'l 2 log Ix - x '  I (Matheron, 1973, Adv. in 
Appl. Probab., 5, 439-468) is observed with error at a number of locations. 
This paper gives a kernel approximation to the optimal linear predictor, or 
kriging predictor, of z(x) under this model as the observations get increasingly 
dense. The approximation is in terms of a Kelvin function which itself can be 
easily approximated by series expansions. This generalized covariance function 
is of particular interest because the predictions it yields are identical to an 
order 2 thin plate smoothing spline. For moderate sample sizes, the kernel 
approximation is seen to work very well when the observations are on a square 
grid and fairly well when the observations come from a uniform random sample. 

Key words and phrases: Thin plate spline, prediction of random fields, Kelvin 
function, nonparametric regression. 

1. Introduction 

Universal  kriging is the geostat is t ical  t e r m  for best  linear unbiased predic- 
t ion under  a class of  nons ta t iona ry  spat ia l  processes known as intrinsic r andom 
functions (Matheron  (1973)). This  pape r  develops a kernel approx imat ion  for the  

universal  kriging predic tor  under  a par t icular  intrinsic r a n d o m  function model  in 
two dimensions tha t  is appropr i a t e  as the  number  of observat ions near  the point  
being predicted increases. This  approx ima t ion  is of interest  in nonparamet r i c  re- 
gression because the universal  kriging predic tor  for this process is equivalent to 
an order 2 thin plate  smooth ing  spline. Si lverman (1984, 1985) has shown tha t  

one-dimensional  smooth ing  splines can be app rox ima ted  by kernel smoothers  as 
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the number of observations near the point being predicted increases. Cox (1983) 
and Cogburn and Davis (1974) have also obtained connections between spline 
and kernel smoothing in one dimension under more restrictive conditions. Cox 
(1984) gives approximations to smoothing splines in two dimensions in terms of 
the solution of a partial differential equation, but he does not give an explicit 
solution to this equation; moreover, his results do not apply to the thin plate 
spline. Unlike the one-dimensional case, where the matrices involved in comput- 
ing smoothing splines are banded, the corresponding matrix needed to obtain the 
thin plate smoothing spline has no helpful special structure (Silverman (1984)). 
Thus, a kernel approximation, if it is sufficiently accurate, is especially valuable 
in this problem as a computational tool. The approximation is also of value in 
understanding the behavior of the universal kriging predictor and the equivalent 
thin plate smoothing spline. 

This problem is approached by first deriving the best linear unbiased pre- 
dictor of a continuous version of this universal kriging problem. The best linear 
unbiased predictor has a kernel representation, where the kernel is a Kelvin func- 
tion (Abramowitz and Stegun (1965), p. 379) which is well-tabled and can be 
easily approximated by series expansions for both small and large values of its 
argument. This solution to the continuous prediction problem suggests a kernel 
approximation to the discrete case where the process is observed with noise at a 
finite set of locations. In Section 2, the order 2 thin plate smoothing spline and 
its equivalent universal kriging problem are defined. In Section 3, the kernel rep- 
resentation is derived for the continuous problem. Based on this exact solution to 
the continuous problem, Section 4 gives an approximate kernel solution in terms 
of a Kelvin function when the process is observed at a large number of locations 
that are roughly uniformly distributed in a neighborhood of the point at which 
the process is being predicted. The asymptotic mean square error of this kernel 
predictor under a class of stochastic models is derived. The Kelvin function kernel 
predictor is shown to be the asymptotically optimal kernel predictor among kernel 
predictors whose kernels and their first partial derivatives decay exponentially. In 
Section 5, the Kelvin function kernel predictor is compared to the optimal predic- 
tor under various circumstances. When the observations are on a square grid, the 
kernel predictor yields weights that are quite close to the thin plate spline weights 
for moderate sample sizes and a fairly broad range for the smoothing parameter. 
When the observations are a random sample from a uniform distribution, the op- 
timal weights and the kernel weights are not so close to each other, but the kernel 
predictor still performs reasonably well in terms of mean square error under a 
certain class of stochastic models. 

2. The thin plate spline and its universal kriging equivalent 

Suppose we observe 

(2.1) y (x l )  -- z ( x l )  + el 

for I = 1 , . . . ,  n, where x l , . .  •, xn are points in •2, z(-) is some unknown function, 
and the ez's are uncorrelated errors with zero means and equal variances. The order 
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2 thin plate smoothing spline estimator of z(.) is the function ~(-) that minimizes 

n 

n- '  E{y ( x l  ) -- ;~(x/)} 2 + ~ L  {Zll(X)2 ~- 2~12(X) 2 + ~.22(x)2}dx, 
/ = 1  

where the subscripts on 2(.) indicate partial derivatives with respect to the cor- 
responding arguments (Duchon (1976), Meinguet (1979) and Wahba and Wen- 
delberger (1980)). The smoothing parameter A determines the trade-off between 
smoothness of the estimated function and its fidelity to the observations; larger 
values of A yield smoother estimates that are farther from the observed values. 
The optimal estimate of z(x) turns out to be linear in the observations; that is, it 
can be written as ~ wly(xl). 

The solution to this minimization problem at a point x is identical to the 
universal kriging predictor of z(x) under a certain intrinsic random function model 
for z(.). We will only discuss here the specific intrinsic random function that yields 
the order 2 thin plate smoothing spline as the optimal predictor; more complete 
expositions of intrinsic random function theory are given by Matheron (1973) and 
Delfiner (1976). For the model in which we are interested, the mean of z(x) is 
taken to be linear in x -- (s, t); that is, 

Ez(x) = ~ 0 + ~ l S + ~ 2 t .  

Other intrinsic random functions can be obtained by allowing Ez(x) to be a poly- 
nomial in x of order other than one. In intrinsic random function theory, only 
the variances of contrasts of z(.) are defined. A contrast is any linear combination 
of z(x)'s that has mean zero for all values of/3o, /31, /32. That is, ~ clz(xl) is a 
contrast if for xl = (sl, tl) 

The key property of an intrinsic random function is that the variance of any 
contrast can be expressed in terms of a generalized covariance function G(x, x ~) 
that depends on x and x ~ only through x - x'. In the case of interest here, we will 
take z(.) to have the generalized covariance function 

G(x,  x ' )  = G(x  - x ' )  = 01Ix - x' l  log Ix - x ' l ,  

where I" I indicates Euclidean distance and 01 is a positive parameter. Then the 
variance of a contrast ~ ctz(xl) is given by 

(2.3) ClCmG(xz, Xm) = 01 ~ czcmlxz - Xml21og]xl- Xm[. 
l r n  h n 

The generalized covariance function has the property of being conditionally posi- 
tive definite; that is, (2.3) is nonnegative whenever (2.2) is satisfied. 

The error of any linear unbiased predictor turns out to be a contrast, so that it 
is sufficient to specify only the generalized covariance function in order to evaluate 
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the variance of the prediction error. Consider predicting z(x) for x = (s, t) based 
on y(x~) for xz = (st, tl), l = 1 , . . . ,  n. A linear unbiased predictor satisfies 
E{~-~,wzy(xl)} = Ez(x) for all values of ~30, j31 and/32, or 

The prediction error, ~ wzy(xl) - z(x), is thus a contrast, and 

JY O1 E WlWm]Xl -- xml2 log Ixt - Xml 
lm 

- 2 0 1 Z  w, l x , -  xl log Ix , -  xl, 
l 

where 00 = var(et). The universal kriging (best linear unbiased) predictor of z(x) 
chooses the w~'s to minimize (2.5) subject to (2.4). The correspondence between 
this minimization problem and the thin plate spline has been noted by Dubrule 
(1983) and Matheron (1980). Kimeldorf and Wahba (1970, 1971) developed a 
general theory for correspondences between splines and best linear unbiased pre- 
dictors, but did not explicitly give the relationship between the order 2 thin plate 
smoothing spline and its universal kriging equivalent. Another way to characterize 
the best linear unbiased predictor ~ wty(xt) is by the projection property (Journel 
(1977)) 

cov(zcx  
for all u l , . . . ,  Un satisfying ~ u l  = ~ u l s t  = ~uztt = 0. By comparing (2.8) 
in Wahba and Wendelberger (1980) to the universal kriging equations (Delfiner 
(1976)), we see that  by setting ~ = Oo/(8~rOln), the optimal estimate of z(x) is 
the same in each case. 

3. The continuous universal kriging problem 

We first consider a continuous version of the universal kriging problem. For 
all f C K, where K is the class of infinitely differentiable functions with bounded 
support,  we "observe" 

j f(x)(z(x) + W(xl)dx, 

where W(.) is white noise which is uncorrelated with z(.), and z(-) has generalized 
covariance function 011xl 2 log Ixl. The integral should be interpreted as a linear 
random functional on the L 2 closure of the space of functions K; a rigorous treat- 
ment of this subject is given by Gel'fand and Vilenkin (1964). Formally, we can 
compute the covariance of integrals of W(.) by 

cov ( /  f(x)W(x)dx, / g(x)W(x)dx) = Oo / f(x)g(x)dx. 
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The best linear unbiased predictor of z(0, 0) is defined by the function f satisfying 
the unbiasedness conditions 

(3.1) / f ( s ,  t)dsdt = l, . f  sf(s, t)dsdt = / tf(s, t)dsdt = O, 

as well as the projection property 

cov ( z ( 0 ) - / f ( x ) ( z ( x )  + W(x))dx, /g(x)(z(x) + W(x))dx) =O 

for all g E K satisfying 

/ g(s, t)dsdt = / sg(s, t)dsdt = / tg(s, t)dsdt = O. 

We can write this covariance as 

/ g(x) [Ol[x,21og,x] - 0 1 /  f(x') ,x- x'[21og[x- x',dx' -Oof(x)l dx. 

Thus, we want f to satisfy 

(3.2) 01 [X[ 2 log IX[ -- 01 f f ( x t ) [ x  -- xt] 2 log ]x - x'[dx' Oof(x) Co + ClS + c2t 

for some constants co, Cl, c2 and all x = (s, t). The solution to (3.1) and (3.2) is 

1 1/4 
(3.3) f ( x ) -  27r~l/~kei(7/- Ix[), 

where 7/-- 00/(87r01) and kei(.) is a Kelvin function (Section 9.9, Abramowitz and 
Stegun (1965)). This f defines the unique best linear unbiased predictor, which 
follows from the projection property of best linear unbiased predictors and the 
uniqueness of projections in a Hilbert space (Akhiezer and Glazman (1961), p. 
10). This result can be verified using 

/ke i ( r / -1 /4  Ix'I)Ix - log [x - Idx' XI[ 2 X ! 

= ~ kei(~?-l/4r'){r2 + r '2 - 2rr' cos(¢ - ¢')} 

× l o g { r  2 + r '2 - 2 r r '  c o s ( ¢  - 

/? = 27r r'kei(rl-1/dr'){(r2 + r '2) log(max(r, r')) + min(r 2, r'2)}dr ' 

= 27rr~(-4kei(rl-1/4r) - ~-1/2r2 log r), 

where the second equality uses 338.13 from GrSbner and Hofreiter (1950) and the 
last equality is by lengthy but straightforward calculations using the properties of 
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Kelvin functions given in Section 9.9 of Abramowitz and Stegun (1965). In fact, 
we have that the left-hand side of (3.2) is identically zero. It can further be shown 
that 

( 1 /  ) 
"car z(0, 0) + 2T.771/2 kei(,-1/4lxl)(z(x ) + W(x))dx 

01 O0 /kei( _l/4lxl)2dx + /kei( _l/41xl)lxl210glxld x 
- 4 ~ 2 ~  

01 / kei(~l_l/41xl)kei(~l_~/41x,t)lx _ x,12 log tx - x'ldxdx' 

__-- (TrO001/S) 1/2. 

It should be noted that kei(• -1/4 Ixl) is a solution to the partial differential equation 

(vA 2 + 1)f = 0 

on •2, where A is the Laplacian, which can be compared to the partial differential 
equation in Proposition 2.2(ii) of Cox (1984). 

An extensive table of kei(.) is given by Nosova (1961). From 9.9.12 in Abramo- 
witz and Stegun (1965), 

kei(r) = - ~  (--)J ( ~ r 2 ) 2 j + l  
j----0 [(2J + 1)']2 {log ( ~ r )  - ¢(2j  + 2)} 

4 [(2j)!] 2 ' 

where ¢(.) is the digamma function (Abramowitz and Stegun (1965), p. 258). For 
large r, 

7r 1/2 7c 
kei(r) - 2r e-2-1/~r{sin(2-1/2r+8) +f (r )}  

where f(r) --~ 0 as r -~ oc (Abramowitz and Stegun (1965), 9.10.4). 

4. A kernel approximation to the optimal predictor 

We now consider using this kernel to predict z(0, 0) based on the observations 
y(xl), . . . ,  y(xn) under the model defined in Section 2. Specifically, consider a 
predictor of the form 

(4.1) 

where 

2 'n 

Cn h(cnxj)y(x ), 
nH~ j=l 

n 

Hn -- , -14 Z h(cnxs), 
j=l  
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h(x) = h ( - x )  and h(x) is integrable over R z with nonzero integral. Wi thout  loss 
of generality, we will take 

(4.2) fR ~ h(x)dx  = 1. 

We cannot evaluate the mean square error of this prediction using the generalized 
covariance function given in Section 2, since the prediction error will not, in gen- 
eral, be a contrast.  Instead, we will assume tha t  z(.) is a s ta t ionary spatial process 
with covariance function of the form 

(4.3) K ( x )  : Ol{b 0 - bl[X[ 2 ~- ]x] 2 log  Ixl + r ( x ) } ,  

where for some e > 0, as Ix[ ~ 0, 

r(x) = O(Ix12+ ). 

A necessary condition for K(-) to be a covariance function is tha t  b 0 and bl are 
positive. However, the local behavior of z(-) is controlled by the 01]x[ 2 log Ix] term 
in (4.3). Thus, a process governed by (4.3) will, over short distances, behave 
very much like an intrinsic random function with generalized covariance function 
011xl 2 log Ix[. 

PROPOSITION 4.1. Suppose K ( x )  satisfies (4.3), c n ~ (X? and cnn -1/2 --+ 0 
as n --~ oo, and that there exists a sequence M1, M 2 , . . . ,  such that 

(4.4) l imlog M n / l o g n  > O, 

and 

2 ~ M . )  (4.5) sup - -  I{(-M,,,-M,~)<_~¢<,~} -- po(U + Mn)(V + : o((logn) -3/2) 
wEQ,~ ~, 

where Qn = [ -Mn ,  Mn] 2, w = (u, v), p0 > 0 and wj = c~xj,  the dependence o fw j  
on n being suppressed. Furthermore, assume h(x) = h ( - x ) ,  h(.) satisfies (4.2) and 
both h(x) and its first partial derivatives are bounded and decrease exponentially 
as Ix[ --* oc. Then 

(4.6) var z(O, O) - c___~ nHn h(cnXj)y(xj) 
j• l  

, /  {,.0/ Oo c7~po h(x)2dx + 01 - -  h(x)[x[ 2 log [x[dx 
n c~ 

f - x'[ 2 log Ix - x '[dxdx '~ + c ~ J  h(x)h(x ' )[x  ) 
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PROOF. By straightforward algebra, 
2 

(4.7) var z(O, 0 ) -  c__~ h(cnxj)y(xj) 
nHn . 

4 j:-i 2 =0 c4 ~ h ( c n x j ) 2 + O l b l ~  ~ h ( c n x j ) x j  
0 n2 Hi j = l  

2c~ ~h(c~x~){[x~12 log tx~l + r(xj)} + 01 nHn j=l 

c ~  h(cnxj)h(%xk){Ixj - xkl 2 log Ixj - xkl 
+ n2H2n j,k=l 

+ ~% - xk)}] 

~ h(wj)wj 2 - 2 °~ (b l  loges) 00c~ h(~j)~ 
~H~ + + n2H----~ 

j = l  j = l  

+01{ nH~2 ~ 

} C n 
+ ~:H--~ h ( w j ) h ( ~ k ) l w j  - ~ 1  ~ log I~j - ~1 

j,k=] 

-'~ O1 { TgI-~n2C2 j=~ 

+ n2H~ h(wj)h(wk)r(cnt(wj -- wk)) . 
j , k = l  

(4.3) can be used to show that all terms in (4.7) containing r(.) are asymptotically 
negligible, so that 

(4.8) var z(O, O) - c_~_~ h(c,~xj)y(xj) 
nH~ J =1 

" n2----~n j: l  h(wj)2 - nH~-- j : l  h(wy)lW3121°g lwJl 
r~ 

OlC2n E h(wJ)h(~lJk)ltlJJ - ~lJkl2 log IWj -- Wkl" 
+ n2--~ j,k=l 

The conditions in Proposition 4.1 allow the sums in (4.8) to be approximated by 
integrals (see appendix) and the proposition follows. 

An interesting feature of (4.6) is the fact that b0, bl, and r(.) do not ap- 
pear on the right-hand side. This result is not unexpected, since the 011xl 2 log Ix I 
component of the covariance function in (4.3) controls the local behavior of z(.). 
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This proposition can be used to obtain a somewhat restrictive optimality prop- 
erty of a Kelvin function kernel predictor. Using the results from Section 3, the 
function h(.) that minimizes the right-hand side of (4.6) subject to (4.2) is given by 
(3.3), where ~ = OoC4/(87rOlnpo), in which case, the right-hand side of (4.6) equals 
{TrOoO1/(Snpo)} 1/2. By setting c n = (npo) 1/4, we get 77 = 00/(87r01) independent 
of n. Since -kei(Ixl)/(2~r ) satisfies the conditions of the proposition, the kernel 
predictor of z(0, 0) given by 

(4.9) _ ( p o ~  1/2 1 fikei Ixjl y(zj) 
\ n r l /  2rcH~ j=l 

will, subject to (4.4), (4.5) and K(.) satisfying (4.3), have asymptotic mean square 
error  {Tr~o~l/(Snpo)} 1/2. Furthermore, for any h(.) satisfying the conditions of the 
proposition and any sequence of cn's, 

limnU2var (z(0, 0 ) -  - -  c,~ h(cnxj)y(xj) 
nH~ j=l 

> (Tr000 lx 1/2. 

- \  sv0 ] 

This result follows from the proposition when C n - - +  OO and Cn n - l / 2  --+ O. Since 
the kernel predictor is not mean square consistent along any subsequence of cn's 
violating either of these conditions, this bound holds for all Ca'S. Thus, the kernel 
predictor in (4.9) is asymptotically optimal among this class of kernel predictors. 
A stronger result would be to find conditions under which this kernel predictor 
is asymptotically optimal among all linear predictors of z(0, 0). Considering the 
examples on the triangular and spherical covariance functions of Stein and Hand- 
cock (1989), it appears that additional conditions on the smoothness of r(x) away 
from the origin would be needed to obtain such a result. If we could obtain such a 
result for one particular K(-) and xl, x2, . . ,  all contained in some bounded region 
R, then using an argument similar to the proof of (14) by Stein (1988a), the ker- 
nel predictor would also be asymptotically optimal for the same sequence of xi's 
and any covariance function compatible with K(-) on R (see Stein (1988b) for the 
definition of compatibility of covariance functions). 

The conditions in the proposition are sufficient to show Hn --+ Po as n -+ oc, 
which accounts for the form of the kernel predictor given in (4.1). For j = 1 , . . . ,  n, 
we will thus call 

(4.10) _ 1 k e i ( l ~ _ ) l / 4 [ x j [  ) 
27r(ponrl)1/2 

the unadjusted weights, and the weights given in (4.9) the adjusted weights. Both 
will be used in the next section. 

Finally, note that the condition (4.5) is not very strong; it roughly says that 
x l , . . . ,  Xn need to be approximately uniform in a neighborhood of radius Mn/cn 
of the origin. For example, suppose c~ = (npo) 1/4, Mn -- n ~, 0 < 5 < 1/12, 
and xl, x2, . . ,  are independent identically distributed with density p(x), where 
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p(0, 0) = P0 > 0 and p(.) has bounded first partial derivatives in a neighborhood 
of the origin. Then for w E Qn, 

E 

= c~ f(-M,/cn,-Mn/c,O<_x<w/c,~ p(x)dx 

= po(  + M )(v + + 

and 

var 2 ~-'~I{(-M,~,-Mn)<_~,a<_~}) C_Rn 

n 
j = l  

~" n-'/2p~/2(u + Mn)(v + Mn) 

= 0(n2 -1/2), 

SO 

2£ 
Cn 
n I{(-Mn)<wj<w} -- po(u + Mn)(v + Mn) = O(n 36-1/4) + Op(n6-1/4). 

j=l  

Since we only need the supremum over all w E Qn to be o((logn)-3/2), we see 
that (4.5) does not require the xi's to be very close to uniform in a neighborhood 
of the origin. 

5. Numerical results 

In this section, the kernel predictor given in (4.9) is compared to the best 
linear unbiased predictor in some particular cases. Specifically, for various values 
of 01/00, we consider predicting z(0, 0) based on all observations of the form 
y(0.2i, 0.2j) within the unit circle. We also consider predicting z(0, 0) based on 
independent uniformly distributed observations in the unit circle. 

From the derivation in the previous section, it is apparent that  the accuracy 
of the approximation depends on how well the various sums in (4.7) can be ap- 
proximated by integrals. The accuracy of these integral approximations in turn 
depends on the density and regularity of the points in a neighborhood of the origin. 
One particular case of the effect of "irregularly" spaced points is the edge effect 
caused by having no observations beyond a certain boundary, which implies that 
finite sums are being approximated by integrals over infinite ranges. The exact 
and approximate weights for predicting z(0, 0) based on all y(0.2i, 0.2j) in the 
unit circle, where i and j axe integers and 01/00 = 5, 1, and 0.2 are given in Table 
1. Recall that the corresponding values for the smoothing parameter in the spline 
formulation of the problem are given by A = 00/(87r01n) = 4.91 x 10-400/01. The 
exact weights are based on the universal kriging model described in Section 2. The 
approximate weights are based on the unadjusted kernel weights given in (4.10) 
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with  n = 81 and  Po : 1/(81 x 0.22); kei(.) is evaluated using 9.11.4 and 9.11.9 of 

Abramowi tz  and  Stegun (1965). The  app rox ima te  weights are quite close to the 

op t ima l  weights t h roughou t  this wide range of 01/0o for those observat ions near  
the  origin. However,  as 01/0o decreases, the app rox ima te  weights for the obser- 
vat ions far ther  f rom the origin are increasingly in error. This  inaccuracy in the 
approx imat ion  for points  near  the  edge is mainly  due to edge effects, which can be  

seen by predict ing z(0, 0) based on all observat ions y(0.2i, 0.2j) within 2.0 units  
of the origin and  ~1/~0 = 1. In this case, the  app rox ima te  weights given in Table  
1 are of course unchanged,  and the  exact  weights are (for the  points  in their  given 
order  in Table 1) 0.1245, 0.0785, 0.0567, 0.0321, 0.0245, 0.0108, 0.0081, 0.0059, 

0.0017, -0 .0004,  -0 .0008,  -0 .0011,  -0 .0015,  -0 .0018,  and  -0 .0018,  which are in 
excellent agreement  with the  app rox ima te  weights in Table 1. Of  course, as noted  
by  Si lverman (1985), there  are m a n y  more  points  near  an edge of the observat ion 

region in two dimensions than  one. Thus,  there is a clear need for some sort  of  edge 
correct ion analogous to the  one given by Si lverman (1984) for the  one-dimensional  

cubic spline. 

Table 1. Exact weights given to y(x) for the thin plate spline estimate of z(O, 0) with various 
values of 00 -- 01, together with the approximate weights given by the kernel approximation. 1) 

01/00 

x 5 1 0.2 

Exact Approximate Exact Approximate Exact Approximate 

(0, 0) .2705 .2802 .1252 .1253 .0584 .0560 
(0, 0.2) .1158 .1185 .0793 .0789 .0460 .0437 

(0.2, 0.2) .0627 .0634 .0575 .0569 .0387 .0367 
(0, 0.4) .0184 .0184 .0329 .0322 .0288 .0272 

(0.2, 0.4) .0089 .0088 .0253 .0246 .0251 .0237 
(0.4, 0.4) -.0023 -.0023 .0114 .0109 .0167 .0162 

(0.0, 0.6) -.0034 -.0034 .0083 .0081 .0145 .0143 
(0.2, 0.6) -.0039 -.0039 .0060 .0059 .0126 .0127 

(0.4, 0 .6)  -.0037 -.0036 .0014 .0017 .0078 .0088 
(0, 0.8) -.0027 -.0026 -.0019 -.0004 .0040 .0062 

(0.2, 0.8) -.0023 -.0023 -.0026 -.0008 .0029 .0054 
(0.6, 0 .6)  -.0020 -.0019 -.0026 -.0011 .0020 .0048 
(0.4, 0 .8)  -.0012 -.0014 -.0041 -.0015 .0000 .0037 
(0.6, 0.8) .0001 -.0005 -.0058 -.0018 -.0039 .0018 

(0, t) .0001 -.0005 -.0066 -.0018 -.0040 .0018 

1)Approximate weights given by (4.8). Observation sites consist of all points of the form 
(0.2/, 0.2j) within distance 1.0 of the origin. Weights are given only for 0<i<?. Other weights 
can be obtained by symmetry considerations. 
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Another  way of judging the quality of the kernel approximat ion is by compar- 
ing the variances of the prediction errors using the exact and kernel weights based 
on the stochastic model for z(x) described in Section 2. Since the observations are 
symmetr ic  about  the origin, the adjusted kernel predictor  given by (4.9) is linear 
unbiased using the model from Section 2. Table 2 gives the sum of the unadjusted 
weights, the variance of the errors of the best linear unbiased predictor  (the thin 
plate spline) and its approximat ion based on the adjusted kernel weights for the 
same cases as in Table 1. We see tha t  for a very wide range of 01/00, the adjusted 
kernel predictor  performs well. Of course, as 01/00 ~ 0, the best  predictor  is 
just  the average of all the observations, and as 01/00 --* oc, the best  predictor  is 
y(0, 0), so it is not  surprising tha t  the adjusted kernel performs well for very large 
and small values of 01/00. These results s trongly suggest tha t  the adjusted kernel 
predictor  is asymptot ical ly  opt imal  under  appropr ia te  conditions on the observa- 
tions. The approximat ion to the variance of the error of the best linear unbiased 
predictor  given by {TrOoO1/(8npo)} 1/2 is also given in Table 2. Equat ion  (4.8) says 
that  this expression is asymptot ical ly  the same as the variance of the adjusted 
kernel predictor  as n ~ ec for fixed 00 and 01, which in turn,  is conjectured to be 
asymptot ical ly  the same as the variance of the optimal  predictor.  The  approxi- 
mat ion works quite well for moderate  values of 01/00 and is not so far off even for 
very large or small values of 01/00. 

Table 2. Variances of the prediction error for the thin plate spline and its adjusted kernel 
approximation.I) 

Adjustment Variance of prediction error Approximate 

01/00 to kernel 2) variance 3) 
Spline Adjusted kernel 

25 1.0957 0.02129 0.02145 0.02507 
5 1.0153 0.05411 0.05416 0.05605 
1 1.0853 0.1252 0.1312 0.1253 
0.2 1.1077 0.2922 0.3048 0.2802 
0.04 0 . 8 8 6 6  0.6674 0.6680 0.6267 

1)Based on same observations as in Table 1 with 01 =1. 
2)Sum of the unadjusted kernel weights, used to rescale them so that they satisfy the 

unbiasedness condition (2.4). 
3)Given by {TrOoO1/(Snpo) } 1/2. 

As a final example, take 81 points (the same as in the previous example) 
chosen independent ly  and uniformly on the unit  disk, and again consider predicting 
z(0, 0). In this case, the adjusted kernel predictor  will not  be linear unbiased 
under  the model described in Section 2, so we will assume tha t  z(.) is a s ta t ionary  
process with unknown constant  mean and covariance function 201xKl(x), where 
KI( . )  is a modified Bessel function (Abramowitz and Stegun, (1965), p. 374). 
This covariance function is of the form given in (4.3) with b0 = 2, bl -- ( 2 " / -  1)/4 
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where ~/is Euler 's  constant ,  and r(x) = O(Ixl41og Ixl )  a s  x -~ o. The  opt imal  
predictors are based on this model,  and the adjusted kernel predictor  uses (4.9) 
with n = 81 and P0 = 1/Tr. Fif teen sets of observations were generated,  and in 
each case, the opt imal  and adjusted kernel weights were computed.  Using these, 
the relative efficiency of the adjusted kernel predictor  (the mean square error of 
the adjusted kernel predictor  divided by the mean square error of the opt imal  
predictor)  and the sum of the absolute differences of the two sets of weights were 
calculated. The  results are summarized in Table 3. The  smaller the value of 
01/00, the closer the adjusted kernel predictor  comes to the optimal  predictor  by 
ei ther measure. Since smaller values of 01/00 correspond to more smoothing,  we 
would expect  the unevenness in the observations to ma t t e r  less. We also see tha t  
the stochastic measure of closeness of the two predictors,  the relative efficiency, 
suggests a smaller discrepancy between the predictors  t han  the sum of the absolute 
differences in the weights. T h a t  is, it is possible to get a very good predictor  in 
terms of mean square error  under  the stochastic model without  the weights of 
the predictor  being all tha t  close to the weights of the opt imal  predictor.  The  
opt imal  weights change very little when they  are generated using the nons ta t ionary  
stochastic model  corresponding to the thin plate spline. Thus, while we cannot  
evaluate the mean square error  of the adjusted kernel predictor  under  this model,  
we do have tha t  the last two columns of Table 3 remain practically unchanged 
when the opt imal  weights are calculated using the nons ta t ionary  model. 

Table 3. A comparison of optimal to adjusted kernel prediction with 81 independent uniformly 
distributed observations on the unit disk.U 

Sum of absolute 

01/00 Efficiency 2) differences in weights 

Median Minimum Median Maximum 
5 0.8138 0.3905 0.3872 1.5255 
1 0.9381 0.8771 0.2628 0.4288 
0.2 0.9910 0.9420 0.1119 0.2271 

1)Optimal predictor based on model with constant unknown mean and covariance function 
of continuous part of process given by 201lxlKl([Xl). Adjusted kernel predictor given by (4.9). 
Results based on 15 simulations. 

2)Mean square error of optimal predictor divided by mean square error of adjusted kernel 
predictor. 
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Appendix 

Using an argument similar to the one given below, it can be shown that (4.4) 
and (4.5) together with the conditions on h(.) given in the proposition imply that 
the right-hand side of (4.8) is asymptotically equivalent to the right-hand side of 
(4.6) and that Hn ~ Po. Thus, (4.6) follows if we can show 

(A.1) -~2 logn ~ h(wj)wj 2 = °(c;2) - 

First, (4.4) and the requirement that h(.) decay exponentially imply that only those 
wj E Q~ need be considered. Partition Q~ into dn squares with sides of length 
M,~d~ U2. (4.5) allows us to choose d~ such that Mnd~ U2 = o((logn) -1/2) and 
the left-hand side of (4.5) is o(M2ndnl(logn)-l/2). Let wj = (us, vj), $1,..., Sd,~ 
be the dn squares partitioning Q~ and Wi = (Ui, V~) be the center of Si. Then, 

(A.2) Z h(wj)uj 
wjEQn 

2 d~ 

n 
k=l wj CSk 

2 d,., ~r~ 

+ c__~ k:lEIh(Wk)Uk] ~ 1 -  -~Po--~n 1v1~ 

dn h(Wk)UkpoM~d; 1 fs h(w)udw + E -Po 
k = l  k 

+ Po /Q~ h(w)udw . 

Using the assumption that the first partial derivatives of h(.) are bounded and 
decay exponentially, there exist positive constants C and a, independent of n, 
such that 

2 d,~ 

c_ EE n 
k---=l w~ ESk 

[h(w~)u¢ - h(~,k)Ukl < CM~ Y~dr e -~t~kl 
- -  dn 

k = l  

= o((log n)-l/2). 

The third term on the right-hand side of (A.2) is handled similarly. The fourth 
term is easily shown to be negligible using (4.4), the exponential decay of h(.) and 
f h(w)udw = 0. Finally, 

2 dn  n M~ 
c_~ Z Ih(~k)Vkl ~ 1 - :~vo--= 
n k----1 w"~-Sk C n an 

2 d,, 
Cn E Ih(wk)Ukl°(M2d~(l°gn)-~/2) 

k = l  

= C2no((logn)-l/2). 
n 
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Combining these results, (A.2)is o((logn) -1/2) and (A.1)follows. 
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