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ABSTRACT A novel classifier for face recognition using an improved probabilistic collaborative repre-

sentation named IPCR is proposed in this paper. The purpose of this paper is to improve the accuracy

of face recognition. The testing sample is assumed to be linearly combined by a part of training samples

in feature space. There is two-phase framework in IPCR. In the first phase, an adjusted parameter of the

nearest neighbors of the samples is chosen for classification. In the second phase, a linear combination of

the features and the sparse coefficients are used for new patterns. In the process of two-phase framework,

the weight matrix is obtained according to the distance between all the training samples and each testing

sample, and then it is applied to weight probabilistic collaborative representation coefficients. The kernel

trick is implemented for the high-dimensional nonlinear information instead of linear information of data to

improve the class separability. The second classifier named KPCR uses a kernel probabilistic collaborative

representation for face recognition. Several renowned face databases, e.g., AR, GT, PIE, FERET, and

LFW-crop are used for evaluating the performances of the proposed classifiers. The experimental results

demonstrate that the proposed classifiers outperform the collaborative representation-based classifica-

tion (CRC), the probabilistic collaborative representation-based classifier (ProCRC), and the other state-

of-the-art classifiers in recognition accuracy.

INDEX TERMS Computer vision, face recognition, sparse representation, probabilistic collaborative

representation.

I. INTRODUCTION

Object recognition is a fundamental problem of computer

vision and machine learning. Sparse coding is derived

from the theory of image compressive sensing, which

has been widely applied in many fields [1]–[4]. Sparse

representation-based classification (SRC) [5], [6] was pro-

posed by Wright for the first time, which has shown promis-

ing performance on face recognition in the past few years.

The sparsity constraint on representation coefficients is a key

point in robust classification. However, Zhang et al. found

that the sparsity can be further improved when applying all

training samples collaboratively to represent a testing sam-

ple. Moreover, they used l2 norm regularization instead of

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy .

l1 regularization to solve the coefficients, and proposed a

collaborative representation based classification (CRC) algo-

rithm [7], [8]. Due to the simplicity and effectiveness of CRC,

it has attracted extensive attention and has been successfully

applied in many pattern recognitions. Cai et al. analyzed the

classification mechanism of CRC from a probabilistic view-

point and proposed Probabilistic collaborative representation

based classification (ProCRC) [9]. Xu et al. proposed a two-

phase testing sample sparse representation (TPTSR) [10], dif-

fering from the original SRC but internally borrowed the idea

from sparse representation and made coarse to fine classifica-

tion decisions for the testing sample. Akhtar et al. augmented

a dense collaborative representation with an efficiently

computed sparse representation and proposed a sparsity

augmented collaborative representation based classification

(SA-CRC) [30]. Motivated by observation in biological
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founds, Peng et al. proposed locality constrained collabora-

tive representation (LCCR) [31] which can accurately and

robustly identify various occlusion and corruption issues.

Additionally, truncated collaborative representation based

classification (TCRC) [32], squared and fused versions of

SRC and CRC [33], kernel sparse representation to perform

coarse-to-fine recognition (KCF) [34] proposed by Zeng et al.

also show great competitiveness for classification. At present,

these methods are highly represented in the fields of face

recognition and sparse representation.

In this paper, an improved probabilistic collaborative rep-

resentation (IPCR) for face recognition is proposed.We adopt

two-phase framework and extend the idea of spatial weight to

reconstruct the testing sample. The regularization of ProCRC

is weighted by the spatial distance between each training

sample and the testing sample, which makes the contribution

of each training sample to represent the testing sample more

precisely [11]–[13].

The first phase of IPCR linearly combines the overall train-

ing samples with sparse coefficients to reconstruct the testing

sample and exploits the representation ability of each training

sample in order to select the M nearest neighbors. The M

nearest neighbors of the testing sample form a determined

subspace from all training samples. The labels of M nearest

neighbors are used as candidates for the testing sample label,

so the classification problem becomes to determine the class

of the testing sample from relatively smaller candidates. This

is very effective for accurate classification in the second

phase.

The second phase of IPCR uses M nearest neighbors to

represent the testing sample to obtain the sparse coefficients.

Then, linearly combine the training samples of each class

with its sparse coefficients to reconstruct the testing sample

separately. The errors between the reconstructed results of

different classes and the test sample are calculated. Ulti-

mately classify the testing sample into the minimum error

class.

The second classifier for face recognition named KPCR

is proposed. We adopt the kernel trick based on IPCR for

the high-dimensional nonlinear information instead of lin-

ear information of data to improve the class separability.

Then, the same weighting and two-phase methods as IPCR

are used to classify the testing sample. Finally, the testing

sample is definitely divided into the class with the minimum

error.

Two new classifiers IPCR and KPCR are contributed.

Additionally, a large number of face experiments are con-

ducted, and the testing results show that our methods are

very competitive in terms of the recognition accuracy in

comparison to some existing classifiers in the literature.

The remainder of this paper is organized as follows:

Section 2 describes the IPCR method. Section 3 intro-

duces our KPCR. Section 4 analyses our proposed methods.

In Section 5, several experiments are carried on the public

face databases to evaluate the performance of the proposed

classifiers. Finally, the conclusion is discussed in Section 6.

FIGURE 1. Motivation: ProCRC denoted that y1 has a smaller sum of
e2-norm-coefficients, and is more likely to be a face image than y2.
We also find that y1 has a smaller sum of distances than y2. It means that
sums of e2-norm-coefficients and distances are both useful for
classification.

II. IMPROVED PROBABILISTIC COLLABORATIVE

REPRESENTATION (IPCR)

In this section, we will present the details of our proposed

IPCR. Supposed that there is a date set with n training samples

Y = {yi}
n
i=1 in Rd (d is the dimension of the sample) and

C classes. If a training sample yi is from jth class (j =

1, 2, . . . ,C), we take j as the class label of the yi.

A. MOTIVATION

To explain the motivation of our method, we give an exam-

ple in Fig. 1. ProCRC [9] also gives a similar example,

but ProCRC only denoted that the smaller sum of e2-norm-

coefficients is helpful for classification. In this paper, we also

find that the smaller sum of distances is useful, which means

that sums of e2-norm-coefficients and distances are both

helpful for classification.Motivated by this, we propose a new

model

P (l (x) ∈ lY ) ∝ exp(−λ||Wα||22), (1)

where λ is a constant, l (x) denotes the label of x,

P (l (x) ∈ lY ) is higher when the sum of e2-norm-coefficients

is smaller, and W is a matrix of distances.

W =















‖x − y1‖2 0

. . .

0 ‖x − yn‖2















(2)

For kth class, we get its probability as

P (l (x) = k)

= P (l (x) ∈ lY ) · P (l (x) = k|l (x) ∈ lY )

∝ exp
(

−
(

||x − Yα||22 + λ||Wα||22 + γ ||Yα − Ykαk ||
2
2

))

,

(3)

where γ is a constant. Next, wemaximize the joint probability

P (l (x) = k) k = 1, 2, · · · ,C as

max
∏

k
P (l (y)=k)∝max exp

(

−
(

||x−Yα||22+λ||Wα||22

+
γ

C

∑C

c=1
||Yα − Ycαc||

2
2

))

(4)
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B. THE FIRST PHASE OF IPCR

The first phase uses the linear combination [14]–[18] of all

training samples to represent the testing sample and deter-

mines theM nearest neighbors that are the most similar to the

testing sample. The testing sample x can be approximately

calculated as Yα, where the size of Y is d × n, and α is

the sparse coefficient which has the size n × 1. We use a

spatial distance between each training sample and the testing

sample x to weight regularization of ProCRC [9], and the

sparse coefficient α for linear combination can be solved by

regularization of l2− norm.

α̂ = arg min
α

(

‖x − Yα‖22 + λ ‖Wα‖22
+

γ
C

∑C
c=1 ||Yα − Ycαc||

2
2

)

, (5)

where α̂ = [α1, . . . , αn]
T , W is a weighted diagonal

matrix, λ, γ are constants, C is the total number of classes,

Ycαc is a matrix composed of the training samples from the

cth class.

Then, the sparse coefficient α̂ can be recovered in a closed-

form solution by applying the ordinary least squares tech-

nique.

α̂ = (Y TY + λW TW +
γ

C

∑C

c=1
Ȳ

′T
c Ȳ ′

c)
−1

Y T x, (6)

where Y ′
c be a matrix which has the same size as Y , while

only the samples of the cth class will be assigned to Y ′
c at

their corresponding location in Y , Y ′
c = [0 . . . ,Yc, . . . , 0],

Ȳ ′
c = Y − Y ′

c.

ei = ||x − yiαi||
2
2 (7)

When the testing sample x is represented, the represen-

tation ability of the ith training sample is shown as yiαi.

We can exploit Eq. (7) to calculate the parameter ei. It can

be regarded as a measurement of the distance between yi
and x. We consider that the smaller ei, the larger contribu-

tion of the ith training sample in representing the testing

sample x, and vice versa. According to ei, we determine the

M training samples with the greatest contribution, named

M nearest neighbors of the testing sample, denoted as Ỹ ,

Ỹ = {ỹi}
M
i=1. If a nearest neighbor ỹi comes from the jth

(j = 1, 2, . . . ,C) class, we will use the j as the label of

this nearest neighbor ỹi. Obviously, Ỹ is a subspace in Y .

If Ỹ does not contain the nearest neighbor from the rth

class, testing sample x will not be ultimately classified into

rth class.

C. THE SECOND PHASE OF IPCR

The second phase uses the selectedM nearest neighbors of the

testing sample to get sparse coefficients. Then, the training

samples of each class with its sparse coefficients are lin-

early combined to represented the testing sample separately.

Finally, we classify the testing sample x based on the rep-

resented result. The testing sample x can be approximately

calculated as Ỹβ, Ỹ ∈ Rd×m, β ∈ Rm×1. Similar to Eq. (5),

we get the parameter β as follows.

β̂ = arg min
β

(

||x − Ỹβ||
2

2 + λ||W̃β||
2

2

+
γ

L

∑L

l=1
||Ỹβ − Ỹlβl ||

2

2

)

, (8)

where β̂ =
[

β1, . . . , βM
]T
, W̃ is a weighted diagonal matrix

and λ, γ are positive constants. L is the number of all classes

in Ỹ , Ỹlβl is a matrix composed of the training samples from

the lth class.

W̃ =















‖x − ỹ1‖2 0

. . .

0 ‖x − ỹM‖2















. (9)

where ỹ1, ỹ2, . . . , ỹM are the columns of Ỹ matrix. Then,

the sparse vector β̂ can be recovered in a closed-form solu-

tion.

β̂ = (Ỹ T Ỹ + λW̃ T W̃ +
γ

L

∑L

l=1

¯̃
Y

′T
l

¯̃
Y ′
l )

−1

Ỹ T x, (10)

where Ỹ ′
l be a matrix which has the same size as Ỹ matrix,

while only the sample of Ỹl will be assigned to Ỹ ′
l at their

corresponding location in Ỹ , Ỹ ′
l = [0 . . . , Ỹl, . . . , 0],

¯̃
Y ′
l =

Ỹ−Ỹ ′
l .

The M nearest neighbors of the testing sample come from

different sample classes. We calculate the sum of the contri-

bution values of the nearest neighbors in each class separately

to classify x. For instance, all nearest neighbors from the hth

class in Ỹ can be denoted as ỹr , . . . , ỹt , and the sum of their

contribution values, Sh can be shown as follows.

Sh = ỹrβr+ · · · +ỹtβt (11)

We use the following Eq. (12) to calculate the residual

between Sh and x. A small residual Sh means that the hth class

has a great contribution in representing x, and then the testing

sample is divided into the class with the smallest residual.

Rh = ‖x − Sh‖
2
2 (12)

In summary, the main steps of the proposed IPCR are as

follows.

Input: Training data Y = {yi}
n
i=1, the class labels

(1, 2, . . . ,C), testing sample x in Rd , the number of nearest

neighbors M , and the parameters λ, γ .

Step 1: Calculate the weighted diagonal matrix according

to Eq. (2), select M the nearest neighbors for testing sample

x by using the first phase Eq. (6), (7).

Step 2: Obtain W̃ of the M nearest neighbors according

to Eq. (9), and use the second phase Eq. (10) to get the

parameter β̂.

Step 3: Compute the residual of each class in theM nearest

neighbors according to Eq. (12).

Step 4: Classify the testing sample into the class that has

the smallest residual.

Output: The x class label.

37948 VOLUME 8, 2020
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III. KERNEL BASED PROBABILISTIC COLLABORATIVE

REPRESENTATION (KPCR)

Based on the kernel concept, KPCR first maps the original

feature to nonlinear high-dimensional feature and uses the

high-dimension nonlinear information instead of the linear

information to improve the class separability. Then, the first

phase of KPCR determinesM nearest neighbors of the testing

sample according to the deviation between the testing sample

and the represented result of each training sample. The second

phase of KPCR represents the test sample x by exploiting

the linear combination of the M nearest neighbors and then

obtains the sparse coefficients.Moreover, calculate the results

of the reconstructed testing sample for the different classes,

and divide the testing sample into the class with the mini-

mum error. In the process, the diagonal matrix based on the

distance between each training sample and the testing sample

in high-dimensional space is used to weight the regularization

of the KPCR [19]– [21].

A. KERNEL TRICK

Appropriate selection of a kernel function can reflect similar-

ities between samples, the kernel trick uses a linear method

to get its nonlinear counterpart without calculating the map-

ping explicitly. In this paper, the Gaussian radial basis func-

tion (RBF) kernel is used, which can be written as

k
(

x, x ′
)

= φ (x)T φ
(

x ′
)

= exp
(

−δ||x − x ′||
2
2

)

, (13)

where δ > 0 is the parameter of RBF kernel, x and x ′ are two

original data points. In the kernel method, we use function

k(∗, ∗) to convert to the feature space, but φ(∗) is unclear.

B. THE FIRST PHASE OF THE KPCR

The main purpose of the first phase is to determine the M

nearest neighbors that are most similar to the testing sample.

Assume that there is a nonlinear feature mapping function

φ (.) : Rd → Rq (d ≪ q), which maps the testing sample x

and training dataset Y into a high dimensional feature space

as

x → φ (x)

Y → φ (Y ) and φ (Y ) = [φ (y1) φ (y2) , . . . , φ (yn)]

In this part, based on the distance between φ (x) and

φ (yi) (i = 1, 2 . . . , n) data points in the high-dimensional

feature, the regularization term is weighted to obtain the

sparse parameter α as follows.

α̂ = arg min
α

(

||φ (x) − φ (Y ) α||22 + λ||Wα||22

+
γ

C

∑C

c=1
||φ (Y ) α − φ (Y )cαc||

2
2

)

(14)

W =















‖φ(x) − φ (y1)‖2 , 0

. . .

0 ‖φ(x) − φ (yn)‖2















,

(15)

where, W is the weighted parameter, ‖φ (x) − φ (yi)‖2 =

[k (x, x) + k (yi, yi) − 2k (yi, x)]
1/2. φ (Y )cαc is a matrix

composed of the training samples from the cth class.

Then, the α̂ can be recovered in a closed-form solution.

α̂ = (K + λW TW +
γ

C

∑C

c=1
K̄ ′
c)

−1

k, (16)

where, K = φ (Y )Tφ (Y ) ∈ Rn×n is the Gram matrix with

Ki,j = k
(

yi, yj
)

. k = (k (y1, x) , k (y2, x) , . . . , k(yn, x))
T ∈

Rn×1. Let K ′
c be a matrix which has the same size as K . Kc

is the Gram matrix of the samples in cth class, and only Kc
will be assigned to K ′

c at their corresponding location in K ,

K ′
c = [0 . . . ,Kc, . . . , 0], K̄

′
c = K − K ′

c. According to Eq.

(16), sparse parameter α̂ is obtained. We can calculate the

deviation ei from the ith training sample representation.

ei = ||φ (x) − φ (yi) αi||
2
2

= k (x, x) + α2
i k (yi, yi) − 2αik (yi, x) (17)

The testing sample φ(x) is represented as φ (yi) αi in the ith

training sample, the contribution can be estimated by devia-

tion ei. The smaller the ei, the larger the contribution of the ith

training sample, when the testing sample φ(x) is represented,

and vice versa. According to ei, the M training samples

with the greatest contribution are selected, called M nearest

neighbors, expressed as φ′ (Y ) , φ′ (Y ) =
{

φ
(

y′i
)}M

i=1
. If the

nearest neighbor φ
(

y′i
)

comes from the jth (j = 1, 2, . . . ,C)

class, wewill determine the j as the label of this nearest neigh-

bor φ
(

y′i
)

. If φ′ (Y ) does not contain the nearest neighbor

from the rth class, testing sample φ(x) will not be classified

into the rth class.

C. THE SECOND PHASE OF THE KPCR

In the second phase of the KPCR, the testing sample φ(x) is

classified by the linearly combining theM nearest neighbors

with the sparse coefficients. φ(x) can be approximated as

φ′ (Y ) β where φ′ (Y ) ∈ Rq×M , β ∈ RM×1. Similar to

Eq. (14), β is written as follows.

β̂ = arg min
β

(

||φ (x) − φ′ (Y ) β||
2
2 + λ||W̃β||

2

2

+
γ

L

∑L

l=1
||φ′ (Y ) β − φ′ (Y )lβl ||

2
2

)

(18)

W̃ =















∥

∥φ(x) − φ
(

y′1
)∥

∥

2
0

. . .

0
∥

∥φ(x) − φ
(

y′M
)∥

∥

2















,

(19)

where β̂ =
[

β1, . . . , βM
]T
, W̃ is a weighted diagonal

matrix, λ, γ are positive constants, L is the number of train-

ing samples class in φ′ (Y ) , φ′ (Y )lβl is a data point consist-

ing of training samples from the lth class of the φ′ (Y ).
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Then, the sparse vector β̂ can be recovered in a closed-form

solution.

β̂ = (K̃ + λW̃ T W̃ +
γ

L

∑L

l=1

¯̃
K ′
l )

−1

k ′, (20)

where, K̃ = φ′ (Y )
T
φ′ (Y ) ∈ RM×M is the Gram matrix with

K̃i,j = k
(

y′i, y
′
j

)

(i j = 1, 2, . . . ,M ). k ′ = φ′(Y )Tφ(x) =

(k
(

y′1, x
)

, k
(

y′2, x
)

, . . . , k(y′M , x))
T

∈ RM×1. Let K̃ ′
l be

a matrix which has the same size as K̃ . K̃l is the Gram

matrix of the samples in lth class, and only K̃l will

be assigned to K̃ ′
l at their corresponding location in K̃ ,

K̃ ′
l= [0 . . . ,K̃l, . . . , 0],

¯̃
K ′
l = K̃−K̃ ′

l .

M nearest neighbors come from different sample classes.

The number of training samples in each class may be differ-

ent. Sum the contribution values of the nearest neighbors in

each class separately to classify the testing sample φ(x). For

instance, the nearest neighbors from the hth class in φ′ (Y )

can be represented as φ
(

y′r
)

, . . . , φ
(

y′t
)

, and the sum of

contribution values is as follows

Sh = φ
(

y′r
)

βr + · · · + φ
(

y′t
)

βt (21)

The residual between Sh and φ(x) is calculated according

to Eq. (22). A small residual Sh means that the hth class has

a great contribution in representing the φ(x), and ultimately

classify x into the class with the smallest residual.

Rh = ‖φ (x) − Sh‖
2
2

= (φ (x) − Sh)
T (φ (x) − Sh)

= k (x, x) + β
′T
h K̃hβ

′
h − 2β

′T
h k

′
h, (22)

where β ′
h = (βr , . . . , βt )

T , K̃h is the Gram matrix of the

samples in hth class, k ′
h =

[

k
(

y′r , x
)

, . . . , k
(

y′t , x
)]T

.

IV. ALYSIS OF THE PEOPOSED METHOD

In this section, we will analyze the ideas and principles of the

IPCR and compare it with some methods.

A. METHOD COMPARISON

CRC and ProCRC were proposed in [8] and [9]. These

methods perform well on face recognition. They use all the

training samples to linearly represent the testing sample for

classification.

Compared with ProCRC, when IPCR finds sparse param-

eter α, we add the weight matrix and convert λ||α||22 to

λ||Wα||22. In this way, we modify the parameter α according

to the spatial distance of each training sample relative to the

testing sample, so that it is more reasonable relative to λ||α||22,

and the experimental result verification is more effective.

IPCR adopts the two-phase framework. The first phase

selects the M nearest neighbors according to the deviation

ei, and the second phase uses the linear combination of M

nearest neighbors to classify the testing sample x. It is a sparse

form with supervision. Meaning that the sparse parameters of

M nearest neighbors are usually not zero, and the remaining

training sample sparse coefficients are set to zero according

FIGURE 2. (a) Possible probability distribution of all training samples,
and (b) Possible probability distribution of M nearest neighbors.

to the deviation ei. Therefore, we know the sparse coefficients

of the training samples when representing the testing sample.

However, CRC, ProCRC and other methods are called an

unsupervised sparse form.When the training samples linearly

represent the testing sample x, we do not know which sparse

coefficient is zero or close to zero [22], [23].

B. PROBABILITY DESCRIPTION

Our IPCR method can be described as follows: ch(h ∈

(1, 2, . . . , C)) represents the hth class in the samples. The

first phase of IPCR uses ei to evaluate the probability that

the testing sample x and the ith training sample belong to the

same class, denoted as p(yi|x)(i ∈ (1, 2, . . . , n)). The first

phase of IPCR assumes that p(yi|x) ∝ 1
/

ei, ei= ||x−yiαi||
2
2.

The smaller ei is, the greater the probability p(yi|x) that the x

belongs to the same class as the ith training sample. As shown

in Fig. 2(a), if the training sample has a small p(yi|x), the first

phase will set the p(yi|x)(i = 2, 6, 10) of green bars to zero

when M nearest neighbors are selected. However, the value
∑

i p(yi|x) = 1 is constant, so the p(yi|x) (blue bars) of the

other training samples will increase, and Fig. 2(a) will be

converted to Fig. 2(b). The first phase removes the training

37950 VOLUME 8, 2020
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sample with small value p(yi|x) and retains the M training

samples with high similarity to the testing sample x.

The second phase of IPCR uses p(ch|x) to represent the

posterior probability that test x belongs to the hth class.

The second phase assumes that p(ch|x) ∝ 1
/

‖x − Sh‖
2
2, Sh

is the reconstructed result of the training samples from the

hth class. A minimum ‖x − Sh‖
2
2, which means a maximum

posterior probability p(ch|x). The second phase of IPCR will

classify test x into the hth class with the maximum p(ch|x).

If there is no training sample from the sth class in the M

nearest neighbors, then the test x will not be classified into

the sth class in the second phase, p(ch|x) = 0.

In contrast to the IPCR, its global version uses all training

samples to represent the test x [10]. Almost every p(ch|x)

is a non-zero value, and the global version needs to find a

maximum posterior probability p(ch|x) from allC classes for

the test x. IPCR sets some posterior probabilities to zeros. The

result may produce a more ideal probability distribution to

classify the test x relative to the global version. We assume

that test x comes from the second class in Fig. 3. As can

be seen from Fig. 3(a), the global version will incorrectly

classify x into the fifth class due to noise interference, but

IPCR can accurately classify x to the second class with the

highest posterior probability in Fig. 3(b).

V. EXPERIMENT RESULTS

In this section, we conducted a lot of testing experiments

on AR, GT, PIE, FERET, and LFW-crop. The experimental

results demonstrate the effectiveness of our methods in recog-

nition accuracy.

A. FACE DATABASE INTRODUCTION

AR Face Database: AR Face Database was created by Aleix

Martinez and Robert Benavente at the Ohio State University.

It contains more than 4,000 color images, corresponding

to 126 faces (70 males and 56 females). The images have

different facial expressions, lighting conditions and occlusion

(sunglasses and scarves). For fair comparison to show the

results, we used 2600 images from 100 people, every indi-

vidual has 26 images, and these images are resized to 30 ×

40 for our experiments [24].

1) GT FACE DATABASE

Georgia Tech Face Database contains images of 50 people

taken in two or three sessions at the Center for Signal and

Image Processing at Georgia Institute of Technology. There

are 15 color images, the images were taken into account the

variations in illumination conditions, facial expression, and

appearance. In addition to this, the faces were captured at

different scales and orientations and we resized the size of

images to 30 × 40 for experimental testing [25].

2) PIE FACE DATABASE

PIE Face Database was provided by the face research team at

CMU, the database contains 41,368 images of 68 people, each

person under 13 different poses, 43 different illumination

FIGURE 3. (a) Possible posterior probability distribution of the global
IPCR, and (b) Possible posterior probability distribution of the IPCR.

conditions, and with 4 different expressions. For PIE, we only

used a subset from 68 individuals with each person providing

39 images, and each image from the PIE database was resized

to 30 × 40 in our experiments [26].

3) FERET DATABASE

FERET is created by the Face Recognition Technology

project, this collection of images contains a large num-

ber of face images, and each image has only one face.

In this database, images of the same person have differ-

ent expressions, changes in light, posture, and age. FERET

with more than 10,000 multi-poses and illumination is one

of the most widely used face databases. In the experiment,

we selected a subset with 1400 images containing 200 peo-

ple, 7 images per person, and each image was resized to

40 × 40 [27].

4) LFW-CROP DATABASE

LFW-crop is a cropped version of the Labeled Faces in the

Wild (LFW) database, keeping only the center portion of each

image (i.e. the face). In the majority of images, almost all of

the background is omitted. 158 people, 10 pictures per person

were selected for the experiment. Each image was resized to

30×30 [28].
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FIGURE 4. Some face images from the AR Face Database. The images
shown in first, second and third rows are from three different classes.

B. SAMPLE SELECTIONS AND PARAMETER SETTINGS

1) SAMPLE SELECTIONS

For each face database AR, GT, PIE, FERET and LFE-crop,

we randomly select q samples from the p samples in each

class as the training sample set, and the remaining part as the

test set, includingC
q
P combination possibly. As a result, there

are C
q
P training sets and test sets. For each database, we have

done a random selection of the number of training samples

in three cases. For the AR face database, in the first case,

we randomly selected 6 out of 26 samples of each class as the

training set, and the rest were test sets, which were tested with

different classification methods. In the second, third cases,

10 and 16 samples in each class were randomly selected as the

training set. Fig. 4 shows some face images from the AR face

database. For the GT face database, we randomly selected

5, 8 and 11 images from the 15 images of each class as the

training images and the rest as test images. Some images of

the GT face database are shown in Fig. 5. We also performed

the same sample selection on the PIE, FERET and LFW-crop

face databases. Finally, different classification methods were

applied to test the recognition rate on PIE, FERET, and

LFW-crop.

2) PARAMETER SETTINGS

The proposed IPCR contains three parameters, λ, γ and M .

On the AR face database, λ = 1e−4, γ = 1 M = 0.5; On

the GT face database, λ = 1, γ = 1,M = 0.5; On the PIE

face database, λ = 1, γ = 1,M = 0.5; On the FERET face

database, λ = 1e−1, γ = 1,M = 0.5;On the LFW-crop face

database, λ = 1e−4, γ = 1,M = 0.5.

The proposed KPCR contains four parameters, δ, λ,

γ and M . On the AR face database, δ = 1e−1, λ =

1e−4, γ = 1e−3,M = 0.5; On the GT face database,

δ = 1, λ = 1e−1, γ = 1e−3,M = 0.5; On the PIE

face database, δ = 1e−1, λ = 1e−3, γ = 1e−3,M =

0.5; On the FERET and LFW-crop face databases, δ =

1, λ = 1e−1, γ = 1e−3,M = 0.5. For the other com-

petitive classification methods, we also achieved the best

FIGURE 5. Some face images from the GT Face Dataset. The images
shown in first, second and third rows are from three different classes.

classification accuracy level in each experiment by tuning the

parameters.

C. EXPERIMENTAL DATA DISPLAY AND ANALYSIS

As shown earlier, Sh in Eq. (11) is the reconstructed result

of the training samples of the hth class to the testing sample

x. If the deviation between Sh and x is the smallest, x will

eventually be assigned to the hth class. We reconstructed the

test x using the proposed IPCR, then converted the obtained

Sh(h ∈ (1, 2, . . .C)) into a matrix of the same size as the test

face image. The reconstructed result when the IPCR method

was used as shown in Fig. 6(a) and M was selected as half

of the training samples (1000 samples). Image (1) is the

original data from the AR face database, image (2)-(5) are

the reconstructed results of the four classes with the smallest

residual, and the testing sample is correctly divided into the

class to which it belongs.

At the same time, we also used the global version (do

not choose M nearest neighbors) and the version without

weight (called TPPCR) methods to reconstruct the same

test image. Therefore, as shown in Fig. 6(b) and 6(c),

image (1) is still the original data from the AR database, and

image (2)-(5) are the reconstructed results of the four classes

with the smallest residuals, respectively. Obviously, the final

result is misclassified.

We conducted a lot of the testing experiments on the GT

and FERET databases. On GT, 4 and 6 images randomly

selected from 15 of each person were used as the training

samples. On FERET, 2 and 4 from 7 images of each person

were selected as the training sample set, and the remain-

ing part was used as the test set for experimental compar-

ison. Fig. 7 and Fig. 8 show the mean of the error rates

of 10 experimental results by using different classification

methods. As can be seen from Fig. 7 and Fig. 8, compared

to TPPCR, the proposed IPCR has a much lower recogni-

tion error rate, which shows that the weighting technique

is very effective. Moreover, our KPCR performed further

improvement in recognition accuracy compared to the IPCR.
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FIGURE 6. The reconstructed results of the testing sample from AR face database.

FIGURE 7. Mean of the classification error rates on the GT face database.

FIGURE 8. Mean of the classification error rates on the FERET face database.
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TABLE 1. AR-100-26_30-40 database.

TABLE 2. GT-50-15_30-40 database.

TABLE 3. PIE-68-39_40-40 database.

TABLE 4. FERET-200-7_40-40 database.

Especially when the number of selected theM nearest neigh-

bors is different, the KPCR shows good robustness. By com-

paring the data results obtained with different M nearest

neighbors, we can find that the appropriate selection of theM

nearest neighbors can reduce the error rate of recognition. Our

KPCR and IPCR can improve the recognition rate by about

5% compared to their global version. Therefore, it can be said

that the adopted two-phase framework is also effective.

Table 1 to Table 5 show the classification results of the

proposed KPCR, IPCR and the other state-of-the-art methods

including CRC, KCRC [29], ProCRC, TPTSR, and l2 Regu-

larization Based Discriminative Sparse Representation Algo-

rithm (l2 RDSRA). Table 1 is the recognition results of the

AR database, and Table 2 to Table 5 are the results on

GT, PIE, FERET, and LFW-crop, respectively. Taking the

AR database as an example, we randomly chose 6, 10 and

16 from the 25 samples of each class as the training set,

and the remaining part was used as the testing set. Repeated

the above test 10 times to get the experimental mean and

standard deviation. In the 6-sample case, the recognition rate

generated by KCPR is 92.3%, the recognition rate generated

by IPCR is 91.4%, the recognition rate generated by CRC is

83.0%, the recognition rate generated by ProCRC is 88.1%,

the recognition rate generated by KCRC is 90.2%, the recog-

nition rate generated by TPTSR is 89.6%, the recognition rate

generated by l2 RDSRA is 87.5%. In the 10-sample case,
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TABLE 5. LFW-crop-158-10_30-30 database.

TABLE 6. KPCR vs. Other contrasted methods under Wilcoxon signed-rank test.

the recognition rate generated by KCPR is 97.8%, the recog-

nition rate generated by IPCR is 97.6%, the recognition rate

generated by CRC is 78.7%, the recognition rate generated by

ProCRC is 81.3%, the recognition rate generated by KCRC

is 97.2%, the recognition rate generated by TPTSR is 93.3%,

the recognition rate generated by l2 RDSRA is 95.0%. In the

16-sample case, the recognition rate generated by KCPR is

98.5%, the recognition rate generated by IPCR is 98.4%,

the recognition rate generated by CRC is 94.7%, the recogni-

tion rate generated by ProCRC is 94.9%, the recognition rate

generated by KCRC is 97.8%, the recognition rate generated

by TPTSR is 94.0%, the recognition rate generated by l2
RDSRA is 97.9%. The standard deviation produced by each

algorithm is also very small. For detailed experimental data

of the remaining databases, refer to Table 2 to Table 5. All

the highest accuracy recognition results obtained have been

bolded.

From the data results in Table 1 to Table 5, it can be seen

that the performance of KPCR is the most outstanding com-

pared to the other methods in terms of recognition accuracy.

For the case of selecting the 16 training samples on the AR

database, the mean recognition rate reached 98.5%. IPCR

also performed very well, especially on AR, GT, and PIE,

the recognition accuracy is very close to KPCR. This proves

that the proposed KPCR and IPCR can perform well in face

recognition.

In order to comprehensively compare KPCRwith the other

methods, Wilcoxon signed-rank test with a level of signifi-

cance α = 0.05 is applied to evaluate the results of 10 times

running [40]. Combined to obtain the mean value, the final

test results are shown in Table 6. When KCPR is compared

with other methods, the symbol ‘‘+’’ means ‘‘win’’, sym-

bol ‘‘-’’ means ‘‘lose’’, and symbol ‘‘=’’ means ‘‘draw’’.

In Table 6, compared to IPCR, KPCR produced 9 better
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results, 4 similar results, and 2 worse results. Compared with

KCRC, KPCR produced 12 better results, 2 similar results,

and 1 worse result. Compared with l2 RDSRA, KPCR pro-

duced 14 better results, 1 similar result. Compared to CRC,

ProCRC, and TPTSR, KPCR all produced 15 better results.

From the overall experimental results, our proposed KPCR

is superior to the contrast methods in face recognition. The

efficiency of the proposed schemes can be further improved

by adopting some relevant methods [35]–[39].

VI. CONCLUSION

In this paper, two novel classifiers for face recognition,

namely IPCR and KPCR are presented. The weighted based

on space distance and two-phase framework are applied

to proposed IPCR. We also carried out a clear probability

interpretation of the two-phase framework and analyzed the

feasibility of the method. Moreover, we adopted the kernel

concept, utilizing the high-dimensional nonlinear informa-

tion instead of linear information of data to the proposed

KPCR. The popular AR, GT, PIE, FERET, and LFW face

databases are used, a large number of experiments showed

the high recognition accuracy of our classifiers. For instance,

in the case of selecting the 4 training samples on the

LFW-crop database, IPCR improved the recognition rate

of 23.7%, and KPCR improved 27.5% respectively compared

to ProCRC. Comparing with more existing classifiers, such

as CRC, KCRC, TPTSR, and l2 Regularization Based Dis-

criminative Sparse Representation Algorithm (l2 RDSRA),

our methods also performed better in face recognition. The

proposed KPCR and IPCR may be implemented for the vari-

ous pattern classification problems.
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