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ABSTRACT Biometric systems are exposed to spoofing attacks which may compromise their security, and
voice biometrics, also known as automatic speaker verification (ASV), is no exception. Replay, synthesis and
voice conversion attacks cause false acceptances that can be detected by anti-spoofing systems. Recently,
deep neural networks (DNNs) which extract embedding vectors have shown superior performance than
conventional systems in both ASV and anti-spoofing tasks. In this work, we develop a new concept of loss
function for training DNNs which is based on kernel density estimation (KDE) techniques. The proposed
loss functions estimate the probability density function (pdf) of every training class in each mini-batch,
and compute a log likelihood matrix between the embedding vectors and pdfs of all training classes within
the mini-batch in order to obtain the KDE-based loss. To evaluate our proposal for spoofing detection,
experiments were carried out on the recent ASVspoof 2019 corpus, including both logical and physical
access scenarios. The experimental results show that training a DNN based anti-spoofing system with our
proposed loss functions clearly outperforms the performance of the same system being trained with other
well-known loss functions. Moreover, the results also show that the proposed loss functions are effective for
different types of neural network architectures.

INDEX TERMS Spoofing detection, kernel density estimation, loss function, deep learning, automatic
speaker verification.

I. INTRODUCTION

Biometric authentication [1] aims to authenticate the iden-
tity claimed by a given individual based on samples mea-
sured from biological processes and/or organs (e.g., voice,
fingerprint, face, etc). Voice biometrics, in particular, is an
emerging form of biometric authentication with potential
advantages given its hands-free, liveliness and dynamic
nature. Automatic speaker verification (ASV) [2] is the con-
ventional way to put voice biometrics into practical usage.
ASV techniques verify the claimed identity of a given speaker
by recording her/his voice, extracting voiceprints from the
voice recordings, and deciding whether the speaker is who
s/he claims to be based on the extracted voiceprints and a set
of pre-stored voiceprints from enrolled users.

The associate editor coordinating the review of this manuscript and

approving it for publication was Marina Gavrilova .

However, the vulnerability of ASV systems to malicious
attacks is a serious concern nowadays [3]. Our focus in this
work is on spoofing detection for ASV, where an impostor
could gain fraudulent bypass to the authentication system
by presenting speech resembling the voice of a genuine
user. Four types of spoofing attacks have been identified
[4]: (i) impersonation (i.e., mimicking the voice of a target
speaker), (ii) replay (i.e., using pre-recorded voice of a target
user), and, also, either (iii) text-to-speech synthesis (TTS)
or (iv) voice conversion (VC) systems to generate artificial
speech resembling the voice of a legitimate user.

Spoofing detection or presentation attack detection (PAD
in ISO/IEC 30107 nomenclature [5]) for ASV has become a
hot research topic in recent years as evidenced by the orga-
nization of several evaluation campaigns (challenges) in this
specific topic: (i) ASVspoof 2015 [6], which focused on log-
ical access (LA) attacks (TTS and VC); (ii) ASVspoof 2017
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[7], which focused on physical access (PA) attacks (replay
attacks) under noisy environments; and (iii) ASVspoof 2019
[8], which addressed both the detection of LA attacks gener-
ated with the latest TTS and VC technologies, and simulated
replay attacks under different reverberant acoustic condi-
tions. One of the main conclusions withdrawn from these
challenges is that the use of deep neural networks (DNNs)
for the extraction of spoofing-aware embedding vec-
tors outperforms other conventional approaches for ASV
anti-spoofing [9]–[13].
Within the DNN-based anti-spoofing framework, several

recent studies have focused on designing new loss functions
in order to make NNs more suitable for the specific tasks of
anti-spoofing [14], ASV [15], [16] and/or their combination
[17]. However, these studies do not usually address the fol-
lowing three issues. First, one particular characteristic of anti-
spoofing applications, which is shared with ASV systems,
is that embeddings extracted by DNNs should enable precise
discrimination between bona fide speech and spoofed speech
and, at the same time, they should be able to generalize well to
unknown attacks that are not present in the training dataset.
In other words, from a metric learning problem perspective
[18]–[20], the goal is to learn a meaningful embedding repre-
sentation that keeps similar training instances close to each
other and the dissimilar instances far away on the embed-
ding space. While specialized loss functions as the triplet
network [18] specifically address this issue, conventional
losses (e.g., softmax) fall short in achieving this goal. Second,
in a supervised scenario, as is the case for DNN-based anti-
spoofing detection, metric learning aims to learn a represen-
tation which keeps close the embeddings belonging to the
same class. To represent each class, different representations
have been investigated in the literature, such as representing
each class by a centroid in the embedding space [15] or
employing an anchor sample to represent the positive class
[21]. In these representations, however, the training classes
are not fully represented by all the samples in the mini-
batch, but by a single embedding representation (i.e., either
a centroid or an anchor sample), which may be suboptimal
for distance learning. Third, recent loss functions, such as
the siamese [14], generalized-end-to-end (GE2E) [15] and
triplet loss [21] functions, are based on distance measures
between embedding vectors. However, it is not straightfor-
ward to select the most appropiate distance measure as well
as the embedding normalization technique. Moreover, these
loss functions typically require the usage of an extra hyper-
parameter called margin which is difficult to optimize.
To address all these issues, we propose a new proba-

bilistic loss function for supervised metric learning, where
every training class is represented with a probability density
function (pdf) which is estimated through kernel density
estimation (KDE) [22], [23] in each mini-batch. The mini-
batches are formed so that all training classes are present in
the mini-batch and are represented with the same number
of samples. Due to the fact that KDE techniques place a
probability mass at every sample, we can argue that each class

is more accurately represented than in previous approaches,
since KDE estimates a pdf per class using all the samples
of the mini-batch rather than representing each class with
a sole point (centroid or anchor point). Thus, we replace
the concept of distance between embeddings by the concept
that an embedding belongs to a certain class with a given
probability. This has the advantage of avoiding the selection
of an appropiate distance measure as well as an embedding
normalization technique. Although the experiments support-
ing these aforementioned advantages of the proposed loss
functions are focused on ASV anti-spoofing, they could be
applied to different classification tasks.

This paper is organized as follows. Section II outlines the
most popular loss functions used to train DNNs for devel-
oping ASV and anti-spoofing systems. Then, in Section III,
we describe the proposed loss functions based on KDE.
Section IV describes the speech corpora, neural networks
and loss functions which are then evaluated in Section V for
spoofing detection. Finally, we summarize the conclusions
derived from this research in Section VI.

II. RELATED WORK

This section describes several loss functions that can be used
in the context of distance metric learning in order to learn
a meaningful embedding representation for the data samples
assuming that the target labels are available a priori (i.e.,
supervised scenario). Some of these functions have already
been successfully applied to either ASV or anti-spoofing.
In this section we use the following notation: eji denotes

the embedding (output of a hidden layer of the DNN) of the
i-th utterance of the class j,M is the number of utterances per
class in the mini-batch, and N is the number of classes of the
training set. In addition, we consider that every mini-batch is
composed of N ×M utterances. In anti-spoofing, the number
of classesN is usually the number of training spoofing attacks
plus the genuine class.

A. CROSS ENTROPY LOSS FUNCTION

The cross entropy loss, also known as softmax loss, is widely
used to train DNNs for classification tasks. Typically, when
the softmax loss function is used in ASV and anti-spoofing
systems, embeddings are extracted from a middle or the last
hidden layer of the DNN. Assuming this latter case, where
embeddings are extracted from the last hidden layer of the
DNN, the softmax loss function can be expressed as,

Lsoftmax =

N
∑

j=1

M
∑

i=1

−log
exp(wTj eji + bj)

∑N
k=1 exp(w

T
k eji + bk )

, (1)

where w = [w1, . . . ,wN ] and b = [b1, . . . , bN ] are the
weightmatrix and bias vector of the output layer, respectively.

B. ADDITIVE MARGIN LOSS FUNCTION

The additive margin (AM) softmax loss function [24] was
proposed to replace the inner product operation of the soft-
max loss function in Eq. (1) with the cosine similarity
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operation in order to widen the inter-class margin in the
embedding space [25]. The AM softmax loss function can
be expressed as,

LAM =

N
∑

j=1

M
∑

i=1

−log
exp(s · (cos(wj, eji) − m))

exp(s · (cos(wj, eji) − m)) + rji
, (2)

rji =

N
∑

k=1
k 6=i

exp(s · cos(wk , eji)), (3)

where m is an additional margin and s is a scaling factor for
stabilizing training. This loss function is a generalized version
of the angular softmax loss [24]. Recently, this type of loss
function has been successfully applied to anti-spoofing [26]
and speaker verification systems [27], [28].

C. GENERALIZED END-TO-END LOSS FUNCTION

In the generalized end-to-end (GE2E) loss, which was orig-
inally proposed for ASV, each class (speaker) is represented
by a centroid obtained averaging all the embeddings belong-
ing to that class in the mini-batch. From those centroids,
two loss functions were proposed in [15] which seek for
minimizing the distance between the embeddings and their
corresponding class centroids, while also maximizing the
distance with the centroids from the other speakers. In anti-
spoofing, the speakers are replaced by attacks. The distance
between the embedding of the i-th utterance of the j-th attack
(eji) and the centroid of the k-th attack (ĉk ), is computed as:

Sji,k = ω · cos(eji, ĉk ) + b, (4)

where ω and b are learnable parameters for score scaling
and shifting, S is the similarity matrix, and the centroid
embedding is computed by averaging the embeddings of each
attack:

ĉk =
1

M

M
∑

i=1

eki. (5)

The GE2E loss function consists of two losses which
are computed using the values of the similarity matrix S:
(i) softmax loss, and (ii) contrast loss. The softmax loss of
the embedding eji is expressed as follows,

LGE2E-softmax(eji) = −Sji,j + log
N

∑

k=1

exp(Sji,k ). (6)

Likewise, the contrast loss of the embedding eji is computed
as,

LGE2E-contrast(eji) = 1 − σ (Sji,j) + max
1≤k≤N
k 6=j

σ (Sji,k ), (7)

where σ (x) is the sigmoid function. This contrast loss
function deserves some comments. For every utterance,
exactly two components are added to the loss: (i) a posi-
tive component, which is associated with a positive match
between the embedding eji and its true class centroid ĉj; and

(ii) a negative component, which is associated with a negative
match between the embedding eji and the centroid ĉk with the
highest similarity among all false class centroids.

Combining equations (6) and (7), the final GE2E loss func-
tion is the sum of the two losses over the similarity matrix:

LGE2E =

N
∑

j=1

M
∑

i=1

[

LGE2E-softmax(eji)+LGE2E-contrast(eji)
]

.

(8)

D. SIAMESE LOSS FUNCTION

The siamese architecture processes two utterances at once
using the same neural network, obtains two embeddings
eji and ek∼, and computes a loss based on the embedding
distance:

Lsiamese =

N
∑

j=1

M
∑

i=1

δjk · D(eji, ek∼)

+ (1 − δjk ) · max(m,D(eji, ek∼)), (9)

where ek∼ denotes any embedding of the class k , δjk ∈ {0, 1}
is a label which indicates whether the embeddings eji and ek∼
belong to the same class (i.e., when k = j), D(eji, ek∼) is
any distance measure between eji and ek∼, and m is a hyper-
parameter distance margin. There are many siamese network
variants reported in the literature for different applications,
such as face recognition [29], person identification [30],
image recognition [31], etc.

E. TRIPLET LOSS FUNCTION

The triplet network [18] is a neural network architecture
which attempts to learn an embedding representation of a
multi-class labeled dataset which favours a small distance
between example pairs labeled as similar, and large distances
for pairs labeled as dissimilar. However, unlike the siamese
networks, this architecture works with triplets of embeddings.
In particular, it defines a loss function which ensures that an
anchor embedding (eji) of class j is closer to other positive
samples (ejp, p 6= i) than to any negative sample (en∼, n 6= j)
[21]. Thus, if we consider a batch size of N ×M utterances,
the triplet loss which is minimized is:

Ltriplet=

N
∑

j=1

M
∑

i=1

max
[

∥

∥eji−ejp

∥

∥

2
2 −

∥

∥eji − en∼

∥

∥

2
2+α, 0

]

,

(10)

where α is a margin which is enforced between the positive
and negative distances. Thus, given an anchor embedding
eji, its corresponding triplet (eji, ejp, en∼) will be built with a
hard positive embedding ejp and a hard negative embedding
en∼ such that indices p and n are selected according to the
following criteria: p = argmaxr 6=i

∥

∥eji − ejr

∥

∥

2
2, and n =

argmins 6=j
∥

∥eji − es∼

∥

∥

2
2.

Recently, the triplet loss function has been successfully
applied to train face verification systems [21], ASV systems
[32], [33], and joint ASV and PAD systems [17].
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III. KERNEL DENSITY ESTIMATION LOSS FUNCTION

In this section we describe the proposed loss functions based
on KDE for training DNN-based embedding extraction sys-
tems. Section III-A describes the computation of the log
likelihood matrix employed by all the proposed losses. After
that, the proposed KDE-based loss functions are described in
Section III-B.

A. KDE-BASED LOG LIKELIHOOD MATRIX

Similarly to the GE2E loss method described in Section II-C,
every mini-batch consists of N × M utterances from the N
different training classes (genuine class and N − 1 spoofing
attacks), and each class is represented with M utterances.
Thus, each utterance i (1 ≤ i ≤ M ) from the training
class j (1 ≤ j ≤ N ), represented by its sequence of feature
vectors X ji, is fed into a neural network in order to obtain the
embedding vector eji = g(X ji; 2), where2 represents all the
parameters of the neural network.

Let the embedding vectors from the k-th training class
ek1, . . . , ekM ∈ Rq be independent and identically distributed
random samples from an unknown distribution fk (e). The
estimation of its multivariate pdf using KDE [22], [23] is
given by,

f̂k (e) =
1

M

M
∑

m=1

1

det(Hk )
K

(

H
−1
k (e− ekm)

)

=
1

M

M
∑

m=1

KHk

(

e− ekm

)

, (11)

where K (·) is the kernel function, Hk is a nonsigular and
symmetric bandwidth matrix [34], [35], and KHk (u) =

K (H−1
k u)/det(Hk ). A range of kernel functions are com-

monly used, such as uniform, triangular, Gaussian and
Epanechnikov [36]. For instance, the probability density
function with a Gaussian kernel (that is, KHk (u) =

N (u;0, 6k )) can be computed as,

f̂k (e) =
1

M

M
∑

m=1

N (e; µk = ekm, 6k = σ 2
k · I), (12)

where µk and 6k are the mean vector and covariance matrix
of the Gaussian distribution N (·), I is the identity matrix,
and σ 2

k represents the bandwidth of the KDE model for
class k . Every class has its corresponding bandwidth, which
is a learnable parameter that is constrained to be positive
(σ 2
k > 0). In this way, the kernel density estimator f̂k (e)

places a probability mass at each observation embedding ekm
according to a Gaussian probability model.
Once all the probability density functions of the con-

sidered mini-batch have been built, they are evaluated for
every embedding belonging to that mini-batch. That is, all
possible f̂k (eji) (k, j = 1, . . .N ; i = 1, . . . ,M ) are com-
puted. Then, these probabilities are arranged in the following

log-likelihood matrix:

Lji,k =































log
( 1

M

M
∑

m=1

KHk

(

eji − ekm

)

)

k 6= j

log
( 1

M − 1

M
∑

m=1
m 6=i

KHk

(

eji − ekm

)

)

k = j.

(13)

To avoid trivial solutions and make training stable,
the embedding vector eji is removed when estimating the
density function of the true class (i.e., when k = j in Eq. (13)).
Fig. 1 illustrates the whole process for obtaining the log
likelihood matrix with input features, embedding vectors
and likelihoods from different training classes (genuine and
spoofing attacks), represented by different colors.

From the log likelihood matrix Lji,k in Eq. (13), we strive
to achieve two goals simultaneously during the DNN training.
First, we aim at maximizing the probability of each embed-
ding vector eji belonging to its class j, that is,

maximize
2

Lji,j = log f̂j(eji), (14)

where 2 are the neural network parameters to be optimized
in the training stage. At the same time, the probability of
each embedding vector eji belonging to the rest of the classes
should be minimized:

minimize
2

Lji,k = log f̂k (eji) (k 6= j). (15)

In other words, as depicted in Fig. 1, we strive to find the
optimum set of weights 2 that results in large log likelihood
values for red cells in the figure and small values for the blue
cells in the figure. We achieve these two simultaneous goals
by means of three alternative loss functions, as described in
the next section.

B. KDE-BASED LOSS FUNCTIONS

There are several ways to implement the requirements
described above. In this section, we describe three alternative
losses to achieve our goal during the training of the neural
network: softmax, contrast and triplet KDE based losses.

1) KDE-SOFTMAX LOSS

As described in Section II-A, the softmax function is typically
used in tandem with the negative log-likelihood (NLL), such
that: L(y) = −log(softmax(y)). The output of the softmax
function can be interpreted as the probabilities that a certain
set of features belong to a certain class, which is combined
with the NLL in order to build the popular cross-entropy or
softmax loss.
The softmax loss can be directly applied to KDE using the

log likelihood matrix, such that:

LKDE-softmax=

N
∑

j=1

M
∑

i=1

[

− Lji,j+log
N

∑

k=1

exp
(

Lji,k
)

]

. (16)

This loss function tries to increase the probability
of each embedding belonging to its true class, while
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FIGURE 1. System overview for computing the log likelihood matrix of a mini-batch of N × M utterances.

minimizing the probability of the embedding belonging to
the rest of the classes.

2) KDE-CONTRAST LOSS

The contrast loss is formed by two terms: (i) a positive term,
which is the probability of the embedding eji belonging to
the true class; and (ii) a hard negative term, which is the
highest probability of that embedding belonging to any of the
negative classes, that is,

LKDE-contrast=

N
∑

j=1

M
∑

i=1

max
[

(

− Lji,j+ max
1≤k≤N
k 6=j

Lji,k
)

, 0
]

.

(17)

3) KDE-TRIPLET LOSS

In the following we describe the adaptation of the triplet loss
to our KDE-based framework. Similarly to the triplet loss,
we want to find an embedding representation that, for a given
anchor embedding eji, the probability of such embedding
to the positive class j is large, whereas the probability of a
negative exemplar of belonging to the same class is small.
While this loss is motivated in [21] in the context of nearest-
neighbour classification [37], here the quadratic distances are
replaced by log likelihoods.

This loss tries to ensure that an embedding vector eji
(anchor) of a specific class j (positive class) obtains a higher
probability of belonging to that class than any other embed-
ding vector en∼ (negative) from other class (n 6= j). In this
way, the triplet is formed by: (i) an anchor embedding eji,
(ii) a negative embedding en∼, and (iii) a positive estimated
density function f̂j.

Thus, this loss tries to ensure

f̂j(en∼) + α < f̂j(eji), (18)

where α is a margin that is enforced between the true and
false positive probabilities. Using the log likelihood matrix
of Eq. (13), the loss which is minimized is

LKDE-triplet =

N
∑

j=1

M
∑

i=1

max
[

Ln∼,j − Lji,j + α, 0
]

, (19)

where α is a hyper-parameter margin which is enforced
between the positive and negative likelihoods.

Generating all possible triplets would result in many of
them being easily satisfied (i.e., fulfill constraint (18)). Thus,
not all of them would contribute to the training, which might
result in a slower convergence. Therefore, it is crucial to select
hard triplets which do not fulfill constraint (18), and can
therefore contribute to improving the model. As suggested
in [21], instead of picking the hardest positives, we use all
anchor-positive pairs within the mini-batch. In addition, [21]
shows that selecting the hardest negatives can in practice lead
to a bad local minima in training. In order to mitigate this,
we select semi-hard negative exemplars which lie inside the
margin α [21]:

f̂j(en∼) < f̂j(eji) < f̂j(en∼) + α. (20)

4) ANALYSIS AND RELATION WITH OTHER

LOSS FUNCTIONS

From equations (16), (17) and (19), we can observe that
the KDE softmax, contrast and triplet loss functions have in
common the term−Lji,j, which aims at maximizing the prob-
ability of the embedding eji belonging to the estimated density
function of the true class. The difference between these three
loss functions lies in the penalization term, which tries to
separate the positive class j from the rest of training classes.
Specifically, the penalization term of these loss functions is:

• KDE-softmax loss: the sum of the likelihoods that the
embedding vector eji belongs to all training classes.

• KDE-contrast loss: the highest log likelihood between
the embedding vector eji and any negative class.

• KDE-triplet loss: the log likelihood that a negative
embedding vector en∼ belongs to the anchor class j, plus
a margin α.

If we combine theKDE softmax and contrast loss functions
(Eqs. (16) and (17)), we can derive a probabilistic version of
the GE2E loss described in Section II-C, which we call it as
full kernel density estimation (FKDE) loss, that is,

LFKDE =

N
∑

j=1

M
∑

i=1

[

LKDE-softmax(eji)+LKDE-contrast(eji)
]

.

(21)
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However, while the G2E2 technique computes a cosine sim-
ilarity matrix, our proposed FKDE loss computes a log like-
lihood matrix. Furthermore, the GE2E technique represents
each class by means of a centroid, while our technique esti-
mates a pdf for each class. From a clustering point of view,
we argue that the latter is a superior and more informative
representation.
On the other hand, the KDE-triplet loss function in (19)

can be shown to be a generalization of the classical triplet
loss in (10) when KDE with Gaussian kernel (GKDE) and
diagonal covariance matrix is employed. In fact, if we only
consider an embedding eji for estimating the probability den-
sity function in (12), and we introduce a positive index p such
that 1 ≤ p ≤ M , p 6= i, the GKDE triplet loss in (19) would
become:

L=

N
∑

j=1

M
∑

i=1

max
[

Ln∼,j(i)−Ljp,j(i)+α, 0
]

=

N
∑

j=1

M
∑

i=1

max
[

logf̂ (i)j (en∼) − logf̂ (i)j (ejp)+α, 0
]

, (22)

where,

logf̂ (i)j (e) = log
exp

(

− 1
2 (e− eji)T6−1

j (e− eji)
)

(2π )q/2|6j|2
, (23)

and q is the embedding size. Since we consider a diagonal
covariance matrix 6j = σ 2

j · I , this log probability density
function can be simplified to:

logf̂ (i)j (e) = −
q

2
log(2πσ 2

j ) −
1

2σ 2
j

∥

∥e− eji

∥

∥

2
2 . (24)

Finally, if we consider a constant bandwidth for the GKDE
σ 2
j = 1, and substitute (24) into (22), the modified version

of the proposed GKDE triplet loss equals the classical triplet
loss function:

L=

N
∑

j=1

M
∑

i=1

max
[

∥

∥eji−ejp

∥

∥

2
2−

∥

∥eji−en∼

∥

∥

2
2+α, 0

]

. (25)

To sum up, the combination of the KDE softmax and
contrast loss functions results in a probabilistic version of the
GE2E loss. In addition, the GKDE triplet loss is a generalized
version of the classical triplet loss.

IV. EXPERIMENTAL SETUP

This section is organized as follows. First, the speech corpora
which was employed for the evaluation of the proposed tech-
niques is described. Then, Section IV-B outlines the system
configuration and network training. After that, Section IV-C
provides the implementation details of the the loss functions
that are evaluated, including our proposals and other well-
known losses from the literature. Finally, the performance
metrics employed to evaluate the performance of the anti-
spoofing system are discussed.

A. SPEECH CORPORA

We conducted experiments on the recent ASVspoof 2019
database [8] which encompasses two partitions for the assess-
ment of logical and physical access scenarios. A summary
of their composition in terms of speakers and number of
utterances is presented in Table 1.

TABLE 1. Structure of the ASVspoof2019 data corpus divided by the
training, development and evaluation sets [8].

1) ASVspoof 2019 LOGICAL ACCESS CORPUS

The LA database contains bona fide speech and spoofed
speech data generated using 17 TTS and VC systems. Six
of these systems are designated as known attacks, with the
other 11 being designated as unknown attacks. The training
and development sets only contain known attacks, whereas
the evaluation set contains 2 known and 11 unknown spoof-
ing attacks. Among the 6 known attacks there are 2 VC
systems and 4 TTS systems. VC systems use a neural-
network-based and spectral-filtering-based approaches [38].
TTS systems use either waveform concatenation or neural-
network-based speech synthesis using a conventional source-
filter vocoder [39] or a WaveNet based vocoder [40].
The 11 unknown systems comprise 2 VC, 6 TTS and
3 hybrid TTS-VC systems and were implemented with
various waveform generation methods including classical
vocoding, GriffinLim [41], generative adversarial networks
[42], neural waveform models [43], waveform concatena-
tion, waveform filtering [44], spectral filtering, and their
combination.

2) ASVspoof 2019 PHYSICAL ACCESS CORPUS

The PA database contains bona fide speech and spoofed
speech data generated according to a simulation of their pre-
sentation to the microphone of an ASV systemwithin a rever-
berant acoustic environment. Training and development data
is created by simulating 27 different acoustic and 9 different
replay configurations. Acoustic configurations comprise an
exhaustive combination of 3 categories of room sizes, 3 cat-
egories of reverberation and 3 categories of speaker-to-ASV
microphone distances. Replay configurations comprise 3 cat-
egories of attacker-to-talker recording distances, and 3 cate-
gories of loudspeaker quality. Evaluation data is generated in
the samemanner as training and development data, albeit with
different, random acoustic and replay configurations. Thus,
the set of room sizes, levels of reverberation, speaker-to-ASV
microphone distances, attacker-to-talker recording distances
and loudspeaker qualities, are different from those of training
and development.
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B. SYSTEM DESCRIPTION

This section provides a detailed description of the imple-
mented systems:

1) SPECTRAL ANALYSIS

Speech signals were analyzed using a Blackman analysis
window of 25 ms length with 10 ms of frame shift. Log mag-
nitude spectrogram features (STFT) with 256 frequency bins
were obtained to feed the neural network. No normalization
was applied to the input features.
We considered two techniques for obtaining an unified

time-frequency (T-F) shape of features. First, we truncated
the spectrum along the time axis with a fixed size of
T = 400 frames in order to feed a convolutional neural net-
work (CNN). During this procedure, short utterances were
extended by repeating their contents if necessary to match the
required length. Second, we used a sliding window approach
of W = 32 frames with a shift of δ = 12 frames in order to
feed a RNN.

2) LIGHT CONVOLUTIONAL NEURAL NETWORK

A simplified version of the recently proposed Light Convo-
lutional Neural Network (LCNN) [26] was employed in most
of our experiments, which is an architecture that has demon-
strated to be very effective to detect spoofed speech in the last
two ASVspoof challenges [26], [45]. It was the best system of
the ASVspoof 2017 challenge [45], and the best single system
in the LA scenario of the ASVspoof 2019 challenge [26].
Table 2 details the architecture of the LCNN used in our

experiments. In this model we truncated the spectrum of the
utterances to a fixed size of T = 400 frames. As can be
seen, the specific charasteristic of the LCNN architecture
[10] is the usage of the Max-Feature-Map activation (MFM)
which is based on the Maxout activation function [46]. Thus,
the LCNN is composed of 7 convolutional layers with MFM
activation, 4 max-pooling layers with kernel of size 2 × 2
and stride of size 2 × 2 in order to reduce both time and
frequency dimension, 6 batch normalization layers in order
to increase the stability and convergence speed during the
training process, and one fully connected layer with MFM
activation where the embedding vectors are extracted.

3) LIGHT CONVOLUTIONAL GATED RECURRENT

NEURAL NETWORK

We also used the Light Convolutional Gated Recurrent Neu-
ral Network (LC-GRNN) that we proposed in our previous
works [9], [47]. It was one of the ten top performing single
systems of the ASVspoof 2019 challenge [8]. This archictec-
ture, in contrast to the LCNN described above, is based on
a RNN, thus, having the potential advantage that there is no
need to truncate the utterance to extract the embeddings.
Table 3 shows a summary of the LC-GRNN architecture.

It processes context windows of W = 32 frames with a shift
of δ = 12 frames. It consists of 3 recurrent layers, where
each one has different light convolutional layers followed

TABLE 2. LCNN architecture used in the experiments. MFM stands for
Max Feature Map activation. FC stands for Fully Connected layer. "q"
denotes the dimension of the embedding vectors extracted by the LCNN.

TABLE 3. LC-GRNN architecture used in the experiments. MFM stands for
Max Feature Map activation. FC stands for Fully Connected layer. "q"
denotes the dimension of the embedding vectors extracted by the
LC-GRNN.

by a max-pooling operation which reduces the frequency
dimension. Also, batch normalization is applied in order to
increase the stability and convergence speed of the training
process. Once all the frame-level context windows are pro-
cessed by the convolutional and recurrent layers, 8 feature
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maps of size 32 × 32 are flattened to make up a feature
vector of 8192 components. Then, this vector is fed to a
fully connected layer with MFM activation to obtain the
embedding vector of the utterance.

4) TRAINING SETUP

The neural networks were trained using the Adam optimizer
[48] with a learning rate of 3 · 10−4. Also, early stopping was
applied when no improvement of the loss on the validation
set was obtained after five epochs. To prevent the problem of
overfitting, a 60% dropout was applied in the fully connected
layer of the two models. All the specified hyperparameters of
the systemswere optimized using the validation set of the data
corpora. The Pytorch toolkit [49] was employed to implement
the deep learning framework.

5) FINAL CLASSIFIER

The embeddings extracted from the utterances were finally
processed by a classifier, which produces a score per utter-
ance, indicating whether the utterance is genuine or spoofed.
Based on the results from our previous works [9], [47],
we used a probabilistic linear discriminant analysis (PLDA).
We also applied a posterior normalization of the scores. Pro-
vided the prior of the different classes is uniform, the normal-
ized score of the embedding vector e is

p(genuine|e) = log exp(p(e|genuine))
∑N

j=1 exp(p(e|j))
, (26)

where p(e|j) is the log posterior predictive probability of the
embedding vector e given class j (j = 1, . . . ,N ).

C. LOSS FUNCTIONS

This section details the usage and hyper-parameters of the
different loss functions employed to train the LCNN and LC-
GRNN models. We used N = 7 and N = 2 training classes
in the LA and PA scenarios, respectively. In the LA scenario,
we used the 6 known spoofing attacks and the genuine class.
In the PA scenario, we only used 2 classes: genuine and
spoofed speech.

1) CROSS ENTROPY OR SOFTMAX LOSS

This loss processes the embedding vectors with an additional
fully connected layer with softmax activation of N neurons
to discriminate between the genuine and the N − 1 spoofing
classes of the training set. After that, it applies the NLL to
build the cross-entropy or softmax loss.

2) ADDITIVE MARGIN LOSS

In our preliminary experiments we evaluated the cosface

[50], arcface [51] and sphereface [24] versions of the addi-
tive margin loss. The difference between them lies in the
additional margin m = 30◦, 64◦, 64◦ and the scaling factor
s = 0.4, 0.5, 1.35, respectively. The best performance in
the preliminary experiments was obtained with the cosface

version, so that we evaluated it in the rest of the experiments
as angular softmax loss.

3) GENERALIZED END-TO-END (GE2E) LOSS

The number of training classes (N ) is equal to the num-
ber of spoofing attacks of the training set plus the gen-
uine class. We evaluated two versions of the GE2E loss:
(i) GE2E with only the softmax loss, and (ii) GE2E with
the softmax and contrast losses together, as it is indicated
in Eq. (8).

4) SIAMESE LOSS

We evaluated a siamese variant called siamese-classification
hybrid architecture [52], which has been successfully applied
for replay spoofing detection [14]. This siamese network was
trained by outputting a softmax layer over the two targets:
similar and dissimilar input pairs. Thus, the network was
trained to identify genuine-genuine or spoof-spoof speech
as similar input pairs, and genuine-spoof pairs as dissimilar
inputs.

5) TRIPLET LOSS

We evaluated the triplet loss using all anchor-positive pairs
of the mini-batch and selecting the semi-hard negative utter-
ances which lie inside the margin α = 1.0, as shown in
Eq. (10).

6) KDE-BASED LOSS FUNCTIONS

We computed the log likelihood matrix Lji,k for every mini-
batch and evaluated three KDE-based loss functions: (i) KDE
softmax from Eq. (16), (ii) combination of KDE softmax and
contrast from Eq. (21), and (iii) KDE triplet from Eq. (19).
We evaluated them using different types of kernel func-
tions, as it is discussed in Section V-A1. In the KDE triplet
loss, we used all anchor-positive pairs of the mini-batch and
selected the semi-hard negative utterances which lie inside
the margin α = 1.0.

D. PERFORMANCE METRICS

The evaluation of the anti-spoofing system is done in terms
of the pooled equal error rate (EER) across all attacks,
and the minimum normalized tandem detection cost func-
tion (min-tDCF) [53] for both the LA and PA scenarios,
separately.

V. EXPERIMENTAL RESULTS

This section presents the results from the evaluation on the
ASVspoof 2019 corpus. First, Section V-A evaluates the
performance on the LA and PA evaluation sets of the anti-
spoofing system based on a LCNN,which is trained using dif-
ferent embedding sizes, batch sizes and training techniques.
Then, Section V-B is devoted to evaluate the performance
of the anti-spoofing system based on a more complex neural
network (LC-GRNN), which is trained with the proposed loss
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TABLE 4. Results on ASVspoof 2019 logical and physical access test sets in terms of EER (%) of the LCNN based anti-spoofing system trained using KDE
based loss functions (embeddings size of 32 and batch size of 140) with different kernel functions and optimizable bandwidths.

TABLE 5. Results on ASVspoof 2019 logical and physical access test sets in terms of EER (%) of the LCNN based anti-spoofing system trained using GKDE
based loss functions (embeddings size of 32 and batch size of 140) with fixed and optimizable bandwidths.

functions, and its performance is compared to other state-of-
the-art systems.

A. LCNN RESULTS

1) EVALUATION OF THE KERNEL FUNCTION

The objective of this experiment is to analyze the perfor-
mance of the proposed KDE loss functions when using dif-
ferent types of kernel functions. Table 4 reports the EERs
obtained when training the LCNN with the proposed KDE
based loss functions, with different kernels and using learn-
able bandwidths per training class (see next section for more
details about the optimization of the bandwith). From our pre-
liminary experiments, we chose an embedding size of 32 and
a batch size of 140. As can be seen, the best performance is
obtained with the Gaussian kernel, followed by the Epanech-
nikov [36], triangular [54] and uniform [54] kernels, respec-
tively. The maximum difference of EER is 0.34 and 0.43%,
which is achieved when comparing the uniform and Gaussian
kernels in the KDE softmax and contrast loss function on
the LA and PA scenarios, respectively. This means that there
are no large differences of performance when employing
different kernels. Since the Gaussian kernel obtains the best
results, we will use it in the rest of the paper, and the resulting
loss function will be referred to as Gaussian kernel density
estimation (GKDE) based loss function.

2) EVALUATION OF THE GKDE BANDWIDTH

Next, we evaluate the performance achieved by the GKDE
losses when using either fixed bandwiths σ 2

k (0.5, 1.0 and 2.0)
or learnable bandwidths, which are optimized along with the
rest of parameters of the LCNN. As can be seen in Table 5,
using a fixed bandwidth of σ 2

k = 1.0 slightly achieves a
better performance than using fixed bandwidths of σ 2

k = 0.5
and σ 2

k = 2.0. This can be due to the effect of under-
smoothing and over-smoothing when using small and large
bandwidths, respectively. However, the best performance is
always obtained when the class bandwidths are optimized

FIGURE 2. Class bandwidths optimization along the training process of
the GKDE softmax loss function in the LA evaluation scenario.

along with the rest of parameters of the neural network. For
instance, optimizing the bandwidths with the rest of param-
eters overcomes the fixed bandwidth of σ 2

k = 1.0 by an
absolute EER of 0.68 and 0.63 %when evaluating the GKDE
triplet loss function on the LA and PA scenarios, respectively.

Fig. 2 shows the optimization process of the class band-
widths through the different epochs when training the LCNN
for the LA scenario. Despite the values for the different
classes are not very different, the bandwidth of the genuine
class is the one which achieves the smallest value, followed
by the two types of VC attacks (A05 and A06). This result
makes sense since genuine speech should be the most homo-
geneous class in the space of spoofing-aware embedding
vectors. Furthermore, let us consider the three different types
of speech data in the LA training set: (i) genuine speech,
(ii) converted speech using two types of VC techniques
(A05 and A06), and (iii) artificial speech using four types of
TTS techniques (A01, A02, A03 and A04). As can be seen,
the optimized bandwidths are similar within each group of
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TABLE 6. Results on ASVspoof 2019 logical and physical access test sets in terms of EER (%) and min-tDCF of the LCNN based anti-spoofing system
trained using different loss functions and embedding sizes, and a batch size of 280 utterances.

FIGURE 3. Bar plot of pooled EERs (%) evaluated in the logical and
physical access test sets when the LCNN (embedding and batch size:
32 and 280, respectively) is trained with different techniques: (i) softmax;
(ii) angular softmax; (iii) triplet loss; (iv) GE2E softmax; (v) GE2E
softmax + contrast; (vi) GKDE softmax; (vii) GKDE softmax + contrast;
(viii) GKDE triplet.

speech nature, apart from the A02 attack which results to be
more similar to VC attacks. This can be due to the fact that the
waveform generator and acustic model employed to generate
A02 attack are similar to the ones employed for generating
the A05 attack [8].
According to the results of this study, we use learnable

bandwidths in the rest of experiments of this work.

3) EVALUATION OF THE EMBEDDINGS SIZE

Table 6 reports the EER and min-tDCF metrics achieved by
the LCNN-based anti-spoofing systemwhen trained using the
maximum batch size which we can hold in our computational
resources of 280 utterances (N = 7 classes and M = 40
utterances per class for the LA scenario, and N = 2 classes
and M = 140 utterances per class for the PA scenario), dif-
ferent embedding sizes (16, 32 and 64) and the loss functions
described in Sections II and III, namely: softmax, angular
softmax, siamese, triplet, GE2E softmax, GE2E softmax and
contrast, GKDE softmax, GKDE softmax and contrast, and
GKDE triplet. It can be seen that the proposed GKDE based
loss functions yield the best performance in terms of EER
andmin-tDCF, irrespective of the embedding size, on both the
LA and PA evaluation scenarios. Regarding the loss functions
described in Section II, the triplet loss achieves the best

FIGURE 4. Bar plot of pooled EERs (%) evaluated in the logical access test
set using an embedding size of 32 and training the LCNN with different
batch sizes and techniques.

FIGURE 5. Bar plot of pooled EERs (%) evaluated in the physical access
test set using an embedding size of 32 and training the LCNN with
different batch sizes and techniques.

performance on both the LA and PA scenarios, followed by
the softmax, angular softmax and siamese techniques. On the
other hand, the GE2E based loss functions yield the worst
performance. This could be due to the effect of smoothing
caused by the use of a centroid for representing each class.

Moreover, the use of an embedding size of 32 is the
best option for almost all the loss functions, and this size
matches the embedding size selected in [45], which employs
a similar LCNN based anti-spoofing system. To highlight
the performance differences between the different techniques,
Fig. 3 shows the pooled EERs achieved by each technique
when using an embedding size of 32. As it can be seen,
the proposed GKDE softmax loss function outperforms its
counterpart softmax and GE2E softmax loss functions by an
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FIGURE 6. Representation of the logical access test embeddings using t-SNE: (a) softmax loss; (b) GKDE softmax loss; (c) triplet loss; (d) GKDE
triplet loss.

absolute pooled EER of 1.34 and 1.97% in the LA scenario,
respectively, as well as by 1.25 and 2.29% in the PA sce-
nario, respectively. Furthermore, when the softmaxGE2E and
GKDE loss functions are combined with a contrast loss, they
yield a better performance due to the fact that the contrast
loss helps to increase the inter-class variance. Related to this
fact, the GKDE triplet loss, which is able to increase the
inter-class variance while decreasing the intra-class variance
at the same time, yields the best performance of all loss
functions, outperforming its counterpart triplet loss by an
absolute pooled EER of 1.31 and 1.20% in the LA and PA
test sets, respectively.

4) EVALUATION OF THE BATCH SIZE

Fig. 4 and 5 shows the pooled EERs evaluated in the LA
and PA test sets, respectively, obtained by training the LCNN
with different loss functions and using different batch sizes
(70, 140, 210 and 280). The objective is to study the effect
of the batch size on the anti-spoofing results. The softmax,
angular softmax and siamese loss functions are not affected
by the selection of the batch size, since they almost obtain
the same EER in the four cases of batch size. However,
the performance of the rest of loss functions does depend
on the batch size. For instance, the triplet loss employs an
online selection of the positive and negative samples within
the batch, and it is more likely to find hard samples in a
larger mini-batch. Likewise, the GE2E and GKDE based loss
functions attain better performance when increasing the batch
size, since a better representation of every class is obtained.
Moreover, this performance difference is more noticeable in
the LA scenario than in the PA scenario, due to the fact that
M = 40 utterances per class are employed in the LA scenario,
while M = 140 utterances per class are used for training
the LCNN in the PA scenario. It is also quite remarkable that
the proposed GKDE based loss functions are the ones which
quantitatively improve more their performance when using a
larger batch size. This is due to the fact that KDE estimates the
pdf of each class in a 32-dimensional space (embedding size)
by placing a probability mass at every embedding sample
within the mini-batch, so the more samples per mini-batch
are used the more accurate is the representation of the pdf for

the classes. In contrast, the GE2E based techniques represent
each class with a centroid, being this representation less
affected by the changes in the batch size in comparison with
the KDE-based representation of every class in GKDE.

5) t-SNE EMBEDDINGS REPRESENTATION

For illustrative purposes, we represent the LA test embed-
dings (10,000 embeddings per class) in a two-dimensional
space using t-SNE [55], which preserves distances in a two-
dimension space. Fig. 6 shows the embeddings obtained by
the following loss functions: (a) softmax loss, (b) GKDE
softmax loss, (c) triplet loss, and (d) GKDE triplet loss.
As we can see, the clusters of the different LA attacks and
genuine class are more separated in the GKDE based loss
functions than in the classical softmax and triplet losses,
which explains the better performance of the proposed
GKDE based loss functions. According to the results of the
ASVspoof 2019 challenge [8], the VC attack A17, which is
generated using waveform filtering and employing a varia-
tional autoencoder as acoustic model, is the most difficult to
detect. This fact can also be seen in the t-SNE embeddings
representations, where the cluster of the A17 attack is the one
that overlaps the most with the genuine class cluster in the
four cases.

B. LC-GRNN RESULTS

To study the effect of employing a more complex neural
network architecture, we also evaluated the effectiveness of
the proposed GKDE losses on the LC-GRNN.

Table 7 compares the performance attained with the pro-
posed GKDE based loss functions on the ASVspoof 2019
database using the LC-GRNN architecture and other other
state-of-the-art single anti-spoofing systems from the lit-
erature. As can be seen, our proposed systems outper-
form the baseline anti-spoofing systems released with this
database (CQCC + GMM and LFCC + GMM), as well as
the other top performing single systems (presented to the
ASVspoof 2019 Challenge [8]) and our previous GRCNN
[47], in both the LA and PA scenarios. Specifically, the LC-
GRNN trained with the GKDE based triplet loss yields a
5.06 % and 10.12 % lower pooled EER than the best baseline
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TABLE 7. Comparison of single anti-spoofing systems performance on
the ASVspoof 2019 logical and physical access test sets in terms of
EER (%) and min-tDCF.

systems of the LA and PA scenarios, respectively. In addition,
it achieves a 3.25 % and 1.31 % better pooled EER than the
same system trained with the classical softmax loss proposed
in our previous work [9] for both the LA and PA scenarios,
respectively.
According to this evaluation, we can conclude that the

proposed GKDE based loss functions are effective for dif-
ferent types of neural network architectures such as CNNs,
RNNs and their combination. Moreover, the proposed sin-
gle anti-spoofing systems are among the best state-of-the-
art systems at detecting the recent attacks based on the latest
technologies [8].

VI. CONCLUSION

In this paper we proposed various loss functions, based on
kernel density estimation (KDE) techniques, which estimate
the probability density function (pdf) of every training class
in each mini-batch, and compute a log likelihood matrix
by using the embedding vectors and pdfs of all training
classes within the mini-batch. These loss functions address
three main problems that have been detected in conventional
loss functions: (i) the training samples which belong to the
same class are kept close to each other and the dissim-
ilar instances are kept far away on the embedding space
by using hard negative mining, (ii) the training classes are
fully represented by all the samples within the mini-batch,
by estimating with KDE a pdf per class which places a
probability mass at every embedding sample, and (iii) the
concept of distance measure between embedding vectors is
replaced by the concept of the probability that an embedding
vector belongs to a certain class, which has the advantage of
avoiding the selection of an appropiate distance measure and
embedding normalization technique. Experimental results on
the ASVspoof 2019 database have shown that the proposed
losses outperform other conventional loss functions that have
been used so far for training DNN-based antispoofing sys-
tems. Furthermore, it is shown that the performance gains

are not restricted to a sole neural network architecture, but
the proposed loss functions are effective for training different
types of neural networks such as CNNs, RNNs and their
combination.

We hope that this new concept of loss functions can be
rather considered a general approach since it can be applied
to any DNN-based embedding extraction system which com-
prises fully connected layers. As future work, we will evalu-
ate the proposed loss functions in other speech related tasks
such as ASV and integration of ASV and PAD systems.
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