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A Kernel Fuzzy c-Means Clustering-Based Fuzzy
Support Vector Machine Algorithm for Classification

Problems With Outliers or Noises
Xiaowei Yang, Guangquan Zhang, Jie Lu, Member, IEEE, and Jun Ma

Abstract—The support vector machine (SVM) has provided
higher performance than traditional learning machines and has
been widely applied in real-world classification problems and non-
linear function estimation problems. Unfortunately, the training
process of the SVM is sensitive to the outliers or noises in the train-
ing set. In this paper, a common misunderstanding of Gaussian-
function-based kernel fuzzy clustering is corrected, and a kernel
fuzzy c-means clustering-based fuzzy SVM algorithm (KFCM-
FSVM) is developed to deal with the classification problems with
outliers or noises. In the KFCM-FSVM algorithm, we first use the
FCM clustering to cluster each of two classes from the training set
in the high-dimensional feature space. The farthest pair of clusters,
where one cluster comes from the positive class and the other from
the negative class, is then searched and forms one new training
set with membership degrees. Finally, we adopt FSVM to induce
the final classification results on this new training set. The com-
putational complexity of the KFCM-FSVM algorithm is analyzed.
A set of experiments is conducted on six benchmarking datasets
and four artificial datasets for testing the generalization perfor-
mance of the KFCM-FSVM algorithm. The results indicate that
the KFCM-FSVM algorithm is robust for classification problems
with outliers or noises.

Index Terms—Classification, fuzzy c-means (FCM), fuzzy
support vector machine (FSVM), high-dimensional feature space,
kernel clustering, outliers or noises.

I. INTRODUCTION

THE support vector machine (SVM) is an important
methodology for classification problems [10], [37], [44]

and nonlinear function estimation problems [19] in the fields
of pattern recognition and machine learning. The researchers
have presented some important SVMs, such as Lagrangian SVM
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(LSVM) [39], ν-SVM [48], and least-squares SVM (LS-SVM)
[50], and obtained some bounds of classification errors [54].
In many real-world applications, such as financial time-series
forecasting [5], image classification [6], [8], bioinformatics [9],
face recognition [11], [29], and face authentication [25], [43],
the SVM and its hybrid algorithms have been shown to yield
higher performance. The SVM first maps the input points into a
high-dimensional feature space and then constructs a separating
hyperplane that maximizes the margin between two classes in
this space. With no knowledge of the mapping, the SVM finds
the optimal hyperplane by using the dot product functions, called
kernels, in the high-dimensional feature space [53]. The solu-
tion of the optimal hyperplane can be written as a combination
of a few input points that are called support vectors.

One of the main drawbacks in the application of the standard
SVM is that the training process of the SVM is sensitive to
the outliers or noises in the training dataset due to overfitting
[64]. In many real-world classification problems, neither train-
ing point exactly belongs to any of the two classes when the out-
liers or noises exist. For example, one training point may belong
95% to one class and be 5% meaningless, and it may also belong
30% to one class and be 70% meaningless. This uncertainty re-
sults in some training points being more important than others
for making decision. Considering that fuzzy approaches have
been widely applied to uncertain problems, Huang and Liu [22]
and Lin and Wang [35] have proposed fuzzy SVMs (FSVM) in-
dependently based on the unilateral weights and standard SVM
model for classification problems with outliers or noises. As a
fuzzy extension of the proximal SVM, the fuzzy linear prox-
imal SVM has also been suggested [23]. A key issue for the
FSVM is how to set the fuzzy memberships of training data
points, and much work has been done on this. By introduc-
ing the confident factor and the trashy factor into the training
dataset, Lin and Wang claimed that the approach for automatic
setting of fuzzy memberships had been proposed [36]. In this
method, many parameters have to be optimized, which makes
it very difficult to set the confident factor and the trashy factor
automatically. Based on the distance between a sample and its
class center in the high-dimensional feature space, a new fuzzy
membership function has also been designed [24], which is a
kernel extension of the formulation in [35]. In the aforemen-
tioned algorithms, the fuzzy membership si can be regarded
as the degree of the corresponding training point belonging to
one class in the classification problem, and the value 1 − si

can be regarded as the degree of meaninglessness. Considering
that the same training sample may belong to multiple classes,

1063-6706/$26.00 © 2010 IEEE
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a bilateral weights-based FSVM model has been presented [55].
At present, this model faces two main difficulties: how to set
fuzzy memberships and how to decrease computational com-
plexity. For the regression problems with outliers or noises, the
weighted LS-SVM has been developed [49], where the sam-
ple weights are set by solving an unweighted LS-SVM model.
Based on the fuzzy c-means (FCM) clustering in the origi-
nal input space and the fuzzy IF–THEN rules, the ε-insensitive
fuzzy model for multi-input single-output regression problems
[32], [33], ε-insensitive fuzzy c-regression model for multi-input
multi-output regression problems [31], and the ε-margin non-
linear classification model [30] have been proposed. In these
three models, the strategies of iteratively setting sample weights
and ensemble learning have been adopted, where the strategy
of iteratively setting sample weights is similar to the two-stage
strategy of solving the linear system in [49]. In the case of in-
put variables being fuzzy numbers, Hong and Hwang [20] have
proposed a support vector fuzzy regression machine. At present,
how to set the reasonable sample memberships in the field of
pattern recognition and machine learning is still an open and
important problem.

The goals of this paper are to propose a strategy of setting the
reasonable sample memberships and to design a robust FSVM
algorithm for classification problems with outliers or noises. In
the fields of machine learning and pattern recognition, clustering
in the high-dimensional feature space is usually called kernel
clustering [14]. In recent years, researchers have undertaken
much work in kernel clustering. Wu et al. [58] have presented
a kernel FCM (KFCM) clustering algorithm, Du et al. [12]
have designed an entropic-regularization-based KFCM cluster-
ing algorithm, Mizutani and Miyamoto [40] have suggested an
entropic-regularization-based kernel possibilistic FCM cluster-
ing algorithm, Yang et al. [60] have proposed a Mercer kernel-
based deterministic annealing algorithm, Rhee et al. [46] have
developed a kernel version of [42], and Kim et al. [27] have
evaluated the performance of kernel fuzzy clustering algorithms.
The results have shown that kernel fuzzy clustering is more ro-
bust than fuzzy clustering in the original input space for pattern-
recognition problems with outliers or noises. Considering that
fuzzy clustering can identify the distributions of the training
points in different clusters and SVM can provide a good gen-
eralization performance, motivated by the design idea in [30],
we develop in this paper a KFCM-clustering-based FSVM algo-
rithm (KFCM-FSVM) to deal with the classification problems
with outliers or noises. In the KFCM-FSVM algorithm, three
steps will be conducted. First, the FCM clustering algorithm is
used to cluster each of two classes from the training set in the
high-dimensional feature space to obtain a fuzzy partition of
the high-dimensional feature space. Second, the farthest pair of
clusters, which belong to different classes and form one binary
classification problem with membership degrees, is searched.
Finally, the FSVM algorithm is adopted to induce the final clas-
sification results based on the training set composed of data
points with membership degrees obtained in step 2. The exper-
iments are conducted on six benchmarking datasets and four
artificial datasets to test the generalization performance of the
KFCM-FSVM algorithm.

The noises in classification problems are usually divided into
two categories [56]: attribute noise and class noise. The attribute
noises are represented by errors that are introduced to attribute
values. Examples of these external errors include the erroneous
attribute values, the missing attribute values, and the incomplete
attributes values. The class noises are usually subdivided into
two categories: 1) contradictory examples: The same examples
appear more than once and are labeled with different classes;
and 2) misclassifications: The examples are labeled with wrong
classes. This type of error is common in situations, where dif-
ferent classes have similar symptoms. The outliers are the data
points, which are far from the other data points, and they are not
usually error data. In this paper, we mainly deal with classifica-
tion problems with outliers or misclassification noise.

The rest of the paper is organized as follows. The FSVM
model for classification problems is briefly reviewed in
Section II. The KFCM clustering algorithm and its validity
are briefly reviewed in Section III. In Section IV, we discuss
a common misunderstanding of Gaussian-function-based ker-
nel fuzzy clustering. In Section V, we give the KFCM-FSVM
algorithm in detail. The computational complexity analysis of
the KFCM-FSVM algorithm is discussed in Section VI. The
experimental results and analysis are presented in Section VII.
Finally, we give the related conclusions in Section VIII.

II. FUZZY SUPPORT VECTOR MACHINE MODEL

FOR CLASSIFICATION PROBLEMS

Let us consider a training set of l pairs of data points
{xi , yi , si}l

i=1 for a binary classification problem, where xi ∈
Rn are the input data, yi ∈ {−1,+1} are the corresponding
binary class labels, and si ∈ (0, 1] is the fuzzy membership de-
gree of xi belonging to yi . The FSVM model for the binary
classification problems is a quadratic programming (QP) prob-
lem based on the inequality constraints and can be described in
the following [35]:

min
w ,b,ξ

J(w, b, ξ) =
1
2
wT w + γ

l∑
i=1

siξi (1)

s.t.

yi [wT ϕ(xi) + b] ≥ 1 − ξi, i = 1, . . . , l (2)

ξi ≥ 0, i = 1, . . . , l (3)

where w is a normal vector of the hyperplane, b is a bias, ϕ(xi) is
a nonlinear function that maps xi to a high-dimensional feature
space, ξi is the error in misclassification, and γ is a regularization
constant that controls the tradeoff between the classification
margin and cost of misclassification.

The corresponding dual expression of the optimization
problem (1)–(3) is as follows:

max
α

l∑
i=1

αi −
1
2

l∑
i,j=1

αiαjyiyjK(xi ,xj ) (4)
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s.t.

l∑
i=1

αiyi = 0 (5)

0 ≤ αi ≤ γsi, i = 1, . . . , l (6)

where αi is a Lagrange multiplier, and K(xi ,xj ) is a kernel
function defined as follows:

K(xi ,xj ) = ϕ(xi)ϕ(xj ). (7)

In the field of SVM, polynomial, Gaussian, and sigmoid func-
tions are three commonly used kernel functions and are repre-
sented by the following equations, respectively,

K(xi ,xj ) = (xi · xj + b)d (8)

K(xi ,xj ) = e−
−‖x i −x j ‖2

2 σ 2 (9)

K(xi ,xj ) = tanh(α(xi · xj ) + β). (10)

In (8), d is a degree of the polynomial function, and b is an
offset constant. In (9), σ2 is a variance parameter, and in (10),
α and β are constant parameters of the sigmoid kernel function.

The optimization problem (4)–(6) can be solved by sequen-
tial minimal optimization (SMO) [26]. Once the FSVM model
has been solved, the class label of a testing example x can be
predicted as follows:

y(x) = sgn

[
l∑

j=1

αjyjK(x,xj ) + b

]
. (11)

III. KERNEL FUZZY c-MEANS CLUSTERING

ALGORITHM AND ITS VALIDITY

Clustering is one of the most useful tasks in the data-mining
process for discovering clusters and identifying interesting dis-
tributions and patterns in the underlying data. The clustering
problem concerns partitioning a given dataset into clusters, such
that the data points in a cluster are more similar to each other
than the data points in different clusters. The partitions may de-
fine a hard boundary between subpartitions; this is called hard
clustering [38]. In contrast, the boundaries between subparti-
tions generated by a fuzzy clustering algorithm are vague [3].
This means that each data point of a fuzzy partition belongs to
different clusters with different membership degrees. FCM clus-
tering is one of the most important fuzzy clustering algorithms
in the field of pattern recognition and data mining and has been
widely studied [13], [17], [21], [51]. In order to study the distri-
bution of the data points in a high-dimensional feature space, a
KFCM has been developed [58], and the detailed computational
steps are as follows.

1) Choose the cluster number C and the termination param-
eter ε1 .

2) Choose the kernel function K and its parameters.
3) Initialize the cluster centroids vj , j = 1, 2, . . . , C.

4) Compute the membership degrees uij of data point xi in
the jth cluster i = 1, 2, . . . , l and j = 1, 2, . . . , C

uij =
(1/d2(xi ,vj ))1/m−1∑C

p=1 (1/d2(xi ,vp))1/m−1
(12)

where

d2(xi ,vp) = K(xi ,xi) − 2K(xi ,vp) + K(vp ,vp).
(13)

5) Compute the new kernel matrices K(xi ,vnew
p ) and

K(vnew
p ,vnew

p )

K
(
xi ,vnew

p

)
= ϕ(xi) · ϕ

(
vnew

p

)
=

∑l
k=1 (ukp)m K(xk ,xi)∑l

k=1 (ukp)m
(14)

K
(
vnew

p ,vnew
p

)
= ϕ

(
vnew

p

)
· ϕ(vnew

p )

=
∑l

k=1
∑l

n=1 (ukp)m (unp)m K(xk ,xn )( ∑l
k=1 (ukp)m

)2

(15)

where

ϕ
(
vnew

p

)
=

∑l
k=1 (ukp)m ϕ(xk )∑l

k=1 (ukp)m
. (16)

6) Update the membership degrees uij to unew
ij , according to

(12).
7) If max

i,j
|uij − unew

ij | < ε1 , stop; otherwise, go to 5).

Cluster validity is one of the most important issues in cluster
analysis [18]. A reliable validation index for a fuzzy clustering
must consider both the compactness and the separation of the
fuzzy partition. The optimal partitions require a maximal com-
pactness for each cluster such that the clusters are located far
from each other. Some validity indices suitable for fuzzy clus-
tering, such as VPC [2], generalized Dunn’s index [4], VOS [28],
VCWB [45], VXB [59], and VSC [62], have been developed.
For FCM clustering, Pal and Bezdek have evaluated the perfor-
mance of five validity indices and found that VXB provided the
best performance [41]. In this study, we use VXB in [59]. In the
high-dimensional feature space, it is denoted as follows when
m = 2:

S =

∑C
j=1

∑l
i=1 u2

ij d
2(xi ,vj )

l min
i,j

{d2(vi ,vj )}
. (17)

Our goal is to find the fuzzy c-partition with the smallest S.

IV. COMMON MISUNDERSTANDING OF

GAUSSIAN-FUNCTION-BASED KERNEL FUZZY CLUSTERING

The Gaussian-function-based kernel fuzzy clustering has
been widely used in theoretical research and real-world ap-
plications. Chen and Zhang [7], Liao et al. [34], and Zhang
and Chen [63] have applied it to magnetic resonance imaging
brain image segmentation, Yang and Tsai [61] have proposed
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a new version based on spatial bias correction, and Rhee et
al. [46], Tushir and Srivastava [52], Wu and Zhou [57], and Zhou
et al. [65] have applied it to possibilistic c-means clustering.
Unfortunately, the researchers mentioned earlier believe that
the preimages of the cluster centroids in the high-dimensional
feature space exist in the original input space. In fact, this is
a misunderstanding of Gausssian-function-based kernel fuzzy
clustering. In the following Theorem 1, we will prove that the
preimages of the cluster centroids in the high-dimensional fea-
ture space induced by the Gaussian kernel function do not nec-
essarily exist in the original input space.

Theorem 1: In the high-dimensional feature space induced
by the Gaussian kernel function, the preimages of the cluster
centroids induced by the FCM algorithm do not necessarily
exist in the original input space.

Proof: When the Gaussian kernel function is adopted, the
data points in the original input space are mapped into the sur-
face of the unit hypersphere in the high-dimensional feature
space. Assuming that the cluster centroid ϕ(vnew

j ) in the high-
dimensional feature space induced by Gaussian kernel function
has one preimage vnew

j in the original input space, it is obvi-
ous that the cluster centroid ϕ(vnew

j ) locates on the surface of
the unit hypersphere in the high-dimensional feature space. On
the other hand, from (16), it is known that ϕ(vnew

j ) is a con-
vex combination of the image vectors ϕ(xk ), k = 1, 2, . . . , l,
which are images of some points in the original input space,
in the high-dimensional feature space. However, because these
image vectors ϕ(xk ), k = 1, 2, . . . , l locate on the surface of the
unit hypersphere, in general, ϕ(vnew

j ) should locate the interior
of the unit hypersphere in the high-dimensional feature space,
except that there is unique point in this cluster. This is a conflict,
which indicates that the preimages of the cluster centroids in the
high-dimensional feature space induced by the Gaussian kernel
function do not necessarily exist in the original input space.

V. FUZZY SUPPORT VECTOR MACHINE ALGORITHM BASED

ON KERNEL FUZZY C-MEANS CLUSTERING

Based on the KFCM clustering in the high-dimensional fea-
ture space and FSVM, in this section, we propose a KFCM-
FSVM algorithm to deal with the binary classification problems
with outliers or noises.

In the KFCM-FSVM algorithm, three steps will be conducted.
First, the FCM clustering algorithm is used to cluster each of
two classes from the training set in the high-dimensional feature
space to obtain a fuzzy partition of the feature space and discover
the distribution structures of the data points in the training set.
In this step, the outliers are usually assigned to the lower mem-
bership degrees. Second, the farthest pair of clusters, which
belong to different classes and form one binary classification
problem with membership degrees, is searched. In real-world
classification problems, the noises usually locate in the interac-
tion area between two classes. When the farthest pair of clusters
is adopted, the noises will be given lower membership degrees.
From the two steps mentioned earlier, we can obtain a reason-
able sample membership degree, which will degrade the effects
the outliers or noises have on the decision function. Finally, the

FSVM is adopted to induce the final classification results. The
detailed computational steps are as follows.

Step 1: Choose the kernel function K, and set the correspond-
ing hyperparameters.

Step 2: Cluster each of two classes (ω+ denotes the positive
class and ω− denotes the negative class) from the
training set in the high-dimensional feature space by
the FCM clustering algorithm and the validity index
to obtain a fuzzy partition of the corresponding class
in this feature space. Let the number of clusters in
the class ω+ be C+ and the number of clusters in the
class ω− be C−.

Step 3: Search for the farthest pair of clusters, in which one
cluster belongs to the positive class ω+ , and the other
belongs to the negative class ω−.

Step 4: The two farthest clusters obtained earlier compose a
new training set with membership degrees, and the
FSVM is conducted on this set to obtain a nonlinear
classifier with the parameters αi and b. It should be
noted that the difference between the new training set
and the original one is that the membership degrees
are assigned to every single data point in the new
training set.

Step 5: The class label of a testing example x is predicted by
(11).

If we replace KFCM with FCM in the KFCM-FSVM frame-
work, we call this algorithm the FCM-FSVM algorithm.

Compared with the work in [30], the KFCM-FSVM has five
changes. First, we partition the high-dimensional feature space,
while [30] partitions the original input space. Second, we adopt
the cluster validity index to determine the optimal cluster pa-
rameters C+ and C−, while [30] uses the equal cluster number.
Third, we select the farthest pair of clusters to degrade the effects
the outliers or noises have on the decision function, while [30]
selects C pairs of clusters according to the nearest centroid dis-
tance. Fourth, we solve one QP optimization problem, while [30]
solves C QP optimization problems. Finally, the single classi-
fier is linear in [30], whereas the nonlinear is presented by the
ensemble learning strategy, while there is only one nonlinear
classifier in the KFCM-FSVM algorithm.

The flowchart of the KFCM-FSVM algorithm is depicted in
Fig. 1.

VI. ANALYSIS OF THE COMPUTATIONAL COMPLEXITY

OF THE KERNEL FUZZY C-MEANS CLUSTERING-BASED FUZZY

SUPPORT VECTOR MACHINE ALGORITHM ALGORITHM

The computational cost of the proposed algorithm is com-
posed of the cost for KFCM clustering, the cost for searching
the farthest pair of clusters, and the cost for solving the FSVM
model. From (12)–(15), we know that the computational cost of
the KFCM clustering is O(t+ · C+ · l2+ + t− · C− · l2−) and that
the computational cost of searching the farthest pair of clusters
is O(C+ · C− · l+ · l−), where t+ and t−are the iterative times
of the positive and the negative classes, respectively, C+ and C−
are the corresponding cluster numbers, and l+ and l− are the
corresponding sample numbers. Because the FSVM model is
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Fig. 1. Flowchart of the KFCM-FSVM algorithm.

solved by SMO, the computational cost of the SMO algorithm
is O(l+ + l−)2.2) [44]. Therefore, the computational cost of
the proposed algorithm is O(t+ · C+ · l2+ + t− · C− · l2− + C+ ·
C− · l+ · l− + (l+ + l−)2.2).

VII. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, we will conduct experiments on
six benchmarking datasets and four artificial datasets
to test the generalization performance of the KFCM-
FSVM algorithm, for which the Pima Indians Dia-
betes (PIMA) dataset, waveform dataset, Statlog (Landsat
satellite) dataset (Sat dataset), and MONK dataset can be
downloaded from hpp://archive.ics.uci.edu/ml, and the Ba-
nana dataset can be downloaded from http://ida.first. gmd.de/
∼raetsch/data/benchmarks.htm.In order to show that the mem-
bership degrees are reasonable in the KFCM-FSVM algo-
rithm, the SVM, FSVM, and FCM-FSVM algorithms are also
implemented. In our experiments, the Gaussian kernel function
is adopted. In the KFCM-FSVM and the FCM-FSVM algo-
rithms, m = 2 and ε1 = 0.01, and a random partition matrix
is used for initialization. In the FSVM algorithm, the fuzzy

Fig. 2. Ripley dataset. (a) Training set. (b) Testing set.

membership degrees are set according to the strategy in [24],
where δ = 0.01. All computations are conducted on a server
with a dual 2.0-GHz Intel Xeon processor and a maximum of
4.0-GB memory running CentOS Linux 5.3. All the programs
are written in C++ and compiled using a GCC 4.2 compiler.

The datasets used in our experiments are described in detail
as follows.

1) Ripley dataset [47]: This dataset consists of 1250 patterns
with two features, and these patterns are assigned to two
classes. Each class has a bimodal distribution obtained
as a mixture of two normal distributions. The training
set consists of 250 patterns (125 patterns belonging to
each class), and the testing set consists of 1000 patterns
(500 patterns belonging to each class), which are illus-
trated in Fig. 2.

2) PIMA dataset: This dataset consists of real-world data
collected by the U.S. National Institute of Diabetes and
Kidney Diseases. It contains 768 patterns with eight fea-
tures, and these patterns are assigned to two classes. We
randomly select 576 patterns (202 patterns belonging to
the positive class and 374 patterns belonging to the neg-
ative class) for training and the remaining 192 patterns
(66 patterns belonging to the positive class and 126 pat-
terns belonging to the negative class) for testing.

3) Banana dataset: This dataset consists of patterns with two
features and these patterns are assigned to two classes.
The training set consists of 400 patterns (194 patterns
belonging to the positive class and 206 patterns belong-
ing to the negative class), and the testing set consists of
4900 patterns (2182 patterns belonging to the positive
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Fig. 3. Banana dataset. (a) Training set. (b) Testing set.

class and 2718 patterns belonging to the negative class),
which are illustrated in Fig. 3.

4) Waveform dataset: This dataset consists of 5000 pat-
terns with 21 features, and these patterns are assigned
to two classes. The training set consists of 400 patterns
(136 patterns belonging to the positive class and 264 pat-
terns belonging to the negative class), and the testing set
consists of 4600 patterns (1511 patterns belonging to the
positive class and 3089 patterns belonging to the negative
class).

5) Statlog (Landsat satellite) dataset (Sat dataset): This
dataset has 4435 training patterns and 2000 testing pat-
terns with 36 attributes, whose values are real numbers,
and six classes. These patterns are preprocessed to sepa-
rate classes {1, 2, 5} belonging to the positive class and
classes {3, 4, 7} belonging to the negative class.

6) MONK dataset: The MONK problem was the basis of
the first international comparison of learning algorithms.
There are three MONK problems. In this paper, the third
MONK problem with a random noise added to the data
was used. This dataset consists of 554 patterns with seven
features, and these patterns are assigned to two classes.
The training set consists of 122 patterns (60 patterns
belonging to the positive class and 62 patterns belong-
ing to the negative class), and the testing set consists of
432 patterns (228 patterns belonging to the positive class
and 204 patterns belonging to the negative class).

7) Artificial dataset 1: This dataset consists of 560 pat-
terns with two features, and these patterns are assigned
to two classes. The training set consists of 279 patterns

Fig. 4. Artificial dataset 1. (a) Training set. (b) Testing set.

(140 patterns belonging to the positive class and 139 pat-
terns belonging to the negative class), and the testing set
consists of 281 patterns (140 patterns belonging to the
positive class and 141 patterns belonging to the negative
class), which are illustrated in Fig. 4.

8) Artificial dataset 2: This dataset consists of 1260 pat-
terns with two features, and these patterns are assigned
to two classes. The training set consists of 630 patterns
(293 patterns belonging to the positive class and 337 pat-
terns belonging to the negative class), and the testing set
consists of 630 patterns (297 patterns belonging to the
positive class and 333 patterns belonging to the negative
class), which are illustrated in Fig. 5.

9) Artificial dataset 3: This dataset is a “ring-shaped” dataset
and consists of 680 patterns with two features, and these
patterns are assigned to two classes. The training set con-
sists of 344 patterns (173 patterns belonging to the positive
class and 171 patterns belonging to the negative class), and
the testing set consists of 336 patterns (163 patterns be-
longing to the positive class and 173 patterns belonging to
the negative class), which are illustrated in Fig. 6.

10) Artificial dataset 4: This dataset is a “T-shaped” dataset. It
consists of 440 patterns with two features, and these pat-
terns are assigned to two classes. The training set consists
of 221 patterns (110 patterns belonging to the positive
class and 111 patterns belonging to the negative class),
and the testing set consists of 219 patterns (109 patterns
belonging to the positive class and 110 patterns belonging
to the negative class), which are illustrated in Fig. 7.

In our experiments, two goals will be pursued and attained.
The first goal is to show that the membership degrees are
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Fig. 5. Artificial dataset 2. (a) Training set. (b) Testing set.

reasonable in the KFCM-FSVM algorithm, and the second
goal is to show that the KFCM-FSVM algorithm yields statis-
tically reliable results. In order to reach the first goal, based
on the grid method, where σ = [2−4 , 2−3 , 2−2 , . . . , 25] and
γ = [20 , 21 , 22 , . . . , 29], we first run four algorithms on the
whole training set and obtain the decision function and then
use the decision function to predict the data in the testing set.
The testing accuracy, the optimal cluster number, and the cor-
responding optimal hyperparameters from four algorithms are
reported in Table I. In consideration of the fact that the FCM-
FSVM and KFCM-FSVM algorithms are sensitive to the initial
cluster centroids, they run ten times independently. The testing
accuracy corresponding to the FCM-FSVM and KFCM-FSVM
algorithms in Table I is the best testing accuracy in ten trials.
To show that the KFCM-FSVM algorithm is more robust than
the FCM-FSVM algorithm for classification problems with out-
liers or noises, ten results conducted by two algorithms on the
waveform dataset, artificial dataset 3, and artificial dataset 4

Fig. 6. Artificial dataset 3. (a) Training set. (b) Testing set.

Fig. 7. Artificial dataset 4. (a) Training set. (b) Testing set.

are listed in Tables II–IV, respectively. In order to reach the
second goal, we use the five-fold cross-validation strategy to
reconduct all the experiments for the SVM, FSVM, FCM-
FSVM, and KFCM-FSVM algorithms. The detailed experi-
mental steps are as follows. First, we randomly divide the given
training set W into five subsets of approximately equal size, i.e.,
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TABLE I
COMPARISON OF THE BEST RESULTS CONDUCTED BY THE SVM, FSVM,
FCM-FSVM, AND KFCM-FSVM ALGORITHMS ON THE TEN DATASETS

W1 ,W2 , . . . ,W5 , where Wi ∩ Wj = ∅. Second, for each pair of
hyperparameters (σ, γ), where σ = [2−4 , 2−3 , 2−2 , . . . , 25] and
γ = [20 , 21 , 22 , . . . , 29], we run the given algorithm on W\Wk ,
test the trained classifier on Wk to get the testing accuracy
Tk , where k changes from one to five, and compute the aver-
age testing accuracy Taverage = 1/5

∑5
k=1 Tk . Third, we find

the maximum average testing accuracy and the corresponding
hyperparameters. The results obtained by the five-fold cross-
validation strategy are unbiased and listed in Table V.

Table I indicates that the KFCM-FSVM algorithm gives eight
best results on ten datasets. For the artificial datasets 2 and 3, the
results of the KFCM-FSVM algorithm are also the second best.
The reason why the KFCM-FSVM algorithm can present better
testing accuracy is that on the one hand, in the KFCM-FSVM
algorithm, the data points in the original input space are first
mapped into a hyperspherical surface in the high-dimensional
feature space, and the FCM clustering is then conducted on
these spherical data points, which completely takes advantage
of the FCM clustering to degrade the effects the outliers have on
the decision function; on the other hand, the strategy of select-
ing the farthest pair of clusters degrades the effects the noises
have on the decision function. The FCM-FSVM algorithm gives
seven in ten results that are superior to the results of the SVM
and FSVM algorithms. Compared with the SVM algorithm, the
FSVM algorithm based on the strategy of setting the fuzzy mem-

TABLE II
COMPARISON OF THE RESULTS OBTAINED BY THE FCM-FSVM AND

KFCM-FSVM ALGORITHMS ON WAVEFORM DATASET

TABLE III
COMPARISON OF THE RESULTS OBTAINED BY THE FCM-FSVM AND

KFCM-FSVM ALGORITHMS ON ARTIFICIAL DATASET 3

TABLE IV
COMPARISON OF THE RESULTS OBTAINED BY THE FCM-FSVM AND

KFCM-FSVM ALGORITHMS ON ARTIFICIAL DATASET 4
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TABLE V
COMPARISON OF THE RESULTS CONDUCTED BY THE SVM, FSVM,

FCM-FSVM, AND KFCM-FSVM ALGORITHMS ON THE TEN TRAINING SETS

BASED ON FIVE-FOLD CROSS-VALIDATION STRATEGY

bership degrees in [24] can improve the testing accuracy for the
datasets, where the outliers or noises are far from the data cen-
troid. For example, the results of the FSVM algorithm are better
than those of the SVM algorithm for the Ripley dataset and the
artificial datasets 1 and 3. The reason is that the strategy in [24]
is based on the hypersphere. When the outliers or noises are far
from the data centroid, they will be assigned to lower member-
ship degrees and will have lesser effects on the decision function.

In Tables II–IV, it can be seen that both the FCM-FSVM
and KFCM-FSVM algorithms are sensitive to the initial clus-
ter centroids, which is the main shortcoming of the presented
algorithm. The reason is that both of them are based on FCM
clustering. Generally speaking, the KFCM-FSVM algorithm is
more robust than the FCM-FSVM algorithm for classification
problems with outliers or noises. For example, six in ten results
of the FCM-FSVM algorithm are less than that of the SVM al-
gorithm, while one in ten results of the KFCM-FSVM algorithm
is less than that of the SVM algorithm for the waveform dataset.
For the artificial dataset 4, five in ten results of the FCM-FSVM

algorithm are less than the one of the SVM algorithm, while
no result of the KFCM-FSVM algorithm is less than that of the
SVM algorithm.

The unbiased results in Table V indicate that the testing ac-
curacy of the KFCM-FSVM algorithm is the best on all of the
training sets, which shows that the proposed KFCM-FSVM al-
gorithm provides statistically reliable results.

VIII. CONCLUSION

This paper proposes a KFCM-clustering-based FSVM algo-
rithm for classification problems with outliers or noises. The
contributions of this paper are as follows. First, a common mis-
understanding of Gaussian-function-based kernel fuzzy cluster-
ing in the high-dimensional feature space is corrected. Second,
the KFCM-FSVM algorithm is proposed for classification prob-
lems with outliers or noises. The experiments have been con-
ducted on six benchmarking datasets and four artificial datasets
to test the generalization performance of the KFCM-FSVM al-
gorithm. The results show that the KFCM-FSVM algorithm
based on the FCM clustering in the high-dimensional feature
space presents the most reasonable membership degrees and is
more robust than the FCM-FSVM algorithm based on the FCM
clustering in the original input space, SVM, and FSVM for clas-
sification problems with outliers or noises. Third, the computa-
tional complexity of the KFCM-FSVM algorithm is presented.
It should be noted that although the KFCM-FSVM algorithm is
tested on the binary classification problems, it can be applied to
multiclassification problems without difficulty. However, it does
not fit large-scale classification problems with outliers or noises.

In future work, we will investigate the techniques of data sam-
pling and data compressing so that the proposed algorithm can
be extended to large-scale classification problems with outliers
or noises. Another interesting topic would be to solve the prob-
lem in which FCM is sensitive to the initial cluster centroids.
A possible extension of the KFCM-FSVM algorithm would be
to handle the nonlinear function estimation problems with out-
liers or noises. Further study on this topic will also include
the accuracy measure of fuzzy classification [1], [15], [16] and
many applications of the KFCM-FSVM algorithm in real-world
problems.
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