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A Kernel-Induced Space Selection Approach to
Model Selection in KLDA

Lei Wang, Member, IEEE, Kap Luk Chan, Member, IEEE, Ping Xue, Senior Member, IEEE, and
Luping Zhou, Member, IEEE

Abstract—Model selection in kernel linear discriminant analysis
(KLDA) refers to the selection of appropriate parameters of a
kernel function and the regularizer. By following the principle
of maximum information preservation, this paper formulates the
model selection problem as a problem of selecting an optimal
kernel-induced space in which different classes are maximally
separated from each other. A scatter-matrix-based criterion is de-
veloped to measure the “goodness” of a kernel-induced space, and
the kernel parameters are tuned by maximizing this criterion. This
criterion is computationally efficient and is differentiable with re-
spect to the kernel parameters. Compared with the leave-one-out
(LOO) or -fold cross validation (CV), the proposed approach
can achieve a faster model selection, especially when the number
of training samples is large or when many kernel parameters
need to be tuned. To tune the regularization parameter in the
KLDA, our criterion is used together with the method proposed
by Saadi et al. (2004). Experiments on benchmark data sets verify
the effectiveness of this model selection approach.

Index Terms—Kernel-induced space selection, kernel linear dis-
criminant analysis (KLDA), kernel parameter tuning, model selec-
tion.

I. INTRODUCTION

T
HE kernel linear discriminant analysis (KLDA or KFDA)

incorporates the kernel trick into the linear discriminant

analysis (LDA) [2]–[5]. Through a kernel function, data from

different classes are implicitly mapped from an input space to

a kernel-induced feature space. The LDA is then performed

in the kernel-induced feature space to find an optimal direc-

tion along which the separability of different classes is maxi-

mized. The kernel mapping is often nonlinear, and the dimen-

sionality of the induced feature space can be very high or even

infinite [6]. The nonlinearity and the high dimensionality help

the KLDA achieve better performance than the LDA, especially

when dealing with linearly nonseparable classes. The KLDA
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has been used in a wide range of practical applications, in-

cluding feature discovery, data visualization, as well as classifi-

cation [7]–[9].

Like in other kernel-based learning algorithms, the KLDA

also depends on correct model selection. Models that are too

complex will overfit training data, whereas oversimplified

models cannot effectively capture the underlying structure.

Both situations will result in poor classification performance

when the KLDA is applied to unseen data. Given a kernel

function, model selection for KLDA aims to tune the kernel

parameters and the regularization parameter to achieve the best

possible discrimination.

Unfortunately, the KLDA cannot do model selection by it-

self. In other words, the model parameters cannot be tuned by

simply maximizing the KLDA’s objective function in (2). This

is because the KLDA will overfit training data with an unnec-

essarily complex model, as demonstrated by the experimental

study in Fig. 1. When the model parameters are heuristically

or empirically set, it is hard to know whether they can lead to

sufficiently good discrimination performance. Instead of finding

them by trial and error, a systematic and algorithmic approach

with sound principles is desired to find the best model parame-

ters.

In the literature, a few criteria have been developed to op-

timize the model parameters for KLDA [2], [10], [11], [1],

[12], [13]. The commonly used -fold or leave-one-out (LOO)

cross-validation (CV) error rate is employed in [2]. The model

parameter set that minimizes the error rate is searched. The

search technique can be a straightforward exhaustive grid-based

search or other more sophisticated ones. Traditionally, to eval-

uate the -fold or LOO CV error rate, the KLDA has to be

trained and tested on multiple pairs of training and validation

subsets. For each model parameter set, the computational com-

plexity of evaluating an LOO CV error rate can reach ,

where is the number of training samples.

Efforts have been made to reduce this computational

complexity. In [10] and [11], the Bartlett–Sherman–Wood-

bury–Morrison formula is employed to solve a series of matrix

inverses in a more efficient way. By doing so, the LOO CV error

rate can be evaluated by merely computing the inverse of an

matrix once. This reduces the computational complexity

from to . Along this direction, the work in [11]

and [1] uses the Nelder–Mead simplex method to efficiently

search for the optimal model parameter set that minimizes the

LOO CV error rate. A plus point of the method in [1] is that

it allows the regularization parameter to be tuned much more

rapidly if the kernel parameters are given. It is worth noting that

the LOO CV error rate used in [11] and [1] is differentiable,

1045-9227/$25.00 © 2008 IEEE
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and therefore, a gradient-based optimization technique can be

applied. In addition, the LOO CV error rate in their work can

handle multiple kernel parameter tuning, although the case

of single kernel parameter tuning is the focus there. In [12],

the LOO CV error rate is modified to be differentiable by

approximating a step function with a smooth sigmoid function.

In [13], a Bayesian interpretation of the KLDA is provided. The

marginal log-likelihood of the data, which is also differentiable,

is maximized to tune the model parameters. Nevertheless, each

evaluation of the criteria in [11], [1], [12], and [13] still requires

the matrix-inverse operation to be performed once, leading to

a computational complexity of . When the number of

training samples is large or when many kernel parameters are

to be tuned, this can still result in a lengthy model selection

process, even if the gradient-based optimization technique is

used. To make the KLDA applicable to practical applications in

which a faster model selection process is desired, there is still

room for improvement.

This paper tackles the model selection problem of the KLDA

from another perspective. Our key idea is briefly described as

follows. It is known that each kernel function corresponds to an

implicit mapping from an input space to a kernel-induced fea-

ture space. The mapping and the resultant feature space change

with the kernel parameter values. Thus, given a kernel function,

tuning the kernel parameters can be interpreted as finding an

optimal feature space with which the KLDA can achieve the best

discrimination performance. The optimal feature space can be

defined as follows.

In designing an optimal perceptual system, the principle of

maximum information preservation [14] suggests that such a

system should be organized to make the information maximally

preserved when passing each processing stage. Recall that the

key information in the KLDA is class separability. Applying this

principle means that the class separability should be maximally

preserved when passing each mapping, including the mapping

from an input space to a feature space. This can be intuitively un-

derstood because information cannot be recovered in later steps

once it is lost. In this sense, an optimal feature space should

maximally preserve the separability of classes. Therefore, the

kernel parameters can be tuned by maximizing a class separa-

bility criterion in a kernel-induced feature space.

In this paper, the commonly used scatter-matrix-based class

separability criterion is adopted to measure the class separa-

bility in a kernel-induced feature space. This criterion includes

the kernel parameters as its functional variables. It has the fol-

lowing properties when being used as a model selection crite-

rion of KLDA. 1) It does not need to perform matrix inverses

or to train the KLDA. Once the kernel matrix is ready, this cri-

terion can be quickly evaluated with little computational over-

head. 2) It is differentiable as long as the kernel function is, and

its derivatives can be easily computed. This makes the criterion

quite suitable for the gradient-based optimization technique that

is critical for handling a large number of kernel parameters. 3)

This criterion is completely rooted in the KLDA. It does not

depend on the classifiers or the tasks subsequent to the KLDA.

However, this criterion is independent of the regularization pa-

rameter, which is also important for the KLDA. As a result, it

cannot be used to tune this parameter directly. To circumvent

this problem, this criterion is integrated with the method de-

veloped in [1]. By doing so, the regularization parameter can

be efficiently optimized once the kernel parameters have been

tuned. It is worth noting that this scatter-matrix-based criterion

was proposed in our previous work in [15] to tune the kernel pa-

rameters for support vector machines (SVMs). Such a criterion

is also used in [16] to optimize the conformal transformation of

a kernel for kernel-based learning algorithms.

The rest of this paper is organized as follows. In Section II, the

KLDA is briefly introduced. In Section III, the kernel-induced

feature space selection approach is proposed and a class sepa-

rability criterion is developed in a kernel-induced feature space.

The computational complexity and numerical stability of this

criterion are discussed. The problem in tuning multiple kernel

parameters with this criterion and the relationship between this

criterion and the KLDA are also discussed. Section IV presents

the experimental study using benchmark data sets. Finally, con-

cluding remarks and future work are given in Section V.

II. KERNEL LINEAR DISCRIMINANT ANALYSIS

Let denote a -dimensional

training sample, where denotes an input space and is

a class label. Let and denote the training sets from

the classes of and , respectively. The sizes of and

are and , respectively. Let denote the set of all

the training samples, and let its size be . In

the KLDA, two classes are implicitly mapped from to

a feature space, . The LDA is performed in to find an

optimal projection to a subspace , where the two classes are

maximally separated. Let denote the mapping

and denote the kernel function,

where is the set of kernel parameters and is the inner

product. denotes the kernel matrix and is defined as

. Let be a kernel matrix computed with the

samples from and , where and denote two subsets

of . Let and denote the between-class scatter matrix

and the within-class scatter matrix in , respectively. They are

defined as

(1)

where denotes the mean of the training samples from class

and is the mean of all the training samples in . The KLDA

finds a direction represented by the vector that

maximizes

(2)

Because the feature space is only accessible via the kernel

function, this maximization problem cannot be solved by the

usual method in the LDA [17]. As pointed out in [2], must lie
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in the span of all the training samples. Thus, is represented as

a linear combination of the training samples as

(3)

where is a matrix in which the th column is ,

and is a vector of expansion coefficients. From this, (2)

becomes

(4)

where and . and can be fully

represented by the kernel function as follows.

(5)

where is an -dimensional vector in which

and is obtained in a similar

way. The matrix is represented as

(6)

where is an identity matrix of size , and is a matrix

in which all the elements are . To ensure numerical stability

and to control the learning complexity, a regularized version of

is often used as

(7)

where is the regularization parameter in the KLDA. In this

way, in (4) can be obtained as the eigenvector of cor-

responding to the largest eigenvalue. The projection of to

the subspace is then obtained as

(8)

where denotes the projection. When performing classifica-

tion, both training and test data are projected to the subspace,

and a classifier, such as the Bayes classifier, is applied.

III. THE KERNEL-INDUCED SPACE SELECTION APPROACH

The KLDA is a process comprising two projections

(9)

A sample is successively projected to two spaces and ,

and finally, becomes . The class separability information is

presented at the left end of the process pipeline in (9), and it

is hoped that this information could be well preserved when it

reaches the right end. This forms a flow of information. Fol-

lowing the principle of maximum information preservation, the

optimal feature space should maximally preserve the class

separability information. Because the feature space changes

with the kernel parameter set , the model selection for KLDA

can be formulated as a feature space selection problem

(10)

where denotes a kernel parameter space and is a criterion

measuring the class separability in . The optimal kernel pa-

rameter set is obtained by maximizing the criterion .

A. A Realization of This Approach

In the following, the scatter-matrix-based measure is devel-

oped in a feature space to evaluate the class separability. This

measure can take the form of , or

other combinations [17]–[19], where denotes the trace of

a matrix and denotes the determinant. Note that the deter-

minant-based measure becomes invalid in this case because the

high dimensionality of can easily cause these scatter matrices

to be singular, resulting in zero determinants. Hence, this paper

adopts the trace-based measure and derives the traces of and

below. The superscript is used to distinguish the variables

in from those in the input space .

Recall that and denote the mean vectors of the

training samples from the classes of and in . Let be

a vector whose elements are all “1.” Its size will be decided by

the context. The following results can be obtained:

(11)

Based on these, and are derived as

(12)

(13)

The class separability in a feature space is obtained as

(14)

Thus, the kernel parameter set can be optimized as

(15)

Several issues about this criterion are discussed in the following

sections.

B. Computational Complexity

The proposed criterion has continuous first- and second-

order derivatives with respect to the kernel parameters as long

as the kernel function has. Hence, the maximization of
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can be solved by applying the gradient-based optimization tech-

nique. In the optimization process, the computational cost at

each iteration is largely due to the evaluation of the criterion

. This involves the calculation of and . From

(12), it is known that computing is essentially to cal-

culate , and . Although

written in the matrix form, they are simply the summation of

all the entries in each of the kernel matrices ,

and . Computing them requires , and ad-

ditions, respectively. Similarly, calculating the three terms of

in (13) requires , and additions, respectively.

Once and are obtained, the criterion can be

instantly computed by a single division. Therefore, the computa-

tional complexity of is no more than with the basic

operation of addition. It is much less than the computational

complexity of the criteria that need to compute a matrix inverse

or to train a KLDA [1], [11]–[13]. They result in a complexity

of with the basic operation of multiplication. Hence, it

can be expected that model selection with the proposed criterion

is faster. This will be verified by the experimental study

later. Meanwhile, we would like to point out that the total com-

putational cost in model selection is also affected by the number

of iterations and the number of function evaluations in the op-

timization process, as well as the dimensionality of the input

space and the complexity of the kernel function, which are re-

garded as constants for a given problem.

C. Relationship to the Goal of KLDA

From the definition of and in (1), we know that

they are positive semidefinite (PSD). Following the property of

Rayleigh quotient, it can be obtained that

(16)

where and denote the maximum eigen-

values of and , respectively. Following this, the objec-

tive function of the KLDA can be expressed as

(17)

Hence

(18)

The last inequality is based on the following two facts. 1) In a bi-

nary classification, and has one and only one

nonzero eigenvalue. Thus, it can be obtained that

. 2) It is known that and

that because is PSD. Therefore, it can be

shown that . The result of (18) indi-

cates that the criterion in (15) is essentially a lower bound of

the maximum value of KLDA’s objective function. Because the

goal of the KLDA is to maximize its objective function, maxi-

mizing the proposed criterion for model selection is consistent

with this goal.

The relationship between the KLDA and the criterion is

summarized as follows. 1) Because the KLDA cannot perform

model selection automatically, the criterion is proposed to

accomplish this task. In other words, this criterion serves the

goal of KLDA. 2) Both KLDA and seek the maximization of

the class separability. However, the criterion finds an optimal

higher dimensional feature space , whereas the KLDA seeks

an optimal 1-D subspace . Their goals are different. 3) The

criterion does not conflict with the KLDA. It is only used to

perform model selection and it cannot replace the KLDA. From

the above analysis, it can be said that the proposed criterion

is not an reinvention of the KLDA. Asides from these, this cri-

terion was related to the radius-margin bound of SVMs [20] in

our previous work in [15]. Comparatively, its relationship to the

KLDA is more essential.

D. Numerical Stability

A good and reliable criterion has to ensure numerical stability

when its variables go to extreme values. For example, when

a Gaussian radial basis function (GRBF) kernel1 is used, both

and will approach zero with the increasing value

of the Gaussian width . Geometrically, this means that all the

training samples are being projected to a single point in . In

this case, the value of the criterion becomes indeterminate. In

the following, two approaches are developed to ensure numer-

ical stability.

The first method realizes this by deriving a lower bound

of and using this bound for model selection. Maxi-

mizing is equivalent to maximizing

, where is the total scatter matrix and

. Let denote a stationary kernel.

It is defined as a kernel whose value only depends on the

difference of the two inputs, that is,

[21]. Furthermore, let us consider the stationary kernel satis-

fying . The GRBF kernel is just

an example of such a stationary kernel. Geometrically, via a

stationary kernel, all the training samples are mapped onto a

hypersphere in with the radius of . This is because

. In this case, it can

be shown that

(19)

1A GRBF kernel is defined as ��� �� � � �������� � � � ����� ��,
where � is the Gaussian width.
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where is constant for a stationary kernel. When the cri-

terion is represented as , a lower

bound of can be obtained as

(20)

This suggests that when a stationary kernel is used, maximizing

can be approximately achieved by maximizing . This

avoids the problem of numerical instability in using the quotient

of .

The second method is by appending an extra term to

to ensure numerical stability. Following the two-norm soft

margin in SVMs [22], this is conveniently realized by slightly

modifying the kernel function as

when

when
(21)

where is a small positive real number. The resultant criterion

is called in this paper. Compared with in the first method,

is closer to the original criterion because it does not in-

volve any approximation. The price to pay is an extra parameter

. and form two variants of the proposed criterion for

model selection. Both of them will be investigated in the exper-

imental study.

E. Tuning Multiple Kernel Parameters

In general, a kernel function with multiple parameters can

be a rather complex learning model. To prevent it from over-

fitting training samples, regularization is often needed when

tuning multiple kernel parameters. Please note that the regu-

larization is generally required in optimizing a criterion with

multiple free parameters, although it may be realized in var-

ious ways. Without a proper regularization, the optimal solu-

tion may overfit the noise in training samples, especially when

the number of training samples is small [23]. This situation has

been observed in [12] where the LOO error rate is used as a cri-

terion. In this paper, a regularized is developed as follows to

address this problem:

(22)

where is the regularization parameter that pe-

nalizes the deviation of from a preset . Mathematically, this

imposes a Gaussian prior over the parameter set , and the mean

of this Gaussian distribution is . When there is no a priori

knowledge about , setting seems to be a good option.

In model selection for KLDA, a better setting of can be ob-

tained as follows. For the kernels where each feature compo-

nent is assigned a kernel parameter, for example, the ellipsoidal

GRBF kernel,2 can be chosen by imposing the constraint of

and solving the following optimization:

(23)

2An ellipsoidal GRBF kernel is defined as ������ �
����� ��� � � � ����� ��, where � is for the �th feature
component.

This constraint reduces the number of free parameters from

to one, and therefore, minimizing in this case is less likely

to suffer from overfitting. We believe that using obtained in

this way will be more sensible than simply setting . For

instance, with the constraint of , the ellipsoidal

GRBF kernel reduces to a common spherical GRBF kernel that

only has one kernel parameter. Essentially, obtained in (23)

has been a well-tuned kernel parameter for the spherical GRBF

kernel, subject to the criterion . By straightforwardly setting

, sufficiently good discriminant performance can be

achieved, whereas setting will not. In other words, the

former setting secures a good initial value for the kernel param-

eters. When tuning multiple kernel parameters, are

then allowed to moved around to minimize the criterion

further. The regularization parameter needs to be set before

tuning multiple kernel parameters. Empirically, the larger the

number of free parameters or the smaller the number of training

samples is, the larger the value should be. This is because

overfitting is more likely to occur in these situations. This paper

follows this empirical rule to set the .

F. Tuning the Regularization Parameter in the KLDA

Before ending Section III, we would like to mention that

the proposed criterion cannot be used to tune the regulariza-

tion parameter in the KLDA [defined in (7)]. As seen from

(11)–(14), the criterion is not a function of . This is because

works in the kernel-induced feature space and it does not involve

estimating the optimal projection in which has to be preset.

To deal with this problem, this paper integrates the proposed

criterion with the method developed in [1]. When the kernel pa-

rameters are given, the method in [1] can be used to evaluate

the LOO CV error rate for a given with a computational com-

plexity of . This allows it to quickly tune this regulariza-

tion parameter. Model selection for KLDA in our work has two

steps. First, the proposed criterion is maximized to tune the

kernel parameters. After that, these kernel parameters are fed to

the method in [1]. Based on these kernel parameters, the LOO

CV error rate is minimized to find the optimal regularization pa-

rameter . Because the method of [1] is not the contribution of

this paper, it will not be elaborated here and the readers are re-

ferred to the original paper.

IV. EXPERIMENTAL RESULTS

The experiments aim to evaluate the effectiveness of the pro-
posed criterion for model selection in KLDA. Thirteen bench-
mark data sets in [2], [11], and [1] are used here. They are
listed in Table I, where denotes the dimensionality of an input
space and and are the sizes of training and test
sets, respectively. Each data set has been randomly split into
100 pairs of training and test subsets (about 60% : 40%). Note
that there are only 20 pairs for the data sets of “Image” and
“Splice.” Two forms of the GRBF kernel are used. The first
form is , where is the
kernel parameter known as the Gaussian width. In this form,
a single is uniformly applied to all the feature components,
and therefore, this kernel is often called the spherical GRBF
kernel. In this case, the kernel parameter set is merely .
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TABLE I
ATTRIBUTES OF THE 13 BENCHMARK DATA SETS

Fig. 1. Demonstration of the properties of the proposed criterion on the Banana data set. This figure shows that the KLDA’s objective function cannot be used
to tune the kernel parameter �. In contrast, the proposed criterion gives a well-tuned � �� ��������, with which a high class separability is achieved on the
test data and a low classification error rate is obtained accordingly. (a) The value of KLDA’s object function. (b) Class separability of test data after KLDA. (c)
Classification error on test data after KLDA. (d) The value of the criterion � .

The second form is the ellipsoidal GRBF kernel, which assigns
different values to the feature components. It is expressed

as , where is for
the th feature component. The kernel parameter set now ex-
pands to . These two kernels are used to inves-
tigate the performance of our criterion in handling single and
multiple kernel parameters. Training and testing of the KLDA
are done by using the codes written in Matlab. Two variants of
the proposed criterion, and , are investigated. in

is empirically set to (may be suboptimal). The parameter
in (22) for tuning multiple kernel parameters is empirically

selected from the range . The regularization param-
eter in the KLDA will be optimally tuned by incorporating
the method in [1]. To simplify the optimization in model se-
lection, is used to denote in the GRBF kernel, and
optimizing becomes the optimization of . Because must
be positive, is optimized instead to avoid solving a con-
strained optimization problem. The initial value of is com-
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Fig. 2. Demonstration of the properties of the proposed criterion on the Diabetes data set. (a) The value of KLDA’s object function. (b) Class separability of test
data after KLDA. (c) Classification error on test data after KLDA. (d) The value of the criterion � .

puted by setting , where is the dimension-
ality of an input space. Note that each feature component of the
training data has been linearly scaled to before performing
model selection. The test data will be scaled accordingly when
performing classification. Both criteria and are compared
with the method proposed in [11], a state-of-the-art model se-
lection technique for the KLDA. In that method, the LOO error
rate is efficiently evaluated with a computational complexity of

. It has demonstrated excellent performance in tuning the
Gaussian width and the regularization parameter . This ex-
periment will check whether our criteria can give rise to a faster
model selection than the method in [11]. The experiments con-
sist of three parts: 1) demonstration of the properties of the pro-
posed criterion, 2) comparison of model selection time and clas-
sification error rate for tuning a single kernel parameter, and 3)
comparison of model selection time and classification error rate
for tuning multiple kernel parameters.

A. Demonstration of the Properties of the Proposed Criterion

At first, on the data set of “Banana,” the KLDA’s objective
function, the class separability of test data in the 1-D subspace

, the classification error rate in , and the criterion are
plotted against in the spherical GRBF kernel. As shown in
Fig. 1, all the horizontal axes are in the natural logarithm of .
Fig. 1(a) shows the value of KLDA’s objective function, which
indicates the class separability of the training data in . It can be
seen that its value monotonically increases with the decreasing
value of , rather than showing a clear peak. For the spherical
GRBF kernel, a smaller value often means a more complex
mapping function. By comparing this result with the class sepa-
rability of the test data in Fig. 1(b), the effect of “overfitting”
can be clearly seen. That is, with a smaller [for example,

], the KLDA’s objective function value goes up,
indicating that a larger class separability has been achieved on
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Fig. 3. Demonstration of the properties of the proposed criterion on the German data set. (a) The value of KLDA’s object function. (b) Class separability of test
data after KLDA. (c) Classification error on test data after KLDA. (d) The value of the criterion � .

the training data in . However, the class separability of the test

data in quickly falls at this time, and the classification error
rate in Fig. 1(c) becomes higher. This indicates that the KLDA’s
objective function cannot be used to tune . Fig. 1(d) shows the
value of the criterion . As seen, its maximum aligns well with
the maximum of the class separability of test data [plotted in
Fig. 1(b)] and the minimum of classification error rate [plotted
in Fig. 1(c)]. This suggests that maximizing the criterion can
give a well-tuned . Similar results from the data sets of “Dia-
betes” and “German” are shown in Figs. 2 and 3.

Before starting model selection, the time taken by a single
evaluation of or the LOO error rate in [11] is compared in
Fig. 4. The horizontal axis is the order of the data sets listed in
Table I, while the vertical axis is the evaluation time. As seen,
each evaluation of the criterion costs less time than an eval-
uation of the LOO error rate, showing its advantage of compu-
tational efficiency. The above results demonstrate the properties
of our criterion and its effectiveness.

The rest of the experiments give a quantitative study on
all the benchmark data sets. The experimental settings are
summarized in Table II. The proposed criteria are compared
with the LOO error rate in [11] and the fivefold CV error
rate in terms of the number of function evaluations in model
selection, the model selection time, and the classification error
rate obtained by the KLDA using the selected model. Both
cases of tuning of single and multiple kernel parameters are
evaluated. Because the model selection time is affected by the
optimization method, this factor has to be considered for a fair
comparison. In the experiments, the comparison is conducted
by using three different optimization methods: 1) the Matlab
function , 2) the Matlab function with

“off,” that is, gradient information is used in op-
timization and it is computed by the function itself,
and 3) the Matlab function with “on,”
where the gradient information is computed by the user and
input into as an argument. The function
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Fig. 4. Comparison of the time for a single evaluation of the proposed criterion or the LOO error rate in [11]. Each evaluation of the proposed criterion costs less
time, showing its advantage on computational efficiency.

TABLE II
SUMMARY OF EXPERIMENTAL SETTINGS

implements a Nelder–Mead simplex method that does not use
gradient information. The function implements a
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton
method that makes use of gradient information. For each of the
Matlab functions, its default optimization setting is used and no
extra measure is taken to speed up the optimization. For each
data set, model selection is individually performed on each
of the predefined 100 or 20 training and test subsets, and the
averaged results are used for comparison.

B. Comparison on Tuning a Single Kernel Parameter

This part includes six tables (Tables III–VIII). They form
three groups, each of which corresponds to one optimization
method. In each group, there are two tables. One of them com-
pares the model selection time, and the other compares the clas-
sification error rates. The details on the experimental settings
can be found from Table II.

The proposed variants of the criterion and the LOO error rate
are first compared by using for optimization. The
total number of function evaluations (denoted by #f eval) and

the model selection time are listed in Table III. For and ,
the result is the addition of two parts: 1) the time taken for tuning
the kernel parameter, and 2) the time taken for tuning the reg-
ularization parameter by using the method in [1]. As for the
LOO error rate in [11], it tunes both the kernel parameter and
the regularization parameter in a single optimization. By com-
paring the model selection time taken by each criterion, it can be
clearly seen that both and produce a faster model selection
than the LOO error rate in [11]. The model selection time can
be reduced up to five or six times in general. Especially, for the
data sets of “Image” and “Splice” that have a larger number of
training samples, the reduction of model selection time is more
significant in absolute terms. These results are consistent with
that in Fig. 4, as well as the previous analysis that our criterion
does not involve any matrix-inverse operation and thus can be
computed with less computational overhead.

Now let us check whether the model selected by the proposed
criterion can give rise to good classification performance. The
KLDA is performed by using the model parameters selected by
the proposed criterion, the fivefold CV error rate, and the LOO
error rate, respectively. With the KLDA, both training and test
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TABLE III
COMPARISON OF MODEL SELECTION TIME ( , TUNING A SINGLE KERNEL PARAMETER)

TABLE IV
CLASSIFICATION ERROR AFTER THE KLDA ( , TUNING A SINGLE KERNEL PARAMETER)

TABLE V
COMPARISON OF MODEL SELECTION TIME ( , ������� � “off,” TUNING A SINGLE KERNEL PARAMETER)

data are projected to a 1-D subspace. A Bayes classifier is then
trained in the subspace by modeling each class as a Gaussian
distribution. The average classification error rates (with the stan-
dard deviation) are compared. The classification result obtained

by using the model selected by the fivefold CV is used as a
benchmark. To give a quantitative measure, the McNemar test
(with significance level of 0.05) [24] is used to detect whether
a statistically significant difference exists between the classifi-
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TABLE VI
CLASSIFICATION ERROR AFTER THE KLDA ( , ������� � “off,” TUNING A SINGLE KERNEL PARAMETER)

TABLE VII
COMPARISON OF MODEL SELECTION TIME ( , ������� � “on” TUNING A SINGLE KERNEL PARAMETER)

cation error rate from the proposed criterion and that from the
fivefold CV. Table IV reports the comparison result. It consists
of four parts, showing the classification error rates of the KLDA
using the models selected by different criteria. In the first two
parts, besides the classification error rates, the McNemar test re-
sult on the 100 or 20 predefined test subsets is summarized for
each data set. A McNemar test result has three measures. The
“ ” means that on the indicated number of test subsets, the clas-
sification result of the proposed criterion is statistically better

than that from the fivefold CV. In other words, a statistically
significant difference is detected between them and the classi-
fication error rate obtained by using the proposed criterion is
lower. Similarly, the “ ” means that the classification result of
the proposed criterion is statistically worse, and the “ ” means
that no statistically significant difference is detected. As shown
in Table IV, the McNemar test result suggests that the difference
between the classification results is insignificant on most data
sets. On the data sets of “Banana,” “Ringnorm,” “Twonorm”
(for only), and “Waveform,” our criteria produce slightly
better performance. Meanwhile, on “Titanic,” “Twonorm” (for

only), and “Splice,” their performance is slightly worse. On

the data set of “Image” (marked by “ ”), the criterion fails
to select a reasonable model and the number under “ ” domi-
nates. The two criteria and give similar classification per-
formance on all the data sets except for “Image,” “Splice,” and
“Twonorm.” In addition, by comparing the proposed criterion
with the LOO error rate in [11], it can be observed that they are
comparable on most data sets but the LOO error rate is slightly
better on “Image” and “Splice.”

These criteria are further compared by using with

“off” as the optimization method. In this method,

gradient information is used in optimization and it is computed

by itself. The model selection time is compared in

Table V. Our criteria still cost less model selection time than the

LOO error rate. Compared with the case of using ,

optimizing the proposed criterion with requires less

function evaluations and takes less time. The classification error

rates are compared in Table VI. They are almost the same as

those obtained in Table IV where is used. This sug-

gests that both and (with

“off”) can be used to optimize the model selection criteria and
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TABLE VIII
CLASSIFICATION ERROR AFTER THE KLDA ( , ������� � “on,” TUNING A SINGLE KERNEL PARAMETER)

TABLE IX
COMPARISON OF MODEL SELECTION TIME ( , TUNING MULTIPLE KERNEL PARAMETERS)

they lead to similar classification performance. However, using

can achieve a faster model selection.
Finally, these model selection criteria are compared again by

using with “on.” In this optimization
method, the gradient information is computed by the user and
then input into as an argument. The model selection
time is reported in Table VII. Our criteria and the LOO error
rate respond to the change of the setting of differ-
ently. For both and , the number of function evaluations
and the model selection time drop further when compared with
the case of “off.” The reduction of the number
of function evaluations is due to the not calculating
the gradient information by itself anymore and this saves many
function evaluations. The reduction of the model selection time
indicates that for and , analytically computing its gradient
information by the user is computationally more efficient than
letting compute this by itself (for example, via finite
difference). As for the LOO error rate, its model selection time
significantly increases although the number of function evalua-
tions decreases. This is because the computation of the LOO

error rate is more complicated than that of the proposed cri-
terion. Each evaluation of its gradient information requires a
number of matrix operations and this prolongs the model se-
lection process. The comparison of classification error rates is
presented in Table VIII. The results are the same as those ob-
tained in the previous experiments.

C. Comparison on Tuning Multiple Kernel Parameters3

In this part, the ellipsoidal GRBF kernel is used. It assigns
each feature component an individual kernel parameter. The
multiple kernel parameters are tuned in model selection. As be-
fore, the model selection time and the classification error rate
are compared by using three different optimization methods.

Tables IX and X report the result when is used
as the optimization method. Compared with its counterpart for
tuning a single kernel parameter (in Table III), the number of

3Please note that in the case of tuning multiple kernel parameters, some model
selection results for “Image” and “Splice” are obtained from part of the 20
training and test subsets. This is because the model selection time on the two
data sets are relatively long and we only test (not selectively) part of the subsets.
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TABLE X
CLASSIFICATION ERROR AFTER THE KLDA ( , TUNING MULTIPLE KERNEL PARAMETERS)

TABLE XI
COMPARISON OF MODEL SELECTION TIME ( , ������� � “off,” TUNING MULTIPLE KERNEL PARAMETERS)

function evaluations and the model selection time increase dras-
tically. This is not surprising because the number of kernel pa-
rameters to be optimized is much larger than before. By com-
paring the proposed criterion with the LOO error rate, it can still
be seen that the former costs much less mode selection time,
especially on the data sets of “Ringnorm,” “Twonorm,” “Wave-
form,” and “Image” in which the data sets have a large number
of training samples or a high-dimensional input space. As shown
in Table X, the significance test result indicates that our criteria
still work well for tuning multiple kernel parameters. More im-
portantly, similar classification performance can be achieved by
merely using a part of features automatically selected by tuning
multiple kernel parameters. For instance, on “Breast Cancer,”
only two out of nine features are assigned with nonzeros [re-
call that ]. On “Titanic,” by using , only the
third feature (it indicates the gender of a passenger on “Titanic”)
is assigned nonzero . With this model, the KLDA achieves a
lower error rate. This suggests that multiparameter-based model
selection can possibly be used to identify important features
before applying KLDA. The LOO error rate still demonstrates
good performance except on “Heart,” “Ringnorm,” “Twonorm,”
and “Waveform.” However, it may be too premature to conclude

that the LOO error rate cannot work well for the case of multiple
kernel parameter tuning. The work in [11] focuses on tuning a
single kernel parameter, and the LOO error rate in that work has
not incorporated the regularization term that is often needed in a
multiparameter optimization problem. It could be expected that
better performance may be attained when suitable regularization
is imposed. However, this is beyond the scope of this paper.

The result of employing with “off”

for optimization is presented in Tables XI and XII. By replacing

with , our criteria need less model selec-

tion time. Compared with the LOO error rate, they still achieve

a faster model selection. The classification performance given

by the selected models is still comparable to that of the fivefold

CV (except for the data set of “Image”). By setting

“on,” our criteria are compared with the LOO error rate and the

fivefold CV again in Tables XIII and XIV. The model selection

time taken by the proposed criterion is further reduced, whereas

the time taken by the LOO error rate significantly increases. As

explained earlier, this is because analytically computing the gra-

dient information of the LOO error rate is computationally ex-

pensive.
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TABLE XII
CLASSIFICATION ERROR AFTER THE KLDA ( , ������� � “off,” TUNING MULTIPLE KERNEL PARAMETERS)

TABLE XIII
COMPARISON OF MODEL SELECTION TIME ( , ������� � “on,” TUNING MULTIPLE KERNEL PARAMETERS)

D. Summary of the Experimental Results

For both single and multiple kernel parameter tuning, our
criteria consistently achieve a faster model selection when dif-
ferent optimization methods are used. In terms of model selec-
tion time, our criteria work best with the optimization method of

with “on,” whereas the LOO error rate
works best with with “off.” For the clas-
sification error rate, the McNemar test confirms that on six out
of 13 data sets (Breast Cancer, Diabetes, Flare Solar, German,
Heart, and Thyroid), there is no significant difference between
the classification error rates obtained with the model selected by
the proposed criterion and that from the fivefold CV. By com-
paring the classification results obtained by using and , it
can be seen that they are comparable on most data sets. The cri-
terion may be a better choice for practical use because it does
not need to empirically set an extra parameter .

Before ending this section, two settings of in (22) are com-
pared. Setting I (proposed in this paper) applies the constraint
of and solves the optimization problem in (23)
to estimate . Setting II simply sets . With different
values of the regularization parameter , the effects due to the

two settings are compared in terms of the obtained classification
error rates in Table XV. For ease of comparison, the lowest error
rate (with respect to the value of ) from each setting is high-
lighted in bold. As shown, Setting I achieves lower classification
error rates on all the data sets except for the “Titanic” where the
two settings give similar results. As mentioned above, the better
performance obtained by using Setting I is because this setting
first secures a good initialization and then seeks further improve-
ment. The explanation has been given in Section III-E.

V. CONCLUSION

This paper proposes a kernel-induced space selection ap-
proach to tackle model selection in KLDA. The optimal
model is regarded as the one giving rise to a feature space
in which the separability of different classes is maximized.
A scatter-matrix-based criterion is developed to measure the
class separability in a feature space, and the optimal kernel
parameters are obtained by maximizing this criterion. The
computational complexity of the proposed criterion and its
relationship to the KLDA are analyzed. Experimental study
is conducted on a set of benchmark data sets to verify the
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TABLE XIV
CLASSIFICATION ERROR AFTER THE KLDA ( , ������� � “on,” TUNING MULTIPLE KERNEL PARAMETERS)

TABLE XV
COMPARISON OF THE CLASSIFICATION ERROR RATES FROM TWO SETTINGS OF ��� IN (22)

effectiveness of the proposed approach. The following conclu-
sions can be drawn. First, compared with the state-of-the-art
method, the proposed criterion has less computational overhead
and facilitates a faster model selection. When multiple kernel
parameters are to be tuned or when there is a large number
of training samples, the reduction of model selection time is
particularly significant. Second, the model selection approach
proposed in this paper can efficiently tune single and multiple
kernel parameters for the KLDA. Third, an essential connection
is revealed between the proposed criterion and the KLDA. It
is proven to be the lower bound of the maximum value of the
generalized Rayleigh quotient in KLDA’s objective function.
This justifies its application to model selection for KLDA
and also is the reason why it works. Finally, the proposed
criterion is independent of the regularization parameter in the
KLDA, and hence it cannot be used to tune this parameter. This
work circumvents this problem by incorporating the method
in [1]. As shown in the experimental study, the regularization
parameter can be efficiently optimized as soon as the kernel
parameters are tuned by the proposed criterion.

The following issues are worthy of exploring in future work.
It has been found that the optimized kernel parameters can re-
veal the importance of the features in discriminating different
classes [20]. An instant application of this property is in the area

of feature selection (a comprehensive overview can be found in
[25]), that is,find most discriminative features from the
original features while maximally maintaining the separability
of classes. Some related work, such as feature scaling for the
KLDA, has been developed in [12]. We think that our approach
may have the advantage of computational efficiency, which al-
lows more sophisticated feature selection strategies to be used.
It is worth noting that a thorough study of feature selection with
the kernel-based class separability criterion has been reported in
our recent work [26]. Also, our criterion can be readily extended
to multiclass classification, although this work focuses on bi-
nary classification only. In addition, the proposed criterion can
be combined with the LOO error rate in [11]. When searching
for the model parameter set that minimizes the LOO error rate,
our criterion can be optimized first to obtain a good initializa-
tion. This may significantly shorten the model selection process
using the LOO error rate while maintaining its good selection
performance.
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