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Abstract. We consider the problem of clustering a given dataset into k

clusters subject to an additional set of constraints on relative distance
comparisons between the data items. The additional constraints are
meant to reflect side-information that is not expressed in the feature vec-
tors, directly. Relative comparisons can express structures at finer level
of detail than must-link (ML) and cannot-link (CL) constraints that are
commonly used for semi-supervised clustering. Relative comparisons are
particularly useful in settings where giving an ML or a CL constraint is
difficult because the granularity of the true clustering is unknown.
Our main contribution is an efficient algorithm for learning a kernel ma-
trix using the log determinant divergence (a variant of the Bregman
divergence) subject to a set of relative distance constraints. Given the
learned kernel matrix, a clustering can be obtained by any suitable algo-
rithm, such as kernel k-means. We show empirically that kernels found by
our algorithm yield clusterings of higher quality than existing approaches
that either use ML/CL constraints or a different means to implement the
supervision using relative comparisons.

1 Introduction

Clustering is the task of partitioning a set of data items into groups, or clusters.
However, the desired grouping of the data may not be sufficiently expressed
by the features that are used to describe the data items. For instance, when
clustering images it may be necessary to make use of semantic information about
the image contents in addition to some standard image features. Semi-supervised

clustering is a principled framework for combining such external information with
features. This information is usually given as labels about the pair-wise distances
between a few data items. Such labels may be provided by the data analyst, and
reflect properties of the data that are hard to express as an easily computable
function over the data features.

There are two commonly used ways to formalize such side information. The
first are must-link (ML) and cannot-link (CL) constraints. An ML (CL) con-
straint between data items i and j suggests that the two items are similar (dis-
similar), and should thus be assigned to the same cluster (different clusters).
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The second way to express pair-wise similarities are relative distance compar-

isons. These are statements that specify how the distances between some data
items relate to each other. The most common relative distance comparison task
asks the data analyst to specify which of the items i and j is closer to a third
item k. Note that unlike the ML/CL constraints, the relative comparisons do
not as such say anything about the clustering structure.

Given a number of similarity constraints, an efficient technique to implement
semi-supervised clustering is metric learning. The objective of metric learning
is to find a new distance function between the data items that takes both the
supplied features as well as the additional distance constraints into account.
Metric learning can be based on either ML/CL constraints or relative distance
comparisons. Both approaches have been studied extensively in literature, and
a lot is known about the problem.

The method we discuss in this paper is a combination of metric-learning and

relative distance comparisons. We deviate from existing literature by eliciting
every constraint with the question

“Which one of the items i, j, and k is the least similar to the other two?”

The labeler should thus select one of the items as an outlier. Notably, we also
allow the labeler to leave the answer as unspecified. The main practical novelty
of this approach is in the capability to gain information also from comparisons

where the labeler has not been able to give a concrete solution. Some sets of three
items can be all very similar (or dissimilar) to each other, so that picking one
item as an obvious outlier is difficult. In those cases that the labeler gives a
“don’t know” answer, it is beneficial to use this answer in the metric-learning
process as it provides a valuable cue, namely, that the three displayed data items
are roughly equidistant.

We cast the metric-learning problem as a kernel-learning problem. The learned
kernel can be used to easily compute distances between data items, even between
data items that did not participate in the metric-learning training phase, and
only their feature vectors are available. The use of relative comparisons, instead
of hard ML/CL constraints, leads to learning a more accurate metric that cap-
tures relations between data items at different scales. The learned metric can be
used for multi-level clustering, as well as other data-analysis tasks.

On the technical side, we start with an initial kernel K0, computed using only
the feature vectors of the data items. We then formulate the kernel-learning task
as an optimization problem: the goal is to find the kernel matrix K that is the
closest to K0 and satisfies the constraints induced by the relative-comparison
labellings. To solve this optimization task we use known efficient techniques,
which we adapt for the case of relative comparisons.

More concretely, we make the following contributions:

1. We design a kernel-learning method that can also use unspecified relative
distance comparisons. This is done by extending the method of Anand et
al. [1], which works with ML and CL constraints.
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2. We perform an extensive experimental validation of our approach and show
that the proposed labeling is indeed more flexible, and it can lead to a
substantial improvement in the clustering accuracy.

The rest of this paper is organized as follows. We start by reviewing the
related literature in Section 2. In Section 3 we introduce our setting and formally
define our problem, and in Section 4 we present our solution. In Section 5 we
discuss our empirical evaluation, and Section 6 is a short conclusion.

2 Related work

The idea of semi-supervised clustering was initially introduced by Wagstaff and
Cardie [2], and since then a large number of different problem variants and
methods have been proposed, the first ones being COP-Kmeans [3] and CCL [4].
Some of the later methods handle the constraints in a probabilistic framework.
For instance, the ML and CL constraints can be imposed in the form of a Markov
random field prior over the data items [5–7]. Alternatively, Lu [8] generalizes the
standard Gaussian process to include the preferences imposed by the ML and CL
constraints. Recently, Pei et al. [9] propose a discriminative clustering model that
uses relative comparisons and, like our method, can also make use of unspecified
comparisons.

The semi-supervising clustering setting has also been studied in the con-
text of spectral clustering, and many spectral clustering algorithms have been
extended to incorporate pairwise constraints [10, 11]. More generally, these meth-
ods employ techniques for semi-supervised graph partitioning and kernel k-means
algorithms [12]. For instance, Kulis et al. [13] present a unified framework for
semi-supervised vector and graph clustering using spectral clustering and kernel
learning.

As stated in the Introduction, our work is based on metric learning. Most of
the metric-learning literature, starting by the work of Xing et al. [14], aims at
finding a Mahalanobis matrix subject to either ML/CL or relative distance con-
straints. Xing et al. [14] use ML/CL constraints, while Schultz and Joachims [15]
present a similar approach to handle relative comparisons. Metric learning of-
ten requires solving a semidefinite optimization problem. This becomes easier if
Bregman divergences, in particular the log det divergence, is used to formulate
the optimization problem. Such an approach was first used for metric learning
by Davis et al. [16] with ML/CL constraints, and subsequently by Liu et al. [17]
likewise with ML/CL, as well as by Liu et al. [18] with relative comparisons.
Our algorithm also uses the log det divergence, and we extend the technique of
Davis et al. [16] to handle relative comparisons.

The metric-learning approaches can also be more directly combined with a
clustering algorithm. The MPCK-Means algorithm by Bilenko et al. [19] is one of
the first to combine metric learning with semi-supervised clustering and ML/CL
constraints. Xiang et al. [20] use metric learning, as well, to implement ML/CL
constraints in a clustering and classification framework, while Kumar et al. [21]
follow a similar approach using relative comparisons. Recently, Anand et al. [1]
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use a kernel-transformation approach to adopt the mean-shift algorithm [22] to
incorporate ML and CL constraints. This algorithm, called semi-supervised ker-
nel mean shift clustering (SKMS), starts with an initial kernel matrix of the data
points and generates a transformed matrix by minimizing the log det divergence
using an approach based on the work by Kulis et al. [23]. Our paper is largely
inspired by the SKMS algorithm. Our main contribution is to extend the SKMS

algorithm so that it handles relative distance comparisons.

3 Kernel learning with relative distances

In this section we introduce the notation used throughout the paper and formally
define the problem we address.

3.1 Basic definitions

Let D = {1, . . . , n} denote a set of data items. These are the data we want to
cluster. Let X = {xi}

n
i=1, with xi ∈ R

d, denote a set of vectors in a d dimensional
Euclidean space; one vector for every item in D. The vector set X is the feature

representation of the items in D. We are also given the set C of relative distance

comparisons between data items in D. These distance comparisons are given in
terms of some unknown distance function δ : D × D → R. We assume that δ

reflects certain domain knowledge, which is difficult to quantify precisely, and
cannot be computed using only the features in X . Thus, the set of distance
comparisons C augments our knowledge about the data items in D, in addition
to the feature vectors in X . The comparisons in C are given by human evaluators,
or they may come from some other source. We assume that this information is
not directly captured by the features.

Given X and C, our objective is to find a kernel matrix K that captures
more accurately the distance between data items. Such a kernel matrix can be
used for a number of different purposes. In this paper, we focus on using the
kernel matrix for clustering the data in D. The kernel matrix K is computed by
considering both the similarities between the points in X as well as the user-
supplied constraints induced by the comparisons in C.

In a nutshell, we compute the kernel matrix K by first computing an initial
kernel matrix K0 using only the vectors in X . The matrix K0 is computed by
applying a Gaussian kernel on the vectors in X . We then solve an optimization
problem in order to find the kernel matrix K that is the closest to K0 and
satisfies the constraints in C.

3.2 Relative distance constraints

The constraints in C express information about distances between items in D in
terms of the distance function δ. However, we do not need to know the absolute
distances between any two items i, j ∈ D. Instead we consider constraints that
express information of the type δ(i, j) < δ(i, k) for some i, j, k ∈ D.
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In particular, every constraint Ci ∈ C is a statement about the relative dis-
tances between three items in D. We consider two types of constraints, i.e., C
can be partitioned into two sets Cneq and Ceq. The set Cneq contains constraints
where one of the three items has been singled out as an “outlier.” That is, the
distance of the outlying item to the two others is clearly larger than the distance
between the two other items. The set Ceq contains constraints where no item
appears to be an obvious outlier. The distances between all three items are then
assumed to be approximately the same.

More formally, we define Cneq to be a set of tuples of the form (i, j | k),
where every tuple is interpreted as “item k is an outlier among the three items
i, j and k.” We assume that the item k is an outlier if its distance from i and j is
at least γ times larger than the distance δ(i, j), for some γ > 1. This is because
we assume small differences in the distances to be indistinguishable by the eval-
uators, and only such cases end up in Cneq where there is no ambiguity between
the distances. As a result each triple (i, j | k) in Cneq implies the following two
inequalities

(i← j | k) : γδ(i, j) ≤ δ(i, k) and (1)

(j ← i | k) : γδ(j, i) ≤ δ(j, k), (2)

where γ is a parameter that must be set in advance.

Likewise, we define Ceq to be a set of tuples of the form (i, j, k) that translates
to “the distances between items i, j and k are equal.” In terms of the distance
function δ, each triple (i, j, k) in Ceq implies

δ(i, j) = δ(j, k) = δ(i, k). (3)

3.3 Extension to a kernel space

As mentioned above, the first step of our approach is forming the initial kernel
K0 using the feature vectors X . We do this using a standard Gaussian kernel.
Details are provided in Section 4.2.

Next we show how the constraints implied by the distance comparison sets Cneq
and Ceq extend to a kernel space, obtained by a mapping Φ : D → R

m. As usual,
we assume that an inner product Φ(i)⊤Φ(j) between items i and j in D can be
expressed by a symmetric kernel matrix K, that is, Kij = Φ(i)⊤Φ(j). Moreover,
we assume that the kernel K (and the mapping Φ) is connected to the unknown
distance function δ via the equation

δ(i, j) = ‖Φ(i)− Φ(j)‖2 = Kii − 2Kij +Kjj . (4)

In other words, we explicitly assume that the distance function δ is in fact the
Euclidean distance in some unknown vector space. This is equivalent to assume
that the evaluators base their distance-comparison decisions on some implicit
features, even if they might not be able to quantify these explicitly.
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Next, we discuss the constraint inequalities (Equations (1), (2), and (3))
in the kernel space. Let ei denote the vector of all zeros with the value 1 at
position i. Equation (4) above can be expressed in matrix form as follows:

Kii − 2Kij +Kjj = (ei − ej)
⊤K(ei − ej) = tr(K(ei − ej)(ei − ej)

⊤), (5)

where tr(A) denotes the trace of the matrix A and we use the fact that K = K⊤.
Using the previous equation we can write Equation (1) as

γ tr
(

K(ei − ej)(ei − ej)
⊤
)

− tr
(

K(ei − ek)(ei − ek)
⊤
)

≤ 0

tr
(

Kγ(ei − ej)(ei − ej)
⊤ −K(ei − ek)(ei − ek)

⊤
)

≤ 0

tr
(

K(γ(ei − ej)(ei − ej)
⊤ − (ei − ek)(ei − ek)

⊤)
)

≤ 0

tr
(

KC(i←j|k)

)

≤ 0,

where C(i←j|k) = γ(ei−ej)(ei−ej)
⊤− (ei−ek)(ei−ek)

⊤ is a matrix that rep-
resents the corresponding constraint. The constraint matrix C(j←i|k) for Equa-
tion (2) can be formed in exactly the same manner. Note that unless we set
γ > 1, the Equations (1) and (2) can be satisfied trivially for a small difference
between the longer and the shorter distance and thus, the constraint becomes
inactive. Setting γ > 1 helps avoiding such solutions.

We use a similar technique to represent the constraints in the set Ceq. Recall
that the constraint (i, j, k) ∈ Ceq implies that i, j, and k are equidistant. This
yields three equations on the pairwise distances between the items: (i ↔ j, k) :
δ(i, j) = δ(i, k), (j ↔ i, k) : δ(j, i) = δ(j, k), and (k ↔ i, j) : δ(k, i) = δ(k, j).
Reasoning as above, we let C(i↔j,k) = (ei− ej)(ei− ej)

⊤ − (ei− ek)(ei− ek)
⊤,

and can thus write the first equation for the constraint (i, j, k) ∈ Ceq as

tr(KC(i↔j,k)) = 0. (6)

The two other equations are defined in a similar manner.

3.4 Log determinant divergence for kernel learning

Recall that our objective is to find the kernel matrix K that is close to the
initial kernel K0. Assume thatK andK0 are both positive semidefinite matrices.
We will use the so-called log determinant divergence to compute the similarity
between K0 and K. This is a variant of the Bregman divergence [24].

The Bregman divergence between two matrices K and K0 is defined as

Dφ(K,K0) = φ(K)− φ(K0)− tr(∇φ(K0)
⊤(K−K0)), (7)

where φ is a strictly-convex real-valued function, and ∇φ(K0) denotes the gra-
dient evaluated at K0. Many well-known distance measures are special cases of
the Bregman divergence. These can be instantiated by selecting the function φ

appropriately. For instance, φ(K) =
∑

ij K
2
ij gives the squared Frobenius norm

Dφ(K,K0) = ‖K−K0‖
2
F .
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For our application in kernel learning, we are interested in one particular
case; setting φ(K) = − log det(K). This yields the so-called log determinant (log
det) matrix divergence:

Dld(K,K0) = tr(KK−10 )− log det(KK−10 )− n, (8)

The log det divergence has many interesting properties, which make it ideal for
kernel learning. As a general result of Bregman divergences, log det divergence
is convex with respect to the first argument. Moreover, it can be evaluated using
the eigenvalues and eigenvectors of the matrices K and K0. This property can
be used to extend log det divergence to handle rank-deficient matrices [23], and
we will make use of this in our algorithm described in Section 4.

3.5 Problem definition

We now have the necessary ingredients to formulate our semi-supervised kernel
learning problem. Given the set of constraints C = Cneq ∪ Ceq, the parameter γ,
and the initial kernel matrix K0, we aim to find a new kernel matrix K, which
is as close as possible to K0 while satisfying the constraints in C. This objective
can be formulated as the following constrained minimization problem:

minimize
K

Dld(K,K0)

subject to

tr
(

KC(i←j|k)

)

≤ 0, tr
(

KC(j←i|k)

)

≤ 0, ∀(i, j | k) ∈ Cneq

tr(KC(i↔j,k)) = 0, tr(KC(j↔i,k)) = 0, tr(KC(k↔i,j)) = 0, ∀(i, j, k) ∈ Ceq

K � 0,
(9)

where K � 0 constrains K to be a positive semidefinite matrix.

4 Semi-supervised kernel learning

We now focus on the optimization problem defined above, Problem (9). It can
be shown that in order to have a finite value for the log det divergence, the rank
of the matrices must remain equal [23]. This property along with the fact that
the domain of the log det divergence is the positive-semidefinite matrices, allow
us to perform the optimization without explicitly restraining the solution to the
positive-semidefinite cone nor checking for the rank of the solution. This is in
contrast with performing the optimization using, say, the Frobenius norm, where
the projection to the positive semidefinite cone must be explicitly imposed.

4.1 Bregman projections for constrained optimization

In solving the optimization Problem (9), the aim is to minimize the divergence
while satisfying the set of constraints imposed by C = Cneq∪Ceq. In other words,
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we seek for a kernel matrix K by projecting the initial kernel matrix K0 onto the
convex set obtained from the intersection of the set of constraints. The optimiza-
tion Problem (9) can be solved using the method of Bregman projections [23–25].
The idea is to consider one unsatisfied constraint at a time and project the matrix
so that the constraint gets satisfied. Note that the projections are not orthogonal
and thus, a previously satisfied constraint might become unsatisfied. However,
as stated before, the objective function in Problem (9) is convex and the method
is guaranteed to converge to the global minimum if all the constraints are met
infinitely often (randomly or following a more structured procedure).

Let us consider the update rule for an unsatisfied constraint from Cneq. The
procedure for dealing with constraints from Ceq is similar. We first consider the
case of full-rank symmetric positive semidefinite matrices. Let Kt be the value
of the kernel matrix at step t. For an unsatisfied inequality constraint C, the
optimization problem becomes1

Kt+1 = argmin
K

Dld(K,Kt),

subject to 〈K,C〉 = tr(KC) ≤ 0.
(10)

Using a Lagrange multiplier α ≥ 0, we can write

Kt+1 = argmin
K

Dld(K,Kt) + α tr(KC). (11)

Following standard derivations for computing gradient updates for Bregman pro-
jection [25], the solution of Equation (11) can be written as

Kt+1 = (K−1t + αC)−1. (12)

Substituting Equation (12) into (10) gives

tr((K−1t + αC)−1C) = 0. (13)

Equation (13) does not have a closed form solution for α, in general. However, we
exploit the fact that both types of our constraints, the matrix C has rank 2, i.e.,
rank(C) = 2. Let Kt = GG⊤ and W = G⊤CG and therefore rank(W) = 2,
with eigenvalues η2 ≤ 0 ≤ η1 and |η2| ≤ |η1|. Solving Equation (13) for α gives

η1

1 + αη1
+

η2

1 + αη2
= 0, (14)

and

α∗ = −
1

2

η1 + η2

η1η2
≥ 0. (15)

Substituting Equation (15) into (12), gives the following update equation for the
kernel matrix

Kt+1 = (K−1t + α∗C)−1 . (16)

1We skip the subscript for notational simplicity.
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LetC = UV⊤ whereU,V are n×2 matrices of rank 2. Using Sherman-Morrison-
Woodbury formula, we can write (16) as

Kt+1 = Kt −Kt α
∗U (I+ α∗V⊤Kt U)−1 V⊤Kt

= Kt −△Kt

(17)

in which, △Kt is the correction term on the current kernel matrix Kt. Calcu-
lation of the update rule (17) is simpler since it only involves inverse of a 2× 2
matrix, rather than the n× n matrix in (16).

For a rank-deficient kernel matrix K0 with rank(K0) = r, we employ the
results of Kulis et al. [23], which state that for any column-orthogonal matrix Q

with range(K0) ⊆ range(Q) (e.g., obtained by singular value decomposition of
K0), we first apply the transformation

M→ M̂ = Q⊤MQ,

on all the matrices, and after finding the kernel matrix K̂ satisfying all the
transformed constraints, we can obtain the final kernel matrix using the inverse
transformation

K = QK̂Q⊤.

Note that since log det preserves the matrix rank, the mapping is one-to-one
and invertible.

As the final remark, the kernel matrix learned by minimizing the log det
divergence subject to the set of constraints Cneq ∪ Ceq can be also extended to
handle out of sample data points, i.e., data points that were not present when
learning the kernel matrix. The inner product between a pair of out of sample
data points x,y ∈ R

d in the transformed kernel space can written as

k(x,y) = k0(x,y) + kx
⊤(K†0 (K−K0)K

†
0)ky (18)

where, k0(x,y) and the vectors kx = [k0(x,x1), . . . , k0(x,xn)]
⊤ and ky =

[k0(y,x1), . . . , k0(y,xn)]
⊤ are formed using the initial kernel function.

4.2 Semi-supervised kernel learning with relative comparisons

In this section, we summarize the proposed approach, which we name SKLR, for
Semi-supervised Kernel-Learning with Relative comparisons. The pseudo-code
of the SKLR method is shown in Algorithm 1. As already discussed, the main
ingredients of the method are the following.

Selecting the bandwidth parameter. We consider an adaptive approach to
select the bandwidth parameter of the Gaussian kernel function. First, we set σi

equal to the distance between point xi and its ℓ-th nearest neighbor. Next, we
set the kernel between xi and xj to

k0(xi,xj) = exp

(

−
‖xi − xj‖

2

σ2
ij

)

, (19)
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Algorithm 1 (SKLR) Semi-supervised kernel learning with relative comparisons

Input: initial n × n kernel matrix K0, set of relative comparisons Cneq and Ceq,
constant distance factor γ
Output: kernel matrix K

• Find low-rank representation:

– Compute the n × n low-rank kernel matrix K̂0 such that rank(K̂0) = r ≤ n

using incomplete Cholesky decomposition such that ‖K̂0‖F
‖K0‖F

≥ 0.99

– Find n× r column orthogonal matrix Q such that range(K0) ⊆ range(Q)

– Apply the transformation M̂← Q⊤ MQ on all matrices

• Initialize the kernel matrix

– Set K̂← K̂0

• Repeat

(1) Select an unsatisfied constraint Ĉ ∈ Cneq ∪ Ceq
(2) Apply Bregman projection (17)

Until all the constraints are satisfied

• Return K← QK̂Q⊤

where, σ2
ij = σiσj . This process ensures a large bandwidth for sparse regions and

a small bandwidth for dense regions.

Semi-supervised kernel learning with relative comparisons. After find-
ing the low-rank approximation of the initial kernel matrix K0 and transforming
all the matrices by a proper matrix Q, as discussed in Section 4.1, the algorithm
proceeds by randomly considering one unsatisfied constrained at a time and
performing the Bregman projections (17) until all the constraints are satisfied.

Clustering method. After obtaining the kernel matrix K satisfying the set of
all relative and undetermined constraints, we can obtain the final clustering of
the points by applying any standard kernelized clustering method. In this paper,
we consider the kernel k-means because of its simplicity and good performance.
Generalization of the method to other clustering techniques such as kernel mean-
shift is straightforward.

5 Experimental results

In this section, we evaluate the performance of the proposed kernel-learning
method, SKLR. As the under-the-hood clustering method required by SKLR, we
use the standard kernel k-means with Gaussian kernel and without any super-
vision (Equation (19) and ℓ = 100). We compare SKLR to three different semi-
supervised metric-learning algorithms, namely, ITML [16], SKkm [1] (a variant
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of SKMS with kernel k-means in the final stage), and LSML [18]. We select the
SKkm variant as Anand et al. [1] have shown that SKkm tends to produce more
accurate results than other semi-supervised clustering methods. Two of the base-
lines, ITML and SKkm, are based on pairwise ML/CL constraints, while LSML

uses relative comparisons. For ITML and LSML we apply k-means on the trans-
formed feature vectors to find the final clustering, while for SKkm and SKLR we
apply kernel k-means on the transformed kernel matrices.

To assess the quality of the resulting clusterings, we use the Adjusted Rand
(AR) index [26]. Each experiment is repeated 20 times and the average over all
executions is reported. For the parameter γ required by SKLR we use γ = 2. Our
implementation of SKLR is in MATLAB and the code is publicly available.2 For
the other three methods we use publicly available implementations.3,4,5

Finally, we note that in this paper we do not report running-time results,
but all tested methods have comparable running times. In particular, the com-
putational overhead of our method can be limited by leveraging the fact that
the algorithm has to perform rank-2 matrix updates.

5.1 Datasets

We conduct the experiments on three different real-world datasets.

Vehicle:6 The dataset contains 846 instances from 4 different classes and is
available on the LIBSVM repository.

MIT Scene:7 The dataset contains 2688 outdoor images, each sized 256 ×
256, from 8 different categories: 4 natural and 4 man-made. We use the GIST
descriptors [27] as the feature vectors.

USPS Digits:8 The dataset contains 16 × 16 grayscale images of handwritten
digits. It contains 1100 instances from each class. The columns of each images
are concatenated to form a 256 dimensional feature vector.

5.2 Relative constraints vs. pairwise constraints

We first demonstrate the performance of the different methods using relative and
pairwise constraints. For each dataset, we consider two different experiments:
(i) binary in which each dataset is clustered into two groups, based on some
predefined criterion, and (ii) multi-class where for each dataset the clustering
is performed with number of clusters being equal to number of classes. In the
binary experiment, we aim to find a crude partitioning of the data, while in the
multi-class experiment we seek a clustering at a finer granularity.

2https://github.com/eamid/sklr
3http://www.cs.utexas.edu/~pjain/itml
4https://github.com/all-umass/metric_learn
5https://www.iiitd.edu.in/~anands/files/code/skms.zip
6http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
7http://people.csail.mit.edu/torralba/code/spatialenvelope/
8http://cs.nyu.edu/~roweis/data.html
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The 2-class partitionings of our datasets required for the binary experiment
are defined as follows: For the vehicle dataset, we consider class 4 as one group
and the rest of the classes as the second group (an arbitrary choice). For the
MIT Scene dataset, we perform a partitioning of the data into natural vs.
man-made scenes. Finally, for the USPS Digits, we divide the data instances
into even vs. odd digits.

To generate the pairwise constraints for each dataset, we vary the number of
labeled instances from each class (from 5 to 19 with step-size of 2) and form all
possible ML constraints. We then consider the same number of CL constraints.
Note that for the binary case, we only have two classes for each dataset. To
compare with the methods that use relative comparisons, we consider an equal
number of relative comparisons and generate them by sampling two random
points from the same class and one point (outlier) from one of the other classes.
Note that for the relative comparisons, there is no need to restrict the points to
the labeled samples, as the comparisons are made in a relative manner.

Finally, in these experiments, we consider a subsample of both MIT Scene

and USPS Digits datasets by randomly selecting 100 data points from each
class, yielding 800 and 1000 data points, respectively.

The results for the binary and multi-class experiments are shown in Fig-
ures 1(a) and 1(b), respectively. We see that all methods perform equally with
no constraints. As constraints or relative comparisons are introduced the accu-
racy of all methods improves very rapidly. The only surprising behavior is the
one of ITML in the multi-class setting, whose accuracy drops as the number of
constraints increases. From the figures we see that SKLR outperforms all com-
peting methods by a large margin, for all three datasets and in both settings.

5.3 Multi-resolution analysis

As discussed earlier, one of the main advantages of kernel learning with relative
comparisons is the feasibility of multi-resolution clustering using a single kernel
matrix. To validate this claim, we repeat the binary and multi-class experiments
described above. However, this time, we mix the binary and multi-class con-
straints and use the same set of constraints in both experimental conditions. We
evaluate the results by performing binary and multi-class clustering, as before.

Figures 1(c) and 1(d) illustrate the performance of different algorithms using
the mixed set of constraints. Again, SKLR produces more accurate clusterings,
especially in the multi-class setting. In fact, two of the methods, SKkm and ITML,
perform worse than the kernel k-means baseline in the multi-class setting. On
the other hand all methods outperform the baseline in the binary setting. The
reason is that most of the constraints in the multi-class setting are also relevant
to the binary setting, but not the other way around.

Figure 2 shows a visualization of the USPS Digits dataset using the SNE
method [28] in the original space, and the spaces induced by SKkm and SKLR. We
see that SKLR provides an excellent separation of the clusters that correspond to
even/odd digits as well as the sub-clusters that correspond to individual digits.
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Fig. 1. Clustering accuracy measured with Adjusted Rand index (AR). Rows corre-
spond to different datasets: (1) Vehicle; (2) MIT Scene; (3) USPS Digits. Columns
correspond to different experimental settings: (a) binary with separate constraints;
(b) multi-class with separate constraints; (c) binary with mixed constraints; (d) multi-
class with mixed constraints.

5.4 Generalization performance

We now evaluate the generalization performance of the different methods to
out-of-sample data on the MIT Scene and USPS Digits datasets (recall that
we do not subsample the Vehicles dataset). For the baseline kernel k-means
algorithm, we run the algorithm on the whole datasets. For ITML and LSML, we
apply the learned transformation matrix on the new out-of-sample data points.
For SKkm and SKLR, we use Equation (18) to find the transformed kernel matrix
of the whole datasets. The results of this experiment are shown in Figure 3. As
can be seen from the figure, also in this case, when generalizing to out-of-sample
data, SKLR produces significantly more accurate clusterings.
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USPS Digits - Original Space

(a)

USPS Digits - SKkm

(b)

USPS Digits - SKLR

(c)

Fig. 2. Visualization of the USPS Digits using SNE: (a) original space; (b) space
obtained by SKkm; (c) space obtained by our method, SKLR.

5.5 Effect of equality constraints

To evaluate the effect of equality constraints on the clustering, we consider a
multi-class clustering scheme. For all datasets, we first generate a fixed number
of relative comparisons (360, 720, and 900 relative comparisons for Vehicle,
MIT Scene, and USPS Digits, respectively) and then we add some addi-
tional equality constraints (up to 200). The equality constraints are generated
by randomly selecting three data points, all from the same class, or each from
a different class. The results are shown in Figure 4. As can be seen, considering
the equality constraint also improves the performance, especially on the MIT

Scene and USPS Digits datasets. Note that none of the other methods can
handle these type of constraints.

6 Conclusion

We have devised a semi-supervised kernel-learning algorithm that can incorpo-
rate various types of relative distance constraints, and used the resulting kernels
for clustering. Our experiments show that our method outperforms by a large
margin other competing methods, which either use ML/CL constraints or use
relative constraints but different metric-learning approaches. Our method is com-
patible with existing kernel-learning techniques [1] in the sense that if ML and
CL constraints are available, they can be used together with relative compar-
isons. We have also proposed to interpret an “unsolved” distance comparison so
that the interpoint distances are roughly equal. Our experiments suggest that
incorporating such equality constraints to the kernel learning task can be ad-
vantageous, especially in settings where it is costly to collect constraints.

For future work we would like to extend our method to incorporate more ro-
bust clustering methods such as spectral clustering and mean-shift. Additionally,
the soft formulation of the relative constraints for handling possibly inconsistent
constraints is straightforward, however, we leave it for future study.
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Fig. 3. Clustering accuracy on out-of-sample data (generalization performance). Rows
correspond to different datasets: (1) MIT Scene; (2) USPS Digits. Columns corre-
spond to different experimental settings: (a) binary with separate constraints; (b) multi-
class with separate constraints; (c) binary with mixed constraints; (d) multi-class with
mixed constraints.
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