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Abstract

Statistical genetic analysis of quantitative traits in large pedigrees is a formidable computational

task due to the necessity of taking the non-independence among relatives into account. With the

growing awareness that rare sequence variants may be important in human quantitative variation,

heritability and association study designs involving large pedigrees will increase in frequency due

to the greater chance of observing multiple copies of rare variants amongst related individuals.

Therefore, it is important to have statistical genetic test procedures that utilize all available

information for extracting evidence regarding genetic association. Optimal testing for marker/

phenotype association involves the exact calculation of the likelihood ratio statistic which requires

the repeated inversion of potentially large matrices. In a whole genome sequence association

context, such computation may be prohibitive. Toward this end, we have developed a rapid and

efficient eigensimplification of the likelihood that makes analysis of family data commensurate

with the analysis of a comparable sample of unrelated individuals. Our theoretical results which

are based on a spectral representation of the likelihood yield simple exact expressions for the

expected likelihood ratio test statistic (ELRT) for pedigrees of arbitrary size and complexity. For

heritability, the ELRT is:

where ĥ2 and λgi are respectively the heritability and eigenvalues of the pedigree-derived genetic

relationship kernel (GRK). For association analysis of sequence variants, the ELRT is given by

where , and  are the total, quantitative trait nucleotide, and residual heritabilities,

respectively. Using these results, fast and accurate analytical power analyses are possible,

eliminating the need for computer simulation. Additional benefits of eigensimplification include a

simple method for calculation of the exact distribution of the ELRT under the null hypothesis

which turns out to differ from that expected under the usual asymptotic theory. Further, when
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combined with the use of empirical GRKs—estimated over a large number of genetic markers—

our theory reveals potential problems associated with non positive semi-definite kernels. These

procedures are being added to our general statistical genetic computer package, SOLAR.

I. INTRODUCTION

With the rise of next generation sequencing (NGS) and the resulting increase in available

whole genome sequence (WGS), the modern statistical genetics of complex disease-related

phenotypes finds itself confronted with the Herculean task of analyzing an astronomical

volume of data. Of particular importance is the fact that, by far, most human sequence

variation is rare (1000 Genome Project Consortium et al., 2012), so rare that much sequence

variation is effectively private (or lineage-specific). That fraction of the genome that we are

most interested in, the phenotypically functional component, is even more likely to be

dominated by such rare variation. In man, rare functional variation is best studied in large

pedigrees. Basically, pedigree-based studies represent an implicit enrichment strategy for

identifying and studying rare functional variants. Mendelian transmissions from parents to

offspring maximize the chance that multiple copies of rare variants exist in the pedigree.

Alternatively, studies of unrelated individuals like those typically performed in the now

receding genome-wide association (GWA) era that has focused only upon common

sequence variation can never capture more than one copy of a “private” variant. Whilst there

are accumulating methods to examine the joint effects of sequence variation in a gene-

centric manner that may be of value in the study of unrelateds, a large part of human

genetics will stay focused on the rapid identification of specific rare variants of moderate to

large effect on disease risk since such variants more rapidly lead to functional experimental

validation and causal gene discovery with all of its concomitant benefits. Thus, it is apparent

that the coming WGS era of human genetics will require a return to our fundamental roots

with a refocus on pedigree-based studies of phenotypic variation (Blangero, 2004; Ott et al.,

2011).

The analysis of the most valuable kinds (for studying rare variation) of large and complex

human pedigrees has its own difficulties including substantial statistical and computational

issues. At first glance, it would seem anachronistic to attack this issue by retreating to the

classical methods of polygenic analysis under a variance components (VC) model, which

have their origins almost a century ago now in Fisher (1918). This linear mixed model

which allows for the simultaneous analysis of both fixed (e.g., the effects of specific

sequence variants on the mean) and random effects (typically the residual polygenic effects

and random environmental effects) has been successfully used for many years in human

pedigree analysis. However, usage of VC models in large human pedigrees of the kind most

likely to be valuable for the study of rare sequence variation has generally been

computationally formidable. Similarly, obtaining accurate pedigree information itself is a

difficult task in human populations (and especially isolated populations).

In this work, we demonstrate two advances in polygenic VC analysis that can be used to

rationally analyze whole genome sequence variation in relation to its effects on phenotypic

variation or disease risk. Specifically, we describe an eigenvalue decomposition (EVD)
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approach to likelihood analysis under a VC polygenic model (hereafter polygenic model)

that greatly simplifies/speeds analyses and, more importantly, leads to a remarkable set of

closed form analytical equations for power analyses for both heritability studies and marker-

based association studies in arbitrary pedigrees. Additionally, this spectral decomposition of

the likelihood function effectively removes all barriers to computation for even the largest

and most complex of pedigrees. We also describe the use of empirical genetic relationship

kernels (GRKs) that substantially broadens the potential to use polygenic models in the

absence (or in support) of accurate pedigree information. We tie the two approaches together

in a section where we use the EVD-derived likelihood approach to study the statistical

properties of a typical GRK usage.

II. VARIANCE COMPONENTS MODELS

A. Standard polygenic model

We start with a standard description of the linear model for a phenotype vector under a VC

model, which is a standard modeling approach for human family data (Almasy and

Blangero, 1998; Blangero et al., 2001; Lange, 2002; Almasy and Blangero, 2010):

(1)

where y, the phenotype vector of interest, X, a design matrix of covariate effects, and β, a

vector of regression coefficients, are of dimensions n × 1, n × j, and j × 1, respectively, and n

and j give the numbers of individuals in the pedigree and of fixed effects parameters,

respectively; and g, and e are unobserved vectors of random genetic and environmental

effects, respectively. On assuming that the genetic and environmental effects are

uncorrelated, the polygenic model for the phenotypic covariance matrix is as follows:

(2)

where K is the GRK (which is also known as a genetic relationship matrix), I is the identity

matrix, and  is the standard additive genetic heritability, where , and

 are the additive genetic, residual environmental, and total phenotypic variances,

respectively. For this basic model, K = 2Φ, where Φ is the expected kinship matrix

generally derived directly from pedigree information. Assuming that the trait follows a

multivariate normal (MVN) distribution, the model ln-likelihood function is given as:

(3)

where δ = y − Xβ. If the data do not conform to the MVN assumption, we generally

advocate direct inverse Gaussian transformation either prior to analysis or post initial

covariate adjustment.

Following Boerwinkle et al. (1986), a measured genotype (MG) effect at a single nucleotide

polymorphism (SNP) may be included in the model for the mean as a fixed-effect parameter.
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Earlier approaches to incorporate a MG effect were made by Moll et al. (1979) as a fixed

effect and by Hopper and Matthews (1982) as a random effect, but the mature MG model

was fully developed by Boerwinkle et al. (1986). Casual inspection of the likelihood

equation (Eq. 3) shows that likelihood analysis to the tune of one SNP at a time can be

computationally burdensome for a large number of SNPs, and for large pedigrees. This is

because computation of the inverse covariance matrix of the pedgiree is required each time

the likelihood is maximized in order to find the maximum likelihood estimates (MLEs). In

current GWA study designs employing large extended families and having total sample

sizes of about a thousand (or appreciably more) individuals, and where a million SNPs are to

be analyzed, we would have to invert the covariance matrix of size say 1000×1000 for at

least 1M×(number of likelihood evaluations) times. Obviously, this problem is amplified for

NGS data analysis where the number of sequence variants to be analyzed can easily

approach 25M in a study of similar size.

B. Eigensimplification of the MVN likelihood

Because of the computational burden inherent in the traditional analytical approach, we

earlier proposed a simplified approach to the problem using the EVD of the covariance

matrix (Dyer et al., 2009). We call this general process the eigensimplification of the

likelihood function. Hints or variations of the basic EVD method have been developed in

relation to maximum likelihood estimation, and have been applied in statistics and genetics

for decades, always as a means of simplifying the attendant computational rigor (Patterson

and Thompson, 1971; Thompson, 1973, 2008; Dempster et al., 1984; Thompson and

Cameron, 1986; Thompson and Meyer, 1986; Thompson and Shaw, 1990, 1992, Kang et al.,

2008, 2010). Here we similarly employ an orthogonal transformation of the data vector

which maps or linearly transforms a vector of non-independent observations to a vector of

independent observations. If the trait data was sampled from unrelated individuals, the

likelihood would involve the simple product of univariate normal densities. However,

because data sampled from families are inherently non-independent, we must of account for

the non-independence generated by genetic transmission. After the orthogonal

transformation, we will see that the data are "decorrelated" or “whitened”, which essentially

diagonalizes the covariance matrix and reduces the likelihood again to the product of

univariate normal densities. This consequence arises simply because the data vector has

been taken from a vector space of non-independent observations into a vector space of

independent observations by way of an orthogonal transformation to the eigenbasis. Figure 1

represents a graphic depiction of this process where a bivariate probability density is

transformed into two univariate probability densities.

Assuming for convenience and with complete generality that , the EVD of the

covariance matrix can be written as:

(4)

where S is an orthogonal matrix of eigenvectors, and Dp = diag {λpi} and Dg = diag {λgi}

are respectively diagonal matrices of phenotypic and additive genetic eigenvalues. The

simple linear form for the phenotypic eigenvalues represents the critical component leading
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to dramatic speed-up of likelihood function evaluation. Likelihood computations can now be

greatly simplified by employing a linear transformation of the vector of residuals to the

eigenbasis of the covariance matrix, which we denote by τ:

(5)

Since δ is multivariate normal, then so is the vector of transformed variables (Anderson,

1984):

where V [τ] = S′ΣS = I. One of the chief virtues of this approach, besides leading to a

simplified likelihood, is that S and Dg can be computed from an initial EVD of K which

needs to be performed only once before subsequent model evaluations. That the EVD of K
is sufficient for our purposes is made possible by the facts that the eigenvectors of Σ are also

the eigenvectors of K (Thompson and Shaw, 1990, 1992), and the eigenvalues of Σ can be

written as a linear function of the eigenvalues of K in the manner stated above. From

standard multivariate theory (Stuart and Ord, 1987), we know that the full likelihood is

factored into the likelihood for the transformed trait and the likelihood for the

transformation, where the latter is given by the Jacobian of the transformation, which is

denoted by Jδ→τ. Thus, the full likelihood will be on the natural logarithmic scale a sum of

the likelihood of the transformed variable and the natural logarithm of the Jacobian of the

transformation:
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(6)

where θ = [β, h2]′ is the parameter vector, S′S = SS′ = I by definition of an orthogonal

matrix, |S′| = 1 on restricting S′ to be a rotation (Pettofrezzo, 1978; Abadir and Magnus,

2005), and the summations are taken over n. Note that the phenotypic eigenvalues are re-

expressed as a function of the heritability and the additive genetic eigenvalues. The major

result of this spectral decomposition is that the likelihood has been simplified to be a sum of

univariate likelihoods, as would be the case for the total likelihood for a sample of unrelated

individuals or independent observations. It is interesting to observe that similar simplified

likelihoods have been proposed under similar conditions involving the eigenvalues of the

covariance matrix (Anderson and Olkin, 1985), but to our knowledge it appears that these

simplified likelihoods were not utilized until only recently in statistical genetics in the

context of the linear mixed model (Kang et al., 2008). Importantly, we note that because of

the linear simplicity of Eq. 4, the required spectral decomposition of the GRK needs to be

done only once and the transformation can be performed on the phenotype and covariate

vector prior to analysis. For real data, this will be even true across the evaluation of very

different models as long as the missing data pattern (for both phenotype and covariates) is

constant. This fact was not noted nor implemented by Kang et al (2008). Remarkably, our

eigensimplification of the likelihood results in a rapid exact calculation of the usual MVN

likelihood that is equivalent in speed to that observed for an equal number of unrelated

subjects.
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III. EXPECTED LIKELIHOOD RATIO TEST STATISTICS

A. Heritability

The eigensimplification of the multivariate likelihood in Eq.(6) leads to some very useful

analytical results of substantial relevance for the genetic analysis of phenotypic variation in

arbitrary pedigrees. To show some of these results, it is convenient to work with the

expected likelihood ratio test statistic, denoted as ELRT. We employ the ELRT for several

reasons: 1) it is the easiest test statistic to analytically derive in comparison to

asymptotically equivalent alternatives, 2) it provides an asymptotically uniformly most

powerful test statistic for a variance component and, 3) the ELRT leads to dramatically

simplified analytical power and ARE analyses.

To derive the ELRT, we require the following expectation:

which shows that the quadratic term in the likelihood function cancels out on taking the

difference in the ELRT. Thus, for a test of total additive genetic heritability we find:
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(7)

where the covariance matrices, and diagonal matrices of phenotypic eigenvalues under the

null and alternative hypotheses are respectively subscripted by N and A, and  and ĥ2

denote the heritabilities under the null and alternative hypotheses, respectively. The

relationship between the heritabilities and the eigenvalues in relation to the function in the

summand is depicted in Figure 2. Because of the negative sign outside the summation,

eigenvalues less than 1 contribute positively to the ELRT while those greater than 1 decrease

the ELRT. This makes intuitive sense since eigenvalues below 1 are direct indications of

correlation amongst individuals. This remarkably simple formula provides the expected test

statistic for heritability in pedigrees of arbitrary size and complexity as a function of the

easily obtained eigenvalues of the GRK which will often be the pedigree-derived coefficient

of relationship matrix. This is the first general formula for pedigree-based heritability testing

that we know of. It proves to be a very simple foundation for calculating power to detect

heritability.

B. Association in the Presence of Residual Heritability

Given that association testing of specific sequence variants is often the focus of genetic

analysis of human disease-related phenotypic variation, the simplification provided by Eq.

(6) can also be used to derive the ELRT required for fixed effect testing of marker

association. The effect of a sequence variant through a fixed MG effect influencing the

mean, can be revisualized as a component of genetic variance. Basically, inference on a
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fixed effect parameter can be made by examining the perturbation to the variance due to

presence of the fixed effect. This approach is used universally in standard linear regression

analysis. Recall that an F statistic is essentially a ratio of variances. For a standard F-test on

a regression coefficient, the variance explained by the regression is compared to the

unexplained variance. If the regression parameter is significant (i.e. if the fixed effect is

statistically important), it will perturb the variance, or rather, increase the ratio of the

explained to the unexplained variance. Similarly, for the ELRT, we can make an inference

on the significance of a SNP effect by way of the perturbation to the variance due to the

SNP.

The foregoing requires a measure of the variance component due to the sequence variant.

The modeling of a variance component due to a single variant has been addressed by many

investigators in human genetics (Hopper and Mathews, 1982; Boerwinkle and Sing, 1986,

1987; Blangero et al., 2000; Blangero et al., 2005). Here we will use a simple (but widely

biologically valid) model employing additive gene action. Consider now a single diallelic

locus representative of a quantitative trait nucleotide (QTN) where the alleles have

frequencies p and (1 − p). From classical theory, the QTN variance, denoted by , is known

to be:

(8)

where a is the displacement between genotypic means. The QTN-specific heritability,

denoted by , is therefore given as:

(9)

We use this to define the residual heritability, denoted by , which is given as:

(10)

where  is the total heritability. The residual heritability measures the relative amount of

additive genetic variation left after accounting for the QTN effect (and any other covariate

effects in the model).

Let the covariance matrices under the null and alternative be respectively given as:

(11)

and

(12)
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Thus, using the eigensimplification of the MVN likelihood, we find for testing association

with a sequence variant:

(13)

where we express the last form of the statistic in terms of the expected statistics for the

QTN-specific heritability in a sample of unrelateds, the total heritability in pedigrees, and

the residual heritability in pedigrees, respectively. Eq.(13) provides for the first time a

completely general analytical formula for calculating expected association test statistics (and

hence power) in arbitrary pedigrees. This formula obviates the need for extensive computer

simulation which has been the usual method for obtaining power for association studies on

pedigrees. Consistent with conventional wisdom regarding association testing (Visscher et

al., 2008), the last formulation shows the power to detect association in pedigrees will be

less than or at most equal to that in a sample of unrelateds. Eq.(13) should prove of

substantial value in study design of pedigree-based association studies.

IV. POWER AND ASYMPTOTIC RELATIVE EFFICIENCY

A. Power

Power can be computed as the probability integral from the point on the alternative

distribution corresponding to the nominal significance level or alpha (on the null

distribution) to the upper limit of the alternative distribution at positive infinity. Since the

total probability of any distribution is 1, power can be conveniently computed as:
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(14)

where the distribution under the alternative hypothesis is the non-central chi-square

distribution, denoted by , ν is the degrees of freedom (d.f.) parameter, ξ is the non-

centrality parameter (NCP),  is the point on the non-central chi-square distribution

corresponding to the 100(1 − α) percentage point on the distribution under the null

hypothesis, and  is the probability of making a type II error (with apologies

for the double use of beta).

When ξ = 0 the non-central chi-square degenerates to the usual chi-square, which is the

distribution of the test statistic under the null hypothesis. For standard test cases (e.g.

regression coefficients), alpha is the nominal significance level, and so the threshold value

for the variate corresponding to the significance level is given as:

which gives a threshold chi-square of . This is modified, however,

under non-standard test cases, as in a null hypothesis on the heritability, where the null lies

on a boundary of the parameter space. For such cases (and assuming that the variates are

independently and identically distributed (i.i.d.)), it is known that the statistic is

asymptotically distributed as follows (Chernoff, 1954; Miller, 1977; Self and Liang, 1987;

Stram and Lee, 1994; Verbeke and Molenberg, 2003; Dominicus et al., 2006; Visscher,

2006; DasGupta, 2008; Giampaoli and Singer, 2009):

which is a 50:50 mixture of a variate with a point-mass at 0, denoted by , and a chi-square

with 1 d.f., denoted by . Consequently, this upwardly modifies the effective test size:

which gives a threshold chi-square of  (Visscher, 2006). We will

revisit this asymptotic distribution of the LRT in a later section of the paper and show that it

is generally conservative.

There are two general methods to calculate power in likelihood analysis owing to the fact

that there are two approximations of the NCP for the non-central chi-square statistic (Brown
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et al., 1999). The older of the two approximations was first derived by Wald (1943) and is

equal to the Wald statistic. Although the Wald statistic approximation to the NCP has been

commonly used in statistical genetics (Williams and Blangero, 1999a&b; Blangero et al.,

2001), the requirement of the expected Fisher information matrix makes it burdensome to

compute. For the second, work by several investigators has shown that a reasonable NCP

approximation is provided by the ELRT (Self et al., 1992; Liu, 1998; Brown et al., 1999;

Sham et al., 2000, 2002; Rijsdijk et al., 2001). It will be more convenient to use the ELRT in

the ensuing power analysis.

B. Asymptotic relative efficiency

The concept of asymptotic relative efficiency (ARE) is closely related to power. For two test

statistics, denoted by T1 and T2, the ARE is defined as the ratio, n1/n2, where n1 and n2 are

the respective theoretical sample sizes for T1 and T2 to attain the same power at the same

alpha against the same alternative (DasGupta, 2008). Currently, there is no known analytic

formula to compute these theoretical sample sizes, but several estimates of the ratio have

been developed, one of which will be used here, namely the Pitman ARE (Pitman, 1948;

cited in Noether, 1950, 1955), denoted as ep. We give the definition of the Pitman ARE for

comparing for T1 to T2 as (DasGupta, 2008):

(15)

where the components are subscripted by test number, and the asymptotic parameter means

are equivalent to the parameter MLEs. For many cases, the parameter standard errors (and

hence their variances) are test-specific whereas the parameter means or MLEs are

asymptotically equivalent (DasGupta, 2008). Thus, for such cases, including the current

situation, ep is given as the ratio of the variances.

The latter most form leads directly to the following useful result:

(16)

where W․is the Wald statistic. We emphasize that the direction of the comparison is still T1

to T2 despite the fact that the direction in terms of NCPs is NCP2 to NCP1. This formulation

of the ARE has been commonly used in human statistical genetics to compare the relative

power of two different tests (Visscher and Duffy, 2006; Kim et al., 2007; Visscher et al.,

2008; Bhattacharjee et al., 2010; Yang et al., 2010).

1. Heritability—Eq.(16) suggests we can use the ELRT in a simple alternative measure of

the Pitman ARE since it measures the NCP:

(17)
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where the statistics, heritabilities and eigenvalues are subscripted by test number.

2. Association—Using the ELRT for association, we have the following alternative:

(18)

Equations 17 and 18 provide simple formula for directly comparing different pedigree

designs for optimality of inference.

V. UTILITY OF EIGENSIMPLIFICATION FOR THE POLYGENIC MODEL

A. Analytic eigenvalues for pedigree-derived GRKs

Our analytical results clearly demonstrate the primacy of the eigenvalues distribution for a

given GRK as the focal determinant of power to detect heritability. For canonical

relationships and simple pedigree structures such as those shown in Figure 3, the

eigenvalues of the pedigree-derived GRK can be analytically determined. Such analytical

determinations are extremely useful when considering theoretical issues of study design or

when trying to determine what type of family would be best for recruitment in a given

proposed study. Table 1 shows the analytical eigenvalues for those common pedigree

structures depicted in Figure 3. For more complex extended families such as the one

depicted in Figure 4 (this is an actual family from our San Antonio Family Heart Study

(SAFHS) sample that has undergone WGS), the eigenvalues must be numerically

determined by spectral decomposition of the pedigree-derived GRK. Figure 5 shows a

histogram of the eigenvalues of the relationship matrix for this large pedigree that were

obtained numerically. Recall that eigenvalues less than 1 contribute positively to the test

statistic for heritability. As can be seen for relationship structures with more than two

individuals in Table 1 and Figure 5, eigenvalues less than 1 are always more frequent. A

slight problem arises for the case of monozygotic (MZ) twins in that the ELRT (and, in fact,

the multivariate normal likelihood function) becomes degenerate at heritability exactly equal

to 1. This problem can be dealt with by bounding the heritability slightly less than 1.

B. Power functions for heritability and association

To evaluate the accuracy of the theory, we analyzed parametric bootstrap simulations of a

quantitative trait sampled from the SAFS example pedigree. Basically, using the simulations

modules in our SOLAR software (Almasy and Blangero, 1998), we simulated heritabilities

across the parameter space and examined our empirical power to obtain significant evidence

for genetic factors. Using 10,000 simulations including 10 copies of the SAFHS EP in each

simulation, we obtained a close correspondence between theory and empirical observation.

Figure 6 demonstrates how close the theoretical ELRTs come to a 6th order polynomial fit of

the simulated LRTs. Clearly, our very simple formula for the ELRT is suitably accurate for

general use. Table 1 also shows the ELRT per relationship unit and per individual for two

levels of heritability (0.30 and 0.70). Our results show a dependence of the ELRT upon the

total heritability and the pedigree eigenvalues. Similarly, in Figure 7, we plot on the left

panel the ELRTs for four of the different relationship structures, namely MZ twins (noted as
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MZ), nuclear families with three siblings (NF), CEPH-style families with six siblings

(CEPH), and the SAFHS example pedigree (EP), all scaled to 250 individuals for easy

comparison. In the right panel of Figure 7, we show the scaled power functions for

heritability estimation for the same pedigree structures. Notably, the extended family design

is most powerful in the region of the null. However, for heritabilities above approximately

0.47, the MZ design becomes most powerful. Our results indicate that the conventionally

and widely held belief that monozygotic twins constitute the most powerful design for

estimating heritability is not true in the most important part of the parameter space (i.e., in

the local area of the null hypothesis).

We examined similar study design comparisons in relation to association testing using Eq.

(13). For a total heritability of 0.1, we plotted the association ELRTs for the four relationship

structures, and power to detect association for the same fixed sample sizes in Figure 8.

Figure 8 shows that for this fixed low total heritability and a reasonable range of QTN-

specific heritabilities, power to detect associations is greatest in unrelated samples as

expected. Loss of power is greatest in the extended pedigree due to the substantial

correlation between subjects, however, even for this design the loss of power is low. Figure

9 shows the effect of total heritability on power to detect association for the extended

pedigree. Power to detect association is influenced by total heritability with the power loss

being maximized at a residual heritability of 0.50. Interestingly, power loss as seen in the

ELRT is minimal both near the null region for heritability (as expected) and somewhat

counter-intuitively near the maximum of heritability (at 1). Regardless, our theoretical

results show little loss of power in the association analysis of even large and complex

pedigrees. Furthermore, when considering the increased focus on the analysis of rare

variants, power is actually substantially increased in large pedigrees due to the accumulation

of multiple copies (and hence, increased genotypic variance) of rare variants incurred

through Mendelian transmission in variant-harboring lineages.

C. Asymptotic Relative Efficiency

We also calculated the AREs for comparing peidgree-based designs for association analysis.

Figure 10 shows all ARE comparisons relative to unrelateds in Figure 10, again scaled to

250 indviduals. Our results are consistent with those from a study by Visscher et al. (2008).

They found that there is in fact little power loss on comparing the power to detect

association in a sample of unrelateds versus in a sample of relatives. In fact, the power loss

becomes even smaller at higher total heritabilities (analyses not shown) as suggested also in

Figure 9.

D. Inadequacy of the Asymptotic LRT Distribution for Variance Component Testing

As we briefly discussed earlier, the asymptotic distribution of the LRT for testing the null

hypothesis with regard to a variance component is given by a 50:50 mixture of , which

denotes a chi-square random variable with a point-mass at 0, and of , a chi-square with 1

d.f. However, this is the appropriate distribution only if the data are i.i.d. (Crainiceanu et al.,

2003, 2005; Crainiceanu and Ruppert, 2004a–c; Crainiceanu, 2008). Unfortunately, for most

VC models in use in pedigree analyses including the ones under discussion here, this

assumption is violated, and this departure has been shown to generate skewed mixture
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distributions that have an increased frequency of  (i.e., an increased incidence of test

statistics of zero). Researchers have found that the true frequency of  can range from 0.65

to as high as 0.96(!) (Shephard and Harvey, 1990; Shephard, 1993; Kuo, 1999; Pinheiro and

Bates, 2000; Crainiceanu et al., 2003; Crainiceanu et al., 2004a). This means that the

traditional theory for non-standard cases can be severely conservative and hence show a loss

of power. Consequently, Crainiceanu and colleagues developed an elegant and useful theory

to recover the appropriate distribution (Crainiceanu et al., 2003, 2005; Crainiceanu and

Ruppert, 2004a–c; Crainiceanu, 2008). In fact, like us, they also employ a spectral

representation of the likelihood function to obtain a simplified LRT. Tailoring their theory to

the present situation, let πi and λgi be the eigenvalues of K1/2PK1/2 and K, respectively,

where P = I − X(X′X)− 1 X′. For the heritability problem and large n, these two matrices

(and their eigenvalues) tend towards equality. Then, if the true value of the heritability is

given by , their expression for the LRT is given as:

(19)

where e2 =1 − h2,

, the

maximization is with regard to h2, the summations are over all n values unless explicitly

noted and the ωi's are independent standard normal random variables, N (0,1) similar to the

τ vector in Eq.(5). The probability of  is equal to the probability that Eq. (19) has a global

maximum at h2 = 0. To approximate this probability, Crainiceanu and colleagues

recommended computing the probability of a local maximum at h2 = 0 for a given sample

size. This probability is given as:

(20)

Unfortunately, it appears that the true distribution of the LRT in finite situations is

determined by the asymptotic distribution of the eigenvalues of the matrices involved. Thus,

for every study and every covariate configuration, a separate LRT distribution should be

examined. While this sounds formidable, these formulae suggest a simple and very rapid

method for obtaining the true expected LRT distribution using simulation. We used the R

program RLRsim (Scheipl et al., 2008; Scheipl and Bolker, 2012) to simulate the LRTs

using the spectral representation of the LRT in Eq. (19) for our extended SAFHS pedigree

(Figure 4). Fitting a mixture of a binomial and a  distribution as suggested in Crainiceanu

(2008) and Greven et al. (2008), we estimated a true mixing proportion of 0.57:0.43 and a

multiplicative correction to the  distribution of approximately 0.905. The true cut-off is

closer to 2.3 than the asymptotic theory prediction of 2.7. Thus, as expected, reliance on the

asymptotic theory for non-standard test cases will be conservative. Experimentation shows
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that there is much less of an effect on association inference and that the non-standard

asymptotic theory holds well.

VI. ANALYSIS OF EMPIRICAL GRKs

Empirical GRKs have proven to be quite useful in the development of novel statistical

genetic methods. Visscher and colleagues (Yang et al., 2011) have used empirical GRKs to

even extract quantitative genetic information from “unrelated” individuals be exploiting

deep ancestries. For example, one way to greatly reduce the problem of multiple hypothesis

testing when analyzing a prohibitively large number of single nucleotide polymorphisms

(SNPs) is to estimate K from the set of SNPs and to use it to model a variance component

reflective of the aggregate effects of the SNPs (Wu et al., 2011). Obviously, the multiple

testing problem is amplified in the setting of whole genome sequence data analysis, which

accordingly increases the utility of a method that produces single degree of freedom tests.

This approach has been applied to the analysis of several complex traits (Yang et al., 2010,

2011a), including height, body mass index, von Willebrand factor, and QT interval, and to

schizophrenia (Lee et al., 2012). This idea could be extended to computing heritabilities on a

chromosomal or a gene segment basis (Yang et al., 2011a). One could also leverage this

approach to compute the K relevant for a metabolic pathway and to estimate pathway-

specific variance components (Almeida et al., 2012). We have shown that it is possible to

accurately recover both total and local (i.e., QTL-specific) heritability estimates by using

only empirical GRKs in a known pedigree situation (Day-Williams et al, 2011). However,

see Weir and Hill (2011) for cautionary caveats on the potential loss of accuracy in the

empirical relatedness of remote relatives.

Empirical GRKs have the potential to make significant contributions to the statistical genetic

analysis of complex traits and diseases. As an example of their use and to illustrate potential

problems, we estimated a GRK using the GCTA software (Yang, Lee et al., 2011).

Asymptotically, this procedure should yield a test of heritability that is consistent with that

of the underlying average coefficient of relationship matrix. Again, we focused on the

extended pedigrees of the general complexity as that shown in Fig. 4. We employed the

WGS single nucleotide variant frequency spectrum information (for half the genome,

specifically the odd-numbered autosomes)available on 20 SAFS pedigrees including 852

individuals with data utilized in the most recent Genetic Analysis Workshop 18 (Almasy et

al., in press) that this pedigree was part of, and simulated 4.1M SNVs with minor allele

frequencies > 0.01 for our GRK estimates. The resulting kernel is positive semi-definite

(PSD). However, Fig. 11 shows that the critical eigenvalue distribution is different from that

observed for the true pedigree-derived relationship matrix. Specifically, the GCTA leading

eigenvalues are deflated which occurs when overall correlation amongst individuals is

underestimated. Based on our Equation 7, this should lead to inflation of the test statistic.

We performed a simulation experiment to test the influence of having an empirical GRK for

heritability estimation. Using our SOLAR software, we obtained one million replicates

under the null hypothesis of no heritability using the expected kernel given by the observed

SAFHS pedigree structure. We then analyzed the simulated quantitative traits under the true

generating model (using the pedigree-derived GRK) and under a model using the empirical

GRK. We used the approach described in Equations (19) and (20) to obtain the true null
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distribution under the generating model. Using this cut-off, we observed that type 1 error for

the GCTA GRK is inflated with a false positive rate of 0.053, a 6% increase in error. The

type 1 error worsens to a 10% excess for a more stringent significance cutoff of 0.001.

Whilst the GCTA GRK was PSD, many empirical GRK estimation procedures can lead to

non-PSD kernels. Non-PSD matrices have been a bane in statistics in general and statistical

genetics in particular for decades now. It was previously observed that a non-PSD

covariance matrix can substantially bias heritability estimates (Hayes & Hill, 1980, 1981;

Hill & Thompson, 1978). For non-PSD matrices, the larger eigenvalues are biased upward

and the smaller eigenvalues are biased downward (Hayes & Hill, 1980, 1981; Hill &

Thompson, 1978; Meyer & Kirkpatrick, 2008). Our ELRT formula (Equation 7) for

heritability shows that negative eigenvalues will inflate the test statistic and hence may lead

to increased type 1 error under the null hypothesis of no heritability. Because of the shape of

the ln function, the negative eigenvalues have a disproportionate effect on the total test

statistic. Our results suggest that it is important to constrain empirical GRKs to be PSD. This

will typically require some type of post-processing of an estimated GRK. For example, an

early approach was to correct such non-PSD matrices by adjusting the eigenvalue

distribution so that the smallest eigenvalue equals 0 (Hayes & Hill, 1980, 1981; Kirkpatrick

& Lofsvold, 1992). Subsequent approaches instead aimed to obtain a better estimate of the

covariance matrix while guaranteeing the matrix to be PSD, and are reviewed in Meyer and

Kirkpatrick (2008, 2010) and Meyer (2011). Our theoretical results suggest that care should

be given when choosing empirical GRKs.

Discussion

The main theme of this work has been on the practical utility and unifying value of our

eigensimplification of the polygenic VC likelihood function. The eigensimplification

approach enables much more rapid computations that are equivalent to those required in

samples of unrelateds after initial transformation, which is a highly practical benefit in this

new era of high dimensional NGS data analysis. Importantly, it also led to elegant

theoretical advances in regard to the ELRT, power analysis, and the analysis of GRKs. Our

general formulae related to power to detect heritability in arbitrary pedigrees represents a

solution to a difficult problem that has typically been handled using computer simulation.

Our formulae unequivocally show that the critical parameters for power to detect heritability

involve the eigenvalues of the pedigree-relationship matrix. We have also used our approach

to examine the expected power of arbitrary pedigrees for detecting associations. Again, to

assess power for association testing in pedigrees, investigators have typically been required

to rely on cumbersome simulation strategies. Our formulae now allow rapid analytical

evaluation of different study designs. Our simple formulation of the ELRT for association in

pedigrees also shows exactly how power is lost due to non-independence between relatives.

We also show that this power loss is relatively minor even for our largest most complex

pedigree analyzed. Given that we are now entering an era where association studies of rare

variants in large pedigrees is likely to rapidly increase, our results will be useful for aiding

rational study design in the genetic dissection of complex phenotypes.
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Our analytical approach is not without its own share of weaknesses. One major criticism that

may turn out to be an inroad for future advance is that the exact spectral decomposition

approach is limited to VC models with only two variance components. This is because only

two kernels at a time can be simultaneously diagonalized whereas generalization to an

arbitrary number of matrices requires numerical approximation (Flury and Gautschi, 1986).

Thus, neither is the approach immediately able to incorporate a linkage variance component

(certainly not analytically), which is known to greatly improve upon the overall VC

statistical genetic model, nor is it possible to extend the approach to model genotype-by-

environment interaction using an additional variance component. We are now working with

empirical eigensimplification approaches which substantially reduce computation but not to

the extent of that observed under the simple polygenic VC model, nor do they lead to such

obvious insights into the canonical determinants of power. Notwithstanding these important

criticisms, we believe that the eigensimplification approach of the classical additive

polygenic model will lead to important empirical and possibly even additional theoretical

discoveries.

Finally, all of the procedures discussed in this work have been (or will be in the near future)

implemented into our general statistical genetic software package, SOLAR available from

http://txbiomed.org/departments/genetics/genetics-detail?r=37.

Acknowledgments

The development of the analytical methods and software used in this study was supported by NIH grant R37
MH059490. Data collection for the San Antonio Family Heart Study was supported by NIH grant R01 HL045522.
We are grateful to the participants of the San Antonio Family Heart Study for their continued involvement. The
GAW18 data are funded by NIH grant R01 GM031575 and the WGS data used in GAW18 were funded by NIH
grants U01 DK085524, U01 DK085584, U01 DK085501, U01 DK085526, and U01 DK085545. The AT&T
Genomics Computing Center supercomputing facilities used for this work were supported in part by a gift from the
AT&T Foundation and with support from the National Center for Research Resources Grant Number S10
RR029392.

References

Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT,
McVean GA. 1000 Genomes Project Consortium. An integrated map of genetic variation from
1,092 human genomes. Nature. 2012; 491:56–65. [PubMed: 23128226]

Abadir, KM.; Magnus, JR. Matrix Algebra. Cambridge: Cambridge University Press; 2005.

Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum.
Genet. 1998; 62:1198–1211. [PubMed: 9545414]

Almasy, L.; Blangero, J. Variance component methods for analysis of complex phenotypes. Vol. 2010.
Cold Spring Harb Protoc; 2010. pdb.top77.

Almasy L, Dyer TD, Peralta JM, Jun G, Fuchsberger C, Almeida MA, Kent JW Jr, Fowler S,
Duggirala R, Blangero J. Data for Genetic Analysis Workshop 18: Human Whole Genome
Sequence, Blood Pressure, and Simulated Phenotypes in Extended Pedigrees. Genet. Epidemiol. (In
Press).

Almeida, M.; Peralta, J.; Farook, V.; Puppala, S.; Duggirala, R.; Blangero, J. Random Effect Burden
Tests to Screen Gene Pathways. Genetic Analysis Workshop 18; October 13–17, 2012; Stevenson,
WA. 2012.

Anderson TW, Olkin I. Maximum-likelihood estimation of the parameters of a multivariate normal
distribution. Lin. Alg. Appl. 1985; 70:147–171.

Blangero et al. Page 18

Adv Genet. Author manuscript; available in PMC 2014 May 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://txbiomed.org/departments/genetics/genetics-detail?r=37


Bhattacharjee S, Wang Z, Ciampa J, Kraft P, Chanock S, Yu K, Chatterjee N. Using principal
components of genetic variation for robust and powerful detection of gene-gene interactions in case-
control and case-only studies. Am. J. Hum. Genet. 86:331–342. [PubMed: 20206333]

Blangero J. Localization and identification of human quantitative trait loci: King Harvest has surely
come. Curr. Op. Genet. Dev. 2004; 14:233–240. [PubMed: 15172664]

Blangero J, Williams JT, Almasy L. Quantitative trait locus mapping using human pedigrees. Hum.
Biol. 2000; 72:35–62. [PubMed: 10721613]

Blangero, J.; Williams, JT.; Almasy, L. Variance component methods for detecting complex trait loci.
Advances in Genetics, v. 42. In: Rao, DC.; Province, MA., editors. Genetic Dissection of Complex
Traits. New York: Academic Press; 2001. p. 151-181.

Blangero J, Göring HHH, Kent JW Jr, Williams JT, Peterson CP, Almasy L, Dyer TD. Quantitative
trait nucleotide analysis using Bayesian model selection. Hum Biol. 2005; 77:541–559. [PubMed:
16596940]

Boerwinkle E, Chakraborty R, Sing CF. The use of MG information in the analysis of quantitative
phenotypes in man. I. Models and analytical methods. Ann. Hum. Genet. 1986; 50:181–194.
[PubMed: 3435047]

Boerwinkle E, Sing CF. The use of MG information in the analysis of quantitative phenotypes in man.
III. Simultaneous estimation of the frequencies and effects of the apolipoprotein E polymorphism
and residual polygenetic effects on cholesterol, betalipoprotein and triglyceride levels. Ann. Hum.
Genet. 1987; 51:211–226. [PubMed: 3688836]

Brown BW, Lovato J, Russell K. Asymptotic power calculations: description, examples, computer
code. Stat Med. 1999; 18(22):3137–3151. [PubMed: 10544312]

Chernoff H. On the distribution of the likelihood ratio. Ann. Math. Stat. 1954; 25:573–578.

Crainiceanu CM, Ruppert D, Vogelsang TJ. Some properties of the likelihood ratio tests in linear
mixed models. 2003 Available at: http://legacy.orie.cornell.edu/davidr/papers/zeroprob_rev01.pdf.

Crainiceanu CM, Ruppert D. Restricted likelihood ratio tests in nonparametric longitudinal models.
Statistica Sinica. 2004a; 14:713–729.

Crainiceanu CM, Ruppert D. Likelihood ratio tests in linear mixed models with one variance
component. J. R. Statist. Soc. B. 2004b; 66:165–185.

Crainiceanu CM, Ruppert D. Likelihood ratio tests for goodness-of-fit of a nonlinear regression model.
J. Multivar. Anal. 2004c; 91:35–52.

Crainiceanu CM, Ruppert D, Claeskens G, Wand MP. Exact likelihood ratio tests for penalized
splines. Biometrika. 2005; 92:91–103.

Crainiceanu, CM. Likelihood ratio testing for zero variance components in linear mixed models. In:
Dunson, DB., editor. Random Effect and Latent Variable Model Selection. New York: Springer;
2008. p. 3-17.

DasGupta, A. Asymptotic Theory of Statistics and Probability. New York: Springer; 2008.

Day-Williams AG, Blangero J, Dyer TD, Lange K, Sobel EM. Linkage analysis without defined
pedigrees. Genet Epidemiol. 2011; 35:360–370. [PubMed: 21465549]

Dempster AP, Patel CM, Selwyn MR, Roth AJ. Statistical and computational aspects of mixed model
analysis. Appl. Stat. 1985; 33:203–214.

Dominicus A, Skrondal A, Gjessing HK, Pedersen NL, Palmgren J. Likelihood ratio tests in behavioral
genetics: Problems and solutions. Behav. Genet. 2006; 36:331–340. [PubMed: 16474914]

Dyer, TD.; Diego, VP.; Kent, JW., Jr; Göring, HHH.; Blanger, J. Rapid exact likelihood-based
quantitative trait association analysis in large pedigrees. American Society of Human Genetics
Annual Meeting; October 20–24, 2009; Honolulu, HI. 2009.

Fisher RA. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R.
Soc. Edinburgh. 1918; 52:399–433.

Flury BN, Gautschi W. An algorithm for simultaneous orthogonal transformation of several positive
definite symmetric matrices to nearly diagonal form. S.I.A.M. J. Sci. Stat. Comput. 1986; 7:167–
184.

Giampaoli V, Singer JM. Likelihood ratio tests for variance components in linear mixed models. J.
Statist. Plan. and Infer. 2009; 139:1435–1448.

Blangero et al. Page 19

Adv Genet. Author manuscript; available in PMC 2014 May 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://legacy.orie.cornell.edu/davidr/papers/zeroprob_rev01.pdf


Greven S, Crainiceanu CM, Küchenhoff H, Peters A. Restricted likelihood ratio testing for zero
variance components in linear mixed models. J. Comput. Graph. Stat. 2008; 17:870–891.

Hayes JF, Hill WG. A reparameterization of a genetic selection index to locate its sampling properties.
Biometrics. 1980; 36:237–248. [PubMed: 7407312]

Hayes JF, Hill WG. Modification of estimates of parameters in the construction of genetic selection
indices ('bending'). Biometrics. 1981; 37:483–493.

Hill WG, Thompson R. Probabilities of non-positive definite between-group or genetic covariance
matrices. Biometrics. 1978; 34:429–439.

Hill WG, Weir BS. Variation in actual relationship as a consequence of Mendelian sampling and
linkage. Genet. Res. 2011; 93:47–64.

Hopper JL, Matthews JD. Extensions to multivariate normal models for pedigree analysis. Ann. Hum.
Genet. 1982; 46:373–383. [PubMed: 6961886]

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. Variance
component model to account for sample structure in genome-wide association studies. Nat Genet.
2010; 42:348–354. [PubMed: 20208533]

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E. Efficient control of
population structure in model organism association mapping. Genetics. 2008; 178:1709–1723.
[PubMed: 18385116]

Kim W, Gordon D, Sebat J, Ye KQ, Finch SJ. Computing power and sample size for case-control
association studies with copy number polymorphism: Application of mixture-based likelihood
ratio test. PLoS One. 2008; 3:e3475. [PubMed: 18941524]

Kirkpatrick M, Lofsvold D. Measuring Selection and Constraint in the Evolution of Growth.
Evolution. 1992; 46:954–971.

Kuo B-S. Asymptotics of ML estimator for regression models with a stochastic trend component.
Econometr. Theor. 1999; 15:24–49.

Lange, K. Mathematical and Statistical Methods for Genetic Analysis. 2nd ed.. New York: Springer-
Verlag; 2002.

Lee, SH.; DeCandia, TR.; Ripke, S.; Yang, J. Schizophrenia Psychiatric Genome-Wide Association
Study Consortium (PGC-SCZ); International Schizophrenia Consortium (ISC); Molecular
Genetics of Schizophrenia Collaboration (MGS). Estimating the proportion of variation in
susceptibility to schizophrenia captured by common SNPs. In: Sullivan, PF.; Goddard, ME.;
Keller, MC.; Visscher, PM.; Wray, NR., editors. Nat. Genet. Vol. 44. 2012. p. 247-250.

Liu, B. Statistical Genomics: Linkage, Mapping, and QTL Analysis. Boca Raton: CRC Press; 1999.

Meyer K. Performance of penalized maximum likelihood in estimation of genetic covariances
matrices. Genet. Sel. Evol. 2011; 43:39. [PubMed: 22117894]

Meyer K, Kirkpatrick M. Perils of parsimony: properties of reduced-rank estimates of genetic
covariance matrices. Genetics. 2008; 180:1153–1166. [PubMed: 18757923]

Meyer K, Kirkpatrick M. Better estimates of genetic covariance matrices by "bending" using penalized
maximum likelihood. Genetics. 2010; 185:1097–1110. [PubMed: 20442220]

Miller JJ. Asymptotic properties of maximum likelihood estimates in the mixed model of the analysis
of variance. Ann. Stat. 1977; 5:746–762.

Moll PP, Powsner R, Sing CF. Analysis of genetics and environmental sources of variation in serum
cholesterol in Tecumseh, Michigan V. Variance components estimated from pedigrees. Ann. Hum.
Genet. 1979; 42:343–354. [PubMed: 434777]

Noether GE. Asymptotic properties of the Wald-Wolfowitz test of randomness. Ann. Math. Stat. 1950;
21:231–246.

Noether GE. On a theorem of Pitman. Ann. Math. Stat. 1955; 26:64–68.

Ott J, Kamatani Y, Lathrop M. Family-based designs for genome-wide association studies. Nat. Rev.
Genet. 2011; 12:465–474. [PubMed: 21629274]

Patterson HD, Thompson R. Recovery of inter-block information when block sizes are unequal.
Biometrika. 1971; 58:545–554.

Pettofrezzo, AJ. Matrices and Transformations. New York: Dover Publications; 1978.

Pinheiro, JC.; Bates, DM. Mixed-Effects Models in S and S-Plus. New York: Springer; 2000.

Blangero et al. Page 20

Adv Genet. Author manuscript; available in PMC 2014 May 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Rijsdijk FV, Hewitt JK, Sham PC. Analytic power calculation for QTL linkage analysis of small
pedigrees. Eur. J. Hum. Genet. 2001; 9:335–340. [PubMed: 11378821]

Scheipl F, Greven S, Küchenhoff H. Size and power of tests for zero random effect variance or
polynomial regression in additive and linear mixed models. Comput. Stat. Data Anal. 2008;
52:3283–3299.

Scheipl F, Bolker B. Package 'RLRsim'. 2012 Available at: http://cran.r-project.org/web/packages/
RLRsim/index.html.

Self SG, Liang K-Y. Asymptotic properties of maximum likelihood estimators and likelihood ratio
tests under nonstandard conditions. J. Am. Statist. Assoc. 1987; 82:605–610.

Self SG, Mauritsen RH, Ohara J. Power calculations for likelihood ratio tests in generalized linear
models biometrics. 1992; 48:31–39.

Sham PC, Cherny SS, Purcell S, Hewitt JK. Power of linkage versus association analysis of
quantitative traits, by use of variance-components models, for sibship data. Am. J. Hum. Genet.
2000; 66:1616–1630. Erratum in: Am. J. Hum. Genet., 2000, 66: 2020. [PubMed: 10762547]

Sham PC, Purcell S, Cherny SS, Abecasis GR. Powerful regression-based quantitative-trait linkage
analysis of general pedigrees. Am. J. Hum. Genet. 2002; 71:238–253. [PubMed: 12111667]

Shephard NG, Harvey AC. On the probability of estimating a deterministic component in the local
level model. J. Time Series Anal. 1990; 11:339–347.

Shephard N. Maximum likelihood estimation of regression models with stochastic trend components.
J. Am. Statist. Assoc. 1993; 88:590–595.

Stram DO, Lee JW. Variance components testing in the longitudinal mixed effects model. Biometrics.
1994; 50:1171–1177. [PubMed: 7786999]

Stuart, A.; Ord, JK. Kendall’s Advanced Theory of Statistics. Volume 1. Distribution Theory. 5th ed..
New York: Oxford University Press; 1987.

Thompson EA, Shaw RG. Pedigree analysis for quantitative traits: Variance components without
matrix inversion. Biometrics. 1990; 46:399–413. [PubMed: 2364130]

Thompson EA, Shaw RG. Estimating polygenic models for multivariate data on large pedigrees.
Genetics. 1992; 131:971–978. [PubMed: 1516823]

Thompson R. The estimation of variance and covariance components with an application when records
are subject to culling. Biometrics. 1973; 29:527–550.

Thompson R. Estimation of quantitative genetic parameters. Proc. R. Soc. Lond., Biol. Sci. 2008;
275:679–686.

Thompson, R.; Cameron, ND. Estimation of genetic parameters. 3rd World Congress on Genetics
Applied to Livestock Production; University of Nebraska, Institute of Agriculture and Natural
Resources; July 16-22, 1986; Lincoln. 1986. p. 371-381.Lincoln, Neb.

Thompson R, Meyer K. Estimation of variance components: What is missing in the EM algorithm? J.
Statist. Comput. Simul. 1986; 24:215–230.

Verbeke G, Molenberghs G. The use of score tests for inference on variance components. Biometrics.
2003; 59:254–262. [PubMed: 12926710]

Visscher PM. A note on the asymptotic distribution of likelihood ratio tests to test variance
components. Twin Res. Hum. Genet. 2006; 9:490–495. [PubMed: 16899155]

Visscher PM, Duffy DL. The value of relatives with phenotypes but missing genotypes in association
studies for quantitative traits. Genet Epidemiol. 2007; 30:30–36. Erratum in: Genet Epidemiol.,
2007, 31, 801. [PubMed: 16355405]

Visscher PM, Andrew T, Nyholt DR. Genome-wide association studies of quantitative traits with
related individuals: Little (power) lost but much to be gained. Eur J Hum Genet. 2008; 16:387–
390. [PubMed: 18183040]

Wald A. Tests of statistical hypotheses concerning several parameters when the number of
observations is large. Trans. Am. Mathemat. Soc. 1943; 54:426–482.

Williams JT, Blangero J. Power of variance component linkage analysis to detect quantitative trait
loci. Ann. Hum. Genet. 1999a; 63:545–563. [PubMed: 11246457]

Williams JT, Blangero J. Asymptotic power of likelihood ratio tests for detecting quantitative trait loci
using the COGA data. Genet. Epidemiol. 1999b; 17:S397–S3402. [PubMed: 10597469]

Blangero et al. Page 21

Adv Genet. Author manuscript; available in PMC 2014 May 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://cran.r-project.org/web/packages/RLRsim/index.html
http://cran.r-project.org/web/packages/RLRsim/index.html


Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data
with the sequence kernel association test. Am. J. Hum. Genet. 2011; 89:82–93. [PubMed:
21737059]

Yang J, Wray NR, Visscher PM. Comparing apples and oranges: equating the power of case-control
and quantitative trait association studies. Genet Epidemiol. 2010; 34:254–257. [PubMed:
19918758]

Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, de Andrade M,
Feenstra B, Feingold E, et al. Genome partitioning of genetic variation for complex traits using
common SNPs. Nat Genet. 2011; 43:519–525. [PubMed: 21552263]

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis.
Am. J. Hum. Genet. 2011; 88:76–82. [PubMed: 21167468]

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC,
Martin NG, Montgomery GW, et al. Common SNPs explain a large proportion of the heritability
for human height. Nat Genet. 2010; 42:565–569. [PubMed: 20562875]

Blangero et al. Page 22

Adv Genet. Author manuscript; available in PMC 2014 May 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Orthogonal transformation the residuals vector. Schematic representation of the linear

mapping of a vector in vector space V (of non-independent data) to a vector in vector space

W (of independent data).
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Figure 2.
Contribution to the ELRT as a function of the eigenvalues and heritabilities.
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Figure 3.
Some simple relationship and pedigree structures.
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Figure 4.
A San Antonio Family Heart Study (SAFHS) extended pedigree (N = 171 individuals).
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Figure 5.
Numberically estimated eigenvalues of the SAFHS extended pedigree.
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Figure 6.
Parametric bootstrap of the LRT distribution. Simulation of 19,000 LRTs where the

generating model is for heritability estimation using the SAFHS extended pedigree. 6th order

polynomial fit (blue line). ELRT computed for the SAFHS (red line).
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Figure 7.
ELRT and power for heritability estimation. For both panels: SAFHS extended pedigree

(EP) (blue line), CEPH-pedigree (red line), monozygotic twins (MZ) (green line), and

nuclear family (NF) (purple line) all scaled to 250 individuals.
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Figure 8.
ELRT and power for association testing. For both panels: Unrelateds (blue line), nuclear

family (NF) (red dashed line), monozygotic twins (MZ), (green line), CEPH pedigree

(purple dashed line), and SAFHS extended pedigree (EP) (yellow).
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Figure 9.
Effect of varying the total heritability on ELRT and power for association testing all scaled

to 250 individuals. Total heritabilities equal to: 0.1 (blue line), 0.5 (red line), and 0.9 (green

line).
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Figure 10.
Pitman Asymptotic Relative Efficiency (ARE) for unrelated in relation to various family

structures. Unrelateds in comparison to: nuclear family (NF) (blue line), monozygotic twins

(MZ) (red line), CEPH family (green), and SAFHS extended pedigree (EP) (purple line).

Blangero et al. Page 32

Adv Genet. Author manuscript; available in PMC 2014 May 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 11.
Comparison of the smallest and largest eigenvalues computed from the true pedigree-

derived (2Phi) and GCTA relationship kernels. For both panels: 2Phi (blue columns), GCTA

(red columns).
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Table 1

Analytic eigenvalues for various relationship structures

Relationship
structure Additive genetic eigenvalues

ELRT per relationship unit

h2 = 0.3 h2 = 0.7

MZ twins 2
0

0.09 (0.05)* 0.67 (0.34)

Sib pair 3/2
1/2

0.02 (0.005) 0.13 (0.03)

Sibship (ns + 1)/2

(ns − 1){1/2}**
0.18 (0.04)# 0.85 (0.17)

Relative pair in GRK, K = {Kij} 1 + Kij

1 − Kij

0.006 (0.003)‡ 0.03 (0.015)

Nuclear family

1
(ns − 1){1/2}

0.17 (0.03) 0.90 (0.18)

CEPH family
(2){1}
(ns){1/2}

0.56 (0.05) 2.54 (0.21)

Extended pedigree Eigenvalues of K 10.30† (0.06) 40.62 (0.24)

*
The number in parentheses is the scaled individual contribution to the ELRT.

**
We use the symbology (x){y} to denote x units of value y. Otherwise, the operators are to be interpreted in the usual manner. For example, the

first sibship entry means there is one eigenvalue at that value, and the second entry means that there are (ns −1) eigenvalues (ns being the number

of sibs) each one equal to 1/2.

#
For 5 sibs.

‡
For grandparent-grandchild, or avuncular, or half-sib relationships.

†
For the extended pedigree in Figure 2 (N = 171).
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