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Abstract

We propose a framework for analyzing and comparing ditidbs, which we use to construct sta-
tistical tests to determine if two samples are drawn frorfedst distributions. Our test statistic is
the largest difference in expectations over functions énuhit ball of a reproducing kernel Hilbert
space (RKHS), and is called theaximum mean discrepan@MD). We present two distribution-
free tests based on large deviation bounds for the MMD, amit@ test based on the asymptotic
distribution of this statistic. The MMD can be computed iradratic time, although efficient linear
time approximations are available. Our statistic is arsinesg of an integral probability metric, and
various classical metrics on distributions are obtaine@mwalternative function classes are used
in place of an RKHS. We apply our two-sample tests to a vaonéfyroblems, including attribute
matching for databases using the Hungarian marriage mettoete they perform strongly. Ex-
cellent performance is also obtained when comparing Higidns over graphs, for which these are
the first such tests.
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1. Introduction

We address the problem of comparing samples from two probability distrilstlmnproposing
statistical tests of the null hypothesis that these distributions are equabbtiaralternative hy-
pothesis that these distributions are different (this is called the two-sangdepr). Such tests
have application in a variety of areas. In bioinformatics, it is of interest topaye microarray
data from identical tissue types as measured by different laboratoridstdot whether the data
may be analysed jointly, or whether differences in experimental proedthve caused systematic
differences in the data distributions. Equally of interest are comparisetasebn microarray data
from different tissue types, either to determine whether two subtypesnotcanay be treated as
statistically indistinguishable from a diagnosis perspective, or to deteetdiftes in healthy and
cancerous tissue. In database attribute matching, it is desirable to mergasgataontaining mul-
tiple fields, where it is not known in advance which fields correspondfi¢heés are matched by
maximising the similarity in the distributions of their entries.

We test whether distributions andq are different on the basis of samples drawn from each of
them, by finding a well behaved (e.g., smooth) function which is large on timspdrawn fromp,
and small (as negative as possible) on the points fjoMe use as our test statistic the difference
between the mean function values on the two samples; when this is large, thesaneplikely
from different distributions. We call this test statistic the Maximum Mean Djszmey (MMD).

Clearly the quality of the MMD as a statistic depends on the cfas$ smooth functions that
define it. On one hand; must be “rich enough” so that the population MMD vanishes if and only
if p=g. On the other hand, for the test to be consistent in paveeeds to be “restrictive” enough
for the empirical estimate of the MMD to converge quickly to its expectation asahmple size
increases. We will use the unit balls in characteristic reproducing kefitirt spaces (Fukumizu
etal., 2008; Sriperumbudur et al., 2010b) as our function classes,tbi@se will be shown to satisfy
both of the foregoing properties. We also review classical metrics on digtnits, namely the
Kolmogorov-Smirnov and Earth-Mover’s distances, which are basediffament function classes;
collectively these are known as integral probability metricgiffst, 1997). On a more practical
note, the MMD has a reasonable computational cost, when compared withwthsample tests:
givenm points sampled fronp andn from g, the cost iSO(m+ n)? time. We also propose a test
statistic with a computational cost @{m-+ n): the associated test can achieve a given Type Il error
at a lower overall computational cost than the quadratic-cost test, by pakia larger volume of
data.

We define three nonparametric statistical tests based on the MMD. The fostests are
distribution-free, meaning they make no assumptions regandiagd g, albeit at the expense of
being conservative in detecting differences between the distributiomsthird test is based on the
asymptotic distribution of the MMD, and is in practice more sensitive to diffeentdistribution at
small sample sizes. The present work synthesizes and expands isaé&retton et al. (2007a,b)
and Smola et al. (200A)who in turn build on the earlier work of Borgwardt et al. (2006). Note that

1. In particular, most of the proofs here were not provided by Grettah. (2007a), but in an accompanying technical
report (Gretton et al., 2008a), which this document replaces.
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the latter addresses only the third kind of test, and that the approach tbiGet al. (2007a,b) is
rigorous in its treatment of the asymptotic distribution of the test statistic undeutheypothesis.

We begin our presentation in Section 2 with a formal definition of the MMD. Wieve the
notion of a characteristic RKHS, and establish that whiea a unit ball in a characteristic RKHS,
then the population MMD is zero if and only f = g. We further show that universal RKHSs in
the sense of Steinwart (2001) are characteristic. In Section 3, weagiowerview of hypothesis
testing as it applies to the two-sample problem, and review alternative test fatistloding the
L, distance between kernel density estimates (Anderson et al., 1994), ishiadh prior approach
closest to our work. We present our first two hypothesis tests in Sectioaséd on two different
bounds on the deviation between the population and empirical MMD. We taiffeieedt approach
in Section 5, where we use the asymptotic distribution of the empirical MMD estirsdteedasis
for a third test. When large volumes of data are available, the cost of complgingMD (quadratic
in the sample size) may be excessive: we therefore propose in Section difeecheersion of the
MMD statistic that has a linear cost in the number of samples, and an assasgtagtotic test.
In Section 7, we provide an overview of methods related to the MMD in the statestid machine
learning literature. We also review alternative function classes for wheMtD defines a metric
on probability distributions. Finally, in Section 8, we demonstrate the perfaaenahMMD-based
two-sample tests on problems from neuroscience, bioinformatics, and &ttnifaiching using the
Hungarian marriage method. Our approach performs well on high dimexisiata with low sample
size; in addition, we are able to successfully distinguish distributions omgtaga, for which ours
is the first proposed test.

A Matlab implementation of the tests iswtw.gatsby.ucl.ac.uk/ ~ gretton/mmd/mmd.htm.

2. The Maximum Mean Discrepancy

In this section, we present the maximum mean discrepancy (MMD), andlgesonditions under
which it is a metric on the space of probability distributions. The MMD is definetkims of
particular function spaces that witness the difference in distributions: eveftire begin in Section
2.1 by introducing the MMD for an arbitrary function space. In Section @& compute both the
population MMD and two empirical estimates when the associated function spaceproducing
kernel Hilbert space, and in Section 2.3 we derive the RKHS functionittaésses the MMD for
a given pair of distributions.

2.1 Definition of the Maximum Mean Discrepancy

Our goal is to formulate a statistical test that answers the following question:

Problem 1 Let x and y be random variables defined on a topological spfacwith respective
Borel probability measures p and q . Given observations=Xxi,...,Xn} and Y:={y1,...,Yn},
independently and identically distributed (i.i.d.) from p and q, respectivelyweadecide whether
p#q?

Where there is no ambiguity, we use the shorthand not&joh(x)] := Ex-p[f(X)] andEy[f (y)] :=
Ey-q[f(y)] to denote expectations with respecitandg, respectively, wherg ~ p indicatesx has
distribution p. To start with, we wish to determine a criterion that, in the population setting, takes
on a unique and distinctive value only when= g. It will be defined based on Lemma 9.3.2 of
Dudley (2002).
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Lemma 1 Let(X,d) be a metric space, and let g be two Borel probability measures defined on
X. Then p=q if and only ifEx(f(x)) = Ey(f(y)) for all f € C(X), where GX) is the space of
bounded continuous functions @

AlthoughC(X) in principle allows us to identifyp = q uniquely, it is not practical to work with such
a rich function class in the finite sample setting. We thus define a more gelassmbe statistic, for
as yet unspecified function classBgo measure the disparity betwepandq (Fortet and Mourier,
1953; Miller, 1997).

Definition 2 LetJ be a class of functions :fX — R and let pqg,x,y, X,Y be defined as above. We
define the maximum mean discrepancy (MMD) as

MMD (¥, p,q] := fgg(Ex[f(X)] —Ey[f(y)]). 1)

In the statistics literature, this is known as an integral probability metridifliet, 1997). A biasedl
empirical estimate of the MMD is obtained by replacing the population expectatith empirical
expectations computed on the samples X and Y,

MMDy [F,X,Y] = sup(iif(xﬂiif(yﬁ) : 2

feF

We must therefore identify a function class that is rich enough to uniquetjifdevhetherp = q,
yet restrictive enough to provide useful finite sample estimates (the latfnyavill be established
in subsequent sections).

2.2 The MMD in Reproducing Kernel Hilbert Spaces

In the present section, we propose as our MMD function ¢fabe unit ball in a reproducing kernel
Hilbert spaceH. We will provide finite sample estimates of this quantity (both biased and unbjased
and establish conditions under which the MMD can be used to distinguish éretprebability
measures. Other possible function classese discussed in Sections 7.1 and 7.2.

We first review some properties 6f (Schilkopf and Smola, 2002). Sinck is an RKHS, the
operator of evaluatiody mappingf € H to f(x) € R is continuous. Thus, by the Riesz represen-
tation theorem (Reed and Simon, 1980, Theorem I1.4), there is a featymgimgap(x) from X to
R such thatf (x) = (f,@(x))4. This feature mapping takes the canonical fapfx) = k(x,-) (Stein-
wart and Christmann, 2008, Lemma 4.19), whiepe,x2) : X x X — R is positive definite, and
the notatiork(x, -) indicates the kernel has one argument fixed, a&nd the second free. Note in
particular that@(x), @(y))4 = K(x,y). We will generally use the more concise notatign) for the
feature mapping, although in some cases it will be clearer to W(ite).

We next extend the notion of feature map to the embedding of a probability disrb we
will define an elemenfy, € H such thatExf = (f,pp),, for all f € H, which we call themean
embeddingf p. Embeddings of probability measures into reproducing kernel Hilbedespare
well established in the statistics literature: see Berlinet and Thomas-Ag084,(Zhapter 4) for
further detail and references. We begin by establishing conditions witieh the mean embedding
Hp exists (Fukumizu et al., 2004, p. 93), (Sriperumbudur et al., 2010mréhel).

2. The empirical MMD defined below has an upward bias—we will definerdniased statistic in the following section.
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Lemma 3 IfKk(-,-) is measurable anéty/k(x,x) < o then | € .

Proof The linear operatoff := Exf for all f € 3 is bounded under the assumption, since

Tof | = 1Exf] < Ex| 1] = Ex(1,000)5c] < Ex (VKX 1 Ty ) -

Hence by the Riesz representer theorem, there exjgiseal( such thafl, f = (f,pp),,. If we set
f=q(t) =k(t,-), we obtainup(t) = (Hp,K(t,-)), = Exk(t,x): in other words, the mean embedding
of the distributionp is the expectation undgrof the canonical feature map. [ |

We next show that the MMD may be expressed as the distanée bietween mean embeddings
(Borgwardt et al., 2006).

Lemma 4 Assume the condition in Lemma 3 for the existence of the mean embedglipgsgt
satisfied. Then

MMD2[F, p, ] = ||Hp — g5 -

Proof

2
MMD?[¥,p,q = [sup (Ex[f(X)]—Ey[f(y)])]

[fllge<2

[ sup (kp— Ha, %r

Ifllpe<2
= [l — ball5-
n

We now establish a condition on the RKH& under which the mean embeddipg is injective,
which indicates that MM, p,g] = 0 is a metrié on the Borel probability measures 8h Evi-
dently, this property will not hold for alH: for instance, a polynomial RKHS of degree two cannot
distinguish between distributions with the same mean and variance, butdlifteiréosis (Sriperum-
budur et al., 2010b, Example 3). The MMD is a metric, however, wHeis auniversalRKHSs,
defined on a compact metric spake Universality requires thak(-,-) be continuous, ant( be
dense irC(X) with respect to thé.,, norm. Steinwart (2001) proves that the Gaussian and Laplace
RKHSs are universal.

Theorem 5 Let JF be a unit ball in a universal RKH3(, defined on the compact metric spate
with associated continuous kerngl k). ThenMMD [F, p,q] = 0if and only if p=g.

Proof The proof follows Cortes et al. (2008, Supplementary Appendix), elapproach is clearer
than the original proof of Gretton et al. (2008a, p. *4)First, it is clear thatp = g implies

3. According to Dudley (2002, p. 26) a metidcx,y) satisfies the following four properties: symmetry, triangle in-
equality,d(x,x) =0, andd(x,y) = 0 = x =Y. A pseudo-metric only satisfies the first three properties.

4. Note that the proof of Cortes et al. (2008) requires an applicatiorf tth@nsinated convergence theorem, rather than
using the Riesz representation theorem to show the existence of the mieeddingg., andyg as we did in Lemma
3.
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MMD {F, p,q} is zero. We now prove the converse. By the universalit§ofor any givene > 0
andf € C(X) there exists g € H such that

If—gll. <e.

We next make the expansion

[Exf () —Ey(f(y)| < [Ext(X) — Exg(X)| + [Exa(X) — Eyg(y)| + [Eya(y) — Eyf(y)].
The first and third terms satisfy
[Exf (¥) — Exg(3)] < Ex|f(x) —g(x)| <&.

Next, write
Exg(X) — Eyg(y) = (9, Hp — Ha)gc = O,
since MMD{J, p,q} = 0 impliesp, = pg. Hence

[Exf(x) —Ey(f(y)| < 2¢
for all f € C(X) ande > 0, which impliesp = g by Lemma 1. |

While our result establishes the mappingis injective for universal kernels on compact domains,
this result can also be shown in more general cases. Fukumizu et &) (2@@duces the notion
of characteristic kernelsthese being kernels for which the mean map is injective. Fukumizu et al.
establish that Gaussian and Laplace kernels are characterigki€, and thus that the associated
MMD is a metric on distributions for this domain. Sriperumbudur et al. (20080BPand Sripe-
rumbudur et al. (2011a) further explore the properties of charatitekisrnels, providing a simple
condition to determine whether translation invariant kernels are chardicteaisd investigating the
relation between universal and characteristic kernels on non-comaetins.

Given we are in an RKHS, we may easily obtain of the squared MR~ qu?{ in terms of
kernel functions, and a corresponding unbiased finite sample estimate.

Lemma 6 Given x and Xindependent random variables with distribution p, and y andgepen-
dent random variables with distribution q, the squared populaltviD is

MMD?[F, p,q] = Exx [K(x.X)] — 2Exy [k(x,Y)] +Eyy [k(%,Y)] .

where X is an independent copy of x with the same distribution, dnslgn independent copy of y.
Anunbiasedempirical estimate is a sum of two U-statistics and a sample average,

2 B 1 m m o 1 n n o
hmmmxﬂ_imﬁizéwmwﬁﬁﬂgéwm)

|
2mn

_%i;;k(xﬁyj). (3)

When m= n, a slightly simpler empirical estimate may be used. LetZ4z,...,z,) be m i.i.d.
random variables, where:z (x,y) ~ px q (i.e., x and y are independent). An unbiased estimate of
MMD? is
R S p——— @
MMD EATILE B 1) 4j )5
“ mm—1) 2 "%
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which is a one-sample U-statistic with

h(z,z;) == k(xi,xj) +K(¥i,Yj) — k(%, ;) —K(Xj, i)

Proof Starting from the expression for MMIYF, p, q] in Lemma 4,

MMD?F.p.a] = [jup— g5
= (Mps Hp) g¢ + (Mo M) g¢ — 2 (Hps M) ¢
= Ex,x’< ( ),(p(xl >g{+Ey,y’ <<p(y ,(p()/ >%_2Ex,y<(p(x)?(p(y)>9{’

The proof is completed by applyin@(x), @(X)) 4 = k(x,X'); the empirical estimates follow straight-
forwardly, by replacing the population expectations with their corresipgrid-statistics and sample
averages. This statistic is unbiased following Serfling (1980, Chapter 5). |

Note that MML¥, may be negative, since it is an unbiased estimatgMID [T, p,q])2. The only
terms missing to ensure nonnegativity, howeverhgre z ), which were removed to remove spuri-
ous correlations between observations. Consequently we have thé boun

l m
2

— i) X L Yi) — 2K(x;, i) > 0.
MMDﬁm(m_l)i;k(mek(y.,y.) 2k(%i,yi) >0

Moreover, while the empirical statistic fon= nis an unbiased estimate of MMDit does not have
minimum variance, since we ignore the cross-teks, y;), of which there aré(n). From (3),
however, we see the minimum variance estimate is almost identical (Serfling,, 36&ion 5.1.4).

The biased statistic in (2) may also be easily computed following the aboveniegs&ubsti-
tuting the empirical estimatgs == 1 5™, @(x) andpy := 2 51, @(yi) of the feature space means
based on respective sampksndY, we obtain

2

1 n
MMDy, [F,X,Y] = m2 Z K(%i, X)) — Z %y + 3 > kOyi)| - (5)
|,J:1

Note that the U-statistics of (3) have been replaced by V-statistics. Intyitigexpect the empir-
ical test statistic MMDOJ, X, Y], whether biased or unbiased, to be sma i g, and large if the
distributions are far apart. It cosB((m+n)?) time to compute both statistics.

2.3 Witness Function of the MMD for RKHSs

We define the witness functiofi to be the RKHS function attaining the supremum in (1), and
its empirical estimatd* to be the function attaining the supremum in (2). From the reasoning in
Lemma 4, it is clear that

F(t) O (@), up—Hg)ye = Exlk(xt)]—Ey[k(y,)],
F) O (@), ix — )y = m3lak06,0) = § TLik(yi,b).

where we have definggk = m~15™, @(x), andpy by analogy. The result follows since the unit
vectorv maximizing (v, x),. in a Hilbert space ig = X/ ||X|| 4.

We illustrate the behavior of MMD in Figure 1 using a one-dimensional examie.dataX
andY were generated from distributiopsandq with equal means and variances, wlaussian
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0.8

—f*
—p (Gauss)
= = =g (Laplace)

0.6

Prob. densities and f*(t)

-0.6

Figure 1: lllustration of the function maximizing the mean discrepancy in thevdasee a Gaussian
is being compared with a Laplace distribution. Both distributions have zero amhumnit
variance. The functiori* that witnesses the MMD has been scaled for plotting purposes,
and was computed empirically on the basis of 20* samples, using a Gaussian kernel
with 0 = 0.5.

andq Laplacian. We chosg to be the unit ball in a Gaussian RKHS. The empirical estinfate

of the functionf* that witnesses the MMD—in other words, the function maximizing the mean
discrepancy in (1)—is smooth, negative where the Laplace densityastieeGaussian density (at
the center and tails), and positive where the Gaussian density is largemddnitude off* is a
direct reflection of the amount by which one density exceeds the othefairss the smoothness
constraint permits it.

3. Background Material

We now present three background results. First, we introduce the tdogynosed in statistical
hypothesis testing. Second, we demonstrate via an example that evendavhadh have asymp-
totically no error, we cannot guarantee performance at any fixed saizglavithout making as-
sumptions about the distributions. Third, we review some alternative statisgcsin comparing
distributions, and the associated two-sample tests (see also Section 7 fa@raew of additional

integral probability metrics).

3.1 Statistical Hypothesis Testing

Having described a metric on probability distributions (the MMD) based onrdistabetween their
Hilbert space embeddings, and empirical estimates (biased and unbibdeswetric, we address
the problem of determining whether the empirical MMD shovssaistically significantifference
between distributions. To this end, we briefly describe the frameworktidtatal hypothesis testing
as it applies in the present context, following Casella and Berger (200&pt€r 8). Given i.i.d.
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samplesX ~ p of sizemandY ~ q of sizen, the statistical tesf(X,Y) : X" x X"+ {0,1} is used
to distinguish between the null hypothe8&{g : p = g and the alternative hypothesiés : p # q.
This is achieved by comparing the test statistMD [F, X, Y] with a particular threshold: if the
threshold is exceeded, then the test rejects the null hypothesis (beamimglithat a zero population
MMD indicatesp = ). The acceptance region of the test is thus defined as the set of rebérai
below the threshold. Since the test is based on finite samples, it is possilda thabrrect answer
will be returned. A Type | error is made when= q is rejected based on the observed samples,
despite the null hypothesis having generated the data. ConverselyeallTgpor occurs when
p = g is accepted despite the underlying distributions being different. |&¥ed a of a test is an
upper bound on the probability of a Type | error: this is a design pararottee test which must
be set in advance, and is used to determine the threshold to which we cotimpaest statistic
(finding the test threshold for a givam is the topic of Sections 4 and 5). Tip@werof a test
against a particular member of the alternative clHgagi.e., a specifidp,q) such thatp # q) is the
probability of wrongly accepting = q in this instance. A consistent test achieves a leveind a
Type Il error of zero, in the large sample limit. We will see that the tests pexpwsthis paper are
consistent.

3.2 A Negative Result

Even if a test is consistent, it is not possible to distinguish distributions with higibability at a
given,fixedsample size (i.e., to provide guarantees on the Type Il error), withoutgsgumptions
as to the nature of the difference betwgeandq. This is true regardless of the two-sample test
used. There are several ways to illustrate this, which each give instghhia kinds of differences
that might be undetectable for a given number of samples. The following@giis one such
illustration.

Example 1 Assume we have a distribution p from which we have drawn m i.i.d. obsersation
We construct a distribution q by drawing®mi.d. observations from p, and defining a discrete
distribution over these frinstances with probability m? each. It is easy to check that if we now
draw m observations from g, there is at Ieas{f:é) m%'m > 1—e1 > 0.63probability that we thereby
obtain an m sample from p. Hence no test will be able to distinguish samplegpfeaord q in this
case. We could make the probability of detection arbitrarily small by inéngathe size of the
sample from which we construct g.

3.3 Previous Work

We next give a brief overview of some earlier approaches to the two sgmgtikem for multivariate
data. Since our later experimental comparison is with respect to certainsef thethods, we give
abbreviated algorithm names in italics where appropriate: these shoulddbasia key to the tables
in Section 8.

5. This may be biased or unbiased.
6. This is a variation of a construction for independence tests, whichwgagsted in a private communication by John
Langford.
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3.3.1 L, DISTANCE BETWEENPARZEN WINDOW ESTIMATES

The prior work closest to the current approach is the Parzen wind®aebstatistic of Anderson
et al. (1994). We begin with a short overview of the Parzen window estiaradeits properties

(Silverman, 1986), before proceeding to a comparison with the RKHSoappr We assume a
distributionp onRY, which has an associated density functfgn The Parzen window estimate of
this density from an i.i.d. samphé of sizemis

, wherek SatISerS/ X)dx=1 andk (x) > 0.
== ; | k() (>

We may rescale according t%K ( ) for a bandwidth parametér,. To simplify the discussion,

we use a single bandwidti, ., for both fp and fq. Assumingm/n is bounded away from zero and
infinity, consistency of the Parzen window estimatesffpand f, requires
d : d

mI!]nlmh =0 and m,rl]lgnw(er N)hin = . (6)
We now show thé., distance between Parzen windows density estimates is a special caseiof the b
ased MMD in Equation (5). Denote i (p,q) := || fo — fq||, theL, distance between the densities
fp and fq corresponding to the distributiomsandq, respectively. For = 1 the distanc®; (p,q) is
known as the Evy distance (Feller, 1971), and foe 2 we encounter a distance measure derived
from the Renyi entropy (Gokcay and PrlnC|pe 2002). Assume tpahd fq are given as kernel

density estimates with kerne{x— x), that is, f, p(X) =m~ 1y Kk(x —x) and fq(y) is defined by
analogy. In this case

2
K(Yi — )] dz

M:

m,n

2
k(i —=yj) = — > k(X —Yj),
1 : mnlj 1 J

RS
L

2
if=1 n=

™M=

wherek(x—y) = [K(X—2)k(y—2z)dz By its definitionk(x—y) is an RKHS kernel, as it is an inner
product betweer (x — z) andk(y — z) on the domairi.

We now describe the asymptotic performance of a two-sample test usingttsiecde fp, fq)z.
We consider the power of the test under local departures from theypotiesis. Anderson et al.
(1994) define these to take the form

fq= fp+ 00, @)

whered € R, andg is a fixed, bounded, integrable function chosen to ensurd{lisia valid density
for sufficiently small|d|. Anderson et al. consider two cases: the kernel bandwidth conget@in
zero with increasing sample size, ensuring consistency of the Parzeoweslimates off, and
fq; and the case of a fixed bandwidth. In the former case, the minimum distathoa/wch the test

can discriminatef, from fq is” & = (m+n)~Y/2h,3/2. In the latter case, this minimum distance is
&= (m+n)~Y/2, under the assumption that the Fourier transform of the kermteles not vanish

7. Formally, definesy as a threshold for the statistiz, (fp, fq)z chosen to ensure the test has lewebnd letd =
(m+n)~2h d/Zc for some fixedc # 0. Whenm,n — o such thatm/n is bounded away from 0 and, and
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on an interval (Anderson et al., 1994, Section 2.4), which implies the ké&rigecharacteristic
(Sriperumbudur et al., 2010b). The power of thetest against local alternatives is greater when
the kernel is held fixed, since fanyrate of decrease diy., with increasing sample sizé,will
decrease more slowly than for a fixed kernel.

An RKHS-based approach generalizeslthestatistic in a number of important respects. First,
we may employ a much larger class of characteristic kernels that cannoitteaas inner products
between Parzen windows: several examples are given by Stein®aft, (@ection 3) and Micchelli
et al. (2006, Section 3) (these kernels are universal, hence tdigsac). We may further generalize
to kernels on structured objects such as strings and graphslkSphet al., 2004), as done in our
experiments (Section 8). Second, even when the kernel may be writtem iasea product of
Parzen windows oY, the D% statistic with fixed bandwidth no longer converges td.amlistance
between probability density functions, hence it is more natural to defindatistic as an integral
probability metric for a particular RKHS, as in Definition 2. Indeed, in ourezipents, we obtain
good performance in experimental settings where the dimensionality greathgdx the sample
size, and density estimates would perform very pdo(fgr instance the Gaussian toy example
in Figure 5B, for which performance actually improves when the dimensionatitgases; and the
microarray data sets in Table 1). This suggests itis not necessary tdtsolvere difficult problem
of density estimation in high dimensions to do two-sample testing.

Finally, the kernel approach leads us to establish consistency againgjea ¢tass of local
alternatives to the null hypothesis than that considered by Andersanefldeorem 13, we prove
consistency against a class of alternatives encoded in terms of the meaddings ofp andq,
which applies to any domain on which RKHS kernels may be defined, anatyodensities orRY.
This more general approach also has interesting consequencegributians onRY: for instance,

a local departure frorfi{g occurs wherp andq differ at increasing frequencies in their respective
characteristic functions. This class of local alternatives cannot lressgd in the formg for fixed
g, asin (7). We discuss this issue further in Section 5.

3.3.2 MMD FORMULTINOMIALS

Assume a finite domaif( := {1,...,d}, and define the random variablesindy on X such that
pi :=P(x=i) andqg; := P(y= j). We embedinto an RKHSK via the feature mapping(x) := &,
wheree; is the unit vector irRY taking value 1 in dimensiog, and zero in the remaining entries.
The kernel is the usual inner product BA. In this case,

d
MMD?[5, p,qlzllp—qllfga=_;(pi—qi)2- (8)

Harchaoui et al. (2008, Section 1, long version) note thatithigatistic may not be the best choice
for finite domains, citing a result of Lehmann and Romano (2005, Theofe®?2) that Pearson’s

assuming conditions (6), the limit

mc):= lim Pry, <D2 (fo, fq)z > S(x>

(mH-n)—co

is well-defined, and satisfies< 1(c) < 1 for 0< |c| < o0, andTi(c) — 1 asc — co.
8. Thel, error of a kernel density estimate converge©6$—4/(4+d)) when the optimal bandwidth is used (Wasserman,
2006, Section 6.5).
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Chi-squared statistic is optimal for the problem of goodness of fit testingdttinomials? It would
be of interest to establish whether an analogous result holds for twolesggsping in a wider class
of RKHS feature spaces.

3.3.3 RURTHER MULTIVARIATE TWO-SAMPLE TESTS

Biau and Gyorfi (2005)Biau) use as their test statistic the distance between discretized esti-
mates of the probabilities, where the partitioning is refined as the sample sieasaesr This space
partitioning approach becomes difficult or impossible for high dimensiordilems, since there
are too few points per bin. For this reason, we use this test only for lowrdiimeal problems in
our experiments.

A generalisation of the Wald-Wolfowitz runs test to the multivariate domain waggsed and
analysed by Friedman and Rafsky (1979) and Henze and Penrd@® (E® Wolf) and involves
counting the number of edges in the minimum spanning tree over the aggrelgidtat connect
points inX to points inY. The resulting test relies on the asymptotic normality of the test statistic,
and is not distribution-free under the null hypothesis for finite samplesétighreshold depends
on p, as with our asymptotic test in Section 5; by contrast, our tests in Section 4stiibudion-
free). The computational cost of this method using Kruskal's algorith®( {sn+ n)?log(m-+-n)),
although more modern methods improve on theheg n) term: see Chazelle (2000) for details.
Friedman and Rafsky (1979) claim that calculating the matrix of distancéshwbstsO((m+-n)?),
dominates their computing time; we return to this point in our experiments (Sectidw8)ossible
generalisations of the Kolmogorov-Smirnov test to the multivariate case welleed by Bickel
(1969) and Friedman and Rafsky (1979). The approach of Friedm&Rafsky(FR Smirnov)n
this case again requires a minimal spanning tree, and has a similar cost to thianmmate runs
test.

A more recent multivariate test was introduced by Rosenbaum (2008 .emtails computing
the minimum distance non-bipartite matching over the aggregate data, and esimugrther of pairs
containing a sample from bobk andY as a test statistic. The resulting statistic is distribution-free
under the null hypothesis at finite sample sizes, in which respect it isisuperthe Friedman-
Rafsky test; on the other hand, it co€$(m+ n)3) to compute. Another distribution-free test
(Hall) was proposed by Hall and Tajvidi (2002): for each point frpmit requires computing the
closest points in the aggregated data, and counting how many of theseraig(the procedure is
repeated for each point fromwith respect to points fronp). As we shall see in our experimental
comparisons, the test statistic is costly to compute; Hall and Tajvidi consitietens of points in
their experiments.

4. Tests Based on Uniform Convergence Bounds

In this section, we introduce two tests for the two-sample problem that haa pgrformance
guarantees at finite sample sizes, based on uniform convergencdsbdure first, in Section 4.1,
uses the McDiarmid (1989) bound on the biased MMD statistic, and the sdodbekction 4.2, uses
a Hoeffding (1963) bound for the unbiased statistic.

9. A goodness of fit test determines whether a sample fopasndrawn from aknowntarget multinomialy. Pearson’s
Chi-squared statistic weights each term in the sum (8) by its correspoqﬁﬂng
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4.1 Bound on the Biased Statistic and Test

We establish two properties of the MMD, from which we derive a hypothesis First, we show
that regardless of whether or npt= g, the empirical MMD converges in probability at radg(m+
n)‘%) to its population value. This shows the consistency of statistical tests batbd MMD.
Second, we give probabilistic bounds for large deviations of the empWib4D in the casep = q.
These bounds lead directly to a threshold for our first hypothesis tegbedia by establishing the
convergence of MMBF, X,Y] to MMD[F, p,q]. The following theorem is proved in A.2.

Theorem 7 Let pg,X,Y be defined as in Problem 1, and assuimek(x,y) < K. Then
Pryy {yMMDb[ff,x,Y] —MMDI[7, p,q]| > 2 ((K/m)% + (K/n)%> +s} < 2exp(%) ,

wherePry y denotes the probability over the m-sample X and n-sample Y.

Our next goal is to refine this result in a way that allows us to define a testtbid under the null
hypothesigp = g. Under this circumstance, the constants in the exponent are slightly imprbived
following theorem is proved in Appendix A.3.

Theorem 8 Under the conditions of Theorem 7 where additionall g and m=n,

MMD [T X, Y] < M3 /26,0 [k(x,%) —K(x,X)] +& < (2K/m)>2 tg,
——
B1(F,p) B2(7,p)

both with probability at least — exp(—f—}?) :

In this theorem, we illustrate two possible boud$F, p) andB,(F, p) on the bias in the empirical
estimate (5). The first inequality is interesting inasmuch as it provides a link betilie bias bound
B1(&, p) and kernel size (for instance, if we were to use a Gaussian kernel wgédathenk(x, x)
andk(x,x') would likely be close, and the bias small). In the context of testing, howewewould
need to provide an additional bound to show convergence of an emgisibalate oB; (F, p) to its
population equivalent. Thus, in the following test foe= q based on Theorem 8, we uBg(F, p)
to bound the bias?

Corollary 9 A hypothesis test of levelfor the null hypothesis g g, that is, forMMD [F, p,q] =0,
has the acceptance regiddMD p[F, X, Y] < /2K/m <1+ \/2Iogor1) .

We emphasize that this test is distribution-free: the test threshold doespendion the particular
distribution that generated the sample. Theorem 7 guarantees the canysidtitre test against fixed
alternatives, and that the Type Il error probability decreases to zesite® (m*l/z), assumingn=
n. To put this convergence rate in perspective, consider a test of arttgth normal distributions
have equal means, given they have unknown but equal variansel(&and Berger, 2002, Exercise
8.41). In this case, the test statistic has a Stutl@igtribution withn+ m— 2 degrees of freedom,
and its Type Il error probability converges at the same rate as our test.

It is worth noting that bounds may be obtained for the deviation betweenlgitpumean
embeddinggp and the empirical embeddings in a completely analogous fashion. The proof

10. Note that we use a tighter bias bound than Gretton et al. (2007a).
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requires symmetrization by means ofjaost samplethat is, a second set of observations drawn
from the same distribution. While not the focus of the present paper, suaids can be used to
perform inference based on moment matching (Altun and Smola, 2006k Rod Schapire, 2006;
Dudik et al., 2004).

4.2 Bound on the Unbiased Statistic and Test

The previous bounds are of interest since the proof strategy caretidarggeneral function classes
with well behaved Rademacher averages (see Sriperumbudur et 8la)2Whend is the unit ball

in an RKHS, however, we may very easily define a test via a converdgemaal on the unbiased
statistic MMD;, in Lemma 4. We base our test on the following theorem, which is a straightfdrwar
application of the large deviation bound on U-statistics of Hoeffding (1p635).

Theorem 10 Assumé < k(xi,X;) < K, from which it follows—-2K < h(z,z;) < 2K. Then

42
Prcy {MMD2(F,X,Y) — MMD?(F, p,q) >t} < exp<§KTz>

where m := |m/2| (the same bound applies for deviations-d@fand below).
A consistent statistical test fqr= q using MMD? is then obtained.

Corollary 11 A hypothesis test of leval for the null hypothesis p- g has the acceptance region

MMD?2 < (4K //m) \/log(a~1).

This test is distribution-free. We now compare the thresholds of the albstweith that in Corollary
9. We note first that the threshold for the biased statistic applies to an estimdtdf whereas
that for the unbiased statistic is for an estimate of MMBquaring the former threshold to make
the two quantities comparable, the squared threshold in Corollary 9 desraas !, whereas the
threshold in Corollary 11 decreasesmasY/2. Thus for sufficiently largE m, the McDiarmid-based
threshold will be lower (and the associated test statistic is in any case biasadds), and its Type
Il error will be better for a given Type | bound. This is confirmed in oecton 8 experiments.
Note, however, that the rate of convergence of the squared, bialstl &dtimate to its population
value remains at /,/m (bearing in mind we take the square of a biased estimate, where the bias
term decays as/1/m).

Finally, we note that the bounds we obtained in this section and the last aee catiservative
for a number of reasons: first, they do not take the actual distributionadetmunt. In fact, they are
finite sample size, distribution-free bounds that hold even in the worststasgrio. The bounds
could be tightened using localization, moments of the distribution, etc.: seedompde, Bousquet
et al. (2005) and de la Ra and Gig (1999). Any such improvements could be plugged straight
into Theorem 19. Second, in computing bounds rather than trying to ¢eeracthe distribution of
MMD (&, X,Y) explicitly, we force our test to be conservative by design. In the followiagim for
an exact characterization of the asymptotic distribution of MMIX,Y) instead of a bound. While
this will not satisfy the uniform convergence requirements, it leads torgugests in practice.

11. In the case aft = 0.05, this ism> 12.
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5. Test Based on the Asymptotic Distribution of the Unbiased tatistic

We propose a third test, which is based on the asymptotic distribution of thesedlestimate of
MMD? in Lemma 6. This test uses the asymptotic distribution of MMBderJ(o, which follows
from results of Anderson et al. (1994, Appendix) and Serfling (1$&@tion 5.5.2): see Appendix
B.1 for the proof.

Theorem 12 Let R(xi,xj) be the kernel between feature space mappings from which the mean em-
bedding of p has been subtracted,

ki, Xj) = (@(%) — Hp, ®(Xj) —Kp) s

= k(%,Xj) — Exk(xi,Xx) — Exk(X,Xj) + Exxk(x,X), 9)
where X is an independent copy of x drawn from p. Assiae. > (X x X, p x p) (i.e., the centred
kernel is square integrable, which is true for all p when the kernel is dedh and that for =
M-+, liMm o0 M/t = px andlimmnen/t — py = (1—px) for fixed0 < px < 1. Then undefHo,
MMD 2 converges in distribution according to

[ee]

tMMD2[F, X, Y] — z [ e —py )2 = (pxpy) 2, (10)

where a ~ N(0,1) and b ~ N(0,1) are infinite sequences of independent Gaussian random vari-
ables, and th@, are eigenvalues of

[ KO0 OO = A ().

We illustrate the MMD density under both the null and alternative hypothesagproximating it
empirically forp = gandp # g. Results are plotted in Figure 2.

Our goal is to determine whether the empirical test statistic M50 large as to be outside
the 1— a quantile of the null distribution in (10), which gives a leeetest. Consistency of this test
against local departures from the null hypothesis is provided by thenfioi¢gptheorem, proved in
Appendix B.2.

Theorem 13 Definepy, py, andt as in Theorem 12, and writg & Hp + g, where g € H is chosen
such that |4+ g remains a valid mean embedding, &dfd||;. is made to approach zero as+ « to
describe local departures from the null hypothesis. Thefi;; = ct~1/2 is the minimum distance
between gand  distinguishable by the test.

An example of a local departure from the null hypothesis is describdigreiarthe discussion of
the L, distance between Parzen window estimates (Section 3.3.1). The classldltenzatives
considered in Theorem 13 is more general, however: for instancesr@nibudur et al. (2010b,
Section 4) and Harchaoui et al. (2008, Section 5, long version) gamples of classes of pertur-
bationsg; with decreasing RKHS norm. These perturbations have the property tifers fromq
at increasing frequencies, rather than simply with decreasing amplitude.

One way to estimate the-1a quantile of the null distribution is using the bootstrap on the
aggregated data, following Arcones and &i{1992). Alternatively, we may approximate the null
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Figure 2: Left: Empirical distribution of the MMD undefHo, with p andq both Gaussians with
unit standard deviation, using 50 samples from edglght: Empirical distribution of
the MMD underXHp, with p a Laplace distribution with unit standard deviation, and
a Laplace distribution with standard deviatiog'3, using 100 samples from each. In
both cases, the histograms were obtained by computing 2000 indepenstantés of
the MMD.

distribution by fitting Pearson curves to its first four moments (Johnson é198i4, Section 18.8).
Taking advantage of the degeneracy of the U-statistic, we obtam fen

E ([MMDZ)") = m(mz—l)EZ’z [W%(z,7)] and
E ([MMDﬁ] 3) = MEH [h(zZ)Ez (h(z.Z)h(Z,Z))] +O(m™*) (11)

(see Appendix B.3), whellgz, Z) is defined in Lemma & = (x,y) ~ p x g wherex andy are inde-
pendent, and, Z’ are independent copies nfThe fourth momenie ([MMDS] 4) is not computed,

since it is both very smallD(m=#), and expensive to calcula®(m?). Instead, we replace the kur-
tosis? with a lower bound due to Wilkins (1944), kyMMD?) > (skew(MMDﬁ))2+ 1. In Figure
3, we illustrate the Pearson curve fit to the null distribution: the fit is good impper quantiles of
the distribution, where the test threshold is computed. Finally, we note thattevoative empiri-
cal estimates of the null distribution have more recently been proposeddiipGet al. (2009): a
consistent estimate, based on an empirical computation of the eigen¥aing4d.0); and an alter-
native Gamma approximation to the null distribution, which has a smaller computat@stdut is
generally less accurate. Further detail and experimental comparisogsan by Gretton et al.

e([mmD2]*
12. The kurtosis is defined in terms of the fourth and second momentst{8#D 2) = (i) 3.

[E([MmDZ]?)]
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CDF of the MMD and Pearson fit
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Figure 3: lllustration of the empirical CDF of the MMD and a Pearson cutv8{ith p andq were
Gaussian with zero mean and unit variance, and 50 samples were doawedch. The
empirical CDF was computed on the basis of 1000 randomly generated MMBsvao
ensure the quality of fit was determined only by the accuracy of the Reapgoxima-
tion, the moments used for the Pearson curves were also computed onithef lasse
1000 samples. The MMD used a Gaussian kernel with0.5.

6. A Linear Time Statistic and Test

The MMD-based tests are already more efficient tharQifre? logm) andO(m?) tests described in
Section 3.3.3 (assuming = n for conciseness). It is still desirable, however, to obtajm) tests
which do not sacrifice too much statistical power. Moreover, we would likebtain tests which
haveO(1) storage requirements for computing the test statistic, in order to apply the w@stato
streams. We now describe how to achieve this by computing the test statisticausibgampling
of the terms in the sum. The empirical estimate in this case is obtained by drawisdrpaiX and
Y respectivelywithoutreplacement.

Lemma 14 Define m := |m/2], assume &= n, and define (z;,z) as in Lemma 6. The estimator
|\/||\/|D2 F XY= —
7 M : X i— ) i— ) X .7 i
il ] mZilel(( 2i-1,Y2i-1), (X2i,Y2i))

can be computed in linear time, and is an unbiased estima\b ?[F, p, q].

While it is expected that MMﬁhas higher variance than MMJas we will see explicitly later), it
is computationally much more appealing. In particular, the statistic can be usteedamscomputa-
tions with need for onlyO(1) memory, whereas MMPrequiresO(m) storage and(n¥?) time to
compute the kerndi on all interacting pairs.

Since MMIZ}2 is just the average over a set of random variables, Hoeffding'stand the cen-
tral limit theorem readily allow us to provide both uniform convergence aytatotic statements
with little effort. The first follows directly from Hoeffding (1963, Theorezih
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Theorem 15 Assumé < k(x;,x;) < K. Then

12
Prcy {MMD?(F,X,Y) — MMD?(F, p,q) >t} < exp(i;;;]z)

where m := |m/2] (the same bound applies for deviations-afand below).

Note that the bound of Theorem 10 is identical to that of Theorem 15, vghotvs the former is
rather loose. Next we invoke the central limit theorem (e.qg., Serfling,,19&€ion 1.9).

Corollary 16 Assumeéd < E (h?) < . ThenMMD{ converges in distribution to a Gaussian ac-
cording to

m? (MMD? — MMD?[F, p,q]) > N (0,07),
whereg? = 2 [Ez,zhz(z,z’) - [Euh(z,z’)]z} , where we use the shorthafig s := E; 7 pxq-

The factor of 2 arises since we are averaging over only2| observations. It is instructive to
compare this asymptotic distribution with that of the quadratic time statistic IMEer Ha,
whenm = n. In this case, MM converges in distribution to a Gaussian according to

m? (MMDZ —MMD2[F, p,q]) > N (0,02),

wherea? = 4 <EZ [(Ezh(z.2))?] — [Ezz(h(z, z’))]2> (Serfling, 1980, Section 5.5). Thus for MMD

the asymptotic variance is (up to scaling) the varianc&gfh(z,Z)], whereas for MMD it is
Var,z[h(z,Z)].

We end by noting another potential approach to reducing the cost of ¢mg@n empirical
MMD estimate, by using a low rank approximation to the Gram matrix (Fine and$mrg, 2001;
Williams and Seeger, 2001; Smola and 8&bpf, 2000). An incremental computation of the MMD
based on such a low rank approximation would req@¥end) storage and>(md) computation
(whered is the rank of the approximate Gram matrix which is used to factds@é matrices)
rather tharO(m) storage an@®(n?) operations. That said, it remains to be determined what effect
this approximation would have on the distribution of the test statistic uh@@eand hence on the
test threshold.

7. Related Metrics and Learning Problems

The present section discusses a number of topics related to the maximumisteapahcy, includ-
ing metrics on probability distributions using non-RKHS function classegi(®ec7.1 and 7.2), the
relation with set kernels and kernels on probability measures (Sectiorai.8ktension to kernel
measures of independence (Section 7.4), a two-sample statistic using autisiriver witness
functions (Section 7.5), and a connection to outlier detection (Section 7.6).

7.1 The MMD in Other Function Classes

The definition of the maximum mean discrepancy is by no means limited to RKHSctinaiay
function classF that comes with uniform convergence guarantees and is sufficiently riobnjoy
the above properties. Below, we consider the case where the scat¢idfisrin are dense i€(X)
(which is useful for instance when the functionsfirare norm constrained).
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Definition 17 LetJ be a subset of some vector space. The stéf & a set¥ is
9] :={af|f € Fanda € [0,»)}

Theorem 18 Denote byJ the subset of some vector space of functions fiome R for which
SF]NC(X) is dense in €X) with respect to the 4(X) norm. TherMMD [, p,q] = O if and only

if p=q, andMMD [F, p,q] is a metric on the space of probability distributions. Whenever the star
of ¥ is notdense, théMD defines a pseudo-metric space.

Proof It is clear thatp = g implies MMD[F, p,q] = 0. The proof of the converse is very similar
to that of Theorem 5. Defing( := §F)NC(X). Since by assumptiofi( is dense irC(X), there
exists arh* € H satisfying||h* — f||,, < € for all f € C(X). Write h* := a*g*, whereg" € . By
assumptionExg* — Eyg* = 0. Thus we have the bound
[Exf(X) —Ey(f(Y))| < [Exf(X) —E"(X)[+ 0" |Exg"(x) — Eyg"(y)| + [Eyh™(y) — EyF(y)]
< 2t

for all f € C(X) ande > 0, which impliesp = g by Lemma 1.
To show MMDI[Z, p, ] is a metric, it remains to prove the triangle inequality. We have

Sup|Epf — Eqf| +sup|Eqg — Erg| > sup[|Epf — Eqf| + |Eqf — E|]
fesF geF feF

> sup|Epf —E f].
feF

Note that any uniform convergence statements in ternis afow us immediately to characterize
an estimator of MMDJ, p, q) explicitly. The following result shows how (this reasoning is also the
basis for the proofs in Section 4, although here we do not restrictlvass® an RKHS).

Theorem 19 Letd € (0,1) be a confidence level and assume that for sedem, F) the following
holds for sample$x, ..., Xn} drawn from p:

o {?6“5’ ST Zf
In this case we have that,
Pryy {|{MMD[7, p,q] — MMDp[7, X,Y]| > 26(8/2,m,F)} < §,
whereMMD [, X, Y] is taken from Definition 2.

Proof The proof works simply by using convexity and suprema as follows:
IMMD [, p,q] — MMDy[F, X, Y]|

>86m?)}§6.

“Jepein-cini-pn 8 -5 1)
1 12
nggEX[f]—Ey[f]—ai;f(Xi)+ﬁi;f(yi)
1m 10
e, 00 i 5 1)
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Bounding each of the two terms via a uniform convergence bound ptiogedaim. |

This shows that MMR[F, X,Y] can be used to estimate MM®, p,qg], and that the quantity is
asymptotically unbiased.

Remark 20 (Reduction to Binary Classification) As noted by Friedman (2003), any classifier
which maps a set of observatiofis, |} with z € X on some domaifX and labels | € {+1}, for
which uniform convergence bounds exist on the convergence of igaailoss to the expected
loss, can be used to obtain a similarity measure on distributions—simply dgsidhif z; € X and
li=—1for z € Y and find a classifier which is able to separate the two sets. In this case maxi-
mization ofEy[f] — Ey[f] is achieved by ensuring that as many (z) as possible correspond to
f(z) = 1, whereas for as many- q(z) as possible we have(Z) = —1. Consequently neural net-
works, decision trees, boosted classifiers and other objects for whifdrmrconvergence bounds
can be obtained can be used for the purpose of distribution comparisetricsland divergences
on distributions can also be defined explicitly starting from classifiers. Foait®, Sriperumbudur

et al. (2009, Section 2) show tMMD minimizes the expected risk of a classifier with linear loss
on the samples X and Y, and Ben-David et al. (2007, Section 4) usadhefa hyperplane clas-
sifier to approximate thel-distance between distributions (Kifer et al., 2004). Reid and Williamson
(2011) provide further discussion and examples.

7.2 Examples of Non-RKHS Function Classes

Other function space¥ inspired by the statistics literature can also be considered in defining the
MMD. Indeed, Lemma 1 defines an MMD withi the space of bounded continuous real-valued
functions, which is a Banach space with the supremum norm (Dudley,, 200258). We now
describe two further metrics on the space of probability distributions, namelKdfmogorov-
Smirnov and Earth Mover’s distances, and their associated functioreslass

7.2.1 KOLMOGOROWSMIRNOV STATISTIC

The Kolmogorov-Smirnov (K-S) test is probably one of the most famoussavople tests in statis-
tics. It works for random variablese R (or any other set for which we can establish a total order).
Denote byF,(x) the cumulative distribution function qf and letFx (x) be its empirical counterpart,

Fo(2) := Pr{x < zfor x~ p} andFx(2): |X| lez<x.

It is clear thatF, captures the properties pf The Kolmogorov metric is simply the, distance
|IFx — Fy||, for two sets of observations andY. Smirnov (1939) showed that far= g the limiting
distribution of the empirical cumulative distribution functions satisfies

m 2] X2
mI|m Prxy{[ ]2||Fx Fy||°o>x} Z for x>0, (12)
which is distribution independent. This allows for an efficient charactéoizaf the distribution
under the null hypothesify. Efficient numerical approximations to (12) can be found in numerical
analysis handbooks (Press et al., 1994). The distribution under theaaikerp # g, however, is
unknown.
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The Kolmogorov metric is, in fact, a special instance of MMDp,q] for a certain Banach
space (Miller, 1997, Theorem 5.2).

Proposition 21 Let F be the class of function& — R of bounded variatiol® 1. Then
MMD [, p,q] = ||Fp— Fy|...

7.2.2 EARTH-MOVER DISTANCES

Another class of distance measures on distributions that may be written as mariean discrep-
ancies are the Earth-Mover distances. We ass(lfijp) is a separable metric space, and define
P1(X) to be the space of probability measuresXofor which [ p(x,z)dp(z) < e for all p € P1(X)
andx € X (these are the probability measures for wHigHix| < o whenX = R). We then have the
following definition (Dudley, 2002, p. 420).

Definition 22 (Monge-Wasserstein metric)Let pe P1(X) and ge P1(X). The Monge-Wasserstein
distance is defined as

W(p,q) == inf /p(x,y)du(x,y),
HeM(p,q)

where M p, q) is the set of joint distributions ol x X with marginals p and q.

We may interpret this as the cost (as represented by the npgiig)) of transferring mass dis-
tributed according t@ to a distribution in accordance witly wherep is the movement schedule.
In general, a large variety of costs of moving mass frotm y can be used, such as psycho-optical
similarity measures in image retrieval (Rubner et al., 2000). The following¢ne@rovides the
link with the MMD (Dudley, 2002, Theorem 11.8.2).

Theorem 23 (Kantorovich-Rubinstein) Let pe P1(X) and qe P1(X), whereX is separable.
Then a metric ofP1(S) is defined as

)

JACEE

W(p,q) = [|[p—ql, = sup
Ifll <1

where Hx) — £ ()
. X)— Ty
1l = sup HRO=T)

x#£ye X p(XaY)

is the Lipschitz seminorthfor real valued f oriX.
A simple example of this theorem is as follows (Dudley, 2002, Exercise 12%). 4

Example 2 Let X = R with associategh(x,y) = |[x—y|. Then given f such thaf |, <1, we use
integration by parts to obtain

[ tao-a| =| /- F F0x

< [ 1P~ Fa)  (ix

13. A functionf defined ona, b] is of bounded variatiof if the total variation is bounded b9, that is, the supremum
over all sums

() = F(xi-a)l,

1<i<n
wherea< Xy <... <X, < b (Dudley, 2002, p. 184).
14. A seminorm satisfies the requirements of a norm bedixies: 0 only forx = 0 (Dudley, 2002, p. 156).
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where the maximum is attained for the function g with derivative §1r .r, — 1 (and for which
llgll, = 1). We recover the { distance between distribution functions,

W(P.Q) = [ |(Fo Fo)| (¥

One may further generalize Theorem 23 to the set of all &) on arbitrary metric space¥
(Dudley, 2002, Proposition 11.3.2).

Definition 24 (Bounded Lipschitz metric) Let p and g be laws on a metric spa&e Then

[1dp-a)

is a metric on?(X), where f belongs to the space of bounded Lipschitz functions with norm

B(p,q):= sup

[ fllgL=1

Ifllee = [l + 1l

Empirical estimates of the Monge-Wasserstein and Bounded Lipschitz metrig$ are provided
by Sriperumbudur et al. (2010a).

7.3 Set Kernels and Kernels Between Probability Measures

Gartner et al. (2002) propose kernels for Multi-Instance Classificalib@) which deal with sets of
observations. The purpose of MIC is to find estimators which are able tatiakif some elements
in a set satisfy a certain property, then the set of observations alsoig@sdperty. For instance,
a dish of mushrooms is poisonous if it contains any poisonous mushroomswisé&a keyring
will open a door if it contains a suitable key. One is only given the ensembieg\rer, rather than
information about which instance of the set satisfies the property.
The solution proposed by dBtner et al. (2002) is to map the ensembes= {Xi1, ..., Xim }

wherei is the ensemble index and, the number of elements in thth ensemble, jointly into
feature space via

. l il
o) = a;q}(xij),

and to use the latter as the basis for a kernel method. This simple appréarcts aéther good
performance. With the benefit of hindsight, it is now understandable wéhigegmel

1 O
(%, J) mm; UZV (Xiu iv)
produces useful results: it is simply the kernel between the empirical mediesture space
(U(X),H(Xj)) (Hein et al., 2004, Equation 4). Jebara and Kondor (2003) later extethis set-
ting by smoothing the empirical densities before computing inner products.

Note, however, that the empirical mean embeddiggnay not be the best statistic to use for
MIC: we are only interested in determining whetlsemeinstances in the domain have the desired
property, rather than making a statement regarding the distribution ovesthizes. Taking this
into account leads to an improved algorithm (Andrews et al., 2003).
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7.4 Kernel Measures of Independence

We next demonstrate the application of MMD in determining whether two randoiablesx and
y are independent. In other words, assume that pairs of random var{ablge) are jointly drawn
from some distributiorp := pyxy. We wish to determine whether this distribution factorizes; that
is, whetherq := py x py is the same ap. One application of such an independence measure is in
independent component analysis (Comon, 1994), where the goal is @ liimehr mapping of the
observations to obtain mutually independent outputs. Kernel methods were employed to solve
this problem by Bach and Jordan (2002), Gretton et al. (2005a,b)Shed et al. (2009). In the
following we re-derive one of the above kernel independence messasra distance between mean
embeddings (see also Smola et al., 2007).

We begin by defining

H[Pxy] = Exy[V((X,Y),")]
andu[px X py] = EXEy [V((Xay)a )] .

Here we assum@is an RKHS ovef( x Y with kernelv((x,y), (X,Y)). If xandy are dependent, then

H[Pxy] 7 H[Px x py]. Hence we may us&(V, pxy, Px < Py) := ||M[Pxy] — K[Px X py]||, as a measure of
dependence.

Now assume that((x,y), (X,Y)) = k(x,X)I(y,y), thatis, the RKHS is a direct producH ® G
of RKHSs onX andy. In this case it is easy to see that

D2 (V, Py Px X By) = ||y KO (¥ )] — Ex KX, )] Ey (1)1
ExyEx’y’ [k(X, Xl)' (yv)/)] - ZExEyEx’y’ [k(X,X’)| (yuy,)}
+ExEyExEy [k(X,X’)| (y,)/)] .

The latter is also the squared Hilbert-Schmidt norm of the cross-covartpesator between RKHSs
(Gretton et al., 2005a): for characteristic kernels, this is zero if andibrlgndy are independent.

Theorem 25 Denote by G the covariance operator between random variables x and y, drawn
jointly from p,y, where the functions o and are the reproducing kernel Hilbert spacgsand G
respectively. Then the Hilbert-Schmidt nojf@yl|,,5 equalsA(V, pxy, Px X Py).

Empirical estimates of this quantity are as follows:

Theorem 26 Denote by K and L the kernel matrices on X and Y respectively, andby H1/m
the projection matrix onto the subspace orthogonal to the vector with all ergaetol (wherel is
an mx m matrix of ones). ThenTAtrHKHL is an estimate oA? with bias Qm~1). The deviation
fromA? is Op(m~1/2),

Gretton et al. (2005a) provide explicit constants. In certain circumssaieuding in the case of
RKHSs with Gaussian kernels, the empirié&l may also be interpreted in terms of a smoothed
difference between the joint empirical characteristic function (ECF) amgrbduct of the marginal
ECFs (Feuerverger, 1993; Kankainen, 1995). This interpretaties ot hold in all cases, however,
for example, for kernels on strings, graphs, and other structure@span illustration of the wit-
ness functiorf* € V from Section 2.3 is provided in Figure 4, for the case of dependencetideie
This is a smooth function which has large magnitude where the joint density idiffesént from

the product of the marginals.
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Figure 4: lllustration of the function maximizing the mean discrepancy when M#lilsed as a
measure of dependence. A sample from dependent random vantadnhels/ is shown
in black, and the associated functibhthat witnesses the MMD is plotted as a contour.
The latter was computed empirically on the basis of 200 samples, using a Gaiessial
with o =0.2.

We remark that a hypothesis test based on the above kernel statistic is onguicated than
for the two-sample problem, since the product of the marginal distributionseffant simulated
by permuting the variables of the original sample. Further details are pobbigésretton et al.
(2008b).

7.5 Kernel Statistics Using a Distribution over Witness Functions

Shawe-Taylor and Dolia (2007) define a distance between distributidoBags: letH be a set of
functions onX andr be a probability distribution ovel(. Then the distance between two distribu-
tions p andq is given by

D(p,q) = Efurry [Ex[F(X)] = Ey[f(Y)]]. (13)
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That is, we compute the average distance betweandq with respect to a distribution over test
functions. The following result shows the relation with the MMD, and is dueaiogSet al. (2008,
Section 6).

Lemma 27 LetJ be a reproducing kernel Hilbert spacecf3, and assume(f) =r (]| f||4.) with
finite E¢.[|| f||s¢]. Then Op,q) = C||up— Hg||,, for some constant C which depends onlyJdn
andr.

Proof By definitionEx[f (X)] = (Up, f)4. Using linearity of the inner product, Equation (13) equals

/KUP_Umf gl dr (f)

Sy UqHJ{/KHU — Hally f>

where the integral is independentmiy. To see this, note that for aqyq, Hpi“‘ﬁ is a unit vector
which can be transformed into the first canonical basis vector (for |cslatny9{a rotation which

leaves the integral invariant, bearing in mind thé rotation invariant. |

dr(f),

7.6 Outlier Detection

An application related to the two sample problem is that of outlier detection: this gutstion of
whether a novel point is generated from the same distribution as a particdlasample. In a way,
this is a special case of a two sample test, where the second sample conltaimseoobservation.
Several methods essentially rely on the distance between a novel poinstotipée mean in feature
space to detect outliers.

For instance, Davy et al. (2002) use a related method to deal with nonstgtibme series.
Likewise Shawe-Taylor and Cristianini (2004, p. 117) discuss how tecti@ovel observations by
using the following reasoning: the probability of being an outlier is boundéhl &® a function of
the spread of the points in feature space and the uncertainty in the empgtaie space mean (as
bounded using symmetrisation and McDiarmid’s tail bound).

Instead of using the sample mean and variance, Tax and Duin (1999) edfimatenter and
radius of a minimal enclosing sphere for the data, the advantage beinguthebsunds can po-
tentially lead to more reliable tests for single observations.o&olpf et al. (2001) show that the
minimal enclosing sphere problem is equivalent to novelty detection by médingliog a hyper-
plane separating the data from the origin, at least in the case of radigflastion kernels.

8. Experiments

We conducted distribution comparisons using our MMD-based tests on etatér@m three real-
world domains: database applications, bioinformatics, and neurobiologyinWstigated both
uniform convergence approaches (MMR@ith the Corollary 9 threshold, and MMPH with the
Corollary 11 threshold); the asymptotic approaches with bootstrap (§/B)and moment match-

ing to Pearson curves (MMPM), both described in Section 5; and the asymptotic approach using
the linear time statistic (MM@) from Section 6. We also compared against several alternatives from
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the literature (where applicable): the multivariate t-test, the Friedman-REfdkyogorov-Smirnov
generalisatiorfSmir), the Friedman-Rafsky Wald-Wolfowitz generalisatig¥olf), the Biau-Gyrfi
test(Biau) with a uniform space partitioning, and the Hall-Tajvidi t¢idall). See Section 3.3 for
details regarding these tests. Note that we do not apply the Bi&ufiGgst to high-dimensional
problems (since the required space partitioning is no longer possiblejhanMD is the only
method applicable to structured data such as graphs.

An important issue in the practical application of the MMD-based tests is thetisglef the
kernel parameters. We illustrate this with a Gaussian RBF kernel, where stechuose the kernel
width o (we use this kernel for univariate and multivariate data, but not fqutgga The empirical
MMD is zero both for kernel size = 0 (where the aggregate Gram matrix oXeandY is a unit
matrix), and also approaches zeramas:> « (where the aggregate Gram matrix becomes uniformly
constant). We sei to be the median distance between points in the aggregate sample, as a compro-
mise between these two extremes: this remains a heuristic, similar to those dkgtiTag&euchi
et al. (2006) and Sdtkopf (1997), and the optimum choice of kernel size is an ongoing drea o
research. We further note that setting the kernel using the sample bded)resy cause changes to
the asymptotic distribution: in particular, the analysis in Sections 4 and 5 assiuenesnel not to
be a function of the sample. An analysis of the convergence of MMD wheskeimnel is adapted on
the basis of the sample is provided by Sriperumbudur et al. (2009), althbagtsymptotic distri-
bution in this case remains a topic of research. As a practical matter, howeenedian heuristic
has not been observed to have much effect on the asymptotic distributibin axperiments is
indistinguishable from results obtained by computing the kernel on a smaksabthe sample set
aside for this purpose. See Appendix C for more detail.

8.1 Toy Example: Two Gaussians

In our first experiment, we investigated the scaling performance of theugtests as a function
of the dimensionalityd of the spaceél c RY, when bothp andq were Gaussian. We considered
values ofd up to 2500: the performance of the MMD-based tests cannot theredoexiained
in the context of density estimation (as in Section 3.3.1), since the associat&ty dsstimates are
necessarily meaningless here. The levels for all tests weresset @105, m= n= 250 samples were
used, and results were averaged over 100 repetitions. In the fiesttbaglistributions had different
means and unit variance. The percentage of times the null hypothesi®omwastly rejected over a
set of Euclidean distances between the distribution means (20 values |ogeaitis spaced from
0.05 to 50), was computed as a function of the dimensionality of the normal digink. In case
of the t-test, a ridge was added to the covariance estimate, to avoid singulaitatjthof largest
to smallest eigenvalue was ensured to be at most 2). In the secondarapéeswere drawn from
distributionsN(0,1) andN(0, a2l ) with different variance. The percentage of null rejections was
averaged over 26 values logarithmically spaced from 4% to 10. The t-test was not compared in
this case, since its output would have been irrelevant. Results are plottiegiie b.

In the case of Gaussians with differing means, we observe the t-testrperbest in low di-
mensions, however its performance is severely weakened when the noinshenples exceeds the
number of dimensions. The performanceMiD? M is comparable to the t-test in low dimen-
sions, and outperforms all other methods in high dimensions. The wofstpance is obtained
for MMD3 H, thoughMMDy, also does relatively poorly: this is unsurprising given that these tests

748



A KERNEL TWO-SAMPLE TEST
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Figure 5: Type Il performance of the various tests when separating aussins, with test level
o = 0.05. A Gaussians having same variance and different meBr3aussians having
same mean and different variances.

derive from distribution-free large deviation bounds, and the sampleisiztatively small. Re-
markably,MMDl2 performs quite well compared with the Section 3.3.3 tests in high dimensions.

In the case of Gaussians of differing variance, Hall test performs best, followed closely
by MMD32 M. FR Wolf and (to a much greater exterifR Smirnovboth have difficulties in high
dimensions, failing completely once the dimensionality becomes too great. Thedostaest
MMD|2 again performs surprisingly well, almost matching M1DZ M performance at the highest
dimensionality. BothtMMDZ H and MMDy, perform poorly, the former failing completely: this
is one of several illustrations we will encounter of the much greater tightrfetbe dCorollary 9
threshold over that in Corollary 11.

8.2 Data Integration

In our next application of MMD, we performed distribution testing for datagraéon: the objec-
tive being to aggregate two data sets into a single sample, with the understtratibgth original
samples were generated from the same distribution. Clearly, it is importanét dhis last con-
dition before proceeding, or an analysis could detect patterns in the awsdt that are caused
by combining the two different source distributions. We chose seveabiwrerld settings for this
task: we compared microarray data from normal and tumor tissues (Heaitk)staicroarray data
from different subtypes of cancer (Subtype), and local field potefitleP) electrode recordings
from the Macaque primary visual cortex (V1) with and without spike evéNeural Data | and
I, as described in more detail by Rasch et al., 2008). In all cases, thdata sets have different
statistical properties, but the detection of these differences is made ldifijciine high data dimen-
sionality (indeed, for the microarray data, density estimation is impossible tiieesample size and
data dimensionality, and no successful test can rely on accurate desisitgtes as an intermediate
step).
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| Data Set | Attr. | MMDy, | MMDZH [ MMDZB | MMDZM | t-test [ Wolf [ Smir | Hall |
Neural Data | [ Same 100.0 100.0 96.5 96.5] 100.0[ 97.0[ 95.0 [ 96.0

Different | 38.0 100.0 0.0 0.0[ 420] 0.0] 10.0][ 49.0

Neural Data Il Same 100.0 100.0 94.6 95.2] 100.0[ 95.0[ 945] 96.0

Different [ 99.7 100.0 3.3 34]100.0[ 0.8 318] 5.9

Health status [ Same 100.0 100.0 955 94.4]100.0[ 94.7] 96.1] 95,6

Different | 100.0 100.0 1.0 0.8 100.0] 28] 440 357

Subtype Same 100.0 100.0 99.1 96.4] 100.0[ 94.6 [ 97.3] 96,5

Different | 100.0 100.0 0.0 0.0 [ 100.0] 00 284[ 0.2

Table 1: Distribution testing for data integration on multivariate data. Numbersaitedthe per-
centage of repetitions for which the null hypothesis (p=q) was accegitezh o = 0.05.
Sample size (dimension; repetitions of experiment): Neural | 4000 (63; ;186ural Il
1000 (100; 1200); Health Status 25 (12,600; 1000); Subtype 25 (21008).

[ DataSet [ Atir. [ MMD, [ MMDZH [ MMDZB | MMDZM [ ttest [ Wolf [ Smir [ Hall [ Biau |
BIO Same 100.0 100.0 93.8 948 952 903 958 953 993
Different | 20.0 52.6 17.2 176 | 362 17.2| 186 | 17.9| 421

FOREST Same 100.0 100.0 96.4 96.0 [ 974 946 99.8] 955 [ 100.0
Different 3.9 11.0 0.0 0.0 02| 38| 00[501] 00

CNUM Same 100.0 100.0 945 938 940 984 975] 91.2| 985
Different 14.9 52.7 2.7 251917 225 11.6 | 79.1| 505

FORESTIOD| Same 100.0 100.0 94.0 94.0100.0] 935 96.5[ 97.0 [ 100.0
Different | 86.6 100.0 0.0 0.0 00| 00| 1.0/ 72.0] 100.0

Table 2: Naive attribute matching on univariate (BIO, FOREST, CNUM) iandtivariate (FOR-
EST10D) data. Numbers indicate the percentage of times the null hypothesiswas
accepted witln = 0.05, pooled over attributes. Sample size (dimension; attributes; repeti-
tions of experiment): BIO 377 (1; 6; 100); FOREST 538 (1; 10; 100y}J®&1 386 (1; 13;
100); FOREST10D 1000 (10; 2; 100).

We applied our tests to these data sets in the following fashion. Given twoetatA and B,
we either chose one sample from A and the other frofatBibutes = different) or both samples
from either A or B(attributes = same) We then repeated this process up to 1200 times. Results
are reported in Table 1. Our asymptotic tests perform better than all compdtésides\olf: in
the latter case, we have greater Type Il error for one neural datéooset; Type Il error on the
Health Status data (which has very high dimension and low sample size), amidadiéerror-free)
performance on the remaining examples. We note that the Type | error bbthtstrap test on the
Subtype data set is far from its design value dff) indicating that the Pearson curves provide a
better threshold estimate for these low sample sizes. For the remaining dathes@ige | errors
of the Pearson and Bootstrap approximations are close. Thus, for tatgesets, the bootstrap is
to be preferred, since it cos®m?), compared with a cost @(m?) for the Pearson curves (due to
the cost of computing (11)). Finally, the uniform convergence-bastsl &ee too conservative, with
MMD, finding differences in distribution only for the data with largest sample sizéMMDZ H
never finding differences.
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8.3 Computational Cost

We next investigate the tradeoff between computational cost and perfoenad the various tests,
with a particular focus on how the quadratic-cost MMD tests from Sectiamsl4é compare with the
linear time MMD-based asymptotic test from Section 6. We consider two 1-Dsde&gsdCNUM and
FOREST) and two higher-dimensional data sets (FOREST10D and NHYUR@kEults are plotted
in Figure 6. If cost is not a factor, then the MMJ[B shows best overall performance as a function
of sample size, with a Type Il error dropping to zero as fast or fastercbhempeting approaches in
three of four cases, and narrowly trailifgR Wolfin the remaining case (FOREST10D). That said,
for data sets CNUM, FOREST, and FOREST10D, the linear time MMD achiggen Type Il
error at a far smaller computational cost than M}/ albeit by looking at a great deal more data.
In the CNUM case, however, the linear test is not able to achieve zesp@ren for the largest
data set size. For the NEUROII data, attaining zero Type Il error hastabe same cost for both
approaches. The difference in cost of MI§IB and MMD, is due to the bootstrapping required for
the former, which produces a constant offset in cost between the ®ve {150 resamplings were
used).

Thet-test also performs well in three of the four problems, and in fact reptsghe best cost-
performance tradeoff in these three data sets (i.e., while it requires muehdaiarthan MM[) B
for a given Type |l error rate, it costs far less to compute). fFtest assumes that only the difference
in means is important in distinguishing the distributions, and it requires anaecestimate of
the within-sample covariance; the test fails completely on the NEUROII dataeriydnasise that
the Kolmogorov-Smirnov results in 1-D were obtained using the classicaltstaasd not the
Friedman-Rafsky statistic, hence the low computational cost. The costlofAiedman-Rafsky
statistics is therefore given by tiR Wolf cost in this case. The latter scales similarly with sample
size to the quadratic time MMD tests, confirming Friedman and Rafsky’s ddits@mthat obtaining
the pairwise distances between sample points is the dominant cost of theiniestdso remark
on the unusual behaviour of the Type Il error of iR Wolf test in the FOREST data set, which
worsens for increasing sample size.

We conclude that the approach to be recommended for two-sample testingpethd on the
data available: for small amounts of data, the best results are obtainedeusitygobservation to
maximum effect, and employing the quadratic time M§/B®test. When large volumes of data are
available, a better option is to look at each point only once, which can yiekt[®ype Il error for a
given computational cost. It may also be worth doing a t-test first in this aaseonly running more
sophisticated nonparametric tests if the t-test accepts the null hypothessifyaive distributions
are identical in more than just mean.

8.4 Attribute Matching

Our final series of experiments addresses automatic attribute matchingn tGivalatabases, we
want to detect corresponding attributes in the schemas of these databased on their data-
content (as a simple example, two databases might have respective figldakidSalary, which are
assumed to be observed via a subsampling of a particular population, amdhvi® automatically
determine that both Wage and Salary denote to the same underlying attribuéeséNa two-
sample test on pairs of attributes from two databases to find correspqualisg® This procedure

15. Note that corresponding attributes may have different distributiorealawvorld databases. Hence, schema matching
cannot solely rely on distribution testing.
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Figure 6: Linear-cost vs quadratic-cost MMD. The first column shdwse Il performance, and
the second shows runtime. The dashed grey horizontal line indicate3ygeed| error
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is also calledable matchindor tables from different databases. We performed attribute matching
as follows: first, the data set D was split into two halves A and B. Each of #diibutes in A (and

B, resp.) was then represented by its instances in A (resp. B). We ttied #dfspairs of attributes
from A and from B against each other, to find the optimal assignment of @#ghy,. .., A, from

A to attributesBy, .. ., B, from B. We assumed that A and B contain the same number of attributes.

As a naive approach, we could assume that any possible pair of attribighs correspond,
and thus that every attribute 8fneeds to be tested against all the attributeB & find the opti-
mal match. We report results for this naive approach, aggregatedibyatirs of possible attribute
matches, in Table 2. We used three data sets: the census income data skeeftdCl KDD archive
(CNUM), the protein homology data set from the 2004 KDD Cup (BIO) (2aa and Joachims,
2004), and the forest data set from the UCI ML archive (Blake antzMi©998). For the final data
set, we performed univariate matching of attributes (FOREST) and multivanatching of tables
(FOREST10D) from two different databases, where each tablesemi®one type of forest. Both
our asymptotic MM3-based tests perform as well as or better than the alternatives, notably fo
CNUM, where the advantage of Ml\/ﬁ)s large. Unlike in Table 1, the next best alternatives are not
consistently the same across all data: for example, in BIO theWatkor Hall, whereas in FOR-
EST they areSmir, Biau, or the t-test. Thus, MMPappears to perform more consistently across
the multiple data sets. The Friedman-Rafsky tests do not always returred &ypor close to the
design parameter: for instand&plf has a Type | error of 9.7% on the BIO data set (on these data,
MMD?2 has the joint best Type Il error without compromising the designed Tygefopnance).
Finally, MMDy, performs much better than in Table 1, although surprisingly it fails to reliakiotle
differences in FOREST10D. The results of MI@IE are also improved, although it remains among
the worst performing methods.

A more principled approach to attribute matching is also possible. Assume that
OA) = (A1), ®(A2), ..., (An)): in other words, the kernel decomposes into kernels on the indi-
vidual attributes of A (and also decomposes this way on the attributes af B)islcaseMMD? can
be writtens, || (A) — 1 (Bi)||?, where we sum over the MMD terms on each of the attributes.
Our goal of optimally assigning attributes frdsrto attributes ofA via MMD is equivalent to finding
the optimal permutatiom of attributes ofB that minimizesy ., || (A)) — 1i (Byi))[|. If we define
Cij = [l (A) — W (Bj) ||, then this is the same as minimizing the sum dvey;). This is the linear
assignment problem, which cos¥n®) time using the Hungarian method (Kuhn, 1955).

While this may appear to be a crude heuristic, it nonetheless defines a seimieméiie sample
spaceX andY and the corresponding distributiopsindg. This follows from the fact that matching
distances are proper metrics if the matching cost functions are metrics rinalitze this as follows:

Theorem 28 Let p,q be distributions ofRY and denote by ;pg; the marginal distributions on the
i-th variable. Moreover, denote by the symmetric group ofil,...,d}. The following distance,
obtained by optimal coordinate matching, is a semi-metric.

d
A[F,p,q = L@iQi;MMD [T, i, Qi) -

Proof ClearlyA[F, p,q] is nonnegative, since it is a sum of nonnegative quantities. Next we show
the triangle inequality. Denote hbya third distribution orRY and let, g, Ty, and 1, be the
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distance minimizing permutations over the associated pairs fiomp r }. It follows that
d d
AlF,p o +A[F,q,r] = _ZMMD[F, Pi, O, o)) +.ZMMD [T, 0, P i)
1= 1=

d
> ZMMD [ Pi gy qorg )] = AT, P
=

The first inequality follows from the triangle inequality on MMD,
MMD [F, pi, O, ()] + MMD [T, G, i) F [ g0t 1)) = MMD [, Pis Vg qorg )]

The second inequality is a result of minimization owver |

We tested this 'Hungarian approach’ to attribute matching via NMDon three univariate
data sets (BIO, CNUM, FOREST) and for table matching on a fourth (FORBB). To study
MMD 2 B on structured data, we used two data sets of protein graphs (PROHEINSNZYMES)
and used the graph kernel for proteins from Borgwardt et al. (R@@¥5table matching via the
Hungarian method (the other tests were not applicable to these graph Oagadhallenge here is
to match tables representing one functional class of proteins (or enzftroesjlata set A to the
corresponding tables (functional classes) in B. Results are showrbiae 3a Besides on the BIO
and CNUM data sets, MME)B made no errors.

| DataSet | Datatype | No. attributes| Sample siz¢ Repetitions| % correct|
BIO univariate 6 377 100 90.0
CNUM univariate 13 386 100 99.8
FOREST univariate 10 538 100 100.0
FOREST10D| multivariate 2 1000 100 100.0
ENZYME structured 6 50 50 100.0
PROTEINS | structured 2 200 50 100.0

Table 3: Hungarian Method for attribute matching via M§IB on univariate (BIO, CNUM,
FOREST), multivariate (FOREST10D), and structured (ENZYMES, PROE) data
(a = 0.05; “% correct” is the percentage of correct attribute matches overmtitens).

9. Conclusion

We have established three simple multivariate tests for comparing two distribptamsq, based

on samples of sizen andn from these respective distributions. Our test statistic is the maximum
mean discrepancy (MMD), defined as the maximum deviation in the expectéi@dinaction eval-
uated on each of the random variables, taken over a sufficiently rictidmnclass: in our case, a
reproducing kernel Hilbert space (RKHS). Equivalently, the statisticheawritten as the norm of
the difference between distribution feature means in the RKHS. We doadgtealensity estimates

as an intermediate step. Two of our tests provide Type | error boundarthaekact and distribution-
free for finite sample sizes. We also give a third test based on quantilesagymptotic distribution
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of the associated test statistic. All three tests can be comput@f(in+n)?) time, however when
sufficient data are available, a linear time statistic can be used, which inperiments was able to
achieve a given Type Il error at smaller computational cost, by lookimggaty more samples than
the quadratic-cost tests.

We have seen in Section 7 that several classical metrics on probability ulistni® can be writ-
ten as integral probability metrics with function classes that are not Hilbacesp but rather Banach
or seminormed spaces (for instance the Kolmogorov-Smirnov and Earteridalistances). It is
therefore of interest to establish under what conditions one could write thiscrepancies in terms
of norms of differences of mean embeddings. Sriperumbudur et allk2Qirovide expressions
for the maximum mean discrepancy in terms of mean embeddings in reprodcimg Banach
spaces. When the Banach space is not an RKBS, the question of estghdishean embedding
interpretation for the MMD remains open.

We also note (following Section 7.3) that the MMD for RKHSs is associated witarcular
kernel between probability distributions. Hein et al. (2004) describeraefurther such kernels,
which induce corresponding distances between feature space distrimdigpings: these may in
turn lead to new and powerful two-sample tests.

Two recent studies have shown that additional divergence meastvesdn distributions can
be obtained empirically through optimization in a reproducing kernel Hilbeatesp Harchaoui
et al. (2008) define a two-sample test statistic arising from the kernelrFisberiminant, rather
than the difference of RKHS means; and Nguyen et al. (2008) obtain di¥drgence estimate
by approximating the ratio of densities (or its log) with a function in an RKHS. Bsigh, both
these kernel-based statistics prioritise different featurgsasfdq when measuring the divergence
between distributions, and the resulting effects on distinguishability of disitritmiare therefore of
interest.
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Appendix A. Large Deviation Bounds for Tests with Finite Sampé Guarantees

This section contains proofs of the theorems of Section 4.1. We begin in ®écfiavith a review
of McDiarmid’s inequality and the Rademacher average of a function claesprove Theorem 7
in Section A.2, and Theorem 8 in Section A.3.
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A.1 Preliminary Definitions and Theorems

We need the following theorem, due to McDiarmid (1989).

Theorem 29 (McDiarmid’s inequality) Let f : X™— R be a function such that for alki {1,...,m},
there exist c< o« for which

sup | f(xq,...Xm) — F(X1,.. . Xi—1, X Xi+1,.. ., Xm)| < Gi.
XeXm keX

Then for all probability measures p and every O,
2¢?
Prx (f(X) —Ex(f(X)) >t) <exp| ——— 5
2i=1C

whereEyx denotes the expectation over the m random variahlesx andPrx denotes the proba-
bility over these m variables.

We also define the Rademacher average of the function &lasth respect to then-sampleX.

Definition 30 (Rademacher average off on X) LetJ be the unit ball in an RKHS on the domain
X, with kernel bounded according ®< k(x,y) < K. Let X be an i.i.d. sample of size m drawn
according to a probability measure p 06y and leto; be i.i.d and take values ifi—1, 1} with equal
probability. We define the Rademacher average

Rm(?ax) = EGSUp
feF

r::-]-zmlo-if(xi)
< (K/m)M2,

where the upper bound is due to Bartlett and Mendelson (2002, Lemjnar&2E, denotes the
expectation over all the;. Similarly, we define

-ici f(X|)

Sl

Rn(F, p) := ExoSup
feF

A.2 Bound whenp and q May Differ

We want to show that the absolute difference between M®IP,q) and MMDy(F, X,Y) is close to
its expected value, independent of the distributipmsdg. To this end, we prove three intermediate
results, which we then combine. The first result we need is an uppedlooLthe absolute difference
between MMOJF, p,q) and MMD,(F, X,Y). We have

IMMD (&, p,q) — MMD (5, X Y)\

ST = BAD) ?335’( Z”'"Zl )>‘
Ex(f) Zf Z vl

A(p,a,X,Y)

< sup
feF

(14)
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Second, we provide an upper bound on the difference betwépry, X,Y) and its expectation.
Changing either ok; or y; in A(p,q,X,Y) results in changes in magnitude of at mok*Z/m
or 2K%/2/n, respectively. We can then apply McDiarmid’s theorem, given a denomiirathe
exponent of

m (2K1/2/m)2+ n (2K1/2/n>2 — 4K (rt + i) —a T

to obtain

€2mn
Prcy (A(P,9,X,Y) —Exy [A(p,0,X,Y)] > €) < eXp<_2K(m+n)> . (15)

For our final result, we exploit symmetrisation, following, for example, van\thart and Wellner
(1996, p. 108), to upper bound the expectatiodrgh, g, X,Y). Denoting byX’ an i.i.d sample of
sizemdrawn independently of (and likewise forY’), we have

EX,Y [A( p7q7X>Y)]

1 m 10
= BxvsupBd(f) -5 5 F00) -By(D)+3 5 1)
= Exysu Exlmf(-’) —Emf(x-)—E/}nf()/-) +}nf(-)
B X’Yfesp X mi; . mi; I Y ni; : ni; i
1 m 1 m 10 10
(%) Ex,Y,x',Y’?éJSE)ﬁi;f(xi’)—ﬁi;f(xi)—ﬁi;f(l/j)+ﬁi;f(3ﬁ)
= Exyxy.oo ?g:f 1i_§10i (f(x) —f(x)) ‘*’iliof (f(y)) — f(Yj))‘
1 m 10
(%) Ex,x/,o§g£ Ei;oi (f(x)—f(x)) +Ev,Yf,o§g£ ﬁi;m () - f(Yj))'
(%) 2[Rn(F,p) +Ra(F,09)]-
< 2|(K/m)M2 4 K/, (16)

—
o
=

where (a) uses Jensen’s inequality, (b) uses the triangle inequalisylisitutes Definition 30 (the
Rademacher average), and (d) bounds the Rademacher avelsgei definition 30.

Having established our preliminary results, we proceed to the proof afréhe?.
Proof (Theorem 7)Combining Equations (15) and (16), gives

o (8pax) -2 [+ (/] o) <o -5 EM Y.

Substituting Equation (14) yields the result.
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A.3 Bound whenp=gandm=n

In this section, we derive the Theorem 8 result, namely the large deviatiomdban the MMD
whenp = gandm= n. Note also that we consider only positive deviations of MMB®, X,Y) from
MMD (&, p,q), since negative deviations are irrelevant to our hypothesis test. Théfphows the
same three steps as in the previous section. The first step in (14) becomes

MMDp(F,X,Y) —=MMD (F,p,q) = MMDp(F,X,X')—0

1 m
= fgg(mi;(fw— f(xﬁ)))- (17)

The McDiarmid bound on the difference between (17) and its expectatiawisarfunction of 2n

observations in (17), and has a denominator in the exponenitl(:ﬂ&l/z/m)2 =8K/m. We use a
different strategy in obtaining an upper bound on the expected (1®g\vew: this is now

Ex x lsup;i(f(m) - f(%i))]

fesF

= %EX,X’ i;((P(Xi)—(P(Xi{))H
1 m m %
~ e 33 ) ) k) kok)
< % [2MEk(x,X) -+ 2m(m— 1) Ey wk(X, X) — 2nmPEy ¢ K(X,X)] :
— %EX:X/ (k(x,x)—k(x,x’))r (18)
< (2K/m)Y/2, (19)

We remark that both (18) and (19) bound the amount by which our biasiedete of the population
MMD exceeds zero undéily. Combining the three results, we find that unggy,

2

: g2
P x (MMDb(?vX’X')—[mEx,x'(k(X,X)—k(X,x’))} >£) < exp( :Km> and

12 —€2m
Prx x/ (MI\/IDb(CF,X,X’)—(ZK/m)/ >s> < exp( K >

Appendix B. Proofs for Asymptotic Tests

We derive results needed in the asymptotic test of Section 5. Appendix clilukes the distribution

of the empirical MMD undefg (i.e., p= (). Appendix B.2 establishes consistency of the test under
local departures frorfi{y. Appendix B.3 contains derivations of the second and third moments of
the empirical MMD, also undek(o.
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B.1 Convergence of the Empirical MMD under Xy

In this appendix, we prove Theorem 12, which describes the distributittreainbiased estimator
MMD2[F,X,Y] under the null hypothesis. Thus, throughout this section, the readetdsbear in
mind thaty now has the same distribution &sthat is,y ~ p. We first recall from Lemma 6 in
Section 2.2 the population expression,

MMDZ[:}F? p7 q] = EX7X’ k(X>X/) + Ey7y’k(ya)/) - 2EX,yk(Xa y)>

and its empirical counterpart,

l m m 1 n n
MMD2[F X)Y] = mi;;k(xi,xjHn(n_l)i;;k(yi,yj)
2 m n
—ﬁ]i;glk(xiy)/j)- (20)

We begin with the asymptotic analysis of MM, X, Y] under the null hypothesis. This is based
on the reasoning of Anderson et al. (1994, Appendix), bearing in mimfbifowing changes:

e we do not need to deal with the bias terBigin Anderson et al. (1994, Appendix) that vanish
for large sample sizes, since our statistic is unbiased;

e Wwe require greater generality, since our kernels are not necessagly pnoducts i, be-
tween probability density functions (although this is a special case: s¢iei583.1).

We first transform each term in the sum (20) by centering. Uifigrbothx andy have the same
mean embedding,. Thus we replace each instancekok;,x;) in the sum with a kernek(x;, x;)
between feature space mappings from which the mean has been subtracted

KOG,xj) == {(@0%) — Hp, O(X}) — Hp) s
= k(%i,Xj) — Exk(xi, %) — Exk(X, Xj) + Exxk(x,X).

The centering terms cancel across the three terms (the distance betwrem ploints is unaffected
by an identical global shift in both the points). This gives the equivalemhfof the empirical
MMD,

2 _ - 1 -~
MMD{[F, X,Y] = 2 Ik(x.,xj)+n( — )i;j Ik(y,,yj)

—Zli K(4,Yj), (1)

where each of the three sums has expected value zero. Note in parti@ilénghJ-statistics in

K(xi,X;) are degenerate, meaning
Exk(x,V) = Exk(x,V) — ExxK(X,X) — ExK(X, V) + Exxk(x,X') = 0. (22)

We define the operat®; : Lo(p) — J satisfying
Si90) == | koux)g0x)dpix).
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According to Reed and Simon (1980, Theorem V1.23), this operator is ttifighmidt, and hence
compact, if and only if the kerndlis square integrable under

kela(XxX,pxp). (23)

We may write the kerneﬁ(xi,xj) in terms of eigenfunctiong (x) with respect to the probability
measurep,

KoxX) = 3 At (0w ), (24)
where -
L ROW00dp = A(),
[ wieowiodpg = . (25)

and the convergence isiin (X x X, p x p). Since the operator is Hilbert-Schmidt, we have by Reed
and Simon (1980, Theorem V1.22) thad? < .
Using the degeneracy of the U-statistic in (22), then wke# O,

NEA() = [ EckooX)0i00dp9
= 0,

and hence
ExWi(x) = 0. (26)

In other words, the eigenfunctiodg(x) are zero mean and uncorrelated.
We now use these results to find the asymptotic distribution of (21). First,

m m lmmoo

1
ﬁi;;k(m,xﬁ = ﬁi;;;f"“'(xi)wl(xj)
2
B r:TL]I21)\I ((ZWM)) IZHJ?(N))

(o]

2 YN@E-D, (27)
=1
whereg ~ N(0,1) are i.i.d., and the final relation denotes convergence in distribution, which is
proved by Serfling (1980, Section 5.5.2) using (25) and {26%iven that the random variables
a2 are zero mean with finite variance, it can be shown either via Kolmogoroetulity or by
the Martingale convergence theorem that the above sum converges almeigt if Zf°:17\|2 < 00
(Grimmet and Stirzaker, 2001, Chapter 7.11 Exercise 30). As we hare #a@s is guaranteed
under the assumption (23).
Likewise

1 n n - 0o
ni;;k(yi,yj)glzlmbf—lx

16. Simply replacéi(x;, xj) with k(x;,xj) in Serfling (1980, top of p. 196).
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whereb; ~ N(0, 1) independent of the;, and

\/:n—niik(m,yj) = Ii)\lalbl, (28)
i=1j= =

both jointly in distribution with (27), where (28) is proved at the end of théisecWe now combine
these results. Defirte= m+n, and assume ligin—,. M/t = px and limy n N/t = py i= (1 —py)
for fixed 0< px < 1. Then

2 00
ey I;N aby
- Zm[ %ay— py 2012~ (pxpy) ]

IMMDEFX.Y] — pyt Z M(a—1)+p,? Z A(bf —1)—

Proof (Equation 28) The proof is a modification of the result for convergence of degenérate
statistics of Serfling (1980, Section 5.5.2). We only provide those detaildliffextfrom the proof
of Serfling, and otherwise refer to the steps in the original proof asetkeHirst, using (24) to
expand out the centred kernel, we may write

n 1 m n oo
Trn == HZ\Z Xi,Yj) = T2 JZU;?\NM X)W (Yj)-
We define a truncation of this sum,
m n L
Tan:— Z z |lIJ| X lIJ| yj)

The target distribution is written

vzémau,

L
V= Z)\|a|b|.
=1

and its truncation is

Our goal is to show
‘EX,Y (eISTmn) _ Ea,b (eISV) ‘

vanishes for als asm andn increase, where the expectatiBr v is over all sample points, which
implies Tyn = V (Dudley, 2002, Theorem 9.8.2). We achieve this via the upper bound

Exy ()~ Ean ()] < [Ecy (657) e (857 1 By (€7) ~ Eap (¢4
+ |Eap (€54) — Bap (¢%)],
where we need to show that for large enoligleach of the three terms vanish.

First term: We first show that for large enoudh T, and Ty are close in distribution. From
Serfling (1980, p. 197),

1/2
|Exy (e5T) —Exy (e'STm”L)’ <l [EX,Y (Ton—Tn0)?|
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and we may write the difference between the full sum and its truncation as

1 m n . L
Tmn— T = ﬁiggl (k(x;,yj) - |Zl)\l W (%) ()/j)> .

gk (Xi,¥j)

Each of the properties (Serfling, 1980, Equations (6a)-(6c) p. 4t@i7holds for gk, namely
EX,X’ (gK (X7 X/)) = 07

Exe (Gk(xX)) = Y A,

I=[F+1
Ex (gk(x,X)) =
Then
2 1 m m
Exy (Tmn—Ton)” = mn Ziqzl lerz EX|7Xq VioYr Ok (%, Yj) 9k (Xg, Yr )]
_ iy 3" 1Exx (GR (%,X)) i =gandj=r,
0 otherwise

where we have used that= g under}o, which allows us to replacgyy with Ey y in the final line.
It follows that for large enough,

3

2} 1/2

[ 1
‘S’ [EX,Y (Tmn - Tan) m*

N 1/2
Z X, X! gK XX’ ]

- 1/2
S WS x%]
=

Second term: We show that
TrnL B> VL (29)

asm— co andn — c. We rewriteTyn. as

L 1 M 1 N
TanIIZl)\I (Wﬂ,;w' (X|)> (\m;wl (y1)>

Define the lengtlt vectorsWy, andW;, havinglth entries

Wi = \/]-miiwl (%), hi = \[ ZLqJI Yi);

respectively. These have mean and covariance

1 1=,

Ex(Wmi) =0, Covx y (Wi, Winr) =
x (Vi) Vi (Wni, Winr ) {O |21,
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Moreover, the vectordi, andW;, are independent. The result (29) then holds by the Lindbéng:L
CLT (Serfling, 1980, Theorem 1.9.1A).
Third term : From Serfling (1980, p. 199), we have

1/2
[Ean (€°) — Ean (€*)[ <Is| [Ean(V —-V)?] .

We can bound the right hand term by

2
Eab(V —VL)? = Ea,b( Z }\Ialbl>
=T

0

— 3 NE @) E(D)
I=C+1

(o]
2
= YA
I=L+1
< &

for L sufficiently large. |

B.2 Alternative Distribution: Consistency Against Local Alternatives

We prove Theorem 13, which gives the power against a local alteertagpothesis of a two-sample
test based on MMP The proof modifies a result of Anderson et al. (1994, Section 2.4rewve
consider a more general class of local departures from the null hggistfrather than the class of
perturbed densities described in Section 3.3.1).

First, we recall our test statistic,

1
MMD 2 X, Y k
ulg m(m—1) Z; (%:%3)

Zlik YiYj) — mnzz K(xi,Yj)-

7

We begin by transforming this statistic by centering the samylasdY in feature space by, and
L, respectively; unlike thé(, case, howevep, # [, and the new statistic MMPis notthe same
as MMDZ. The first term is centered as in (9). The second and third terms aectiesy replaced
by

n

; — Ha, @(Yj) — Ha)

and
2mn

mn 2y 2, (P00~ Ho @)~ ba)se.

= j:l
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The resulting centred statistic is

MMD§[977XaY] §<(p Up: |-1p>

2mn

1
m;; (Q() = Hap @Y)) —Ha)ye = — ijlw(m — Mo, QY}) — Ha g

We write g = Hp + 0t, Whereg: € H is chosen such thal, +- g remains a valid distribution embed-
ding, and|g:||5, can be made to approach zero to describe local departures from tiypothesis.
The difference between the original statistic and the centred statistic is then

|\/||\/|D2[3r X,Y] —MMD2[F,X Y]

mZx o, @0 )) 3¢ — (Hps Mp) g + = 21 Has @(Yi) )5 — (Mo, M) ¢
2 Zl@q 0% Z(Hp,(p(Yi)>g{+2<p‘p7PQ>f}(
:i;@um(y.) Ma) g — 25 <gt @(%) = Mp)ge + (9, Gt)ac

We next showg; can be used to encode a local departure from the null hypothesis. eDefin
t = m+n, and assume lifin—. M/t = px and limpnn_e N/t = py 1= (1 — px) Where 0< py < 1.
Consider the case where the departure from the null hypothesis sdtifigs= ct—*/2. Then, as
t — oo,

tMMD2[F,X, Y] — Zim[ Pa+py )2~ (pxpy) Y =1 S

as before, since the distance betwpgandy vanishes for large(as||g: || — 0). Next, the terms

f21<rgt||ﬁ o) = >% and \1ﬁni2<mghg{""(m‘“">%

in the difference between MM§and MMD? are straightforward sums of independent zero mean
random variables, and have Gaussian asymptotic distribution. Defiging be the zero mean
Gaussian random variable associated with the first term,

n

:]i;<gt,cp(yi)—uq>;c = ;(t1/2>zi<HgtH% o) = >g{

~1/2

= opy Ty,
Likewise,
S (00 006) — o) — cx 20
mi; 7 Pt o ’

whereuy is a zero mean Gaussian random variable independant (@te, however, that, and
uy are correlated with terms i§ and are defined on the same probability spaca asdby in this
sum). Finally,

t (G, Gt)sc = C*.
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This leads to our main result: given the threshgjdthen
Pryc, (tMMD2 > &) —>Pr<s+2c(px—/ o2y )+c2>sa>,

which is constant irt, and increases as— «. Thus, ||g||s = ct~*/? is the minimum distance
betweery, andyg distinguishable by the asymptotic MMD-based test.

B.3 Moments of the Empirical MMD Under Hy
In this section, we compute the moments of the U-statistic in Section & fem, under the null
hypothesis conditions

E.zh(z,Z) =0, (30)

and, importantly,

Ezh(zZ) =0. (31)

Note that the latter implies the former.
Variance/2nd moment: This was derived by Hoeffding (1948, p. 299), and is also described
by Serfling (1980, Lemma A p. 183). Applying these results,

(})

[

(n—1) ,
( )[ 5 (N—=2)(2E; [(Ezh(z2))"] +
~2(n

2) 2
== )E 2[(Ezh(z, z))]+m
2

= mEz’z [hz(Z,Zl)] s

n(n—1)

Ez,z’ [hZ(Z, Z,)]

Ez,z’ [hz(Z, Z’)]

where the first term in the penultimate line is zero due to (31). Note that varamt 2nd moment
are the same under the zero mean assumption.

3rd moment: We consider the terms that appear in the expansi@(c{MMDﬂ 3). These are
all of the form

<n(nz_1)>3E(habhcdhef);

where we shortehap = h(z,, z,), and we knowe, andz, are always independent. Most of the terms
vanish due to (30) and (31). The first terms that remain take the form

(rl(nz—l)) 3 E (haphochea),

and there are
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of them, which gives us the expression

( 2 >3 "0 (02 @) [Nz 2)Ex (N2 Z)0(Z,2))

n(n—1) 2
= nSEE:zl;ZEZ’Z, [h(Z,Z’)EZ// (h(Z, Z”)h(Z,,Z”))] . (32)

Note the scalingn% ~ n—13 The remaining non-zero terms, for whiah= c=eandb=d = f,

take the form .
2 3

and there arg(”zél) of them, which gives

.
However (n( 2

2
ﬂ> ~ n~* so this term is negligible compared with (32). Thus, a reasonable ap-
proximation to the third moment is

80-2) ¢ Ih(z.2)Ew (2 290, 2))].

E ([MMD5]3) S o1

Appendix C. Empirical Evaluation of the Median Heuristic for Ke rnel Choice

In this appendix, we provide an empirical evaluation of the median heurigtikeimel choice,
described at the start of Section 8: according to this heuristic, the keamelwidth is set at the
median distance between points in the aggregate samplepawed g (in the case of a Gaussian
kernel onRY). We investigated three kernel choice strategies: kernel selection emtine sample
from p andq; kernel selection on a hold-out set (10% of data), and testing on the rieg&io%o;
and kernel selectioandtesting on 90% of the available data. These strategies were evaluated on
the Neural Data | data set described in Section 8.2, using a Gaussiah kerth both the bootstrap
and Pearson curve methods for selecting the test threshold. Resulkstiee in Figure 7. We note
that the Type Il error of each approach follows the same trend. The Mgorors of the second and
third approaches are indistinguishable, and the first approach haktlydbgver Type Il error (as it
is computed on slightly more data). In this instance, the null distribution with threekbandwidth
set using the tested data is not substantially different to that obtained wiedd-aut set is used.
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