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Abstract
We propose a framework for analyzing and comparing distributions, which we use to construct sta-
tistical tests to determine if two samples are drawn from different distributions. Our test statistic is
the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert
space (RKHS), and is called themaximum mean discrepancy(MMD). We present two distribution-
free tests based on large deviation bounds for the MMD, and a third test based on the asymptotic
distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear
time approximations are available. Our statistic is an instance of an integral probability metric, and
various classical metrics on distributions are obtained when alternative function classes are used
in place of an RKHS. We apply our two-sample tests to a varietyof problems, including attribute
matching for databases using the Hungarian marriage method, where they perform strongly. Ex-
cellent performance is also obtained when comparing distributions over graphs, for which these are
the first such tests.
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1. Introduction

We address the problem of comparing samples from two probability distributions, by proposing
statistical tests of the null hypothesis that these distributions are equal against the alternative hy-
pothesis that these distributions are different (this is called the two-sample problem). Such tests
have application in a variety of areas. In bioinformatics, it is of interest to compare microarray
data from identical tissue types as measured by different laboratories, todetect whether the data
may be analysed jointly, or whether differences in experimental procedure have caused systematic
differences in the data distributions. Equally of interest are comparisons between microarray data
from different tissue types, either to determine whether two subtypes of cancer may be treated as
statistically indistinguishable from a diagnosis perspective, or to detect differences in healthy and
cancerous tissue. In database attribute matching, it is desirable to merge databases containing mul-
tiple fields, where it is not known in advance which fields correspond: thefields are matched by
maximising the similarity in the distributions of their entries.

We test whether distributionsp andq are different on the basis of samples drawn from each of
them, by finding a well behaved (e.g., smooth) function which is large on the points drawn fromp,
and small (as negative as possible) on the points fromq. We use as our test statistic the difference
between the mean function values on the two samples; when this is large, the samples are likely
from different distributions. We call this test statistic the Maximum Mean Discrepancy (MMD).

Clearly the quality of the MMD as a statistic depends on the classF of smooth functions that
define it. On one hand,F must be “rich enough” so that the population MMD vanishes if and only
if p= q. On the other hand, for the test to be consistent in power,F needs to be “restrictive” enough
for the empirical estimate of the MMD to converge quickly to its expectation as the sample size
increases. We will use the unit balls in characteristic reproducing kernelHilbert spaces (Fukumizu
et al., 2008; Sriperumbudur et al., 2010b) as our function classes, since these will be shown to satisfy
both of the foregoing properties. We also review classical metrics on distributions, namely the
Kolmogorov-Smirnov and Earth-Mover’s distances, which are based ondifferent function classes;
collectively these are known as integral probability metrics (Müller, 1997). On a more practical
note, the MMD has a reasonable computational cost, when compared with other two-sample tests:
given m points sampled fromp andn from q, the cost isO(m+n)2 time. We also propose a test
statistic with a computational cost ofO(m+n): the associated test can achieve a given Type II error
at a lower overall computational cost than the quadratic-cost test, by looking at a larger volume of
data.

We define three nonparametric statistical tests based on the MMD. The first two tests are
distribution-free, meaning they make no assumptions regardingp andq, albeit at the expense of
being conservative in detecting differences between the distributions. The third test is based on the
asymptotic distribution of the MMD, and is in practice more sensitive to differences in distribution at
small sample sizes. The present work synthesizes and expands on results of Gretton et al. (2007a,b)
and Smola et al. (2007),1 who in turn build on the earlier work of Borgwardt et al. (2006). Note that

1. In particular, most of the proofs here were not provided by Grettonet al. (2007a), but in an accompanying technical
report (Gretton et al., 2008a), which this document replaces.
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the latter addresses only the third kind of test, and that the approach of Gretton et al. (2007a,b) is
rigorous in its treatment of the asymptotic distribution of the test statistic under the null hypothesis.

We begin our presentation in Section 2 with a formal definition of the MMD. We review the
notion of a characteristic RKHS, and establish that whenF is a unit ball in a characteristic RKHS,
then the population MMD is zero if and only ifp = q. We further show that universal RKHSs in
the sense of Steinwart (2001) are characteristic. In Section 3, we givean overview of hypothesis
testing as it applies to the two-sample problem, and review alternative test statistics, including the
L2 distance between kernel density estimates (Anderson et al., 1994), whichis the prior approach
closest to our work. We present our first two hypothesis tests in Section 4, based on two different
bounds on the deviation between the population and empirical MMD. We take a different approach
in Section 5, where we use the asymptotic distribution of the empirical MMD estimate as the basis
for a third test. When large volumes of data are available, the cost of computingthe MMD (quadratic
in the sample size) may be excessive: we therefore propose in Section 6 a modified version of the
MMD statistic that has a linear cost in the number of samples, and an associatedasymptotic test.
In Section 7, we provide an overview of methods related to the MMD in the statistics and machine
learning literature. We also review alternative function classes for which the MMD defines a metric
on probability distributions. Finally, in Section 8, we demonstrate the performance of MMD-based
two-sample tests on problems from neuroscience, bioinformatics, and attribute matching using the
Hungarian marriage method. Our approach performs well on high dimensional data with low sample
size; in addition, we are able to successfully distinguish distributions on graph data, for which ours
is the first proposed test.

A Matlab implementation of the tests is atwww.gatsby.ucl.ac.uk/∼ gretton/mmd/mmd.htm.

2. The Maximum Mean Discrepancy

In this section, we present the maximum mean discrepancy (MMD), and describe conditions under
which it is a metric on the space of probability distributions. The MMD is defined interms of
particular function spaces that witness the difference in distributions: we therefore begin in Section
2.1 by introducing the MMD for an arbitrary function space. In Section 2.2,we compute both the
population MMD and two empirical estimates when the associated function spaceis a reproducing
kernel Hilbert space, and in Section 2.3 we derive the RKHS function thatwitnesses the MMD for
a given pair of distributions.

2.1 Definition of the Maximum Mean Discrepancy

Our goal is to formulate a statistical test that answers the following question:

Problem 1 Let x and y be random variables defined on a topological spaceX, with respective
Borel probability measures p and q . Given observations X:= {x1, . . . ,xm} and Y := {y1, . . . ,yn},
independently and identically distributed (i.i.d.) from p and q, respectively, canwe decide whether
p 6= q?

Where there is no ambiguity, we use the shorthand notationEx[ f (x)] := Ex∼p[ f (x)] andEy[ f (y)] :=
Ey∼q[ f (y)] to denote expectations with respect top andq, respectively, wherex∼ p indicatesx has
distributionp. To start with, we wish to determine a criterion that, in the population setting, takes
on a unique and distinctive value only whenp = q. It will be defined based on Lemma 9.3.2 of
Dudley (2002).
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Lemma 1 Let (X,d) be a metric space, and let p,q be two Borel probability measures defined on
X. Then p= q if and only ifEx( f (x)) = Ey( f (y)) for all f ∈ C(X), where C(X) is the space of
bounded continuous functions onX.

AlthoughC(X) in principle allows us to identifyp= q uniquely, it is not practical to work with such
a rich function class in the finite sample setting. We thus define a more general class of statistic, for
as yet unspecified function classesF, to measure the disparity betweenp andq (Fortet and Mourier,
1953; Müller, 1997).

Definition 2 LetF be a class of functions f: X→ R and let p,q,x,y,X,Y be defined as above. We
define the maximum mean discrepancy (MMD) as

MMD [F, p,q] := sup
f∈F

(Ex[ f (x)]−Ey[ f (y)]) . (1)

In the statistics literature, this is known as an integral probability metric (Müller, 1997). A biased2

empirical estimate of the MMD is obtained by replacing the population expectations with empirical
expectations computed on the samples X and Y,

MMDb [F,X,Y] := sup
f∈F

(

1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (yi)

)

. (2)

We must therefore identify a function class that is rich enough to uniquely identify whetherp= q,
yet restrictive enough to provide useful finite sample estimates (the latter property will be established
in subsequent sections).

2.2 The MMD in Reproducing Kernel Hilbert Spaces

In the present section, we propose as our MMD function classF the unit ball in a reproducing kernel
Hilbert spaceH. We will provide finite sample estimates of this quantity (both biased and unbiased),
and establish conditions under which the MMD can be used to distinguish between probability
measures. Other possible function classesF are discussed in Sections 7.1 and 7.2.

We first review some properties ofH (Scḧolkopf and Smola, 2002). SinceH is an RKHS, the
operator of evaluationδx mapping f ∈H to f (x) ∈ R is continuous. Thus, by the Riesz represen-
tation theorem (Reed and Simon, 1980, Theorem II.4), there is a feature mapping φ(x) from X to
R such thatf (x) = 〈 f ,φ(x)〉H. This feature mapping takes the canonical formφ(x) = k(x, ·) (Stein-
wart and Christmann, 2008, Lemma 4.19), wherek(x1,x2) : X×X → R is positive definite, and
the notationk(x, ·) indicates the kernel has one argument fixed atx, and the second free. Note in
particular that〈φ(x),φ(y)〉H = k(x,y). We will generally use the more concise notationφ(x) for the
feature mapping, although in some cases it will be clearer to writek(x, ·).

We next extend the notion of feature map to the embedding of a probability distribution: we
will define an elementµp ∈ H such thatEx f = 〈 f ,µp〉H for all f ∈ H, which we call themean
embeddingof p. Embeddings of probability measures into reproducing kernel Hilbert spaces are
well established in the statistics literature: see Berlinet and Thomas-Agnan (2004, Chapter 4) for
further detail and references. We begin by establishing conditions under which the mean embedding
µp exists (Fukumizu et al., 2004, p. 93), (Sriperumbudur et al., 2010b, Theorem 1).

2. The empirical MMD defined below has an upward bias—we will define anunbiased statistic in the following section.
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Lemma 3 If k(·, ·) is measurable andEx

√

k(x,x)< ∞ then µp ∈H.

Proof The linear operatorTp f := Ex f for all f ∈ F is bounded under the assumption, since

|Tp f |= |Ex f | ≤ Ex | f |= Ex |〈 f ,φ(x)〉H| ≤ Ex

(√

k(x,x)‖ f‖H
)

.

Hence by the Riesz representer theorem, there exists aµp ∈H such thatTp f = 〈 f ,µp〉H. If we set
f = φ(t) = k(t, ·), we obtainµp(t) = 〈µp,k(t, ·)〉H = Exk(t,x): in other words, the mean embedding
of the distributionp is the expectation underp of the canonical feature map.

We next show that the MMD may be expressed as the distance inH between mean embeddings
(Borgwardt et al., 2006).

Lemma 4 Assume the condition in Lemma 3 for the existence of the mean embeddings µp, µq is
satisfied. Then

MMD2[F, p,q] =
∥
∥µp−µq

∥
∥2
H
.

Proof

MMD2[F, p,q] =

[

sup
‖ f‖

H
≤1

(Ex [ f (x)]−Ey [ f (y)])

]2

=

[

sup
‖ f‖

H
≤1

〈
µp−µq, f

〉

H

]2

=
∥
∥µp−µq

∥
∥2
H
.

We now establish a condition on the RKHSH under which the mean embeddingµp is injective,
which indicates that MMD[F, p,q] = 0 is a metric3 on the Borel probability measures onX. Evi-
dently, this property will not hold for allH: for instance, a polynomial RKHS of degree two cannot
distinguish between distributions with the same mean and variance, but different kurtosis (Sriperum-
budur et al., 2010b, Example 3). The MMD is a metric, however, whenH is auniversalRKHSs,
defined on a compact metric spaceX. Universality requires thatk(·, ·) be continuous, andH be
dense inC(X) with respect to theL∞ norm. Steinwart (2001) proves that the Gaussian and Laplace
RKHSs are universal.

Theorem 5 LetF be a unit ball in a universal RKHSH, defined on the compact metric spaceX,
with associated continuous kernel k(·, ·). ThenMMD [F, p,q] = 0 if and only if p= q.

Proof The proof follows Cortes et al. (2008, Supplementary Appendix), whose approach is clearer
than the original proof of Gretton et al. (2008a, p. 4).4 First, it is clear thatp = q implies

3. According to Dudley (2002, p. 26) a metricd(x,y) satisfies the following four properties: symmetry, triangle in-
equality,d(x,x) = 0, andd(x,y) = 0 =⇒ x= y. A pseudo-metric only satisfies the first three properties.

4. Note that the proof of Cortes et al. (2008) requires an application the of dominated convergence theorem, rather than
using the Riesz representation theorem to show the existence of the mean embeddingsµp andµq as we did in Lemma
3.
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MMD {F, p,q} is zero. We now prove the converse. By the universality ofH, for any givenε > 0
and f ∈C(X) there exists ag∈H such that

‖ f −g‖∞ ≤ ε.

We next make the expansion

|Ex f (x)−Ey( f (y))| ≤ |Ex f (x)−Exg(x)|+ |Exg(x)−Eyg(y)|+ |Eyg(y)−Ey f (y)| .

The first and third terms satisfy

|Ex f (x)−Exg(x)| ≤ Ex | f (x)−g(x)| ≤ ε.

Next, write
Exg(x)−Eyg(y) =

〈
g,µp−µq

〉

H
= 0,

since MMD{F, p,q}= 0 impliesµp = µq. Hence

|Ex f (x)−Ey( f (y))| ≤ 2ε

for all f ∈C(X) andε > 0, which impliesp= q by Lemma 1.

While our result establishes the mappingµp is injective for universal kernels on compact domains,
this result can also be shown in more general cases. Fukumizu et al. (2008) introduces the notion
of characteristic kernels, these being kernels for which the mean map is injective. Fukumizu et al.
establish that Gaussian and Laplace kernels are characteristic onR

d, and thus that the associated
MMD is a metric on distributions for this domain. Sriperumbudur et al. (2008, 2010b) and Sripe-
rumbudur et al. (2011a) further explore the properties of characteristic kernels, providing a simple
condition to determine whether translation invariant kernels are characteristic, and investigating the
relation between universal and characteristic kernels on non-compactdomains.

Given we are in an RKHS, we may easily obtain of the squared MMD,
∥
∥µp−µq

∥
∥2
H

, in terms of
kernel functions, and a corresponding unbiased finite sample estimate.

Lemma 6 Given x and x′ independent random variables with distribution p, and y and y′ indepen-
dent random variables with distribution q, the squared populationMMD is

MMD2 [F, p,q] = Ex,x′
[
k(x,x′)

]
−2Ex,y [k(x,y)]+Ey,y′

[
k(y,y′)

]
,

where x′ is an independent copy of x with the same distribution, and y′ is an independent copy of y.
Anunbiasedempirical estimate is a sum of two U-statistics and a sample average,

MMD2
u[F,X,Y] =

1
m(m−1)

m

∑
i=1

m

∑
j 6=i

k(xi ,x j)+
1

n(n−1)

n

∑
i=1

n

∑
j 6=i

k(yi ,y j)

− 2
mn

m

∑
i=1

n

∑
j=1

k(xi ,y j). (3)

When m= n, a slightly simpler empirical estimate may be used. Let Z:= (z1, . . . ,zm) be m i.i.d.
random variables, where z:= (x,y)∼ p×q (i.e., x and y are independent). An unbiased estimate of
MMD2 is

MMD2
u [F,X,Y] =

1
(m)(m−1)

m

∑
i 6= j

h(zi ,zj), (4)
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which is a one-sample U-statistic with

h(zi ,zj) := k(xi ,x j)+k(yi ,y j)−k(xi ,y j)−k(x j ,yi).

Proof Starting from the expression for MMD2[F, p,q] in Lemma 4,

MMD2[F, p,q] =
∥
∥µp−µq

∥
∥2
H

= 〈µp,µp〉H+
〈
µq,µq

〉

H
−2
〈
µp,µq

〉

H

= Ex,x′
〈
φ(x),φ(x′)

〉

H
+Ey,y′

〈
φ(y),φ(y′)

〉

H
−2Ex,y〈φ(x),φ(y)〉H ,

The proof is completed by applying〈φ(x),φ(x′)〉H = k(x,x′); the empirical estimates follow straight-
forwardly, by replacing the population expectations with their corresponding U-statistics and sample
averages. This statistic is unbiased following Serfling (1980, Chapter 5).

Note that MMD2
u may be negative, since it is an unbiased estimator of(MMD [F, p,q])2. The only

terms missing to ensure nonnegativity, however, areh(zi ,zi), which were removed to remove spuri-
ous correlations between observations. Consequently we have the bound

MMD2
u+

1
m(m−1)

m

∑
i=1

k(xi ,xi)+k(yi ,yi)−2k(xi ,yi)≥ 0.

Moreover, while the empirical statistic form= n is an unbiased estimate of MMD2, it does not have
minimum variance, since we ignore the cross-termsk(xi ,yi), of which there areO(n). From (3),
however, we see the minimum variance estimate is almost identical (Serfling, 1980, Section 5.1.4).

The biased statistic in (2) may also be easily computed following the above reasoning. Substi-
tuting the empirical estimatesµX := 1

m ∑m
i=1 φ(xi) andµY := 1

n ∑n
i=1 φ(yi) of the feature space means

based on respective samplesX andY, we obtain

MMDb [F,X,Y] =

[

1
m2

m

∑
i, j=1

k(xi ,x j)−
2

mn

m,n

∑
i, j=1

k(xi ,y j)+
1
n2

n

∑
i, j=1

k(yi ,y j)

] 1
2

. (5)

Note that the U-statistics of (3) have been replaced by V-statistics. Intuitively we expect the empir-
ical test statistic MMD[F,X,Y], whether biased or unbiased, to be small ifp= q, and large if the
distributions are far apart. It costsO((m+n)2) time to compute both statistics.

2.3 Witness Function of the MMD for RKHSs

We define the witness functionf ∗ to be the RKHS function attaining the supremum in (1), and
its empirical estimatêf ∗ to be the function attaining the supremum in (2). From the reasoning in
Lemma 4, it is clear that

f ∗(t) ∝
〈
φ(t),µp−µq

〉

H
= Ex [k(x, t)]−Ey [k(y, t)] ,

f̂ ∗(t) ∝ 〈φ(t),µX −µY〉H = 1
m ∑m

i=1k(xi , t)− 1
n ∑n

i=1k(yi , t).

where we have definedµX = m−1 ∑m
i=1 φ(xi), andµY by analogy. The result follows since the unit

vectorv maximizing〈v,x〉H in a Hilbert space isv= x/‖x‖H.
We illustrate the behavior of MMD in Figure 1 using a one-dimensional example. The dataX

andY were generated from distributionsp andq with equal means and variances, withp Gaussian
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Figure 1: Illustration of the function maximizing the mean discrepancy in the casewhere a Gaussian
is being compared with a Laplace distribution. Both distributions have zero meanand unit
variance. The function̂f ∗ that witnesses the MMD has been scaled for plotting purposes,
and was computed empirically on the basis of 2×104 samples, using a Gaussian kernel
with σ = 0.5.

andq Laplacian. We choseF to be the unit ball in a Gaussian RKHS. The empirical estimatef̂ ∗

of the function f ∗ that witnesses the MMD—in other words, the function maximizing the mean
discrepancy in (1)—is smooth, negative where the Laplace density exceeds the Gaussian density (at
the center and tails), and positive where the Gaussian density is larger. The magnitude off̂ ∗ is a
direct reflection of the amount by which one density exceeds the other, insofar as the smoothness
constraint permits it.

3. Background Material

We now present three background results. First, we introduce the terminology used in statistical
hypothesis testing. Second, we demonstrate via an example that even for tests which have asymp-
totically no error, we cannot guarantee performance at any fixed samplesize without making as-
sumptions about the distributions. Third, we review some alternative statistics used in comparing
distributions, and the associated two-sample tests (see also Section 7 for an overview of additional
integral probability metrics).

3.1 Statistical Hypothesis Testing

Having described a metric on probability distributions (the MMD) based on distances between their
Hilbert space embeddings, and empirical estimates (biased and unbiased) of this metric, we address
the problem of determining whether the empirical MMD shows astatistically significantdifference
between distributions. To this end, we briefly describe the framework of statistical hypothesis testing
as it applies in the present context, following Casella and Berger (2002, Chapter 8). Given i.i.d.
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samplesX ∼ p of sizemandY ∼ q of sizen, the statistical test,T(X,Y) : Xm×Xn 7→ {0,1} is used
to distinguish between the null hypothesisH0 : p= q and the alternative hypothesisHA : p 6= q.
This is achieved by comparing the test statistic5 MMD [F,X,Y] with a particular threshold: if the
threshold is exceeded, then the test rejects the null hypothesis (bearing inmind that a zero population
MMD indicatesp= q). The acceptance region of the test is thus defined as the set of real numbers
below the threshold. Since the test is based on finite samples, it is possible thatan incorrect answer
will be returned. A Type I error is made whenp = q is rejected based on the observed samples,
despite the null hypothesis having generated the data. Conversely, a Type II error occurs when
p = q is accepted despite the underlying distributions being different. Thelevel α of a test is an
upper bound on the probability of a Type I error: this is a design parameterof the test which must
be set in advance, and is used to determine the threshold to which we comparethe test statistic
(finding the test threshold for a givenα is the topic of Sections 4 and 5). Thepower of a test
against a particular member of the alternative classHA (i.e., a specific(p,q) such thatp 6= q) is the
probability of wrongly acceptingp= q in this instance. A consistent test achieves a levelα, and a
Type II error of zero, in the large sample limit. We will see that the tests proposed in this paper are
consistent.

3.2 A Negative Result

Even if a test is consistent, it is not possible to distinguish distributions with high probability at a
given,fixedsample size (i.e., to provide guarantees on the Type II error), without prior assumptions
as to the nature of the difference betweenp andq. This is true regardless of the two-sample test
used. There are several ways to illustrate this, which each give insight into the kinds of differences
that might be undetectable for a given number of samples. The following example6 is one such
illustration.

Example 1 Assume we have a distribution p from which we have drawn m i.i.d. observations.
We construct a distribution q by drawing m2 i.i.d. observations from p, and defining a discrete
distribution over these m2 instances with probability m−2 each. It is easy to check that if we now
draw m observations from q, there is at least a

(m2

m

)
m!

m2m > 1−e−1 > 0.63probability that we thereby
obtain an m sample from p. Hence no test will be able to distinguish samples fromp and q in this
case. We could make the probability of detection arbitrarily small by increasing the size of the
sample from which we construct q.

3.3 Previous Work

We next give a brief overview of some earlier approaches to the two sampleproblem for multivariate
data. Since our later experimental comparison is with respect to certain of these methods, we give
abbreviated algorithm names in italics where appropriate: these should be used as a key to the tables
in Section 8.

5. This may be biased or unbiased.
6. This is a variation of a construction for independence tests, which was suggested in a private communication by John

Langford.
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3.3.1 L2 DISTANCE BETWEENPARZEN WINDOW ESTIMATES

The prior work closest to the current approach is the Parzen window-based statistic of Anderson
et al. (1994). We begin with a short overview of the Parzen window estimateand its properties
(Silverman, 1986), before proceeding to a comparison with the RKHS approach. We assume a
distributionp onR

d, which has an associated density functionfp. The Parzen window estimate of
this density from an i.i.d. sampleX of sizem is

f̂p(x) =
1
m

m

∑
i=1

κ(xi −x) , whereκ satisfies
∫
X

κ(x)dx= 1 andκ(x)≥ 0.

We may rescaleκ according to1
hd

m
κ
(

x
hm

)

for a bandwidth parameterhm. To simplify the discussion,

we use a single bandwidthhm+n for both f̂p and f̂q. Assumingm/n is bounded away from zero and
infinity, consistency of the Parzen window estimates forfp and fq requires

lim
m,n→∞

hd
m+n = 0 and lim

m,n→∞
(m+n)hd

m+n = ∞. (6)

We now show theL2 distance between Parzen windows density estimates is a special case of the bi-
ased MMD in Equation (5). Denote byDr(p,q) :=

∥
∥ fp− fq

∥
∥

r theLr distance between the densities
fp and fq corresponding to the distributionsp andq, respectively. Forr = 1 the distanceDr(p,q) is
known as the Ĺevy distance (Feller, 1971), and forr = 2 we encounter a distance measure derived
from the Renyi entropy (Gokcay and Principe, 2002). Assume thatf̂p and f̂q are given as kernel
density estimates with kernelκ(x− x′), that is, f̂p(x) = m−1 ∑m

i=1 κ(xi − x) and f̂q(y) is defined by
analogy. In this case

D2( f̂p, f̂q)
2 =

∫ [
1
m

m

∑
i=1

κ(xi −z)− 1
n

n

∑
i=1

κ(yi −z)

]2

dz

=
1

m2

m

∑
i, j=1

k(xi −x j)+
1
n2

n

∑
i, j=1

k(yi −y j)−
2

mn

m,n

∑
i, j=1

k(xi −y j),

wherek(x−y) =
∫

κ(x−z)κ(y−z)dz. By its definitionk(x−y) is an RKHS kernel, as it is an inner
product betweenκ(x−z) andκ(y−z) on the domainX.

We now describe the asymptotic performance of a two-sample test using the statistic D2( f̂p, f̂q)2.
We consider the power of the test under local departures from the null hypothesis. Anderson et al.
(1994) define these to take the form

fq = fp+δg, (7)

whereδ∈R, andg is a fixed, bounded, integrable function chosen to ensure thatfq is a valid density
for sufficiently small|δ|. Anderson et al. consider two cases: the kernel bandwidth converging to
zero with increasing sample size, ensuring consistency of the Parzen window estimates offp and
fq; and the case of a fixed bandwidth. In the former case, the minimum distance with which the test

can discriminatefp from fq is7 δ = (m+n)−1/2h−d/2
m+n . In the latter case, this minimum distance is

δ = (m+n)−1/2, under the assumption that the Fourier transform of the kernelκ does not vanish

7. Formally, definesα as a threshold for the statisticD2
(

f̂p, f̂q
)2

, chosen to ensure the test has levelα, and letδ =

(m+ n)−1/2h−d/2
m+n c for some fixedc 6= 0. Whenm,n → ∞ such thatm/n is bounded away from 0 and∞, and
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on an interval (Anderson et al., 1994, Section 2.4), which implies the kernel k is characteristic
(Sriperumbudur et al., 2010b). The power of theL2 test against local alternatives is greater when
the kernel is held fixed, since forany rate of decrease ofhm+n with increasing sample size,δ will
decrease more slowly than for a fixed kernel.

An RKHS-based approach generalizes theL2 statistic in a number of important respects. First,
we may employ a much larger class of characteristic kernels that cannot be written as inner products
between Parzen windows: several examples are given by Steinwart (2001, Section 3) and Micchelli
et al. (2006, Section 3) (these kernels are universal, hence characteristic). We may further generalize
to kernels on structured objects such as strings and graphs (Schölkopf et al., 2004), as done in our
experiments (Section 8). Second, even when the kernel may be written as an inner product of
Parzen windows onRd, theD2

2 statistic with fixed bandwidth no longer converges to anL2 distance
between probability density functions, hence it is more natural to define the statistic as an integral
probability metric for a particular RKHS, as in Definition 2. Indeed, in our experiments, we obtain
good performance in experimental settings where the dimensionality greatly exceeds the sample
size, and density estimates would perform very poorly8 (for instance the Gaussian toy example
in Figure 5B, for which performance actually improves when the dimensionalityincreases; and the
microarray data sets in Table 1). This suggests it is not necessary to solvethe more difficult problem
of density estimation in high dimensions to do two-sample testing.

Finally, the kernel approach leads us to establish consistency against a larger class of local
alternatives to the null hypothesis than that considered by Anderson et al. In Theorem 13, we prove
consistency against a class of alternatives encoded in terms of the mean embeddings ofp andq,
which applies to any domain on which RKHS kernels may be defined, and not only densities onRd.
This more general approach also has interesting consequences for distributions onRd: for instance,
a local departure fromH0 occurs whenp andq differ at increasing frequencies in their respective
characteristic functions. This class of local alternatives cannot be expressed in the formδg for fixed
g, as in (7). We discuss this issue further in Section 5.

3.3.2 MMD FOR MULTINOMIALS

Assume a finite domainX := {1, . . . ,d}, and define the random variablesx andy on X such that
pi :=P(x= i) andq j :=P(y= j). We embedx into an RKHSH via the feature mappingφ(x) := ex,
wherees is the unit vector inRd taking value 1 in dimensions, and zero in the remaining entries.
The kernel is the usual inner product onRd. In this case,

MMD2[F, p,q] = ‖p−q‖2
Rd =

d

∑
i=1

(pi −qi)
2 . (8)

Harchaoui et al. (2008, Section 1, long version) note that thisL2 statistic may not be the best choice
for finite domains, citing a result of Lehmann and Romano (2005, Theorem 14.3.2) that Pearson’s

assuming conditions (6), the limit

π(c) := lim
(m+n)→∞

PrHA

(

D2
(

f̂p, f̂q
)2

> sα
)

is well-defined, and satisfiesα < π(c)< 1 for 0< |c|< ∞, andπ(c)→ 1 asc→ ∞.
8. TheL2 error of a kernel density estimate converges asO(n−4/(4+d)) when the optimal bandwidth is used (Wasserman,

2006, Section 6.5).
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Chi-squared statistic is optimal for the problem of goodness of fit testing formultinomials.9 It would
be of interest to establish whether an analogous result holds for two-sample testing in a wider class
of RKHS feature spaces.

3.3.3 FURTHER MULTIVARIATE TWO-SAMPLE TESTS

Biau and Gyorfi (2005)(Biau) use as their test statistic theL1 distance between discretized esti-
mates of the probabilities, where the partitioning is refined as the sample size increases. This space
partitioning approach becomes difficult or impossible for high dimensional problems, since there
are too few points per bin. For this reason, we use this test only for low-dimensional problems in
our experiments.

A generalisation of the Wald-Wolfowitz runs test to the multivariate domain was proposed and
analysed by Friedman and Rafsky (1979) and Henze and Penrose (1999) (FR Wolf), and involves
counting the number of edges in the minimum spanning tree over the aggregateddata that connect
points inX to points inY. The resulting test relies on the asymptotic normality of the test statistic,
and is not distribution-free under the null hypothesis for finite samples (thetest threshold depends
on p, as with our asymptotic test in Section 5; by contrast, our tests in Section 4 are distribution-
free). The computational cost of this method using Kruskal’s algorithm isO((m+n)2 log(m+n)),
although more modern methods improve on the log(m+n) term: see Chazelle (2000) for details.
Friedman and Rafsky (1979) claim that calculating the matrix of distances, which costsO((m+n)2),
dominates their computing time; we return to this point in our experiments (Section 8). Two possible
generalisations of the Kolmogorov-Smirnov test to the multivariate case were studied by Bickel
(1969) and Friedman and Rafsky (1979). The approach of Friedman and Rafsky(FR Smirnov)in
this case again requires a minimal spanning tree, and has a similar cost to their multivariate runs
test.

A more recent multivariate test was introduced by Rosenbaum (2005). This entails computing
the minimum distance non-bipartite matching over the aggregate data, and using the number of pairs
containing a sample from bothX andY as a test statistic. The resulting statistic is distribution-free
under the null hypothesis at finite sample sizes, in which respect it is superior to the Friedman-
Rafsky test; on the other hand, it costsO((m+ n)3) to compute. Another distribution-free test
(Hall) was proposed by Hall and Tajvidi (2002): for each point fromp, it requires computing the
closest points in the aggregated data, and counting how many of these are from q (the procedure is
repeated for each point fromq with respect to points fromp). As we shall see in our experimental
comparisons, the test statistic is costly to compute; Hall and Tajvidi consider only tens of points in
their experiments.

4. Tests Based on Uniform Convergence Bounds

In this section, we introduce two tests for the two-sample problem that have exact performance
guarantees at finite sample sizes, based on uniform convergence bounds. The first, in Section 4.1,
uses the McDiarmid (1989) bound on the biased MMD statistic, and the second, in Section 4.2, uses
a Hoeffding (1963) bound for the unbiased statistic.

9. A goodness of fit test determines whether a sample fromp is drawn from aknowntarget multinomialq. Pearson’s
Chi-squared statistic weights each term in the sum (8) by its correspondingq−1

i .
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4.1 Bound on the Biased Statistic and Test

We establish two properties of the MMD, from which we derive a hypothesistest. First, we show
that regardless of whether or notp= q, the empirical MMD converges in probability at rateO((m+

n)−
1
2 ) to its population value. This shows the consistency of statistical tests based onthe MMD.

Second, we give probabilistic bounds for large deviations of the empiricalMMD in the casep= q.
These bounds lead directly to a threshold for our first hypothesis test. Webegin by establishing the
convergence of MMDb[F,X,Y] to MMD[F, p,q]. The following theorem is proved in A.2.

Theorem 7 Let p,q,X,Y be defined as in Problem 1, and assume0≤ k(x,y)≤ K. Then

PrX,Y

{

|MMDb[F,X,Y]−MMD [F, p,q]|> 2
(

(K/m)
1
2 +(K/n)

1
2

)

+ ε
}

≤ 2exp
(

−ε2mn
2K(m+n)

)

,

wherePrX,Y denotes the probability over the m-sample X and n-sample Y.

Our next goal is to refine this result in a way that allows us to define a test threshold under the null
hypothesisp= q. Under this circumstance, the constants in the exponent are slightly improved. The
following theorem is proved in Appendix A.3.

Theorem 8 Under the conditions of Theorem 7 where additionally p= q and m= n,

MMDb[F,X,Y]≤ m− 1
2

√

2Ex,x′ [k(x,x)−k(x,x′)]
︸ ︷︷ ︸

B1(F,p)

+ ε ≤ (2K/m)1/2

︸ ︷︷ ︸

B2(F,p)

+ ε,

both with probability at least1−exp
(

− ε2m
4K

)

.

In this theorem, we illustrate two possible boundsB1(F, p) andB2(F, p) on the bias in the empirical
estimate (5). The first inequality is interesting inasmuch as it provides a link between the bias bound
B1(F, p) and kernel size (for instance, if we were to use a Gaussian kernel with largeσ, thenk(x,x)
andk(x,x′) would likely be close, and the bias small). In the context of testing, however,we would
need to provide an additional bound to show convergence of an empiricalestimate ofB1(F, p) to its
population equivalent. Thus, in the following test forp= q based on Theorem 8, we useB2(F, p)
to bound the bias.10

Corollary 9 A hypothesis test of levelα for the null hypothesis p= q, that is, forMMD [F, p,q] = 0,

has the acceptance regionMMDb[F,X,Y]<
√

2K/m
(

1+
√

2logα−1
)

.

We emphasize that this test is distribution-free: the test threshold does not depend on the particular
distribution that generated the sample. Theorem 7 guarantees the consistency of the test against fixed
alternatives, and that the Type II error probability decreases to zero at rateO

(
m−1/2

)
, assumingm=

n. To put this convergence rate in perspective, consider a test of whether two normal distributions
have equal means, given they have unknown but equal variance (Casella and Berger, 2002, Exercise
8.41). In this case, the test statistic has a Student-t distribution withn+m−2 degrees of freedom,
and its Type II error probability converges at the same rate as our test.

It is worth noting that bounds may be obtained for the deviation between population mean
embeddingsµp and the empirical embeddingsµX in a completely analogous fashion. The proof

10. Note that we use a tighter bias bound than Gretton et al. (2007a).
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requires symmetrization by means of aghost sample, that is, a second set of observations drawn
from the same distribution. While not the focus of the present paper, suchbounds can be used to
perform inference based on moment matching (Altun and Smola, 2006; Dudı́k and Schapire, 2006;
Dud́ık et al., 2004).

4.2 Bound on the Unbiased Statistic and Test

The previous bounds are of interest since the proof strategy can be used for general function classes
with well behaved Rademacher averages (see Sriperumbudur et al., 2010a). WhenF is the unit ball
in an RKHS, however, we may very easily define a test via a convergencebound on the unbiased
statistic MMD2

u in Lemma 4. We base our test on the following theorem, which is a straightforward
application of the large deviation bound on U-statistics of Hoeffding (1963,p. 25).

Theorem 10 Assume0≤ k(xi ,x j)≤ K, from which it follows−2K ≤ h(zi ,zj)≤ 2K. Then

PrX,Y
{

MMD2
u(F,X,Y)−MMD2(F, p,q)> t

}
≤ exp

(−t2m2

8K2

)

where m2 := ⌊m/2⌋ (the same bound applies for deviations of−t and below).

A consistent statistical test forp= q using MMD2
u is then obtained.

Corollary 11 A hypothesis test of levelα for the null hypothesis p= q has the acceptance region
MMD2

u < (4K/
√

m)
√

log(α−1).

This test is distribution-free. We now compare the thresholds of the above test with that in Corollary
9. We note first that the threshold for the biased statistic applies to an estimate ofMMD, whereas
that for the unbiased statistic is for an estimate of MMD2. Squaring the former threshold to make
the two quantities comparable, the squared threshold in Corollary 9 decreases asm−1, whereas the
threshold in Corollary 11 decreases asm−1/2. Thus for sufficiently large11 m, the McDiarmid-based
threshold will be lower (and the associated test statistic is in any case biased upwards), and its Type
II error will be better for a given Type I bound. This is confirmed in our Section 8 experiments.
Note, however, that the rate of convergence of the squared, biased MMD estimate to its population
value remains at 1/

√
m (bearing in mind we take the square of a biased estimate, where the bias

term decays as 1/
√

m).
Finally, we note that the bounds we obtained in this section and the last are rather conservative

for a number of reasons: first, they do not take the actual distributions intoaccount. In fact, they are
finite sample size, distribution-free bounds that hold even in the worst casescenario. The bounds
could be tightened using localization, moments of the distribution, etc.: see, for example, Bousquet
et al. (2005) and de la Peña and Gińe (1999). Any such improvements could be plugged straight
into Theorem 19. Second, in computing bounds rather than trying to characterize the distribution of
MMD(F,X,Y) explicitly, we force our test to be conservative by design. In the followingwe aim for
an exact characterization of the asymptotic distribution of MMD(F,X,Y) instead of a bound. While
this will not satisfy the uniform convergence requirements, it leads to superior tests in practice.

11. In the case ofα = 0.05, this ism≥ 12.
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5. Test Based on the Asymptotic Distribution of the Unbiased Statistic

We propose a third test, which is based on the asymptotic distribution of the unbiased estimate of
MMD2 in Lemma 6. This test uses the asymptotic distribution of MMD2

u underH0, which follows
from results of Anderson et al. (1994, Appendix) and Serfling (1980, Section 5.5.2): see Appendix
B.1 for the proof.

Theorem 12 Let k̃(xi ,x j) be the kernel between feature space mappings from which the mean em-
bedding of p has been subtracted,

k̃(xi ,x j) :=
〈
φ(xi)−µp,φ(x j)−µp

〉

H

= k(xi ,x j)−Exk(xi ,x)−Exk(x,x j)+Ex,x′k(x,x
′), (9)

where x′ is an independent copy of x drawn from p. Assumek̃∈ L2(X×X, p× p) (i.e., the centred
kernel is square integrable, which is true for all p when the kernel is bounded), and that for t=
m+n, limm,n→∞ m/t → ρx and limm,n→∞ n/t → ρy := (1−ρx) for fixed0< ρx < 1. Then underH0,
MMD2

u converges in distribution according to

tMMD2
u[F,X,Y]→

D

∞

∑
l=1

λl

[

(ρ−1/2
x al −ρ−1/2

y bl )
2− (ρxρy)

−1
]

, (10)

where al ∼ N(0,1) and bl ∼ N(0,1) are infinite sequences of independent Gaussian random vari-
ables, and theλi are eigenvalues of

∫
X

k̃(x,x′)ψi(x)dp(x) = λiψi(x
′).

We illustrate the MMD density under both the null and alternative hypotheses by approximating it
empirically for p= q andp 6= q. Results are plotted in Figure 2.

Our goal is to determine whether the empirical test statistic MMD2
u is so large as to be outside

the 1−α quantile of the null distribution in (10), which gives a levelα test. Consistency of this test
against local departures from the null hypothesis is provided by the following theorem, proved in
Appendix B.2.

Theorem 13 Defineρx, ρy, and t as in Theorem 12, and write µq = µp+gt , where gt ∈H is chosen
such that µp+gt remains a valid mean embedding, and‖gt‖H is made to approach zero as t→ ∞ to
describe local departures from the null hypothesis. Then‖gt‖H = ct−1/2 is the minimum distance
between µp and µq distinguishable by the test.

An example of a local departure from the null hypothesis is described earlier in the discussion of
the L2 distance between Parzen window estimates (Section 3.3.1). The class of local alternatives
considered in Theorem 13 is more general, however: for instance, Sriperumbudur et al. (2010b,
Section 4) and Harchaoui et al. (2008, Section 5, long version) give examples of classes of pertur-
bationsgt with decreasing RKHS norm. These perturbations have the property thatp differs fromq
at increasing frequencies, rather than simply with decreasing amplitude.

One way to estimate the 1−α quantile of the null distribution is using the bootstrap on the
aggregated data, following Arcones and Giné (1992). Alternatively, we may approximate the null
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Figure 2: Left: Empirical distribution of the MMD underH0, with p andq both Gaussians with

unit standard deviation, using 50 samples from each.Right: Empirical distribution of
the MMD underHA, with p a Laplace distribution with unit standard deviation, andq
a Laplace distribution with standard deviation 3

√
2, using 100 samples from each. In

both cases, the histograms were obtained by computing 2000 independent instances of
the MMD.

distribution by fitting Pearson curves to its first four moments (Johnson et al.,1994, Section 18.8).
Taking advantage of the degeneracy of the U-statistic, we obtain form= n

E
([

MMD2
u

]2
)

=
2

m(m−1)
Ez,z′

[
h2(z,z′)

]
and

E
([

MMD2
u

]3
)

=
8(m−2)

m2(m−1)2Ez,z′
[
h(z,z′)Ez′′

(
h(z,z′′)h(z′,z′′)

)]
+O(m−4) (11)

(see Appendix B.3), whereh(z,z′) is defined in Lemma 6,z= (x,y)∼ p×q wherex andy are inde-

pendent, andz′,z′′ are independent copies ofz. The fourth momentE
([

MMD2
u

]4
)

is not computed,

since it is both very small,O(m−4), and expensive to calculate,O(m4). Instead, we replace the kur-

tosis12 with a lower bound due to Wilkins (1944), kurt
(
MMD2

u

)
≥
(
skew

(
MMD2

u

))2
+1. In Figure

3, we illustrate the Pearson curve fit to the null distribution: the fit is good in theupper quantiles of
the distribution, where the test threshold is computed. Finally, we note that two alternative empiri-
cal estimates of the null distribution have more recently been proposed by Gretton et al. (2009): a
consistent estimate, based on an empirical computation of the eigenvaluesλl in (10); and an alter-
native Gamma approximation to the null distribution, which has a smaller computational cost but is
generally less accurate. Further detail and experimental comparisons are given by Gretton et al.

12. The kurtosis is defined in terms of the fourth and second moments as kurt
(
MMD2

u
)
=

E
(

[MMD2
u]

4
)

[

E
(

[MMD2
u]

2
)]2 −3.
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Figure 3: Illustration of the empirical CDF of the MMD and a Pearson curve fit. Both p andq were
Gaussian with zero mean and unit variance, and 50 samples were drawn from each. The
empirical CDF was computed on the basis of 1000 randomly generated MMD values. To
ensure the quality of fit was determined only by the accuracy of the Pearson approxima-
tion, the moments used for the Pearson curves were also computed on the basis of these
1000 samples. The MMD used a Gaussian kernel withσ = 0.5.

6. A Linear Time Statistic and Test

The MMD-based tests are already more efficient than theO(m2 logm) andO(m3) tests described in
Section 3.3.3 (assumingm= n for conciseness). It is still desirable, however, to obtainO(m) tests
which do not sacrifice too much statistical power. Moreover, we would like toobtain tests which
haveO(1) storage requirements for computing the test statistic, in order to apply the test todata
streams. We now describe how to achieve this by computing the test statistic usinga subsampling
of the terms in the sum. The empirical estimate in this case is obtained by drawing pairs fromX and
Y respectivelywithout replacement.

Lemma 14 Define m2 := ⌊m/2⌋, assume m= n, and define h(z1,z2) as in Lemma 6. The estimator

MMD2
l [F,X,Y] :=

1
m2

m2

∑
i=1

h((x2i−1,y2i−1),(x2i ,y2i))

can be computed in linear time, and is an unbiased estimate ofMMD2[F, p,q].

While it is expected that MMD2l has higher variance than MMD2u (as we will see explicitly later), it
is computationally much more appealing. In particular, the statistic can be used in stream computa-
tions with need for onlyO(1) memory, whereas MMD2u requiresO(m) storage andO(m2) time to
compute the kernelh on all interacting pairs.

Since MMD2
l is just the average over a set of random variables, Hoeffding’s bound and the cen-

tral limit theorem readily allow us to provide both uniform convergence and asymptotic statements
with little effort. The first follows directly from Hoeffding (1963, Theorem2).
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Theorem 15 Assume0≤ k(xi ,x j)≤ K. Then

PrX,Y
{

MMD2
l (F,X,Y)−MMD2(F, p,q)> t

}
≤ exp

(−t2m2

8K2

)

where m2 := ⌊m/2⌋ (the same bound applies for deviations of−t and below).

Note that the bound of Theorem 10 is identical to that of Theorem 15, whichshows the former is
rather loose. Next we invoke the central limit theorem (e.g., Serfling, 1980, Section 1.9).

Corollary 16 Assume0 < E
(
h2
)
< ∞. ThenMMD2

l converges in distribution to a Gaussian ac-
cording to

m
1
2
(
MMD2

l −MMD2 [F, p,q]
) D→N

(
0,σ2

l

)
,

whereσ2
l = 2

[

Ez,z′h2(z,z′)− [Ez,z′h(z,z′)]
2
]

, where we use the shorthandEz,z′ := Ez,z′∼p×q.

The factor of 2 arises since we are averaging over only⌊m/2⌋ observations. It is instructive to
compare this asymptotic distribution with that of the quadratic time statistic MMD2

u underHA,
whenm= n. In this case, MMD2u converges in distribution to a Gaussian according to

m
1
2
(
MMD2

u−MMD2 [F, p,q]
) D→N

(
0,σ2

u

)
,

whereσ2
u = 4

(

Ez
[
(Ez′h(z,z′))2

]
− [Ez,z′(h(z,z′))]

2
)

(Serfling, 1980, Section 5.5). Thus for MMD2
u,

the asymptotic variance is (up to scaling) the variance ofEz′ [h(z,z′)], whereas for MMD2l it is
Varz,z′ [h(z,z′)].

We end by noting another potential approach to reducing the cost of computing an empirical
MMD estimate, by using a low rank approximation to the Gram matrix (Fine and Scheinberg, 2001;
Williams and Seeger, 2001; Smola and Schölkopf, 2000). An incremental computation of the MMD
based on such a low rank approximation would requireO(md) storage andO(md) computation
(whered is the rank of the approximate Gram matrix which is used to factorizeboth matrices)
rather thanO(m) storage andO(m2) operations. That said, it remains to be determined what effect
this approximation would have on the distribution of the test statistic underH0, and hence on the
test threshold.

7. Related Metrics and Learning Problems

The present section discusses a number of topics related to the maximum mean discrepancy, includ-
ing metrics on probability distributions using non-RKHS function classes (Sections 7.1 and 7.2), the
relation with set kernels and kernels on probability measures (Section 7.3),an extension to kernel
measures of independence (Section 7.4), a two-sample statistic using a distribution over witness
functions (Section 7.5), and a connection to outlier detection (Section 7.6).

7.1 The MMD in Other Function Classes

The definition of the maximum mean discrepancy is by no means limited to RKHS. In fact, any
function classF that comes with uniform convergence guarantees and is sufficiently rich will enjoy
the above properties. Below, we consider the case where the scaled functions inF are dense inC(X)
(which is useful for instance when the functions inF are norm constrained).
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Definition 17 LetF be a subset of some vector space. The star S[F] of a setF is

S[F] := {α f | f ∈ F andα ∈ [0,∞)}
Theorem 18 Denote byF the subset of some vector space of functions fromX to R for which
S[F]∩C(X) is dense in C(X) with respect to the L∞(X) norm. ThenMMD [F, p,q] = 0 if and only
if p = q, andMMD [F, p,q] is a metric on the space of probability distributions. Whenever the star
ofF is notdense, theMMD defines a pseudo-metric space.

Proof It is clear thatp = q implies MMD[F, p,q] = 0. The proof of the converse is very similar
to that of Theorem 5. DefineH := S(F)∩C(X). Since by assumptionH is dense inC(X), there
exists anh∗ ∈H satisfying‖h∗− f‖∞ < ε for all f ∈ C(X). Write h∗ := α∗g∗, whereg∗ ∈ F. By
assumption,Exg∗−Eyg∗ = 0. Thus we have the bound

|Ex f (x)−Ey( f (y))| ≤ |Ex f (x)−Exh
∗(x)|+α∗ |Exg

∗(x)−Eyg
∗(y)|+ |Eyh

∗(y)−Ey f (y)|
≤ 2ε

for all f ∈C(X) andε > 0, which impliesp= q by Lemma 1.
To show MMD[F, p,q] is a metric, it remains to prove the triangle inequality. We have

sup
f∈F

∣
∣Ep f −Eq f

∣
∣+sup

g∈F

∣
∣Eqg−Erg

∣
∣≥ sup

f∈F

[∣
∣Ep f −Eq f

∣
∣+
∣
∣Eq f −Er

∣
∣
]

≥ sup
f∈F

|Ep f −Er f | .

Note that any uniform convergence statements in terms ofF allow us immediately to characterize
an estimator of MMD(F, p,q) explicitly. The following result shows how (this reasoning is also the
basis for the proofs in Section 4, although here we do not restrict ourselves to an RKHS).

Theorem 19 Let δ ∈ (0,1) be a confidence level and assume that for someε(δ,m,F) the following
holds for samples{x1, . . . ,xm} drawn from p:

PrX

{

sup
f∈F

∣
∣
∣
∣
∣
Ex[ f ]−

1
m

m

∑
i=1

f (xi)

∣
∣
∣
∣
∣
> ε(δ,m,F)

}

≤ δ.

In this case we have that,

PrX,Y {|MMD [F, p,q]−MMDb[F,X,Y]|> 2ε(δ/2,m,F)} ≤ δ,

whereMMDb[F,X,Y] is taken from Definition 2.

Proof The proof works simply by using convexity and suprema as follows:

|MMD [F, p,q]−MMDb[F,X,Y]|

=

∣
∣
∣
∣
∣
sup
f∈F

|Ex[ f ]−Ey[ f ]|−sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (yi)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤sup
f∈F

∣
∣
∣
∣
∣
Ex[ f ]−Ey[ f ]−

1
m

m

∑
i=1

f (xi)+
1
n

n

∑
i=1

f (yi)

∣
∣
∣
∣
∣

≤sup
f∈F

∣
∣
∣
∣
∣
Ex[ f ]−

1
m

m

∑
i=1

f (xi)

∣
∣
∣
∣
∣
+sup

f∈F

∣
∣
∣
∣
∣
Ey[ f ]−

1
n

n

∑
i=1

f (yi)

∣
∣
∣
∣
∣
.
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Bounding each of the two terms via a uniform convergence bound provesthe claim.

This shows that MMDb[F,X,Y] can be used to estimate MMD[F, p,q], and that the quantity is
asymptotically unbiased.

Remark 20 (Reduction to Binary Classification) As noted by Friedman (2003), any classifier
which maps a set of observations{zi , l i} with zi ∈ X on some domainX and labels li ∈ {±1}, for
which uniform convergence bounds exist on the convergence of the empirical loss to the expected
loss, can be used to obtain a similarity measure on distributions—simply assignl i = 1 if zi ∈ X and
l i = −1 for zi ∈ Y and find a classifier which is able to separate the two sets. In this case maxi-
mization ofEx[ f ]−Ey[ f ] is achieved by ensuring that as many z∼ p(z) as possible correspond to
f (z) = 1, whereas for as many z∼ q(z) as possible we have f(z) = −1. Consequently neural net-
works, decision trees, boosted classifiers and other objects for which uniform convergence bounds
can be obtained can be used for the purpose of distribution comparison. Metrics and divergences
on distributions can also be defined explicitly starting from classifiers. For instance, Sriperumbudur
et al. (2009, Section 2) show theMMD minimizes the expected risk of a classifier with linear loss
on the samples X and Y, and Ben-David et al. (2007, Section 4) use the error of a hyperplane clas-
sifier to approximate theA-distance between distributions (Kifer et al., 2004). Reid and Williamson
(2011) provide further discussion and examples.

7.2 Examples of Non-RKHS Function Classes

Other function spacesF inspired by the statistics literature can also be considered in defining the
MMD. Indeed, Lemma 1 defines an MMD withF the space of bounded continuous real-valued
functions, which is a Banach space with the supremum norm (Dudley, 2002, p. 158). We now
describe two further metrics on the space of probability distributions, namely the Kolmogorov-
Smirnov and Earth Mover’s distances, and their associated function classes.

7.2.1 KOLMOGOROV-SMIRNOV STATISTIC

The Kolmogorov-Smirnov (K-S) test is probably one of the most famous two-sample tests in statis-
tics. It works for random variablesx∈ R (or any other set for which we can establish a total order).
Denote byFp(x) the cumulative distribution function ofp and letFX(x) be its empirical counterpart,

Fp(z) := Pr{x≤ z for x∼ p} andFX(z) :=
1
|X|

m

∑
i=1

1z≤xi .

It is clear thatFp captures the properties ofp. The Kolmogorov metric is simply theL∞ distance
‖FX −FY‖∞ for two sets of observationsX andY. Smirnov (1939) showed that forp= q the limiting
distribution of the empirical cumulative distribution functions satisfies

lim
m,n→∞

PrX,Y

{[
mn

m+n

] 1
2 ‖FX −FY‖∞ > x

}

= 2
∞

∑
j=1

(−1) j−1e−2 j2x2
for x≥ 0, (12)

which is distribution independent. This allows for an efficient characterization of the distribution
under the null hypothesisH0. Efficient numerical approximations to (12) can be found in numerical
analysis handbooks (Press et al., 1994). The distribution under the alternative p 6= q, however, is
unknown.
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The Kolmogorov metric is, in fact, a special instance of MMD[F, p,q] for a certain Banach
space (M̈uller, 1997, Theorem 5.2).

Proposition 21 Let F be the class of functionsX → R of bounded variation13 1. Then
MMD [F, p,q] =

∥
∥Fp−Fq

∥
∥

∞.

7.2.2 EARTH-MOVER DISTANCES

Another class of distance measures on distributions that may be written as maximum mean discrep-
ancies are the Earth-Mover distances. We assume(X,ρ) is a separable metric space, and define
P1(X) to be the space of probability measures onX for which

∫
ρ(x,z)dp(z)< ∞ for all p∈ P1(X)

andx∈ X (these are the probability measures for whichEx |x|< ∞ whenX= R). We then have the
following definition (Dudley, 2002, p. 420).

Definition 22 (Monge-Wasserstein metric)Let p∈P1(X) and q∈P1(X). The Monge-Wasserstein
distance is defined as

W(p,q) := inf
µ∈M(p,q)

∫
ρ(x,y)dµ(x,y),

where M(p,q) is the set of joint distributions onX×X with marginals p and q.

We may interpret this as the cost (as represented by the metricρ(x,y)) of transferring mass dis-
tributed according top to a distribution in accordance withq, whereµ is the movement schedule.
In general, a large variety of costs of moving mass fromx to y can be used, such as psycho-optical
similarity measures in image retrieval (Rubner et al., 2000). The following theorem provides the
link with the MMD (Dudley, 2002, Theorem 11.8.2).

Theorem 23 (Kantorovich-Rubinstein) Let p∈ P1(X) and q∈ P1(X), whereX is separable.
Then a metric onP1(S) is defined as

W(p,q) = ‖p−q‖∗L = sup
‖ f‖L≤1

∣
∣
∣
∣

∫
f d(p−q)

∣
∣
∣
∣
,

where

‖ f‖L := sup
x6=y∈X

| f (x)− f (y)|
ρ(x,y)

is the Lipschitz seminorm14 for real valued f onX.

A simple example of this theorem is as follows (Dudley, 2002, Exercise 1, p. 425).

Example 2 LetX = R with associatedρ(x,y) = |x−y|. Then given f such that‖ f‖L ≤ 1, we use
integration by parts to obtain

∣
∣
∣
∣

∫
f d(p−q)

∣
∣
∣
∣
=

∣
∣
∣
∣

∫
(Fp−Fq)(x) f ′(x)dx

∣
∣
∣
∣
≤

∫
∣
∣(Fp−Fq)

∣
∣(x)dx,

13. A function f defined on[a,b] is of bounded variationC if the total variation is bounded byC, that is, the supremum
over all sums

∑
1≤i≤n

| f (xi)− f (xi−1)|,

wherea≤ x0 ≤ . . .≤ xn ≤ b (Dudley, 2002, p. 184).
14. A seminorm satisfies the requirements of a norm besides‖x‖= 0 only forx= 0 (Dudley, 2002, p. 156).
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where the maximum is attained for the function g with derivative g′ = 21Fp>Fq −1 (and for which
‖g‖L = 1). We recover the L1 distance between distribution functions,

W(P,Q) =
∫
∣
∣(Fp−Fq)

∣
∣(x)dx.

One may further generalize Theorem 23 to the set of all lawsP(X) on arbitrary metric spacesX
(Dudley, 2002, Proposition 11.3.2).

Definition 24 (Bounded Lipschitz metric) Let p and q be laws on a metric spaceX. Then

β(p,q) := sup
‖ f‖BL≤1

∣
∣
∣
∣

∫
f d(p−q)

∣
∣
∣
∣

is a metric onP(X), where f belongs to the space of bounded Lipschitz functions with norm

‖ f‖BL := ‖ f‖L +‖ f‖∞ .

Empirical estimates of the Monge-Wasserstein and Bounded Lipschitz metrics on R
d are provided

by Sriperumbudur et al. (2010a).

7.3 Set Kernels and Kernels Between Probability Measures

Gärtner et al. (2002) propose kernels for Multi-Instance Classification (MIC) which deal with sets of
observations. The purpose of MIC is to find estimators which are able to infer that if some elements
in a set satisfy a certain property, then the set of observations also has this property. For instance,
a dish of mushrooms is poisonous if it contains any poisonous mushrooms. Likewise a keyring
will open a door if it contains a suitable key. One is only given the ensemble, however, rather than
information about which instance of the set satisfies the property.

The solution proposed by G̈artner et al. (2002) is to map the ensemblesXi := {xi1, . . . ,ximi},
where i is the ensemble index andmi the number of elements in theith ensemble, jointly into
feature space via

φ(Xi) :=
1
mi

mi

∑
j=1

φ(xi j ),

and to use the latter as the basis for a kernel method. This simple approach affords rather good
performance. With the benefit of hindsight, it is now understandable why the kernel

k(Xi ,Xj) =
1

mimj

mi ,mj

∑
u,v

k(xiu,x jv)

produces useful results: it is simply the kernel between the empirical meansin feature space
〈
µ(Xi),µ(Xj)

〉
(Hein et al., 2004, Equation 4). Jebara and Kondor (2003) later extended this set-

ting by smoothing the empirical densities before computing inner products.
Note, however, that the empirical mean embeddingµX may not be the best statistic to use for

MIC: we are only interested in determining whethersomeinstances in the domain have the desired
property, rather than making a statement regarding the distribution over all instances. Taking this
into account leads to an improved algorithm (Andrews et al., 2003).
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7.4 Kernel Measures of Independence

We next demonstrate the application of MMD in determining whether two random variablesx and
y are independent. In other words, assume that pairs of random variables (xi ,yi) are jointly drawn
from some distributionp := pxy. We wish to determine whether this distribution factorizes; that
is, whetherq := px× py is the same asp. One application of such an independence measure is in
independent component analysis (Comon, 1994), where the goal is to finda linear mapping of the
observationsxi to obtain mutually independent outputs. Kernel methods were employed to solve
this problem by Bach and Jordan (2002), Gretton et al. (2005a,b), andShen et al. (2009). In the
following we re-derive one of the above kernel independence measures as a distance between mean
embeddings (see also Smola et al., 2007).

We begin by defining

µ[pxy] := Ex,y [v((x,y), ·)]
andµ[px× py] := ExEy [v((x,y), ·)] .

Here we assumeV is an RKHS overX×Ywith kernelv((x,y),(x′,y′)). If x andyare dependent, then
µ[pxy] 6= µ[px× py]. Hence we may use∆(V, pxy, px× py) := ‖µ[pxy]−µ[px× py]‖V as a measure of
dependence.

Now assume thatv((x,y),(x′,y′)) = k(x,x′)l(y,y′), that is, the RKHSV is a direct productH⊗G

of RKHSs onX andY. In this case it is easy to see that

∆2(V, pxy, px× py) = ‖Exy[k(x, ·)l(y, ·)]−Ex [k(x, ·)]Ey [l(y, ·)]‖2
V

= ExyEx′y′
[
k(x,x′)l(y,y′)

]
−2ExEyEx′y′

[
k(x,x′)l(y,y′)

]

+ExEyEx′Ey′
[
k(x,x′)l(y,y′)

]
.

The latter is also the squared Hilbert-Schmidt norm of the cross-covariance operator between RKHSs
(Gretton et al., 2005a): for characteristic kernels, this is zero if and onlyif x andy are independent.

Theorem 25 Denote by Cxy the covariance operator between random variables x and y, drawn
jointly from pxy, where the functions onX andY are the reproducing kernel Hilbert spacesF andG
respectively. Then the Hilbert-Schmidt norm‖Cxy‖HS equals∆(V, pxy, px× py).

Empirical estimates of this quantity are as follows:

Theorem 26 Denote by K and L the kernel matrices on X and Y respectively, and by H= I −1/m
the projection matrix onto the subspace orthogonal to the vector with all entries set to1 (where1 is
an m×m matrix of ones). Then m−2 trHKHL is an estimate of∆2 with bias O(m−1). The deviation
from ∆2 is OP(m−1/2).

Gretton et al. (2005a) provide explicit constants. In certain circumstances, including in the case of
RKHSs with Gaussian kernels, the empirical∆2 may also be interpreted in terms of a smoothed
difference between the joint empirical characteristic function (ECF) and the product of the marginal
ECFs (Feuerverger, 1993; Kankainen, 1995). This interpretation does not hold in all cases, however,
for example, for kernels on strings, graphs, and other structured spaces. An illustration of the wit-
ness functionf ∗ ∈ V from Section 2.3 is provided in Figure 4, for the case of dependence detection.
This is a smooth function which has large magnitude where the joint density is mostdifferent from
the product of the marginals.
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Figure 4: Illustration of the function maximizing the mean discrepancy when MMDis used as a
measure of dependence. A sample from dependent random variablesx andy is shown
in black, and the associated functionf̂ ∗ that witnesses the MMD is plotted as a contour.
The latter was computed empirically on the basis of 200 samples, using a Gaussian kernel
with σ = 0.2.

We remark that a hypothesis test based on the above kernel statistic is more complicated than
for the two-sample problem, since the product of the marginal distributions is ineffect simulated
by permuting the variables of the original sample. Further details are provided by Gretton et al.
(2008b).

7.5 Kernel Statistics Using a Distribution over Witness Functions

Shawe-Taylor and Dolia (2007) define a distance between distributions asfollows: letH be a set of
functions onX andr be a probability distribution overH. Then the distance between two distribu-
tions p andq is given by

D(p,q) := E f∼r( f ) |Ex[ f (x)]−Ey[ f (y)]| . (13)
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That is, we compute the average distance betweenp andq with respect to a distribution over test
functions. The following result shows the relation with the MMD, and is due to Song et al. (2008,
Section 6).

Lemma 27 LetH be a reproducing kernel Hilbert space, f∈H, and assume r( f ) = r(‖ f‖H) with
finite E f∼r [‖ f‖H]. Then D(p,q) = C

∥
∥µp−µq

∥
∥
H

for some constant C which depends only onH

and r.

Proof By definitionEx[ f (x)] = 〈µp, f 〉
H

. Using linearity of the inner product, Equation (13) equals
∫
∣
∣
〈
µp−µq, f

〉

H

∣
∣dr( f )

=
∥
∥µp−µq

∥
∥
H

∫ ∣∣
∣
∣
∣

〈

µp−µq
∥
∥µp−µq

∥
∥
H

, f

〉

H

∣
∣
∣
∣
∣
dr( f ),

where the integral is independent ofp,q. To see this, note that for anyp,q, µp−µq

‖µp−µq‖
H

is a unit vector

which can be transformed into the first canonical basis vector (for instance) by a rotation which
leaves the integral invariant, bearing in mind thatr is rotation invariant.

7.6 Outlier Detection

An application related to the two sample problem is that of outlier detection: this is thequestion of
whether a novel point is generated from the same distribution as a particulari.i.d. sample. In a way,
this is a special case of a two sample test, where the second sample contains only one observation.
Several methods essentially rely on the distance between a novel point to thesample mean in feature
space to detect outliers.

For instance, Davy et al. (2002) use a related method to deal with nonstationary time series.
Likewise Shawe-Taylor and Cristianini (2004, p. 117) discuss how to detect novel observations by
using the following reasoning: the probability of being an outlier is bounded both as a function of
the spread of the points in feature space and the uncertainty in the empirical feature space mean (as
bounded using symmetrisation and McDiarmid’s tail bound).

Instead of using the sample mean and variance, Tax and Duin (1999) estimatethe center and
radius of a minimal enclosing sphere for the data, the advantage being that such bounds can po-
tentially lead to more reliable tests for single observations. Schölkopf et al. (2001) show that the
minimal enclosing sphere problem is equivalent to novelty detection by means of finding a hyper-
plane separating the data from the origin, at least in the case of radial basis function kernels.

8. Experiments

We conducted distribution comparisons using our MMD-based tests on data sets from three real-
world domains: database applications, bioinformatics, and neurobiology. Weinvestigated both
uniform convergence approaches (MMDb with the Corollary 9 threshold, and MMD2u H with the
Corollary 11 threshold); the asymptotic approaches with bootstrap (MMD2

u B) and moment match-
ing to Pearson curves (MMD2u M), both described in Section 5; and the asymptotic approach using
the linear time statistic (MMD2l ) from Section 6. We also compared against several alternatives from
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the literature (where applicable): the multivariate t-test, the Friedman-RafskyKolmogorov-Smirnov
generalisation(Smir), the Friedman-Rafsky Wald-Wolfowitz generalisation(Wolf), the Biau-Gÿorfi
test(Biau) with a uniform space partitioning, and the Hall-Tajvidi test(Hall). See Section 3.3 for
details regarding these tests. Note that we do not apply the Biau-Györfi test to high-dimensional
problems (since the required space partitioning is no longer possible), andthat MMD is the only
method applicable to structured data such as graphs.

An important issue in the practical application of the MMD-based tests is the selection of the
kernel parameters. We illustrate this with a Gaussian RBF kernel, where we must choose the kernel
width σ (we use this kernel for univariate and multivariate data, but not for graphs). The empirical
MMD is zero both for kernel sizeσ = 0 (where the aggregate Gram matrix overX andY is a unit
matrix), and also approaches zero asσ → ∞ (where the aggregate Gram matrix becomes uniformly
constant). We setσ to be the median distance between points in the aggregate sample, as a compro-
mise between these two extremes: this remains a heuristic, similar to those described in Takeuchi
et al. (2006) and Scḧolkopf (1997), and the optimum choice of kernel size is an ongoing area of
research. We further note that setting the kernel using the sample being tested may cause changes to
the asymptotic distribution: in particular, the analysis in Sections 4 and 5 assumesthe kernel not to
be a function of the sample. An analysis of the convergence of MMD when the kernel is adapted on
the basis of the sample is provided by Sriperumbudur et al. (2009), althoughthe asymptotic distri-
bution in this case remains a topic of research. As a practical matter, however, the median heuristic
has not been observed to have much effect on the asymptotic distribution, and in experiments is
indistinguishable from results obtained by computing the kernel on a small subset of the sample set
aside for this purpose. See Appendix C for more detail.

8.1 Toy Example: Two Gaussians

In our first experiment, we investigated the scaling performance of the various tests as a function
of the dimensionalityd of the spaceX ⊂ R

d, when bothp andq were Gaussian. We considered
values ofd up to 2500: the performance of the MMD-based tests cannot therefore be explained
in the context of density estimation (as in Section 3.3.1), since the associated density estimates are
necessarily meaningless here. The levels for all tests were set atα= 0.05,m= n= 250 samples were
used, and results were averaged over 100 repetitions. In the first case, the distributions had different
means and unit variance. The percentage of times the null hypothesis was correctly rejected over a
set of Euclidean distances between the distribution means (20 values logarithmically spaced from
0.05 to 50), was computed as a function of the dimensionality of the normal distributions. In case
of the t-test, a ridge was added to the covariance estimate, to avoid singularity (the ratio of largest
to smallest eigenvalue was ensured to be at most 2). In the second case, samples were drawn from
distributionsN(0, I) andN(0,σ2I) with different variance. The percentage of null rejections was
averaged over 20σ values logarithmically spaced from 100.01 to 10. The t-test was not compared in
this case, since its output would have been irrelevant. Results are plotted in Figure 5.

In the case of Gaussians with differing means, we observe the t-test performs best in low di-
mensions, however its performance is severely weakened when the number of samples exceeds the
number of dimensions. The performance ofMMD2

u M is comparable to the t-test in low dimen-
sions, and outperforms all other methods in high dimensions. The worst performance is obtained
for MMD2

u H, thoughMMDb also does relatively poorly: this is unsurprising given that these tests
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Figure 5: Type II performance of the various tests when separating two Gaussians, with test level
α = 0.05. A Gaussians having same variance and different means.B Gaussians having
same mean and different variances.

derive from distribution-free large deviation bounds, and the sample sizeis relatively small. Re-
markably,MMD2

l performs quite well compared with the Section 3.3.3 tests in high dimensions.

In the case of Gaussians of differing variance, theHall test performs best, followed closely
by MMD2

u M. FR Wolf and (to a much greater extent)FR Smirnovboth have difficulties in high
dimensions, failing completely once the dimensionality becomes too great. The linear-cost test
MMD2

l again performs surprisingly well, almost matching theMMD2
u M performance at the highest

dimensionality. BothMMD2
u H and MMDb perform poorly, the former failing completely: this

is one of several illustrations we will encounter of the much greater tightness of the Corollary 9
threshold over that in Corollary 11.

8.2 Data Integration

In our next application of MMD, we performed distribution testing for data integration: the objec-
tive being to aggregate two data sets into a single sample, with the understandingthat both original
samples were generated from the same distribution. Clearly, it is important to check this last con-
dition before proceeding, or an analysis could detect patterns in the new data set that are caused
by combining the two different source distributions. We chose several real-world settings for this
task: we compared microarray data from normal and tumor tissues (Health status), microarray data
from different subtypes of cancer (Subtype), and local field potential (LFP) electrode recordings
from the Macaque primary visual cortex (V1) with and without spike events(Neural Data I and
II, as described in more detail by Rasch et al., 2008). In all cases, the two data sets have different
statistical properties, but the detection of these differences is made difficult by the high data dimen-
sionality (indeed, for the microarray data, density estimation is impossible giventhe sample size and
data dimensionality, and no successful test can rely on accurate density estimates as an intermediate
step).
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Data Set Attr. MMDb MMD2
u H MMD2

u B MMD2
u M t-test Wolf Smir Hall

Neural Data I Same 100.0 100.0 96.5 96.5 100.0 97.0 95.0 96.0
Different 38.0 100.0 0.0 0.0 42.0 0.0 10.0 49.0

Neural Data II Same 100.0 100.0 94.6 95.2 100.0 95.0 94.5 96.0
Different 99.7 100.0 3.3 3.4 100.0 0.8 31.8 5.9

Health status Same 100.0 100.0 95.5 94.4 100.0 94.7 96.1 95.6
Different 100.0 100.0 1.0 0.8 100.0 2.8 44.0 35.7

Subtype Same 100.0 100.0 99.1 96.4 100.0 94.6 97.3 96.5
Different 100.0 100.0 0.0 0.0 100.0 0.0 28.4 0.2

Table 1: Distribution testing for data integration on multivariate data. Numbers indicate the per-
centage of repetitions for which the null hypothesis (p=q) was accepted,givenα = 0.05.
Sample size (dimension; repetitions of experiment): Neural I 4000 (63; 100) ; Neural II
1000 (100; 1200); Health Status 25 (12,600; 1000); Subtype 25 (2,118; 1000).

Data Set Attr. MMDb MMD2
u H MMD2

u B MMD2
u M t-test Wolf Smir Hall Biau

BIO Same 100.0 100.0 93.8 94.8 95.2 90.3 95.8 95.3 99.3
Different 20.0 52.6 17.2 17.6 36.2 17.2 18.6 17.9 42.1

FOREST Same 100.0 100.0 96.4 96.0 97.4 94.6 99.8 95.5 100.0
Different 3.9 11.0 0.0 0.0 0.2 3.8 0.0 50.1 0.0

CNUM Same 100.0 100.0 94.5 93.8 94.0 98.4 97.5 91.2 98.5
Different 14.9 52.7 2.7 2.5 19.17 22.5 11.6 79.1 50.5

FOREST10D Same 100.0 100.0 94.0 94.0 100.0 93.5 96.5 97.0 100.0
Different 86.6 100.0 0.0 0.0 0.0 0.0 1.0 72.0 100.0

Table 2: Naive attribute matching on univariate (BIO, FOREST, CNUM) andmultivariate (FOR-
EST10D) data. Numbers indicate the percentage of times the null hypothesisp = q was
accepted withα = 0.05, pooled over attributes. Sample size (dimension; attributes; repeti-
tions of experiment): BIO 377 (1; 6; 100); FOREST 538 (1; 10; 100); CNUM 386 (1; 13;
100); FOREST10D 1000 (10; 2; 100).

We applied our tests to these data sets in the following fashion. Given two data sets A and B,
we either chose one sample from A and the other from B(attributes = different); or both samples
from either A or B(attributes = same). We then repeated this process up to 1200 times. Results
are reported in Table 1. Our asymptotic tests perform better than all competitors besidesWolf: in
the latter case, we have greater Type II error for one neural data set,lower Type II error on the
Health Status data (which has very high dimension and low sample size), and identical (error-free)
performance on the remaining examples. We note that the Type I error of thebootstrap test on the
Subtype data set is far from its design value of 0.05, indicating that the Pearson curves provide a
better threshold estimate for these low sample sizes. For the remaining data sets,the Type I errors
of the Pearson and Bootstrap approximations are close. Thus, for larger data sets, the bootstrap is
to be preferred, since it costsO(m2), compared with a cost ofO(m3) for the Pearson curves (due to
the cost of computing (11)). Finally, the uniform convergence-based tests are too conservative, with
MMDb finding differences in distribution only for the data with largest sample size, and MMD2

u H
never finding differences.
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8.3 Computational Cost

We next investigate the tradeoff between computational cost and performance of the various tests,
with a particular focus on how the quadratic-cost MMD tests from Sections 4and 5 compare with the
linear time MMD-based asymptotic test from Section 6. We consider two 1-D datasets (CNUM and
FOREST) and two higher-dimensional data sets (FOREST10D and NEUROII). Results are plotted
in Figure 6. If cost is not a factor, then the MMD2

u B shows best overall performance as a function
of sample size, with a Type II error dropping to zero as fast or faster than competing approaches in
three of four cases, and narrowly trailingFR Wolfin the remaining case (FOREST10D). That said,
for data sets CNUM, FOREST, and FOREST10D, the linear time MMD achievesa given Type II
error at a far smaller computational cost than MMD2

u B, albeit by looking at a great deal more data.
In the CNUM case, however, the linear test is not able to achieve zero error even for the largest
data set size. For the NEUROII data, attaining zero Type II error has about the same cost for both
approaches. The difference in cost of MMD2

u B and MMDb is due to the bootstrapping required for
the former, which produces a constant offset in cost between the two (here 150 resamplings were
used).

Thet-test also performs well in three of the four problems, and in fact represents the best cost-
performance tradeoff in these three data sets (i.e., while it requires much more data than MMD2u B
for a given Type II error rate, it costs far less to compute). Thet-test assumes that only the difference
in means is important in distinguishing the distributions, and it requires an accurate estimate of
the within-sample covariance; the test fails completely on the NEUROII data. Weemphasise that
the Kolmogorov-Smirnov results in 1-D were obtained using the classical statistic, and not the
Friedman-Rafsky statistic, hence the low computational cost. The cost of both Friedman-Rafsky
statistics is therefore given by theFR Wolf cost in this case. The latter scales similarly with sample
size to the quadratic time MMD tests, confirming Friedman and Rafsky’s observation that obtaining
the pairwise distances between sample points is the dominant cost of their tests.We also remark
on the unusual behaviour of the Type II error of theFR Wolf test in the FOREST data set, which
worsens for increasing sample size.

We conclude that the approach to be recommended for two-sample testing will depend on the
data available: for small amounts of data, the best results are obtained usingevery observation to
maximum effect, and employing the quadratic time MMD2

u B test. When large volumes of data are
available, a better option is to look at each point only once, which can yield lower Type II error for a
given computational cost. It may also be worth doing a t-test first in this case, and only running more
sophisticated nonparametric tests if the t-test accepts the null hypothesis, to verify the distributions
are identical in more than just mean.

8.4 Attribute Matching

Our final series of experiments addresses automatic attribute matching. Given two databases, we
want to detect corresponding attributes in the schemas of these databases, based on their data-
content (as a simple example, two databases might have respective fields Wage and Salary, which are
assumed to be observed via a subsampling of a particular population, and wewish to automatically
determine that both Wage and Salary denote to the same underlying attribute). We use a two-
sample test on pairs of attributes from two databases to find correspondingpairs.15 This procedure

15. Note that corresponding attributes may have different distributions inreal-world databases. Hence, schema matching
cannot solely rely on distribution testing.
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Figure 6: Linear-cost vs quadratic-cost MMD. The first column showsType II performance, and
the second shows runtime. The dashed grey horizontal line indicates zeroType II error
(required due to log y-axis).
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is also calledtable matchingfor tables from different databases. We performed attribute matching
as follows: first, the data set D was split into two halves A and B. Each of then attributes in A (and
B, resp.) was then represented by its instances in A (resp. B). We then tested all pairs of attributes
from A and from B against each other, to find the optimal assignment of attributesA1, . . . ,An from
A to attributesB1, . . . ,Bn from B. We assumed that A and B contain the same number of attributes.

As a naive approach, we could assume that any possible pair of attributesmight correspond,
and thus that every attribute ofA needs to be tested against all the attributes ofB to find the opti-
mal match. We report results for this naive approach, aggregated overall pairs of possible attribute
matches, in Table 2. We used three data sets: the census income data set from the UCI KDD archive
(CNUM), the protein homology data set from the 2004 KDD Cup (BIO) (Caruana and Joachims,
2004), and the forest data set from the UCI ML archive (Blake and Merz, 1998). For the final data
set, we performed univariate matching of attributes (FOREST) and multivariate matching of tables
(FOREST10D) from two different databases, where each table represents one type of forest. Both
our asymptotic MMD2

u-based tests perform as well as or better than the alternatives, notably for
CNUM, where the advantage of MMD2u is large. Unlike in Table 1, the next best alternatives are not
consistently the same across all data: for example, in BIO they areWolf or Hall, whereas in FOR-
EST they areSmir, Biau, or the t-test. Thus, MMD2u appears to perform more consistently across
the multiple data sets. The Friedman-Rafsky tests do not always return a Type I error close to the
design parameter: for instance,Wolf has a Type I error of 9.7% on the BIO data set (on these data,
MMD2

u has the joint best Type II error without compromising the designed Type I performance).
Finally, MMDb performs much better than in Table 1, although surprisingly it fails to reliably detect
differences in FOREST10D. The results of MMD2

u H are also improved, although it remains among
the worst performing methods.

A more principled approach to attribute matching is also possible. Assume that
φ(A) = (φ1(A1),φ2(A2), ...,φn(An)): in other words, the kernel decomposes into kernels on the indi-
vidual attributes of A (and also decomposes this way on the attributes of B). In this case,MMD2 can
be written∑n

i=1‖µi(Ai)−µi(Bi)‖2, where we sum over the MMD terms on each of the attributes.
Our goal of optimally assigning attributes fromB to attributes ofA via MMD is equivalent to finding
the optimal permutationπ of attributes ofB that minimizes∑n

i=1‖µi(Ai)−µi(Bπ(i))‖2. If we define
Ci j = ‖µi(Ai)−µi(B j)‖2, then this is the same as minimizing the sum overCi,π(i). This is the linear
assignment problem, which costsO(n3) time using the Hungarian method (Kuhn, 1955).

While this may appear to be a crude heuristic, it nonetheless defines a semi-metric on the sample
spacesX andY and the corresponding distributionsp andq. This follows from the fact that matching
distances are proper metrics if the matching cost functions are metrics. We formalize this as follows:

Theorem 28 Let p,q be distributions onRd and denote by pi ,qi the marginal distributions on the
i-th variable. Moreover, denote byΠ the symmetric group on{1, . . . ,d}. The following distance,
obtained by optimal coordinate matching, is a semi-metric.

∆[F, p,q] := min
π∈Π

d

∑
i=1

MMD [F, pi ,qπ(i)].

Proof Clearly∆[F, p,q] is nonnegative, since it is a sum of nonnegative quantities. Next we show
the triangle inequality. Denote byr a third distribution onRd and letπp,q,πq,r and πp,r be the
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distance minimizing permutations over the associated pairs from{p,q, r}. It follows that

∆[F, p,q]+∆[F,q, r] =
d

∑
i=1

MMD [F, pi ,qπp,q(i)]+
d

∑
i=1

MMD [F,qi , rπq,r (i)]

≥
d

∑
i=1

MMD [F, pi , r[πp,q◦πq,r ](i)]≥ ∆[F, p, r].

The first inequality follows from the triangle inequality on MMD,

MMD [F, pi ,qπp,q(i)]+MMD [F,qπp,q(i), r[πp,q◦πq,r ](i)]≥ MMD [F, pi , r[πp,q◦πq,r ](i)].

The second inequality is a result of minimization overπ.

We tested this ’Hungarian approach’ to attribute matching via MMD2
u B on three univariate

data sets (BIO, CNUM, FOREST) and for table matching on a fourth (FOREST10D). To study
MMD2

u B on structured data, we used two data sets of protein graphs (PROTEINSand ENZYMES)
and used the graph kernel for proteins from Borgwardt et al. (2005) for table matching via the
Hungarian method (the other tests were not applicable to these graph data).The challenge here is
to match tables representing one functional class of proteins (or enzymes)from data set A to the
corresponding tables (functional classes) in B. Results are shown in Table 3. Besides on the BIO
and CNUM data sets, MMD2u B made no errors.

Data Set Data type No. attributes Sample size Repetitions % correct

BIO univariate 6 377 100 90.0
CNUM univariate 13 386 100 99.8
FOREST univariate 10 538 100 100.0
FOREST10D multivariate 2 1000 100 100.0
ENZYME structured 6 50 50 100.0
PROTEINS structured 2 200 50 100.0

Table 3: Hungarian Method for attribute matching via MMD2
u B on univariate (BIO, CNUM,

FOREST), multivariate (FOREST10D), and structured (ENZYMES, PROTEINS) data
(α = 0.05; “% correct” is the percentage of correct attribute matches over all repetitions).

9. Conclusion

We have established three simple multivariate tests for comparing two distributionsp andq, based
on samples of sizem andn from these respective distributions. Our test statistic is the maximum
mean discrepancy (MMD), defined as the maximum deviation in the expectation of a function eval-
uated on each of the random variables, taken over a sufficiently rich function class: in our case, a
reproducing kernel Hilbert space (RKHS). Equivalently, the statistic can be written as the norm of
the difference between distribution feature means in the RKHS. We do not require density estimates
as an intermediate step. Two of our tests provide Type I error bounds thatare exact and distribution-
free for finite sample sizes. We also give a third test based on quantiles of the asymptotic distribution
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of the associated test statistic. All three tests can be computed inO((m+n)2) time, however when
sufficient data are available, a linear time statistic can be used, which in our experiments was able to
achieve a given Type II error at smaller computational cost, by looking atmany more samples than
the quadratic-cost tests.

We have seen in Section 7 that several classical metrics on probability distributions can be writ-
ten as integral probability metrics with function classes that are not Hilbert spaces, but rather Banach
or seminormed spaces (for instance the Kolmogorov-Smirnov and Earth Mover’s distances). It is
therefore of interest to establish under what conditions one could write these discrepancies in terms
of norms of differences of mean embeddings. Sriperumbudur et al. (2011b) provide expressions
for the maximum mean discrepancy in terms of mean embeddings in reproducing kernel Banach
spaces. When the Banach space is not an RKBS, the question of establishing a mean embedding
interpretation for the MMD remains open.

We also note (following Section 7.3) that the MMD for RKHSs is associated with aparticular
kernel between probability distributions. Hein et al. (2004) describe several further such kernels,
which induce corresponding distances between feature space distribution mappings: these may in
turn lead to new and powerful two-sample tests.

Two recent studies have shown that additional divergence measures between distributions can
be obtained empirically through optimization in a reproducing kernel Hilbert space. Harchaoui
et al. (2008) define a two-sample test statistic arising from the kernel Fisher discriminant, rather
than the difference of RKHS means; and Nguyen et al. (2008) obtain a KLdivergence estimate
by approximating the ratio of densities (or its log) with a function in an RKHS. By design, both
these kernel-based statistics prioritise different features ofp andq when measuring the divergence
between distributions, and the resulting effects on distinguishability of distributions are therefore of
interest.
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Appendix A. Large Deviation Bounds for Tests with Finite Sample Guarantees

This section contains proofs of the theorems of Section 4.1. We begin in Section A.1 with a review
of McDiarmid’s inequality and the Rademacher average of a function class.We prove Theorem 7
in Section A.2, and Theorem 8 in Section A.3.
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A.1 Preliminary Definitions and Theorems

We need the following theorem, due to McDiarmid (1989).

Theorem 29 (McDiarmid’s inequality) Let f : Xm→R be a function such that for all i∈{1, . . . ,m},
there exist ci < ∞ for which

sup
X∈Xm,x̃∈X

| f (x1, . . .xm)− f (x1, . . .xi−1, x̃,xi+1, . . . ,xm)| ≤ ci .

Then for all probability measures p and everyε > 0,

PrX ( f (X)−EX( f (X))> t)< exp

(

− 2ε2

∑m
i=1c2

i

)

,

whereEX denotes the expectation over the m random variables xi ∼ p, andPrX denotes the proba-
bility over these m variables.

We also define the Rademacher average of the function classF with respect to them-sampleX.

Definition 30 (Rademacher average ofF on X) LetF be the unit ball in an RKHS on the domain
X, with kernel bounded according to0 ≤ k(x,y) ≤ K. Let X be an i.i.d. sample of size m drawn
according to a probability measure p onX, and letσi be i.i.d and take values in{−1,1} with equal
probability. We define the Rademacher average

Rm(F,X) := Eσ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

σi f (xi)

∣
∣
∣
∣
∣

≤ (K/m)1/2 ,

where the upper bound is due to Bartlett and Mendelson (2002, Lemma 22), andEσ denotes the
expectation over all theσi . Similarly, we define

Rm(F, p) := Ex,σ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

σi f (xi)

∣
∣
∣
∣
∣
.

A.2 Bound whenp and q May Differ

We want to show that the absolute difference between MMD(F, p,q) and MMDb(F,X,Y) is close to
its expected value, independent of the distributionsp andq. To this end, we prove three intermediate
results, which we then combine. The first result we need is an upper bound on the absolute difference
between MMD(F, p,q) and MMDb(F,X,Y). We have

|MMD(F, p,q)−MMDb(F,X,Y)|

=

∣
∣
∣
∣
∣
sup
f∈F

(Ex( f )−Ey( f ))−sup
f∈F

(

1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (yi)

)∣
∣
∣
∣
∣

≤ sup
f∈F

∣
∣
∣
∣
∣
Ex( f )−Ey( f )− 1

m

m

∑
i=1

f (xi)+
1
n

n

∑
i=1

f (yi)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∆(p,q,X,Y)

. (14)
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Second, we provide an upper bound on the difference between∆(p,q,X,Y) and its expectation.
Changing either ofxi or yi in ∆(p,q,X,Y) results in changes in magnitude of at most 2K1/2/m
or 2K1/2/n, respectively. We can then apply McDiarmid’s theorem, given a denominator in the
exponent of

m
(

2K1/2/m
)2

+n
(

2K1/2/n
)2

= 4K

(
1
m
+

1
n

)

= 4K
m+n
mn

,

to obtain

PrX,Y (∆(p,q,X,Y)−EX,Y [∆(p,q,X,Y)]> ε)≤ exp

(

− ε2mn
2K(m+n)

)

. (15)

For our final result, we exploit symmetrisation, following, for example, van der Vaart and Wellner
(1996, p. 108), to upper bound the expectation of∆(p,q,X,Y). Denoting byX′ an i.i.d sample of
sizemdrawn independently ofX (and likewise forY′), we have

EX,Y [∆(p,q,X,Y)]

= EX,Y sup
f∈F

∣
∣
∣
∣
∣
Ex( f )− 1

m

m

∑
i=1

f (xi)−Ey( f )+
1
n

n

∑
i=1

f (y j)

∣
∣
∣
∣
∣

= EX,Y sup
f∈F

∣
∣
∣
∣
∣
EX′

(

1
m

m

∑
i=1

f (x′i)

)

− 1
m

m

∑
i=1

f (xi)−EY′

(

1
n

n

∑
i=1

f (y′j)

)

+
1
n

n

∑
i=1

f (y j)

∣
∣
∣
∣
∣

≤
(a)

EX,Y,X′,Y′ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

f (x′i)−
1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (y′j)+
1
n

n

∑
i=1

f (y j)

∣
∣
∣
∣
∣

= EX,Y,X′,Y′,σ,σ′ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

σi
(

f (x′i)− f (xi)
)
+

1
n

n

∑
i=1

σ′
i

(
f (y′j)− f (y j)

)

∣
∣
∣
∣
∣

≤
(b)

EX,X′,σ sup
f∈F

∣
∣
∣
∣
∣

1
m

m

∑
i=1

σi
(

f (x′i)− f (xi)
)

∣
∣
∣
∣
∣
+EY,Y′,σ sup

f∈F

∣
∣
∣
∣
∣

1
n

n

∑
i=1

σi
(

f (y′j)− f (y j)
)

∣
∣
∣
∣
∣

≤
(c)

2[Rm(F, p)+Rn(F,q)] .

≤
(d)

2
[

(K/m)1/2+(K/n)1/2
]

, (16)

where (a) uses Jensen’s inequality, (b) uses the triangle inequality, (c)substitutes Definition 30 (the
Rademacher average), and (d) bounds the Rademacher averages, also via Definition 30.

Having established our preliminary results, we proceed to the proof of Theorem 7.
Proof (Theorem 7)Combining Equations (15) and (16), gives

PrX,Y

(

∆(p,q,X,Y)−2
[

(K/m)1/2+(K/n)1/2
]

> ε
)

≤ exp

(

− ε2mn
2K(m+n)

)

.

Substituting Equation (14) yields the result.
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A.3 Bound whenp= q and m= n

In this section, we derive the Theorem 8 result, namely the large deviation bound on the MMD
whenp= q andm= n. Note also that we consider only positive deviations of MMDb(F,X,Y) from
MMD(F, p,q), since negative deviations are irrelevant to our hypothesis test. The proof follows the
same three steps as in the previous section. The first step in (14) becomes

MMDb(F,X,Y)−MMD(F, p,q) = MMDb(F,X,X′)−0

= sup
f∈F

(

1
m

m

∑
i=1

(
f (xi)− f (x′i)

)

)

. (17)

The McDiarmid bound on the difference between (17) and its expectation is now a function of 2m

observations in (17), and has a denominator in the exponent of 2m
(
2K1/2/m

)2
= 8K/m. We use a

different strategy in obtaining an upper bound on the expected (17), however: this is now

EX,X′

[

sup
f∈F

1
m

m

∑
i=1

(
f (xi)− f (x′i)

)

]

=
1
m

EX,X′

∥
∥
∥
∥
∥

m

∑
i=1

(
φ(xi)−φ(x′i)

)

∥
∥
∥
∥
∥

=
1
m

EX,X′

[
m

∑
i=1

m

∑
j=1

(
k(xi ,x j)+k(x′i ,x

′
j)−k(xi ,x

′
j)−k(x′i ,x j)

)

] 1
2

≤ 1
m

[
2mExk(x,x)+2m(m−1)Ex,x′k(x,x

′)−2m2Ex,x′k(x,x
′)
] 1

2

=

[
2
m

Ex,x′
(
k(x,x)−k(x,x′)

)
] 1

2

(18)

≤ (2K/m)1/2 . (19)

We remark that both (18) and (19) bound the amount by which our biased estimate of the population
MMD exceeds zero underH0. Combining the three results, we find that underH0,

PrX,X′

(

MMDb(F,X,X′)−
[

2
m

Ex,x′
(
k(x,x)−k(x,x′)

)
] 1

2

> ε

)

< exp

(−ε2m
4K

)

and

PrX,X′

(

MMDb(F,X,X′)− (2K/m)1/2 > ε
)

< exp

(−ε2m
4K

)

.

Appendix B. Proofs for Asymptotic Tests

We derive results needed in the asymptotic test of Section 5. Appendix B.1 describes the distribution
of the empirical MMD underH0 (i.e., p= q). Appendix B.2 establishes consistency of the test under
local departures fromH0. Appendix B.3 contains derivations of the second and third moments of
the empirical MMD, also underH0.
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B.1 Convergence of the Empirical MMD underH0

In this appendix, we prove Theorem 12, which describes the distribution of the unbiased estimator
MMD2

u[F,X,Y] under the null hypothesis. Thus, throughout this section, the reader should bear in
mind thaty now has the same distribution asx, that is,y ∼ p. We first recall from Lemma 6 in
Section 2.2 the population expression,

MMD2[F, p,q] := Ex,x′k(x,x
′)+Ey,y′k(y,y

′)−2Ex,yk(x,y),

and its empirical counterpart,

MMD2
u[F,X,Y] =

1
m(m−1)

m

∑
i=1

m

∑
j 6=i

k(xi ,x j)+
1

n(n−1)

n

∑
i=1

n

∑
j 6=i

k(yi ,y j)

− 2
mn

m

∑
i=1

n

∑
j=1

k(xi ,y j). (20)

We begin with the asymptotic analysis of MMD2
u[F,X,Y] under the null hypothesis. This is based

on the reasoning of Anderson et al. (1994, Appendix), bearing in mind the following changes:

• we do not need to deal with the bias termsS1 j in Anderson et al. (1994, Appendix) that vanish
for large sample sizes, since our statistic is unbiased;

• we require greater generality, since our kernels are not necessarily inner products inL2 be-
tween probability density functions (although this is a special case: see Section 3.3.1).

We first transform each term in the sum (20) by centering. UnderH0, bothx andy have the same
mean embeddingµp. Thus we replace each instance ofk(xi ,x j) in the sum with a kernel̃k(xi ,x j)
between feature space mappings from which the mean has been subtracted,

k̃(xi ,x j) :=
〈
φ(xi)−µp,φ(x j)−µp

〉

H

= k(xi ,x j)−Exk(xi ,x)−Exk(x,x j)+Ex,x′k(x,x
′).

The centering terms cancel across the three terms (the distance between thetwo points is unaffected
by an identical global shift in both the points). This gives the equivalent form of the empirical
MMD,

MMD2
u[F,X,Y] =

1
m(m−1)

m

∑
i=1

m

∑
j 6=i

k̃(xi ,x j)+
1

n(n−1)

n

∑
i=1

n

∑
j 6=i

k̃(yi ,y j)

− 2
mn

m

∑
i=1

n

∑
j=1

k̃(xi ,y j), (21)

where each of the three sums has expected value zero. Note in particular that the U-statistics in
k̃(xi ,x j) are degenerate, meaning

Exk̃(x,v) = Exk(x,v)−Ex,x′k(x,x
′)−Exk(x,v)+Ex,x′k(x,x

′) = 0. (22)

We define the operatorS̃k : L2(p)→ F satisfying

S̃kg(x) :=
∫
X

k̃(x,x′)g(x′)dp(x′).
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According to Reed and Simon (1980, Theorem VI.23), this operator is Hilbert-Schmidt, and hence
compact, if and only if the kernelk̃ is square integrable underp,

k̃∈ L2(X×X, p× p) . (23)

We may write the kernel̃k(xi ,x j) in terms of eigenfunctionsψl (x) with respect to the probability
measurep,

k̃(x,x′) =
∞

∑
l=1

λl ψl (x)ψl (x
′), (24)

where ∫
X

k̃(x,x′)ψi(x)dp(x) = λiψi(x
′),

∫
X

ψi(x)ψ j(x)dp(x) = δi j , (25)

and the convergence is inL2(X×X, p× p). Since the operator is Hilbert-Schmidt, we have by Reed
and Simon (1980, Theorem VI.22) that∑λ2

i < ∞.
Using the degeneracy of the U-statistic in (22), then whenλi 6= 0,

λiEx′ψi(x
′) =

∫
X

Ex′ k̃(x,x
′)ψi(x)dp(x)

= 0,

and hence
Exψi(x) = 0. (26)

In other words, the eigenfunctionsψi(x) are zero mean and uncorrelated.
We now use these results to find the asymptotic distribution of (21). First,

1
m

m

∑
i=1

m

∑
j 6=i

k̃(xi ,x j) =
1
m

m

∑
i=1

m

∑
j 6=i

∞

∑
l=1

λl ψl (xi)ψl (x j)

=
1
m

∞

∑
l=1

λl





(

∑
i

ψl (xi)

)2

−∑
i

ψ2
l (xi)





→
D

∞

∑
l=1

λl (a
2
l −1), (27)

whereal ∼ N(0,1) are i.i.d., and the final relation denotes convergence in distribution, which is
proved by Serfling (1980, Section 5.5.2) using (25) and (26).16 Given that the random variables
a2

l are zero mean with finite variance, it can be shown either via Kolmogorov’s inequality or by
the Martingale convergence theorem that the above sum converges almostsurely if ∑∞

l=1 λ2
l < ∞

(Grimmet and Stirzaker, 2001, Chapter 7.11 Exercise 30). As we have seen, this is guaranteed
under the assumption (23).

Likewise
1
n

n

∑
i=1

n

∑
j 6=i

k̃(yi ,y j)→
D

∞

∑
l=1

λl (b
2
l −1),

16. Simply replacẽh2(xi ,x j ) with k̃(xi ,x j ) in Serfling (1980, top of p. 196).
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wherebl ∼N(0,1) independent of theal , and

1√
mn

m

∑
i=1

n

∑
j=1

k̃(xi ,y j)→
D

∞

∑
l=1

λl al bl , (28)

both jointly in distribution with (27), where (28) is proved at the end of the section. We now combine
these results. Definet = m+n, and assume limm,n→∞ m/t → ρx and limm,n→∞ n/t → ρy := (1−ρx)
for fixed 0< ρx < 1. Then

tMMD2
u[F,X,Y] →

D
ρ−1

x

∞

∑
l=1

λl (a
2
l −1)+ρ−1

y

∞

∑
l=1

λl (b
2
l −1)− 2

√ρxρy

∞

∑
l=1

λl al bl

=
∞

∑
l=1

λl

[

(ρ−1/2
x al −ρ−1/2

y bl )
2− (ρxρy)

−1
]

.

Proof (Equation 28) The proof is a modification of the result for convergence of degenerateU-
statistics of Serfling (1980, Section 5.5.2). We only provide those details thatdiffer from the proof
of Serfling, and otherwise refer to the steps in the original proof as needed. First, using (24) to
expand out the centred kernel, we may write

Tmn :=
1√
mn

m

∑
i=1

n

∑
j=1

k̃(xi ,y j) =
1√
mn

m

∑
i=1

n

∑
j=1

∞

∑
l=1

λl ψl (xi)ψl (y j).

We define a truncation of this sum,

TmnL :=
1√
mn

m

∑
i=1

n

∑
j=1

L

∑
l=1

λl ψl (xi)ψl (y j).

The target distribution is written

V =
∞

∑
l=1

λl al bl ,

and its truncation is

VL :=
L

∑
l=1

λl al bl .

Our goal is to show
∣
∣EX,Y

(
eısTmn

)
−Ea,b

(
eısV)

∣
∣

vanishes for alls asm andn increase, where the expectationEX,Y is over all sample points, which
impliesTmn→

D
V (Dudley, 2002, Theorem 9.8.2). We achieve this via the upper bound

∣
∣EX,Y

(
eısTmn

)
−Ea,b

(
eısV)

∣
∣ ≤

∣
∣EX,Y

(
eısTmn

)
−EXY

(
eısTmnL

)∣
∣+
∣
∣EXY

(
eısTmnL

)
−Ea,b

(
eısVL

)∣
∣

+
∣
∣Ea,b

(
eısVL

)
−Ea,b

(
eısV)

∣
∣ ,

where we need to show that for large enoughL, each of the three terms vanish.
First term: We first show that for large enoughL, Tmn andTmnL are close in distribution. From

Serfling (1980, p. 197),

∣
∣EX,Y

(
eısTmn

)
−EX,Y

(
eısTmnL

)∣
∣≤ |s|

[

EX,Y (Tmn−TmnL)
2
]1/2

,
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and we may write the difference between the full sum and its truncation as

Tmn−TmnL=
1√
mn

m

∑
i=1

n

∑
j=1

(

k̃(xi ,y j)−
L

∑
l=1

λl ψl (xi)ψl (y j)

)

︸ ︷︷ ︸

gK(xi ,y j )

.

Each of the properties (Serfling, 1980, Equations (6a)-(6c) p. 197)still holds forgK , namely

Ex,x′
(
gK(x,x

′)
)

= 0,

Ex,x′
(
g2

K(x,x
′)
)

=
∞

∑
l=L+1

λ2
l ,

Ex
(
gK(x,x

′)
)

= 0.

Then

EX,Y (Tmn−TmnL)
2 =

1
mn

m

∑
i=1

m

∑
q=1

n

∑
j=1

n

∑
r=1

Exi ,xq,y j ,yr [gK(xi ,y j)gK(xq,yr)]

=

{ 1
mn∑m

i=1 ∑n
j=1Ex,x′

(
g2

K(x,x
′)
)

i = qandj = r,
0 otherwise.

where we have used thatp= q underH0, which allows us to replaceEx,y with Ex,x′ in the final line.
It follows that for large enoughL,

|s|
[

EX,Y (Tmn−TmnL)
2
]1/2

= |s|
[

1
mn

m

∑
i=1

n

∑
j=1

Ex,x′
(
g2

K(x,x
′)
)

]1/2

= |s|
[

∞

∑
l=L+1

λ2
l

]1/2

< ε.

Second term:We show that
TmnL→

D
VL (29)

asm→ ∞ andn→ ∞. We rewriteTmnL as

TmnL=
L

∑
l=1

λl

(

1√
m

m

∑
i=1

ψl (xi)

)(

1√
n

n

∑
i=1

ψl (y j)

)

.

Define the lengthL vectorsWm andW′
n havingl th entries

Wml =
1√
m

m

∑
i=1

ψl (xi), W′
nl =

1√
n

n

∑
i=1

ψl (y j),

respectively. These have mean and covariance

EX(Wml) = 0, CovX,Y(Wml,Wml′) =

{

1 l = l ′,

0 l 6= l ′.
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Moreover, the vectorsWm andW′
n are independent. The result (29) then holds by the Lindberg-Lévy

CLT (Serfling, 1980, Theorem 1.9.1A).
Third term : From Serfling (1980, p. 199), we have

∣
∣Ea,b

(
eısVL

)
−Ea,b

(
eısV)

∣
∣≤ |s|

[

Ea,b(V −VL)
2
]1/2

.

We can bound the right hand term by

Ea,b(V −VL)
2 = Ea,b

(
∞

∑
l=L+1

λl al bl

)2

=
∞

∑
l=L+1

λ2
l Ey
(
a2

l

)
Ez
(
b2

l

)

=
∞

∑
l=L+1

λ2
l

≤ ε

for L sufficiently large.

B.2 Alternative Distribution: Consistency Against Local Alternatives

We prove Theorem 13, which gives the power against a local alternative hypothesis of a two-sample
test based on MMD2u. The proof modifies a result of Anderson et al. (1994, Section 2.4), where we
consider a more general class of local departures from the null hypothesis (rather than the class of
perturbed densities described in Section 3.3.1).

First, we recall our test statistic,

MMD2
u[F,X,Y] =

1
m(m−1)

m

∑
i=1

m

∑
j 6=i

k(xi ,x j)

+
1

n(n−1)

n

∑
i=1

n

∑
j 6=i

k(yi ,y j)−
2

mn

m

∑
i=1

n

∑
j=1

k(xi ,y j).

We begin by transforming this statistic by centering the samplesX andY in feature space byµp and
µq, respectively; unlike theH0 case, however,µp 6= µq, and the new statistic MMD2c is not the same
as MMD2

u. The first term is centered as in (9). The second and third terms are respectively replaced
by

1
n(n−1)

n

∑
i=1

n

∑
j 6=i

〈
φ(yi)−µq,φ(y j)−µq

〉

H

and
2

mn

m

∑
i=1

n

∑
j=1

〈
φ(xi)−µp,φ(y j)−µq

〉

H
.
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The resulting centred statistic is

MMD2
c[F,X,Y] =

1
m(m−1)

m

∑
i=1

m

∑
j 6=i

〈
φ(xi)−µp,φ(x j)−µp

〉

H

+
1

n(n−1)

n

∑
i=1

n

∑
j 6=i

〈
φ(yi)−µq,φ(y j)−µq

〉

H
− 2

mn

m

∑
i=1

n

∑
j=1

〈
φ(xi)−µp,φ(y j)−µq

〉

H
.

We writeµq = µp+gt , wheregt ∈H is chosen such thatµp+gt remains a valid distribution embed-
ding, and‖gt‖H can be made to approach zero to describe local departures from the nullhypothesis.
The difference between the original statistic and the centred statistic is then

MMD2
u[F,X,Y]−MMD2

c[F,X,Y]

=
2
m

m

∑
i=1

〈µp,φ(xi)〉H−〈µp,µp〉H+
2
n

n

∑
i=1

〈
µq,φ(yi)

〉

H
−
〈
µq,µq

〉

H

− 2
m

m

∑
i=1

〈
µq,φ(xi)

〉

H
− 2

n

n

∑
i=1

〈µp,φ(yi)〉H+2
〈
µp,µq

〉

H

=
2
n

n

∑
i=1

〈
gt ,φ(yi)−µq

〉

H
− 2

m

m

∑
i=1

〈gt ,φ(xi)−µp〉H+ 〈gt ,gt〉H .

We next showgt can be used to encode a local departure from the null hypothesis. Define
t = m+n, and assume limm,n→∞ m/t → ρx and limm,n→∞ n/t → ρy := (1−ρx) where 0< ρx < 1.
Consider the case where the departure from the null hypothesis satisfies‖gt‖H = ct−1/2. Then, as
t → ∞,

tMMD2
c[F,X,Y]→

D

∞

∑
l=1

λl

[

(ρ−1/2
x al +ρ−1/2

y bl )
2− (ρxρy)

−1
]

=: S

as before, since the distance betweenµp andµq vanishes for larget (as‖gt‖H → 0). Next, the terms

1√
n

n

∑
i=1

〈
gt

‖gt‖H
,φ(yi)−µq

〉

H

and
1√
m

m

∑
i=1

〈
gt

‖gt‖H
,φ(xi)−µp

〉

H

in the difference between MMD2u and MMD2
c are straightforward sums of independent zero mean

random variables, and have Gaussian asymptotic distribution. Defininguy to be the zero mean
Gaussian random variable associated with the first term,

t
n

n

∑
i=1

〈
gt ,φ(yi)−µq

〉

H
=

t
n

(

ct−1/2
) n

∑
i=1

〈
gt

‖gt‖H
,φ(yi)−µq

〉

H

→
D

cρ−1/2
y uy.

Likewise,
t
m

m

∑
i=1

〈gt ,φ(xi)−µp〉H →
D

cρ−1/2
x ux,

whereux is a zero mean Gaussian random variable independent ofuy (note, however, thatux and
uy are correlated with terms inS, and are defined on the same probability space asal andbl in this
sum). Finally,

t 〈gt ,gt〉H = c2.
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This leads to our main result: given the thresholdsα, then

PrHA

(
tMMD2

u > sα
)
→ Pr

(

S+2c
(

ρ−1/2
x ux−ρ−1/2

y uy

)

+c2 > sα

)

,

which is constant int, and increases asc → ∞. Thus,‖gt‖H = ct−1/2 is the minimum distance
betweenµp andµq distinguishable by the asymptotic MMD-based test.

B.3 Moments of the Empirical MMD Under H0

In this section, we compute the moments of the U-statistic in Section 5 form= n, under the null
hypothesis conditions

Ez,z′h(z,z
′) = 0, (30)

and, importantly,

Ez′h(z,z
′) = 0. (31)

Note that the latter implies the former.
Variance/2nd moment: This was derived by Hoeffding (1948, p. 299), and is also described

by Serfling (1980, Lemma A p. 183). Applying these results,

E
([

MMD2
u

]2
)

=

(
2

n(n−1)

)2[n(n−1)
2

(n−2)(2)Ez
[
(Ez′h(z,z

′))2]+
n(n−1)

2
Ez,z′

[
h2(z,z′)

]
]

=
2(n−2)
n(n−1)

Ez
[
(Ez′h(z,z

′))2]+
2

n(n−1)
Ez,z′

[
h2(z,z′)

]

=
2

n(n−1)
Ez,z′

[
h2(z,z′)

]
,

where the first term in the penultimate line is zero due to (31). Note that variance and 2nd moment
are the same under the zero mean assumption.

3rd moment: We consider the terms that appear in the expansion ofE
([

MMD2
u

]3
)

. These are

all of the form
(

2
n(n−1)

)3

E(habhcdhe f),

where we shortenhab= h(za,zb), and we knowza andzb are always independent. Most of the terms
vanish due to (30) and (31). The first terms that remain take the form

(
2

n(n−1)

)3

E(habhbchca),

and there are
n(n−1)

2
(n−2)(2)
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of them, which gives us the expression

(
2

n(n−1)

)3 n(n−1)
2

(n−2)(2)Ez,z′
[
h(z,z′)Ez′′

(
h(z,z′′)h(z′,z′′)

)]

=
8(n−2)

n2(n−1)2Ez,z′
[
h(z,z′)Ez′′

(
h(z,z′′)h(z′,z′′)

)]
. (32)

Note the scaling8(n−2)
n2(n−1)2 ∼ 1

n3 . The remaining non-zero terms, for whicha= c= e andb= d = f ,
take the form

(
2

n(n−1)

)3

Ez,z′
[
h3(z,z′)

]
,

and there aren(n−1)
2 of them, which gives

(
2

n(n−1)

)2

Ez,z′
[
h3(z,z′)

]
.

However
(

2
n(n−1)

)2
∼ n−4 so this term is negligible compared with (32). Thus, a reasonable ap-

proximation to the third moment is

E
([

MMD2
u

]3
)

≈ 8(n−2)
n2(n−1)2Ez,z′

[
h(z,z′)Ez′′

(
h(z,z′′)h(z′,z′′)

)]
.

Appendix C. Empirical Evaluation of the Median Heuristic for Ke rnel Choice

In this appendix, we provide an empirical evaluation of the median heuristic for kernel choice,
described at the start of Section 8: according to this heuristic, the kernelbandwidth is set at the
median distance between points in the aggregate sample overp andq (in the case of a Gaussian
kernel onRd). We investigated three kernel choice strategies: kernel selection on theentire sample
from p andq; kernel selection on a hold-out set (10% of data), and testing on the remaining 90%;
and kernel selectionand testing on 90% of the available data. These strategies were evaluated on
the Neural Data I data set described in Section 8.2, using a Gaussian kernel, and both the bootstrap
and Pearson curve methods for selecting the test threshold. Results are plotted in Figure 7. We note
that the Type II error of each approach follows the same trend. The Type II errors of the second and
third approaches are indistinguishable, and the first approach has a slightly lower Type II error (as it
is computed on slightly more data). In this instance, the null distribution with the kernel bandwidth
set using the tested data is not substantially different to that obtained when aheld-out set is used.
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B. Scḧolkopf, K. Tsuda, and J.-P. Vert.Kernel Methods in Computational Biology. MIT Press,
Cambridge, MA, 2004.

R. Serfling.Approximation Theorems of Mathematical Statistics. Wiley, New York, 1980.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge University
Press, Cambridge, UK, 2004.

J. Shawe-Taylor and A. Dolia. A framework for probability density estimation. In Proceedings of
the International Conference on Artificial Intelligence and Statistics, pages 468–475, 2007.

H. Shen, S. Jegelka, and A. Gretton. Fast kernel-based independent component analysis.IEEE
Transactions on Signal Processing, 57:3498 – 3511, 2009.

B. W. Silverman.Density Estimation for Statistical and Data Analysis. Monographs on statistics
and applied probability. Chapman and Hall, London, 1986.

N.V. Smirnov. On the estimation of the discrepancy between empirical curves of distribution for
two independent samples.Moscow University Mathematics Bulletin, 2:3–26, 1939. University
of Moscow.

771



GRETTON, BORGWARDT, RASCH, SCHÖLKOPF AND SMOLA
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