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Abstract

Therapies consisting of a combination of agents are an attractive proposition, especially in the context of diseases such as
cancer, which can manifest with a variety of tumor types in a single case. However uncovering usable drug combinations is
expensive both financially and temporally. By employing computational methods to identify candidate combinations with a
greater likelihood of success we can avoid these problems, even when the amount of data is prohibitively large. HITTING SET is
a combinatorial problem that has useful application across many fields, however as it is NP-complete it is traditionally
considered hard to solve exactly. We introduce a more general version of the problem (a,b,d)-HITTING SET, which allows more
precise control over how and what the hitting set targets. Employing the framework of Parameterized Complexity we show
that despite being NP-complete, the (a,b,d)-HITTING SET problem is fixed-parameter tractable with a kernel of size O(adkd )
when we parameterize by the size k of the hitting set and the maximum number a of the minimum number of hits, and
taking the maximum degree d of the target sets as a constant. We demonstrate the application of this problem to multiple
drug selection for cancer therapy, showing the flexibility of the problem in tailoring such drug sets. The fixed-parameter
tractability result indicates that for low values of the parameters the problem can be solved quickly using exact methods.
We also demonstrate that the problem is indeed practical, with computation times on the order of 5 seconds, as compared
to previous Hitting Set applications using the same dataset which exhibited times on the order of 1 day, even with relatively
relaxed notions for what constitutes a low value for the parameters. Furthermore the existence of a kernelization for (a,b,d)-
HITTING SET indicates that the problem is readily scalable to large datasets.
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Introduction

Typically the selection of a drug therapy for a disease is limited

to a single drug, however diseases such as cancer may present as a

heterogeneous mix of subtypes of the general disease. In cases such

as these multi-drug therapies may prove more effective than single

drug therapies, and many trials have been conducted to this end

[1–3]. Furthermore combinations of drugs may allow a more

targeted approach for a selection of subtypes of a disease, while

minimizing effects on unaffected cells. Unfortunately with the

abundance of compounds available for the treatment of many

conditions of interest, the time and expense in testing even all two

drug combinations may be prohibitive. Therefore a smarter

approach is needed. Vazquez [4] introduces the HITTING SET

problem for this task in the context of oncological drug therapy.

The HITTING SET problem is a combinatorial problem that proves

extremely useful in modeling a large variety of problems in many

domains including protein network discovery [5], metabolic

network analysis [6], diagnostics [7–9], gene ontology [10] and

gene expression analysis [11,12].

The Hitting Set Problem
HITTING SET is a combinatorial problem that models the

problem of selecting a small group of elements to represent or

cover a collection of sets. Such a group that covers every set in the

collection is called a hitting set. Finding such a set without any

constraint is simple, however if we required that the size of the

hitting set be relatively small, the problem becomes computation-

ally challenging (NP-complete in a formal sense). This difficulty in

obtaining solutions with desirable qualities thus requires more

thoughtful approaches.

We now give some technical details and formal definitions of the

problems of interest.

HITTING SET is equivalent to the SET COVER problem [13], and

when otherwise unrestricted, is equivalent to the RED/BLUE

DOMINATING SET [14] problem and is related to the k-FEATURE

SET [15] problem.

The decision version of the HITTING SET problem is defined as

follows:

HITTING SET

PLoS ONE | www.plosone.org 1 October 2010 | Volume 5 | Issue 10 | e13055



Instance: A set S and a collection C(2S and an integer k.

Question: Is there a set S’(S with DS’Dƒk such that for every

c [C we have c\S’=w?

The set S’ is called a hitting set for C, or simply a hitting set. For an

element s [S’ and an element C [C if s [ c we say that s hits c.

This problem is NP-complete even when the maximum size of

each element of C is two (by equivalence with VERTEX COVER

[13]) and W ½2�-complete for parameter k; Cotta and Moscato

[16] give a parameterized proof via k-FEATURE SET and Paz and

Moran [17] give a proof which along with the equivalence of

HITTING SET and SET COVER leads to the same result, though

predates the parameterized complexity framework. However if we

restrict the cardinality of the elements of C to d the problem, while

remaining NP-complete, becomes fixed-parameter tractable

where d is a constant and the parameter is k [18]. In this case

the problem is known as the HITTING SET FOR SETS OF SIZE d or d-

HITTING SET problem. We note that HITTING SET has several

equivalent formulations, in particular we choose to use the

bipartite graph representation where S and C form the two partite

vertex sets of the graph and an edge sc corresponds to the element

s [S being an element of c [C. This allows us to employ some

simplifying graph theoretic terminology and techniques. We

generalize this problem to include the case where we may want

the elements of C to be hit more than once. In particular this

includes the case where we ask if all the sets of C can be hit a
times, but extends to the case where the elements of C can be hit

up to a times. We encode this by the use of a hitting function g.
Our problem then becomes the a-MULTIPLE d-HITTING SET (or

(a,d )-HITTING SET):

(a,d)-HITTING SET

Instance: A bipartite graph G~(S ] C,E) where for all c [C

we have d(c)ƒd , a hitting function g : C?½0,a� and an

integer k.

Question: Is there a set S’(S with DS’Dƒk such that for every

c [C we have DN(c)\S’D§g(c)?

When g(c)~a for all c [C, (a,d )-HITTING SET can be (1z ln d)-

approximated in time O(a:DCD:DSD) [19], but cannot be approxi-

mated with a factor of (1{e) ln n for any e [ (0,1) unless

NP(DTIME(nlog log n) [20].

Results and Discussion

The Fixed-Parameter Tractability of (a,d)-Hitting Set
As we prove in the Materials and Methods section, the (a,d )-

HITTING SET problem is fixed-parameter tractable, and indeed a

more general variant the (a,b,d)-HITTING SET problem is also fixed

parameter tractable when we take the maximum degree d of the

class vertices C as a constant and the size k of the hitting set and

the maximum desired coverage a as a joint parameter. Though the

problem is formally hard - which would normally give the intuition

that an exact solution would be too expensive to compute - the

fixed-parameter tractability indicates that it is likely that we can

obtain an exact solution efficiently. Armed with this knowledge we

proceed with the experiments of the following section, where we

use the drug response data of the NCI60 anti-tumor drug

screening program to determine a sets of drugs that hit cancerous

cell lines multiple times. These drug sets are than mathematically

supportable candidates for combination chemotherapies. More-

over we are able to tune the nature of the hitting sets via the

numbers k, a and b, which allows us to control which cell lines are

targetted (and which are specifically not) and how much each cell

line is hit in the solution.

A Comparative Application
The NCI60 human tumor anti-cancer drug screen dataset [21]

was established in the 1980s as an enabling tool for anti-cancer

drug development. Included in this dataset is response data for

over 40,000 drugs against the 60 cell lines of the dataset. Vazquez

[4] highlights the utility of a hitting set approach in developing

multi-drug therapies for heterogeneous malignancies; given the

plethora of available compounds, testing multi-drug combinations

exhaustively is prohibitive if not impossible. Applying hitting set to

efficacy data measured on an individual basis for each compound

allows us to determine possible drug combinations that would

provide the best chance of efficacy against many cancer types.

Using the GI50 response NCI60 dataset (available from the DTP

website [22]) Vazquez uncovers a minimum hitting set with three

compounds that cumulatively gives a good response with all cell

lines in the dataset, where a response is considered good if it is

more than two standard deviations above the mean of the z-

transformed response data. Vazquez uses first a greedy highest-

degree-first approach to give an estimate of the maximum size of a

minimum hitting set, followed by either an exhaustive search or

simulated annealing, depending on the size of the hitting set.

Vazquez reports times for such approaches on the order of one

day on a desktop computer.

We revisit Vasquez’s experiment, using data reduction (though

it is not necessary to employ the more complex rules given in the

kernelization proof) with IBM ILOG CPLEX [23] as the kernel

solver by framing the problem as a integer programming problem.

We use the same threshold for the z-transformation to identify

significant response levels. Using this approach we reduce the time

to solve the instance to less than 5 seconds, where most of the time

is spent loading and reducing the data, with CPLEX solving the

integer programming instance in approximately 0:08 milliseconds.

Furthermore this approach guarantees optimality in the size of the

hitting set.

From here we employ more a more recent version of the NCI60

dataset (2009 as compared to Vazquez’s 2006). At the time of

writing, the latest NCI60 dataset includes 14 additional cell lines,

however we remove these, as there is insufficient response data in

the dataset, leading to inflated hitting set sizes. The latest data also

includes a further 2281 compounds. We note that employing the

new GI50 response data we are able to uncover 3 element hitting

sets involving compounds not available in the earlier dataset (an

example is given in Table 1 and Figure 1), in particular Everolimus

(NSC 733504) a drug now used for the treatment of advanced

renal cancer which is also giving positive results in phase II trials

for metastatic melanoma [24,25]. However there have recently

been some concerns over the provenance of some of the cell lines

in the NCI60 dataset. In particular Lorenzi et al. [26] suggested

that the MDA-N cell line, nominally a breast cancer cell line is in

fact similar the M14 and MDA-MB-435 cell lines, and thus should

be is in fact a melanoma cell line. Chambers [27] however suggests

that although M14 and MDA-MB-435 are identical cell lines, they

may not in fact be melanoma cell lines. We do not attempt to

resolve this dispute, however with regard to this, and as a

indication of the flexibility of the method we employ we consider

both the case where MDA-N is a breast cancer cell line and the the

case where MDA-N is a melanoma cell line.

Employing the (a,b,d)-HITTING SET model gives more flexibility

in what kind of therapy we would like to pursue. For instance, by

choosing g1~2 for all vertices, we are able to find a hitting set that

hits every cell line at least twice (see Table 2). However the size of

Hitting Set and Drug Therapy
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this hitting set is 6, which is likely to be beyond the point where the

trade off between anti-cancer efficacy and side effects is

acceptable. Fortunately we can exploit (a,b,d )-HITTING SET more

intelligently. For example we may wish to find a hitting set that

specifically targets breast cancer cell lines – for which we set all

breast cancer cell line vertices to have g1~1 and all other cell lines

to have g2~0. This gives a hitting set that hits only breast cancer

cell lines, which may be useful in minimizing unwanted peripheral

damage to non-breast cancer cells. This gives a hitting set with

three elements. In the case where we considered MDA-N to be a

breast cancer cell line (see Table 3 and Figure 2) this set includes

the compound deoxypodophyllotoxin, which is known to induce

apoptosis [28]. If we consider MDA-N as a melanoma cell line we

obtain a different hitting set (see Table 4 and Figure 3). If we relax

our requirements an allow other cell lines to be hit at most once we

can obtain a hitting set that hits the breast cancer cell lines more

(Table 5 and Figure 4). The results when we set g1 to 2 for all

breast cancer lines are given in Table 6 and Figure 5 (including

MDA-N) and Table 7 and Figure 6 (excluding MDA-N). We note

particularly that in the case where MDA-N is included, the

optimal hitting set uncovered includes Docetaxel, a well known

anti-cancer agent [29] for several cancer types including breast

cancer. Interestingly Docetaxel is also currently included in several

clinical trials examining its potential as part of a multi-drug

therapy [30–34].

In another example, we may wish to target melanoma cell lines

exclusively, and furthermore, we may wish to attack each cell line

with at least two drugs at once. However in this case (where g1~2

for melanoma cell lines and g2~0 for all others) the minimal

hitting set size is 6 (or 5 if MDA-N is included as a melanoma cell

line – Table 8 and Figures 7 & 8). Considering that a therapeutic

cocktail involving 6 compounds may have excessive side effects, we

can relax the requirements, and allow g2~1 for non-melanoma

cell lines. In this case we find that the smallest hitting set is of size

3. By altering the focus when solving the kernel by fixing the

hitting set size (k) at 3 and maximizing the total degree of the

vertices in the hitting set, subject to the g1 and g2 constraints, we

can obtain the minimal size hitting set that hits our targets as much

as possible, within the bounds given by the constraints. This results

in the hitting sets in Tables 9 & 10 and Figures 9 & 10. Of note is

AZD6244, which is currently involved in 21 anti-cancer drug trials

[35] and has been identified as a potent kinase inhibitor [36,37].

Conclusion
Given the size of modern datasets, and the expectation that they

will only get larger, it is clear that we require efficient approaches

to solving important computational biology problems. The first

phase of any such approach is simply defining the problem at

hand. Unfortunately once clearly stated, many such problems are

NP-hard or worse. However this need not mean that we must

resort to inexact or approximate approaches, which could be

undesirable in a field such as drug selection. Parameterized

Complexity provides a toolkit for dealing with nominally hard

problems, and identifying cases where despite super-polynomial

running times, we may still expect good performance.

The drug selection problem as examined here is one such

problem. It is modeled well by the d-HITTING SET problem, which

is fixed-parameter tractable when parameterized by the maximum

size of the hitting set. Therefore we can expect that despite being

NP-complete, it would be relatively quick to solve when these

parameters are small. However we demonstrate that the much

more flexible variant (a,b,d)-HITTING SET is also fixed-parameter

tractable, with only the addition of a single parameter - the

maximum of the minimum number of times any vertex should be

hit. With (a,b,d)-HITTING SET we are able to better control the

nature of the hitting set uncovered, and thus tailor any such hitting

set to a useful set of constraints, such as limits on which cell lines

are to be hit, the maximum any of these can be hit and of course

the minimum number of times any cell line should be hit.

Moreover we can solve this problem quickly, and guarantee

optimality - without any notable restrictions on the parameters

and constants. This allows the quick generation of possible drug

combinations for testing, with guarantees of a certain baseline

performance, eliminating the need to exhaustively test all possible

combinations, which would be financially and temporally

prohibitive.

In brief this paper provides a robust and flexible methodology

for multiple drug selection, which can easily be applied to other

domains that are modeled by the d-HITTING SET problem, with a

sound theoretical background as to why and how the problem can

be solved efficiently, despite its NP-completeness. Moreover the

existence of a kernelization for (a,b,d)-HITTING SET indicates that

even without using a specialized commercial solver such as

CPLEX, the problem is readily scalable to large datasets. Given

the speed at which we are able to solve instances with on the order

of 40,000 vertices, we can expect that much larger datasets are also

solvable in a reasonable time.

A future extension that may be of interest would be to somehow

encode in the problem the notion that some hitting vertices are

incompatible, e.g., two compound may have severe adverse

interactions, and thus can never be used together as a therapy,

regardless of their individual usefulness.

Materials and Methods

Dataset and Computational Method
The dataset primarily employed is the NCI60 DTP Human

Tumor Cell Line Screen, available from [22]. We use the version

released in October 2009, and downloaded in April 2010. The raw

dataset is presented as a series of cell line and compound pairs,

along with the GI50 response measurement (the method for

producing the measurements is also detailed by [22]) for that pair

plus concentration information and statistical information. Where

there are multiple entries for the same compound-cell line pair, we

Table 1. Minimal hitting set using 2009 NCI60 data.

NSC Number Compound Name

174121 Methotrexate Derivative

691039 (S)-7-Hydroxy-1,2,3-trimethoxy-10-methylsulfanyl-6,7-dihydro-5H-benzo[a]heptalen-9-one

733504 Everolimus/Afinitor

Minimal hitting set for NCI60 GI50 response data from 2009.
doi:10.1371/journal.pone.0013055.t001
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select the entry resulting from the experiment using the highest

concentration of the compound. We extract this data into a matrix

cross indexed by the NSC number of the compound and the name

of the cell line. Where an entry does not exist for a given

compound-cell line pair, we enter ‘‘NA’’ for that entry in the

matrix.

Once the data is in this matrix format we threshold the data

according to the method used by Vazquez [4] whereby the raw

data is subject to a z-transformation over a logarithmic scale and

then any value above a certain threshold expressed in terms of the

standard deviation to 1, and anything below, including ‘‘NA’’

values, to 0. In line with Vazquez we choose two standard

deviations as our particular threshold for this paper, though this is

adjustable.

We then construct a graph for the hitting set instance using the

Java Universal Network/Graph Framework (JUNG) [38] with the

SetHypergraph class, representing each compound with a vertex

and each cell line with a (hyper)edge which carries a weight

indicating the number of times that edge is to be hit. This graph is

then reduced to remove vertices of zero degree, edges with no

incident vertices (which are noted as technically this would

indicate a no instance unless that edge does not require hitting)

and vertices that are only adjacent to edges that require zero hits.

This basic reduction alone typically reduces the number of vertices

significantly, bringing the graph within a reasonable size for

immediate processing. From a theoretical standpoint the constant

d is of importance, for the graph constructed as stated, d~4741

(as we allow the natural value, rather than imposing an external

limit). In practice a d value of this magnitude proves perfectly

workable, and returning to the theoretical viewpoint indicates that

the instance is in a sense already kernelized.

Once the graph is reduced, we construct an integer program-

ming instance equivalent of the problem given the graph, and pass

this instance to CPLEX [23] (version 11.200) and search for an

optimal solution to one of two objective functions, given the

constraints of the number of hits for each cell line (given by the g1
value). The first objective function simply minimizes the size of the

hitting set (k), for the second objective function we fix the size of

the hitting set, and maximize the number of hits on vertices where

no maximum number of hits has been set (the g2 value). As part of
this search CPLEX may apply some unspecified proprietary

reduction process.

The figures were created using yEd Graph Editor [39].

The computer hardware employed is a Dell PowerEdge III

Dual Xeon 5550 server with 32Gb of RAM, operating Red Hat

Linux 64 bit EL 4 Server.

Theoretical Background and Kernelization Proof
Graph Theory and Notation. A (simple undirected) graph

consists of a set V (the vertices), and a set E of two element

subsets of V (the edges). A bipartite graph is a graph where the

vertices are partitioned into two partite sets, where all edges have

one endpoint in one set and the other endpoint in the other set,

i.e., V~V1 ] V2 and E(V1|V2.

Given a graph G~(V ,E) and two vertices u,v [V , we denote

the edge between u and v by uv or equivalently vu. Given two

vertices u,v in V , if there is an edge uv [E we say that u and v are

Figure 1. Minimal hitting set hitting for the NCI60 dataset. This
hitting set hits all cell lines at least once, but is further optimized to hit
all target cell lines the maximal number of times. Of particular note are
NSC 174121, a methotrexate derivative and NSC733504, Everolimus/
Afinitor, both known anti-cancer agents.
doi:10.1371/journal.pone.0013055.g001
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Table 2. Minimal double hitting set.

NSC Number Compound Name

147340 Anisomycin hydrochloride

174121 Methotrexate derivate

314018 Ansamitocin derivate TN-006

691039 (7S)-7-hydroxy-1,2,3-trimethoxy-10-methylsulfanyl-6, 7-dihydro-5H-benzo[a]heptalen-9-one

712807 Capecitabine

733504 Everolimus/Afinitor

Minimal hitting set hitting each cell line at least twice.
doi:10.1371/journal.pone.0013055.t002

Table 3. Minimal hitting set targeting only breast cancer.

NSC Number Compound Name

403148 Deoxypodophyllotoxin

697188 2-(4-methoxyphenyl)-5-[8-[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]octyl]-1,3,4-oxadiazole

732011 21-(2-N,N-Diethylaminoethyl)oxy-7.alpha.-methyl-19-norpregna-1,3,5(10)-triene-3-O-sulfamate

Minimal hitting set hitting breast cancer cell lines at least once, and all other cell lines zero times.
doi:10.1371/journal.pone.0013055.t003

Figure 2. Minimal hitting set hitting only breast cancer cell lines. Including the disputed MDA-N cell line. This hitting set also reveals
additional structure with each drug targeting a specific, disjoint subset of the breast cancer cell lines. Only cell lines with at least one adjacent
compound are shown.
doi:10.1371/journal.pone.0013055.g002

Table 4. Minimal hitting set targeting only breast cancer without MDA-N.

NSC Number Compound Name

630678 Streptomyces antibiotic

732011 21-(2-N,N-Diethylaminoethyl)oxy-7.alpha.-methyl-19-norpregna-1,3,5(10)-triene-3-O-sulfamate

734235 isoindolo[1,2-a]quinoxalin-4(5H)-one

Minimal hitting set hitting breast cancer cell lines at least once, and all other cell lines zero times.
doi:10.1371/journal.pone.0013055.t004

Hitting Set and Drug Therapy
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adjacent and the u and v are incident on uv. Given a vertex u [V , the

set N(u) is the (open) neighborhood of u and consists off all vertices

adjacent to u in G, we extend this notion in the natural way to sets

of vertices.

Parameterized Complexity. A parameterized (decision) problem

is a formally defined computational problem consisting of three

components; the input, a special part of the input called the

parameter, and the question. Following Flum and Grohe’s [40]

definition we may assume that the parameter is derived from a

polynomial time computable mapping from the input to the

natural numbers. A parameterized problem P is fixed-parameter

tractable if there is an algorithm A such that for every instance (x,k)

where x is the input, k is the parameter and DxD~n, A correctly

answers YES or NO in time bounded by f (k)p(n) where p is a

polynomial and f is a computable function.

A polynomial time kernelization (or just kernelization) is a polynomial

time mapping that given an instance (x,k) of a parameterized

problem produces a new instance (x’,k’) of the problem such that:

1. x is a YES-instance if and only if x’ is a YES-instance,

2. k’ƒk and

3. Dx’Dƒg(k’) for some computable function g.

It is easy to see that if a problem has kernelization, then it is

fixed-parameter tractable. It is also easy to prove that if a problem

is fixed-parameter tractable, then it has a kernelization [41].

Parameterized complexity has a fully developed theory for

determining when a problem is unlikely to be fixed-parameter

tractable, but as this is not necessary for this work, we refer the

reader to the monographs of Flum and Grohe [40] and Downey

and Fellows [42] for full discussion, and simply state that if a

problem is W ½t�-hard or W ½t�-complete for any t [Nz, then the

problem is not fixed-parameter tractable unless certain complexity

theoretic assumptions are false, which seems unlikely.

The Fixed-Parameter Tractability of (a,d)-Hitting Set
Our kernelization for (a,d)-HITTING SET follows the basic format

of Abu-Khzam’s kernelization for d-HITTING SET [18].

Let (G,k) be an instance of (a,d)-HITTING SET which we assume

to have been preprocessed for nonsense input such as vertices

c [C with d(c)wd or d(c)vg(c). Therefore we may assume that

for all c [C we have g(c)ƒd(c)ƒd and that for all vertices s [S

we have d(s)§0.

We first apply Reduction Rules 1 to 3 exhaustively, before

applying Rules 4 and 5.:

Reduction Rule 1: If there is a vertex c [C with d(c)~g(c)
then for every vertex s [N(c) for every vertex b [N(s) reduce g(b)
by 1, delete s from G and reduce k by 1. Finally, delete c from G.

Lemma 1 Reduction Rule 1 is sound.

Proof. If such a vertex c exists, then all its neighbors in S must be

in the hitting set, and we can remove them from the graph after

suitably noting the effect for the vertices of N(N(c)).

Note in particular that this rule effectively allows us to assume

that m is at most d{1. This will be used implicitly in Reduction

Rule 4.

Reduction Rule 2: If there is a vertex c [C with g(c)~0,

delete c from G.

Lemma 2 Reduction Rule 2 is sound.

Proof. Clearly c requires no vertices to hit it, so may be

ignored.

Reduction Rule 3: If there are two vertices c,b [C such that

N(c)(N(b) and g(c)§g(b), delete b from G.

Lemma 3 Reduction Rule 3 is sound.

Proof. If two such vertices c and b exist, then any hitting set that

hits c at least g(c) times will hit b at least g(b)vg(c) times.

Let B(S be a set of size d{1 vertices such that B is the

pairwise intersection of the neighborhoods of a vertex set N(C.

Let Ni~fn [N Dg(n)~ig.
Reduction Rule 4: Let B(S and N(C be vertex sets as

described. For each i [ ½1,a� such that DNi Dwk add a vertex c to C

with g(c)~i and edges such that N(c)~B and delete Ni from G.

Lemma 4 Reduction Rule 4 is sound.

Proof. Let (G,k) be a YES-instance of (a,d )-HITTING SET. Then

there is a set A(S with DADƒk that hits each element c of C at

least g(c) times. Assume that there are sets B and N as described in

the reduction rule and that for some i [ ½1,a� we have that DNi Dwk.

Let ANi
be the subset of A that hits Ni. Assume further that

ANi
6(B, then for each n [Ni there is at least one other vertex in

Figure 3. Minimal hitting set hitting only breast cancer cell lines. Excluding the disputed MDA-N cell line. In this case the hitting set is much
less clearly separated, though two of the cell lines are now hit twice. Only cell lines with at least one adjacent compound are shown.
doi:10.1371/journal.pone.0013055.g003

Table 5. Minimal hitting set targeting breast cancer but
allowing other cell lines to be hit.

NSC Number Compound Name

652903 Saframycin AR1(AH2)

685006 2-imino-8-methoxy-N-phenylchromene-3-carboxamide

733504 Everolimus/Afinitor

Minimal hitting set hitting breast cancer cell lines at least once, and all other cell
lines zero times.
doi:10.1371/journal.pone.0013055.t005

Hitting Set and Drug Therapy
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Table 6. Minimal hitting set hitting breast cancer twice, and no others, with MDA-N.

70929 Hedamycin

156565 1-hydroxy-4-[4-(2-hydroxyethyl)anilino]anthracene-9,10-dione

628503 Docetaxel

697188 2-(4-methoxyphenyl)-5-[8-[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]octyl]-1,3,4-oxadiazole

732011 21-(2-N,N-Diethylaminoethyl)oxy-7.alpha.-methyl-19-norpregna-1,3,5(10)-triene-3-O-sulfamate

734235 isoindolo[1,2-a]quinoxalin-4(5H)-one

Minimal hitting set hitting breast cancer cell lines at least once, and all other cell lines zero times.
doi:10.1371/journal.pone.0013055.t006

Figure 5. Minimal hitting set hitting breast cancer cell lines twice. Including the disputed MDA-N cell line. In this case the breast cancer cell
lines separate neatly into two groups, with the first group forming a cycle and the second group forming a complete bipartite graph. Only cell lines
with at least one adjacent compound are shown.
doi:10.1371/journal.pone.0013055.g005

Table 7. Minimal hitting set hitting breast cancer twice, and no others, without MDA-N.

156565 1-hydroxy-4-[4-(2-hydroxyethyl)anilino]anthracene-9,10-dione

630678 Streptomyces antibiotic

697188 2-(4-methoxyphenyl)-5-[8-[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]octyl]-1,3,4-oxadiazole

698400 5-(1,3-benzodioxol-5-yl)-1,2,3,4-tetrahydrobenzo[a]phenanthridine

732011 21-(2-N,N-Diethylaminoethyl)oxy-7.alpha.-methyl-19-norpregna-1,3,5(10)-triene-3-O-sulfamate

Minimal hitting set hitting breast cancer cell lines at least once, and all other cell lines zero times.
doi:10.1371/journal.pone.0013055.t007

Figure 4. Minimal hitting set hitting only breast cancer cell lines. Excluding the disputed MDA-N cell line. In this case we allow non-breast
cancer cell lines to be hit at most once. By relaxing the restriction on hitting non-breast cancer cell lines, we obtain a hitting set which hits more of
the breast cancer cell lines repeatedly. The trade-off being that other cell lines are also affected, increasingly the likelihood that non-cancerous cells
are also affected by the treatment, as the compounds are less specific to a particular genetic signature. Only cell lines with at least one adjacent
compound are shown.
doi:10.1371/journal.pone.0013055.g004
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ANi
, but then DAD§DANi

Dwk, which contradicts the assumption

that (G,k) is a YES-instance.

Therefore the set Ni must be hit by B, so we may restrict our

search to the intersection. .

Lemma 5 Reduction Rule 4 can be computed in polynomial time.

Proof. Given a set of vertices B(N(s) for some s [S with

DBD~d{1, we construct an auxiliary graph G’ by taking for each i

the subgraph of G induced by the vertices N(Ni)\B. If there is a

Figure 6. Minimal hitting set hitting breast cancer cell lines twice. Excluding the disputed MDA-N cell line. Without the MDA-N cell line, the
breast cancer cell lines do not separate, although the complete bipartite component is a subgraph of this graph, however we gain a greater number
of hits per cell line in this case. Only cell lines with at least one adjacent compound are shown.
doi:10.1371/journal.pone.0013055.g006

Table 8. Minimal hitting set targeting melanoma twice, without MDA-N.

624206 N-[2-[(4-chlorophenyl)methyldisulfanyl]ethyl]decan-1-amine hydrochloride

646807 2-(2-Isonicotinoylhydrazino)-N-(3-methyl-1,4-dioxo-1,4-dihydro-2-naphthalenyl)-2-oxoacetamide

674092 2-phenyl-N-[3-[4-[3-[(2-phenylquinoline-4-carbonyl)amino]propyl]piperazin-1-yl]propyl]quinoline-4-carboxamide hydrochloride

677944 6-[2-(4-hydroxy-3-methoxyphenyl)ethylamino]quinoline-5,8-dione

697989 dicopper 2-acetyloxy-3,5-di(propan-2-yl)benzoate

708559 2-(3,4-dichlorophenyl)-N-methyl-N-[3-[methyl(3-pyrrolidin-1-ylpropyl)amino]propyl]acetamide

Minimal hitting set hitting melanoma cell lines at least twice and no others. This result does not include MDA-N as a melanoma cell line.
doi:10.1371/journal.pone.0013055.t008

Figure 7. Minimal hitting set hitting melanoma cell lines at least 2 and no other cell lines. This hitting set also maximizes the number of
hits on the melanoma cell lines. Only cell lines with at least one adjacent compound are shown.
doi:10.1371/journal.pone.0013055.g007
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maximum matching in G’ of size greater than k, then the matched

vertices from S form the required set with pairwise neighbohood

intersection B.

As d is a constant, we can iterate over all sets of vertices of size

d{1 in time O(DSD:d). The matchings can be computed in time

O(a:DN(B)|(N(N(B)\B))D3=2).

Definition 6 (Weakly Related Vertices) Given two vertices

s,t [C, s and t are weakly related if DN(s)\N(t)Dƒd{1, and both

N(s) 6(N(t) and N(t) 6(N(s).

Let W(C be a maximal set of pairwise weakly related

vertices. Let B(S be a set of vertices, and denote by WB the set

of vertices of W whose neighborhood is a superset of B. Further

denote by WB,i the subset of WB where for each v [WB,i we have

g(v)~i.

Reduction Rule 5: Compute a maximal collection W of

pairwise weakly related vertices. If DW Dwakd apply the following

algorithm:

for j~d{1 downto 1 do

for t~a downto 1 do

for each set B(N(v) where v [W and DBD~j do

if DWB,tDwkd{j then

Add a vertex c to C, edges such that N(c)~’ and set

g(c)~t.

Delete WB,t from G.

Figure 8. Minimal hitting set hitting melanoma cell lines at least 2 and no other cell lines. Including the disputed MDA-N cell line. It is
interesting to note that including MDA-N as a melanoma cell line rather than a breast cancer cell line reduces the size of the minimal hitting set from
6 to 5. This hitting set also maximizes the number of hits on the melanoma cell lines. Only cell lines with at least one adjacent compound are shown.
doi:10.1371/journal.pone.0013055.g008

Table 9. Minimal hitting set targeting melanoma, without MDA-N.

NSC Number Compound Name

646807 2-(2-Isonicotinoylhydrazino)-N-(3-methyl-1,4-dioxo-1,4-dihydro-2-naphthalenyl)-2-oxoacetamide

656238 2-Methyl-4,8-dihydrobenzo[1,2-b:5,4-b9]dithiophene-4,8-dione

741078 AZD6244 (ARRY-142886)

Minimal hitting set hitting melanoma cell lines at least twice, all others at most once, maximizing the degree of the melanoma cell line vertices.
doi:10.1371/journal.pone.0013055.t009

Table 10. Minimal hitting set targeting melanoma, with MDA-N.

NSC Number Compound Name

361127 Destruxin E

624206 N-[2-[(4-chlorophenyl)methyldisulfanyl]ethyl]decan-1-amine hydrochloride

656238 2-Methyl-4,8-dihydrobenzo[1,2-b:5,4-b9]dithiophene-4,8-dione

Minimal hitting set hitting melanoma cell lines at least twice, all others at most once, maximizing the degree of the melanoma cell line vertices.
doi:10.1371/journal.pone.0013055.t010
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Lemma 7 Reduction Rule 5 is sound.

Proof. We defer the proof of the bound on the size ofW until the

proof of Lemma 8.

Let (G,k) be a YES-instance of (a,d )-HITTING SET. Then there is

a set A(S that hits S sufficiently. For sets of size d{1, Reduction

Rule 4 proves the soundness of the first iteration of the outer loop.

For each other iteration, assume that the iteration for sets of size

j holds, then let B be set of size j{1 where DWB,tDwkd{jz1 for

some t. If DA\BDvt then by the pigeon hole principle there is

some vertex v [A that is in at least kd{j neighborhoods of vertices

in WB,t, but then B|fvg is a set that is the intersection of at least

kd{j neighborhoods of vertices in some subset of W , contradicting

the correctness of the previous iteration. Therefore the entire set of

vertices hitting each WB,t vertex is contained within B if

DWB,tDwkd{j , so we may replace WB,t with a single vertex.

Note also that for each element of W there is at most 2d sets B,

so we may iterate through all sets in time O(ad2d :DW D), so we can

perform the replacements in polynomial time.

Lemma 8 If (G,k) is a YES-instance of (a,d )-HITTING SET, reduced

under Reduction Rules 1 to 5, then DV (G)Dƒ(dz1)akd .

Proof. If (G,k) is a YES-instance of (a,d )-HITTING SET, then there

is a set A(S such that for every s [S we have DN(s)\AD§g(s)
with DADƒk.

Claim 9 C~W .

By construction, every vertex in C with degree at most d{1 is

in W . Assume there is some c [C with d(c)~d and c 6[W , then

Figure 9. Minimal hitting set hitting melanoma cell lines at least 2 and all other cell lines at most once. For this we consider MDA-N as a
non-melanoma cell line, however it is also hit by the hitting set, though only once. This hitting set also maximizes the number of hits on the
melanoma cell lines. Only cell lines with at least one adjacent compound are shown.
doi:10.1371/journal.pone.0013055.g009
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there must be some vertex c’ [C such that DN(c)\N(c’)Dwd{1,

but then as the degree of any vertex in C is at most d,

N(c)~N(c’), and Reduction Rule 3 would apply. Therefore there

are no vertices from C not in W .

Claim 10 DW Dƒakd .

As A hits each vertex of W at least once, by Reduction Rule 5

each element of A as a singleton is in the neighborhood of at most

akd{1 vertices from C. Therefore DW DƒDAD:akd{1
ƒakd .

Figure 10. Minimal hitting set hitting melanoma cell lines at least 2 and all other cell lines at most once. Including MDA-N as a
melanoma cell line. The key difference with the case where we consider MDA-N to be a non-melanoma cell line is that in this case we obtain a hitting
set that hits the melanoma cell lines slightly more. Only cell lines with at least one adjacent compound are shown.
doi:10.1371/journal.pone.0013055.g010
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Combining Claims 9 and 10 we have DCDƒakd . As each vertex ofC
has degree at most d , there are at most adkd vertices in S, and the

bound follows.

Theorem 11 (a,d )-HITTING SET is fixed-parameter tractable with

parameter k and has a kernel of size at most adkd .

We note that although d must be a constant to obtain a

polynomial time kernelization, a may be alternatively given as an

additional parameter, without change to the kernelization.

This kernelization may be extended to an even more general

version of the problem, where we not only specify lower bounds

for the number of hits, but also upper bounds:

(a,b,d)-HITTING SET

Instance: A bipartite graph G~(S ] C,E) where for all c [C

we have d(c)ƒd, two hitting functions g1 : C?½0,a� and
g2 : C?½0,b� and an integer k.

Question: Is there a set S’(S with DS’Dƒk such that for every

c [C we have g2(c)§DN(c)\S’D§g1(c)?

Corollary 12 (a,b,d )-HITTING SET is fixed-parameter tractable with

parameter k and has a kernel of size at most adkd .
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