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We give an exact solution of the vacuum gravitational field equation in new general relativity. 
The solution gives the Kerr metric and the parallel vector fields are axially symmetric. A parameter 
h in the expression of the metric is related to the angular momentum of the rotating source, when the 
spin density S,f of the gravitational source satisfies the condition a~Si/=O. In the Kerr metric 
space· time, we cannot discriminate new general relativity from general relativity, so far as scalar, the 
Dirac and the Yang-Mills fields and macroscopic bodies ·are used as probes. The space-time given by 
the solution does not have singularities at all, although it has an "effective singularity". Two kinds of 
Schwarzschild metric solutions, one is our solution with h=O and the other is a solution given by 
Hayashi and Shirafuji, are physically equivalent with each other. Nevertheless, these are markedly 
different from each other with regard to the asymptotic behavior of the torsion tensor for r-->OO and 
the space-time singularities. 

§ 1. Introduction 

New general relativity (N. G. R.) is a gravitational theory formulated by Hayashi 
and N akano1

) and by Hayashi and Shirafuji.2
) A feature of this theory is the absolute 

parallelism the notion of which is first introduced by Einstein;3) thus the space-time is 
the Weitzenbock space-time, which is characterized by vanishing curvature tensor 
and by the metricity condition. The theory is invariant under global Lorentz trans­
formations, but it is not under general local ones.*) 

Fundamental fields of gravitation are the parallel vector fields bk= bkPoloxP which 
give a vierbein system to this theory. The components of the metric tensor g= gpvdxP 

®dxv are related to the dual components bk
p of the parallel vector fields through 

gpV=r;klbkpb 1v (1·1) 
def 

with (r;kl)=diag(-, +, +, +). The affine connection coefficients rp*J·are given by 

rp*,;A=b/'ovbkp , (1.2) 

as a result of the absolute parallelism.2
) The Christoffel symbol 

Lp )..I}= ~ gPrr(opgvrr+ ovgprr- orrgpv) (1· 3) 

does not represent the affine connection of the Weitzenbock space-time. But it is 
important in the description of the motions of macroscopic test bodies.2

) 

The gravitational Lagrangian in this theory consists of quadratic terms of the 
torsion tensor 

*) In Ref. 4), an extended new general relativity, which has additionally the local internal translational 
invariance, has been proposed. So far as vacuum gravitational field equation is concerned, there is no 
difference between the extended theory and N. G. R. 
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660 N. Toma 

. (1·4) 

The following Lagrangian employed in this paper,*) in particular, 

(1· 5) 

is quite favorable experimentally.2) Here K is the Einstein gravitational constant and 
~ is a real constant parameter and tlJ.V}., Vp and ap are the irreducible components of 
the torsion tensor TA p.u: 

(1·6) 

(1·7) 

def 1 
a - c TVPO' P-6cPVPO' . (l·S) 

Here, CPVpO' is the totally antisymmetric tensor, normalized to C0l23= -;=g. 
Fukui and Hayashi5

) has pointed out that axially symmetric and stationary 
solutions of N. G. R. with the gravitational Lagrangian Lc are different from those of 
general relativity (G. R.), but no explicit solution has been given there. Also, no one 
has discussed the question whether the Kerr metric is allowed or not in N. G. R. 

The main purpose of this paper is to give explicitly an axially symmetric exact 
solution of N. G. R., which gives the Kerr metric. In § 2, the solution is given, and the 
physical meanings of the parameters a and h appearing in the solution are discussed 
in § 3. In § 4, the singularities and "effective singularities"6) of the space-time given 
by the solution are examined. In § 5, two kinds of Schwarzschild metric solutions, 
one is our solution with h=O and the other is a solution given in Ref. 2), are examined 
from the points of the asymptotic behavior and of the space-time singularities. 
Finally in § 6, we give a summary. 

§ 2. A Kerr metric solution 

The gravitational field equations are given by2),**) 

CPV({})+ KPv=KT(PV) , 

b/b/c)p(j-gjUP)=)..;=gT[PV] , 

where CPV({}) is the Einstein tensor: 

*) We will use the natural unit n=c=1. 
) def 1 def 1 

** ~pv)=Z(Tpv+ Tvp), T[Pv1=Z(Tpv- Tvp). 

(2·1) 

(2·2) 

(2·3) 
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A Kerr Metric Solution in New General Relativity 661 

(2°4) 

(2°5) 

(2°6) 

and TI"v is the energy-momentum tensor of a source field with Lagrangian L M : 

(2°7) 

The tensors KI"v and Fil" are defined by 

Kfl.V~ 1 [~ {cl"Pc1A( TVpO"- TpO"V) + CVpO"A( Tfl.pO"- Tp,/)}aA - ~ al"aV - ~ gl"V aAaA ] ' 

(2°8) 

(2°9) 

respectively. Here,;\ is a parameter defined by 

1 def 4 1 
--:f=9~ +3/C . (2°10) 

In this section, we consider the case of the vacuum gravitational field: 

(2 °11) 

We will seek a solution having the following form: 

(2 °12) 

where a is an arbitrary constant parameter, and II" and Ik are quantities satisfying the 
conditions: 

(2 °13) 

(2 °14) 

For II" and Ik, we will use the convention that Greek and Latin indices are raised and 
lowered by (7/V

), (lJI"v), (lJkl) and (lJkl) and are converted into each other by (Okl") and 
(Okl"). Substituting Eq. (2°12) into Eq. (1°4), we get 

(2 °15) 

The axial vector part (1° 8) of the torsion tensor (2 °15) vanishes identically: 

(2°16) 

and hence field equations (2 °1) and (2 ° 2) are reduced to the Einstein equation: 

(2 °17) 
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662 N. Toma 

An axially symmetric and stationary solution of Eq. (2 ·17) is well known in 
G. R.7).8) 

Equations (2 '12) and (2 ·17) lead to the following:*) 

(i) 1).;J;Jp is parallel to II': 

1).[J;.lp= - All' 

with A being a function. 

(ii) For a stationary space-time, if we express (II') as 

where 10 and ita (a= 1,2,3)**) are xO-independent functions, and ita satisfy 

def 3 

itaita = L: itaita = 1 , 
a=l 

then 

def def 

a=Re(y) , p'=Im(y). 

Here y is a complex valued function which satisfies the equations: 

def 

L::,.y=OaOaY=O, 

(iii) The stationary solution of Eq. (2 '17) is given by 

(lo)2=Re(y) = a , 

We take yas 

1 
y 

(2 '18) 

(2 '19) 

(2'20) 

(2·21) 

(2·22) 

(2·23) 

(2·24) 

(2·25) 

(2·26) 

(2·27) 

(2·28) 

(2·29) 

where r~jxaxa, Z~X3 and h is a real constant parameter, and we make the coordi­
nate transformation from (xl') to (t, p, e, cp) defined by 

*) These results are quoted from Ref. 8). 
**) In our convention. the initial part of the Latin alphabets. a. b, c, ... , refers to as 1,2 and 3. 
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def 

xI=(pcosfl)+hsinfl»)sin8, 
def 

x 2 =(psin fl) - hcos fl) )sin8 , 

Then the metric has the expression: 

with 

ds2= -( 1- aI )dt2+ ~dp2+ 1:d82 

+ { (p2 + h2)sin2 8 + aph2~in4 8 } drp2 + 2 aph~n2 8 dtdrp 

def 

1:=p2+h2cos28 , 

663 

(2·30) 

(2·31) 

(2·32) 

(2·33) 

Equation (2·31) gives the Kerr metric written in the Boyer-Lindquist coordinates_ 
The parallel vector fields*) bk 

p. are expressed as**) 

bo -1 ap 
t- - 21: ' 

aps in 8 cosfl) 
21: 

bIe=Xcos8, 

apsin 8sin fl) 
21: 

b2
0 = Ycos8, 

apcos8 
21: 

bO _ ap 
p- 2L1 ' 

bO = _ aphsin28 
<p 21:' 

bi = psin8 (X-"!!:" m) 
p L1 2 cOSw , 

bi - _ Y - 8 + aphsin3 8cos fl) 
<p- sm 21: ' 

b2 = psin8 (Y_ a - m) 
p L1 --zsmw , 

b2 -X - 8+ aphsin3 8sinfl) 
<p- sm . 21: ' 

b3
p =( 1 + ~j )coS8 , 

aphsin2 8cos 8 
21: 

(2·34) 

*) In what follows, "the dual components bk
p of the parallel vector fields" are simply called "the parallel 

vector fields bkp". 

**) The solution (2-34) is different from solutions discussed in Ref. 5), which can be seen by comparing 
Eq. (2-34) with Eq. (7) of Ref. 5). This can be seen also by noting that the field equation (12) in Ref. 5) is 
not reduced, unless the function (J) appearing therein is constant, to the Einstein equation. 
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664 N. Toma 

which is obtainable by the use of Eqs. (2·12), (2·19), (2'24), (2'27)-----(2'29) and coordi­
nate transformations (2·30). Here, X and Yare defined by 

de! de! 

X =pcosfP+ hsinfP , Y =psinfP- hcosfP . (2·35) 

Thus, a vacuum solution which gives the Kerr metric has been given. The parallel 
vector fields bk = bkp.dxp. given by Eq. (2·34) are axially symmetric in the sense that 
they are form invariant under the transformation,S) 

(2·36) 

General relativity has a solution which gives the Kerr metric: 

~f-L 

t II-a; 0 0 aphsin2 e 11- ap 
k 1:-ap 1: 

0 R 0 0 e k - (2·37) 1'-
0 0 ft 0 

0 0 0 I 1: L11: sine -ap 

The fields ekp. are related to the parallel vector fields bk 
I' of Eq. (2' 34) through a local 

Lorentz transformation, but ekp. do not give a solution in N. G. R., so far as h*O. 
This is not unnatural, because N. G. R. is not required to be local Lorentz invariant. 

We mention here a rnethod of finding a VaCUl,lm solution of N. G. R. from a 
vacuum solution e k 

I' of G. R. Under a local Lorentz transformation 

(2·38) 

the axial vector part of the torsion tensor defined by Eq. (1·8) transforms as 

a (b)=a (e)+lc VPl5e i e j 7J Ak.':J Ill. 
P Il. 3 ~ p. v P hi tUcrL.l J , (2·39) 

where ap.(b) and ap.(e) denote the axial vector part of the torsion tensor made of bkp. and 
ekp., respectively. If we can get 

(2·40) 

by choosing A kl appropriately, then (b k 1') is a vacuum solution of N. G. R., because Kp.v 
and fijI' defined by Eqs. (2·8) and (2·9) both vanish and bkp. satisfy the gravitational 
field equations (2 '1) and (2' 2) in vacuum. The Kerr metric solution (2· 34) gives an 
example of this statement. 
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§ 3_ Physical meaning of a and of h 

To clarify the physical meaning of the parameters a and h in the solution (2-34), 
we now consider the weak-field approximation: 

la\l~l. (3-1) 

del ~k I b d *) The field ap.v=U P.7}kla v can e expresse as 

with hp.v=hvp. and Ap.v=-Avp.. The gravitational field equations (2-1) and (2-2) now 
take the following forms: 

Dhp.v= -2KT(p.v) , (3-3) 

DAp.v=-AT[p.v] , (3-4) 

under the gauge conditions2
) 

where hp.v and D are defined by 

respecti vel y. 

(3-5) 

(3-6) 

(3-7) 

(3-8) 

The compatibility of Eqs. (2 -12) and (3 -I) in the weak-field situations requires 
that Ap.v vanishes identically: 

(3-9) 

The tensor T[p.v] is related to the spin density 

(3-10) 

of the source field ¢, through 

(3-11) 

as a result of global Lorentz invariance of LM and the·field equation of ¢. Here, Ski 
is the representation of the Lie algebra of the Lorentz group to which ¢ belongs. 

*) In this section, we will use the convention that Greek and Latin indices are raised and lowered by (71 PV
), 

(71pv), (71kl) and (71kl) and are converted into each other by (8"p) and (8kP
). 
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666 N. Toma 

Therefore, we get*) 

(3·12) 

by the use of Eqs. (3·4), (3·9) and (3·11). We will use Eq. (3·12) instead of Eq. (3·9) 
as the compatibility condition. The condition (3 ·12) is satisfied when effects due to 
the intrinsic spin of constituent fundamental particles can be ignored for the gravita­
tional source, as are the cases for usual macroscopic objects such as planets and stars. 

Under the condition (3 ·12), the physical meaning of a and h are given by 

KM 
a=4"7[ , (3 ·13) 

(3·14) 

where M is the gravitational mass of a central gravitating body and] represents the 
angular momentum of the rotating source. The relations (3·13) and (3·14) are 
obtained by comparing the metric for the solution (2·34) with Lense and Thirring's 
metric:8).9) 

(3·15) 

The Kerr metric space-time in N. G. R. given by Eq. (2·34) cannot be discriminat­
ed from the Kerr space-time in G. R., so far as scalar, the Dirac and the Yang-Mills 
fields and macroscopic bodies are used as probes because of the following reasons: 

(0 The field equations and measurable quantities for these fields in the space-time 
given by Eq. (2·34) agree with those in the Kerr space-time in G. R.2

) 

(i0 In macroscopic gravitational phenomena, only the metric tensor plays significant 
roles. 2

) 

§ 4. Singularities 

In N. G. R., by singularity of the space-time, we mean6
) the singularity of the 

scalar concomitants of the torsion and curvature tensors, and by "effective singular­
ity" .is meant6

) the singularity of the scalar concomitants of the Riemann-Christoffel 
curvature tensor.**) 

The space-time given by the solution (2·34) does not have singularities at all, 
because we have 

and the curvature tensor is vanishing. Equation (4 ·1) is obtainable from Eqs. (1·6), 

*) Conversely. Eq. (3·9) can be derived from Eq. (3'12) by noting that we are dealing with a static 
solution with the condition: Apv--+Q (r--+oo). 

**) The Riemann·Christoffel curvature tensor is not the curvature tensor of the Weitzenbock space·time, 
but in N. G. R, macroscopic test bodies "feel" effectively this curvature. 
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(1· 7), (2 ·13), (2 ·15), (2 ·16) and (2 ·18). 
From Eq. (2·17), it is evident that 

Rl'lI({ })Rl'lI({ })=R({ })=O, (4·2) 

and hence the "effective singularities" are given by those of RPI1l'lI( { })RPI1l'lI( { }). By 
the use of Eqs. (1·1), (1·3), (2·4), (2·13), (2·18)~(2·23), we obtain 

(4·3) 

Substituting Eq. (2·24) with Eq. (2·29) into Eq. (4·3) and using the coordinate system 
(t, p, f), cp), we get 

(4 ·4) 

where 

de! 

il = p2 - h2coS2 f) . (4·5) 

Thus, we find that there is an "effective singularity" at (p, f))=(O, 7[/2) when h=l=O and 
at p=O when h=O. This "effective singularity" agrees with the singularity of the 
Kerr space-time in G. R. 

§ 5. The special case with h=O 

We consider the special case with h = O. In this case, the parallel vector fields bk 
I' 

given by Eq. (2·34) and the vierbein fields ekl' given by Eq. (2·37) are reduced to 

->f1 

~ 1-~ a 0 0 k 2r 2(r-a) 

a . f) 2r-a . 
rcosf)coscp - rsinf)sincp zrsm coscp 2(r-a) smf)coscp 

bk - (5·1) 1'-
2r-a . f) . 2~ sinf)sincp 2(r-a)sm smcp rcosf)sincp rsinf)coscp 

a 
1rcosf) 

2r-a . 
2(r-a) cosf) - rsinf) 0 

and 
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--->f-L 

J, /1- ~ k 0 0 0 

ek -p- 0 / r~a 0 0 (5-2) 

O 0 r 0 

0 0 0 rsine 

respectively. The fields bkp and ekp give the Schwarz schild metric: 

(5-3) 

A set of vierbein fields (5 -2) is a solution of N. G. R., as has been mentioned in p. 3540 
of Ref. 2). Therefore, not only the parallel vector fields bk 

p but also the vierbein fields 
ekp are solutions in N. G. R. 

The parallel vector fields of Eq. (5 -I) are related to the vierbein fields of Eq. (5 -2) 
through the local Lorentz transformations: 

bkp=Akle1p, (5-4) 

where 

--->1 

J, 2r-a a 
0 0 

k 2)r(r-a) 2)r(r-a) 

asinecoscp (2r - a)sinecoscp cosecoscp . -sincp 
2)r(r-a) 2)r(r-a) 

A kl= 
asinesincp (2r - a)sinesincp 

cos es incp coscp 
2)r(r-a) 2)r(r-a) 

(5-5) 

acose (2r-a)cose -sine 0 
2)r(r-a) 2)r(r-a) 

which leaves the axial vector -part of torsion tensor invariant.*) Hence, these two 
solutions are physically equivalent with each other as known by applying discussions 
of Ref. 10). 

Nevertheless, they are markedly different from each other in the following 
respects: 

(0 For the torsion tensors n:J and n;~ corresponding to the solutions (5 -I) and 
(5-2), respectively, we have 

a=l, 2, 3 

*) The axial vector parts of the torsion tensors for the solutions (5 ·1) and (5·2) both vanish. 
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T,
(b) __ a_{ ~ap 
aOp- 2r2 u 

2r-a xaxP
} 

-'=-'------==---2- , a, (3=1, 2, 3, 
r-a r 

~a[p rJ 
T,(b)_- au x 

aPr- r(r-a) r a, (3, y=l, 2, 3 , 

(the other independent components vanish) , 

(e) ___ a_ x a 

Tooa- 2r2 r' a=l, 2, 3 

T (e) 
112 

T (e) 
113 

y 

y(e)_ X 331- r2 , 

xyz 
r 2(r2_z2) , 

'T'(e) 
1221 

'T'(e) 
1223 

x 

T(e)-L 
332 - r2 , 

(the other independent components vanish) , 

def def def 

x=x1=rsin8cosq;> , y=x2 =rsin8sinq;>, z=x3=rcos8. 

669 

(5·6) 

(5;7) 

(5·S) 

Equations (5·6) and (5·7) show that T,,<$J _approaches zero as r -+ ex) faster than n:'b 
does. 

',(ii) From the discussion in § 4, it is clear that the space-time given by Eq. (5 ·1) does 
"notlhave singularities at all. While, the space-time given by Eq., (5·2) is singular at 

r=O, r=a and x=y=O, as is seen from the following: 

(2r-3a)2 Z2 
4r 3(r-a) + r 4(r2_z2) , (5·9) 

(5·10) 

where t1~~ and v1e
) are the irreducible components of niL 

§ 6. Summary 

The results of the preceding sections can be summarized as follows: 

<1> An exact solution (2·34) which gives the Kerr metric has been given. It is 
axially symmetric, but is different from solutions discussed in Ref. 5). 
<2> Any vacuum solution of G. R, such that ap can be made to vanish by a choice 
of gauge, can be transformed into a vacuum solution of N. G. R The solution (2·34) 
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gives an example of this statement. 
<3> When the gravitational source satisfies the condition (3 '12), the parameter h is 
related to the angular momentum of the rotating source through Eq. (3'14). 
<4> There appears no difference between our solution (2·34) and the Kerr solution in 
G. R., so far as scalar, the Dirac and the Yang-Mills fields and the macroscopic test 
bodies are concerned. 
<5> The space-time given by the solution (2·34) does not have singularities at all. 
But, "effective singularity" exists at (p, 8)=(0, 11:/2) when h*O and at p=O when h=O. 
<6> Two kinds of the solution, (5 '1) and (5' 2), both of which give the Schwarzschild 
metric, are physically equivalent with each other. Nevertheless, these are markedly 
different from each other with regard to the asymptotic behavior of the torsion 
tensors for r .... OJ and the space-time singularities. 
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