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A Kerr Metric Solution in New General Relativity
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We give an exact solution of the vacuum gravitational field equation in new general relativity.
The solution gives the Kerr metric and the parallel vector fields are axially symmetric. A parameter
% in the expression of the metric is related to the angular momentum of the rotating source, when the
spin density S of the gravitational source satisfies the condition 0.8:;#=0. In the Kerr metric
space-time, we cannot discriminate new general relativity from general relativity, so far as scalar, the
Dirac and the Yang-Mills fields and macroscopic bodies are used as probes. The space-time given by
the solution does not have singularities at all, although it has an “effective singularity”. Two kinds of
Schwarzschild metric solutions, one is our solution with 2=0 and the other is a solution given by
Hayashi and Shirafuji, are physically equivalent with each other. Nevertheless, these are markedly
different from each other with regard to the asymptotic behavior of the torsion tensor for » »o0 and
the space-time singularities.

§1. Introduction

New general relativity (N. G. R.) is a gravitational theory formulated by Hayashi
and Nakano® and by Hayashi and Shirafuji.”? A feature of this theory is the absolute
parallelism the notion of which is first introduced by Einstein;” thus the space-time is
the Weitzenbtck space-time, which is characterized by vanishing curvature tensor
and by the metricity condition. The theory is invariant under global Lorentz trans-
formations, but it is not under general local ones.®

Fundamental fields of gravitation are the parallel vector fields b.= bs“0/0x" which
give a vierbein system to this theory. The components of the metric tensor g=gudx*
Qdx" are related to the dual components 5*. of the parallel vector fields through

gﬂuzﬂklbkublu : (1'1)

’ def .
with (7z:)=diag(—, +, +, +). The affine connection coefficients I are given by
I—‘t’l: kxaubk# » . (1'2)

as a result of the absolute parallelism.” The Christoffel symbol

0
y :%gpd(aﬁgw + 0vGus— adg#U) - (1 ‘ 3)

does not represent the affine connection of the Weitzenbdck space-time. But it is
important in the description of the motions of macroscopic test bodies.?’

The gravitational Lagrangian in this theory consists of quadratic terms of the
torsion tensor

*) In Ref. 4), an extended new general relativity, which has additionally the local internal translational
invariance, has been proposed. So far as vacuum gravitational field equation is concerned, there is no
difference between the extended theory and N. G. R.
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660 N. Toma

T/l,uu:bk/‘(aubkp_aubky) . ' . (1'4)
The following Lagrangian employed in this paper,* in particular,

Le= —% (£ ta— " 0,) + Ea" au (1-5)
is quite favorable experimentally.? Here # is the Einstein gravitational constant and
£ is a real constant parameter and fuwa, vx and a. are the irreducible components of

the torsion tensor 7*..:

aef | 1 1
Lpva :7 ( T+ Tuﬂx) +€ (g/hui)u + gAuUﬂ) _E*g#uvx , (1 . 6)
def
Vp= TAA/J , (1'7)
def 1 ’
ayzgﬁ,uupo‘TUpo' . (1'8)

Here, emes is'the totally antisymmetric tensor, normalized to €oi2s= —J/—g.

Fukui and Hayashi® has pointed out that axially symmetric and stationary
solutions of N. G. R. with the gravitational Lagrangian L¢ are different from those of
general relativity (G. R.), but no explicit solution has been given there. Also, no one
has discussed the question whether the Kerr metric is allowed or not in N. G. R.

The main purpose of this paper is to give explicitly an axially symmetric exact
solution of N. G. R., which gives the Kerr metric. In § 2, the solution is given, and the
physical meanings of the parameters ¢ and % appearing in the solution are discussed
in §3. In §4, the singularities and “effective singularities”® of the space-time given
by the solution are examined. In § 5, two kinds of Schwarzschild metric solutions,
one is our solution with Z=0 and the other is a solution given in Ref. 2), are examined
from the points of the asymptotic behavior and of the space-time singularities.
Finally in § 6, we give a summary.

§2. A Kerr metric solution

The gravitational field equations are given by?"**®
GO+ =T, | @
b#073u(/ =g J*) =2y =g T, | (2-2)

where G**({}) is the Einstein tensor:

Gal{ D=Rul{ D5 9uRU D), (@3)

*) We will use the natural unit Z=c=1.

def def
*) T(#u):% ( T+ Tw) , T :% ( Tow— Tw) .
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A Kery Metric Solution in New General Relativity 661

el e
oV o u T ul|lo vy T V|iop

def
R#U({ }):Rpﬂpu({ }) , ‘ (2‘5)
def
R({N=9"Ru({}), (2-6)
and T* is the energy-momentum tensor of a source field with Lagrangian Lu:
=g Ty O g Lu) S gLu) o -7

The tensors K** and J7* are defined by

ef
K""d [ {eM T 05— Tos")+ ¥ T oo — Tpa“)}m—%a“a“— Z’g"“a‘m]

(2-8)
de: 3 .

]u/»t_.___b b] pd/—tu , ) (2.9)
respectively. Here, A is a parameter defined by

1 def 4 1

A9 3 (2-10)
In this section, we consider the case of the vacuum gravitational field:

T = T[uu]:() i . (2' 11)

We will seek a solution having the following form:
bky:(gky‘{'ilkl,u , (2'12)

2

where a is an arbitrary constant parameter, and /. and /* are quantltles satisfying the
conditions: :

71l =0 , - (2-13)
1h= 8% 1, | - (2-14)

For /. and /%, we will use the convention that Greek and Latin indices are raised and
lowered by (77" 9, (7w), (%) and (7x:) and are converted into each other by (8*.) and
(64*). Substituting Eq. (2 -12) into Eq. (1-4), we get )

Tow=adu(lul) . ' (2-15)
The axial vector part (1-8) of the torsion tensor (2:15) vanishes identically: 7

2.=0,  (2-16)
and hence field equations (2-1) and (2-2) are reduced to the Einstein equation:

G*({))=0. (2-17)
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662 N. Towma

An axially symmetric and stationary solution of Eq. (2-17) is well known in
G.RP®
Equations (2-12) and (2-17) lead to the following:*

(i)k 1" is parallel to /.

Podu=—Al, | - (2-18)
with A being a function.
(ii) For a stationary space-time, if we express (/.) as

(le)=1(1, A1, A2, 4s) , (2-19)

where 5 and 4. (=1, 2, 3)** are x"independent functions, and A. satisfy

def 3

AaAa:gl/la/Lz:l , (2'20)
then
ab/la:a’(é\ab_Aa/lb)‘{‘Beabc/ic , (2'21)
AdBa=*—a?, (2-22)
ABefB=—20a8, _ (2-23) -
def def
a=Re(y), B=Im(y). (2-24)

Here 7 is a complex valued function which satisfies the equations:

Ay=0aday=0, - (2:25)
1\ 5 /1)\_ .
o y) o 7)—1. | (2-26)
(iii) The stationary solution of Eq. (2:17) is given by
(by’=Re(7)=a, : (2-27)
(52— 0000 — 20805 — €ancOp* 05 2.98
A=A G ) @29
We take 7 as’
L (2-29)

T Jri—n+2ihz’

- where rg,/ x%x?, zdéfact3 and 7 is a real constant parameter, and we make the coordi-
nate transformation from (x*) to (¢, o, 8, ¢) defined by

*) These results are quoted from Ref. 8).
*%) In our convention, the initial part of the Latin alphabets, a, b, ¢, -, refers to as 1,2 and 3.
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A Kery Metric Solution in New General Relativity 663

def '
x'=(pcos @+ hsin ®)sind ,

def
z2=(psin® — hcos @)sind ,
def

ol a 2 2 a’
x =t+?ln|p +4 —ap|+7B,

x¥=pcosl ,
=, 0=e-iB. (2-30)
Then the metric has the expression:
dst=—(1—% )at*+=do*+ 5d6*
+{(or+ Wsin®-+- 920 | e p GONSIN 4y (2-31)
with |
Zii—fpz—FhZcoszﬁ , (2-32)
A2+ i—ap. (2-33)

Equation (2-31) gives the Kerr metric written in the Boyer-Lindquist coordinates.

The parallel vector fields® 5*. are expressed as

0o _1_0G0
¢ 22
b°o=0 "
b= apsinfcos®
¢ 2% ’
Y,=Xcos@,
B — apsinfsin @
ot 2% ’
b*=Ycosd,
b= aopcosf
¢ 22
b3o= - psinﬁ ,

*) In what follows, “the dual components
vector fields 5%.”.

*%k)

7
b e ZA ]
b0 — _ aphsin’d

t4 22 ]
blp——‘&;e <X—%cos (D) ,

L yaing o @ohsin’fcos @
ble=—Ysind+ 95 ,
ot =200 (v —Lsino),

2 _ yaing +.aohksin’@sin®
b°y=Xsinf+ 23 ,
b%z(l—k%)cosﬁ ,
b?,= aphsi;l;?cosﬁ ’ (2-34)

b*« of the parallel vector fields” are simply called “the parallel

**) The solution (2-34) is different from solutions discussed in Ref. 5), which can be seen by comparing

Eq. (2-34) with Eq. (7) of Ref. 5).
not reduced, unless the function @ appearing

This can be seen also by noting that the field equation (12) in Ref. 5) is

therein is constant, to the Einstein equation.
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664 . N. Toma

which is obtainable by the use of Egs. (2-12), (2-19), (2-24), (2-27)~(2+29) and coordi-

nate transformations (2:30). Here, X and Y are defined by

. def def »
X=pcos@+hsin®@, Y=psin®—hcos® . ' (2-35)

Thus, a vacuum solution which gives the Kerr metric has been given. The parallel
vector fields b*=b*.dx* given by Eq. (2-34) are axially symmetric in the sense that
they are form invariant under the transformation,”

p=p+dp, b-b°, b'- b'cosSp— b’sindp , _
b’ b'sinde+ b’cosdp, b*-b’. (2-36)

General relativity has a solution which gives the Kerr metric:

- p
! _ao 0 _.aphsin’d [ ap
k =75 Y—ap 1=75
>
= 0
ot = 0 Yz 0 . (2-37)
0 0 Jz 0
0 0 0 -,/ZLsinﬁ
—ap

The fields e*. are related to the parallel vector fields 5% of Eq. (2-34) through a local
Lorentz transformation, but ¢*: do not give a solution in N. G. R,, so far as 2=0.
This is not unnatural, because N. G. R. is not required to be local Lorentz invariant.

We mention here a method of finding a vacuum solution of N. G. R. from a
vacuum solution e®: of G. R. Under a local Lorentz transformation

def

bru=N"e, » (2-38)
‘the axial vector part of the torsion tensor defined by Eq. (1-8) transforms as
d#(b):d#(e).+%5#W6@iu€jn77u/1ki3d/1!j , (2'39)
where a.'” and a.‘® denote the axial vector part of the torsion tensor made of 5%« and
e*., respectively. If we can get
2, P=0 : (2-40)

by choosing A% appropriately, then (5%.) is a vacuum solution of N. G. R., because K**
and J¥* defined by Egs. (2-8) and (2-9) both vanish and 5*. satisfy the gravitational
field equations (2-1) and (2-2) in vacuum. The Kerr metric solution (2-34) gives an
example of this statement.
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A Kery Metric Solution in New General Relativity 665

§3. Physical meaning of a and of h

To clarify the physical meaning of the parameters « and /% in the solution (2-34),
we now consider the weak-field approximation:

bku:(()\ky—l_aky, Iaku|<<1. ' ’ (3'1)
The field @ 8%7ra’, can be expressed as®

a#u:%hﬂu +Awm . (32}

with Zm=hve and Aw=—A... The gravitational field equations (2-1) and (2+2) now
take the following forms:

Ohw=—2Tw, (3-3)

HAw=—ATm, : , (3-4)
under the gauge conditions® |

dh™=0, (3-5)

0.A" =0, (3-6)

where % and [ ] are defined by

7 d_ﬂ 1 po
h#u—h#u_777#u(77 hmf) s (3'7)
def ‘
=734, 3-8)
respectively.

The compatibility of Egs. (2-12) and (3-1) in the weak-field situations requires
that A, vanishes identically:

A;xu:O. (3'9)

The tensor 7w is related to the spin density

Su =i g L) g,y | (3-10)

0¢.u
of the source field ¢, through

[T Ti=ybbta8id, @1

as a result of global Lorentz invariance of Ly and the field equation of ¢. Here, Su
is the representation of the Lie algebra of the Lorentz group to which ¢ belongs.

*) In this section, we will use the convention that Greek and Latin indices are raised and lowered by (),
(7). (#*) and (72:) and are converted into each other by (8%) and (5:%).
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666 N. Toma

Therefore, we get™
xSl =0 » (3-12)

by the use of Egs. (3-4), (3-9) and (3-11). We will use Eq. (3-12) instead of Eq. (3-9)
as the compatibility condition. The condition (3:12) is satisfied when effects due to
the intrinsic spin of constituent fundamental particles can be ignored for the gravita-
tional source, as are the cases for usual macroscopic objects such as planets and stars.
Under the condition (3-12), the physical meaning of ¢ and % are given by

_ &M .
a= (3-13)
=t .

h e (3-14)

where M is the gravitational mass of a central gravitating body and J represents the
angular momentum of the rotating source. The relations (3:13) and (3-14) are
obtained by comparing the metric for the solution (2-34) with Lense and Thirring’s
metric:®?

ds'=— (1= )+ (1+-F 2 N apene L sinarap (3-15)
drr 4or 2rr
The Kerr metric space-time in N. G. R. given by Eq. (2-34) cannot be discriminat-
ed from the Kerr space-time in G. R., so far as scalar, the Dirac and the Yang-Mills
fields and macroscopic bodies are used as probes because of the following reasons:

(i) The field equations and measurable quantities for these fields in the space-time
given by Eq. (2:34) agree with those in the Kerr space-time in G. R.?

(ii) In macroscopic gravitational phenomena, only the metric tensor plays significant
roles.? ’

§ 4. Singularities

In N. G. R, by singularity of the space-time, we mean® the singularity of the
scalar concomitants of the torsion and curvature tensors, and by “effective singular-
ity” is meant® the singularity of the scalar concomitants of the Riemann-Christoffel
curvature tensor.**

The space-time given by the solution (2-34) does not have singularities at all,
because we have ’

tﬂyxt,uw\:'l)#vy:ayay:o s ' - (4'1)

and the curvature tensor is vanishing. Equation (4-1) is obtainable from Egs. (1-6),

*) Conversely, Eq. (3-9) can be derived from Eq. (3-12) by noting that we are dealing with a static
solution with the condition: Au,—0 (»—c0).
*%) The Riemann-Christoffel curvature tensor is not the curvature tensor of the Weitzenbéck space-time,
but in N. G. R., macroscopic test bodies “feel” effectively this curvature.
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A Kerr Metric Solution in New Geneval Relativity 667

(1-7), (2-13), (2-15), (2-16) and (2-18).
From Eq. (2-17), it is evident that

R™({ DRa((H=RAN=0, (4-2)

and hence the “effective sihgularities” are given by those of R**({ )Rssm({}). By
the use of Egs. (1-1), (1-3), (2-4), (2-13), (2-18)~(2-23), we obtain

R ™({ D Reow({ )=12a%(a*— B*){(a*— B*)* —12a°B%} . (4-3)

Substituting Eq. (2-24) with Eq. (2-29) into Eq. (4-3) and using the coordinate system
(t, 0,0, ¢), we get ' ’ ‘

R ) Ry ) =22 127~ 120%Hc05°0) (4-4)

where

def
A=p*—hPcos?d . : (4-5)

Thus, we find that there is an “effective singularity” at (o, 8)=(0, n/2) when 2+0 and
at p=0 when 2=0. This “effective singularity” agrees with the singularity of the
Kerr space-time in G. R. '

§5. The special case with h=0 -

We consider the special case with #=0. In this case, the parallel vector fields 5%
given by Eq. (2-34) and the vierbein fields e*. given by Eq. (2-37) are reduced to

-
L_a _a__
£l 27 2r—a) A 0 0
a . 2v—a . . .
Z—f,mﬁcosqo T_—)s1n0cos¢ rcosfcose —rsinfsing
. roo r—a (5-1)
2 sinfsing 27f—_dsin fsing w#cosfsing  rsinfcose
27 2r—a)
%cos 9 %cos 0 —rsind 0

and
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668 N. Toma
-
{
ElJ1—% 0 0 0
o= 0 Vfa o 0 |, (5-2)
0 0 v 0
0 0 0 7sind
respectively. The fields 5% and e*. give the Schwarzschild metric:
-1
ds'=—(1-%)dr*+ (1 — LYy + r{de*+ sin0de) . (5-3)

A set of vierbein fields (5:2) is a solution of N. G. R., as has been mentioned in p. 3540
of Ref. 2). Therefore, not only the parallel vector fields b*. but also the vievbein fields
e*. ave solutions in N. G. R.

The parallel vector fields of Eq. (5:1) are related to the vierbein fields of Eq. (5-2)
through the local Lorentz transformations:

bru= Ak, (5-4)
where
-/
2r—a a
! 0 0
El 2Vrir—a) 2/r(r—a)
asinfcosg (27 —a)sinfcose cosfcosp - —sing
S 2r(r—a) Wr(r—a) : (5-5)
‘ asinfsing (2 —a)sinfsing cosfsing  cose ’
20 r(r—a) 2Vr(r—a)
acosf (2r —a)cos 8 .
—siné 0
Wr(r—a) 2/r(r—a) =

which leaves the axial vector part of torsion tensor invariant.® Hence, these two
solutions are physically equivalent with each other as known by applying discussions

of Ref. 10).

Nevertheless, they are markedly different from each other in the following

respects:

(i) For the torsion tensors
(5-2), respectively, we have

(b)
00a

a

_a
272

T8 and T4

X 4=1,2,3
v )

corresponding to the solutions (5-1) and

*) The axial vector parts of the torsion tensors for the solutions (5+1) and (5-2) both vanish.
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A Kerr Metric Solution in New General Relativity 669

— 2.8
T=r] 09— B2 I g p=1,2,3,

27 r—a v
8 7]

w_ __-ad®’’"  x" —
Tﬂ'ﬂ?’ 7/.(7,_a) ¥ ) avB;’)’ 1)2:37
(the other independent components vanish) , (5-6)

and

(e) a 1‘“

€)— e
Too 272 s o 1, 2, 3

@—_ Y (@) . &

112 72_22 y 221 7,_2____2,2 >

@—__* i)z (@_—_ ~ <l>2
15 ST < oy 155 2\ )

xz

=", Ti=—r,

(@) — THe) — XYZ
T =T33 7,2(7,2__22) ;
(the other independent components vanish) , (5+7)

where

def . def B . def

r=x'=rsinfcose, y=x =ysinfsing, z=zx =rcosh. (5-8)

Equations (5-6) and (5-7) show that T2 approaches zero as » »> <o faster than 7413

does.

(i)~ From the discussion in § 4, it is clear that the space-time given by Eq. (5:1) does
»notihave singularities at all. 'While, the space-time given by Eq. (5-2) is singular at
¥=0, r=a and x=y=0, as is seen from the following:

' (e Ay p(e) _ (2r—3a)® | z2 ‘ )
¢ tA#U 47’3(7"‘4) 1 7/4(72_’22) s (5 9)

ey (4r—3a) A (5-10)

4r¥ir—a) Y (r*—

22) 3

where ), and v{® are the irreducible components of Ti%.

§6. Summary

The results of the preceding sections can be summarized as follows:

{1> An exact solution (2:-34) which gives the Kerr metric has been given. It is

axially symmetric, but is different from solutions discussed in Ref. 5).
2> Any vacuum solution of G. R,, such that a. can be made to vanish by a choice
of gauge, can be transformed into a vacuum solution of N. G. R. The solution (2-34)
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670 N. Towma

gives an example of this statement.

<3> When the gravitational source satisfies the condition (3-12), the parameter % is
related to the angular momentum of the rotating source through Eq. (3-14). v
<4> There appears no difference between our solution (2-34) and the Kerr solution in
G. R, so far as scalar, the Dirac and the Yang-Mills fields and the macroscopic test
bodies are concerned.

<5> The space-time given by the solution (2-34) does not have singularities at all.
But, “effective singularity” exists at (o, 8)=(0, 7/2) when 2#+0 and at o=0 when 4 =0.
<6> Two kinds of the solution, (5-1) and (5-2), both of which give the Schwarzschild
metric, are physically equivalent with each other. Nevertheless, these are markedly
different from each other with regard to the asymptotic behavior of the torsion
tensors for » - <o and the space-time singularities.
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