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Abstract: With the rapid development of the Internet and wireless communications, as well as the
popularization of personal communication systems, the security of real-time communications is
demanded. The efficient technology of stream ciphers can satisfy this requirement of security. In
this paper, to enhance the security strength of stream ciphers, we design a key-based multi-mode
clock-controlled stream cipher for real-time secure communications of the Internet of things (IoT).
The proposed stream cipher is equipped with a multi-mode depending on the key. The different
working modes are shipped with different encrypting circuits depending on the user’s key. We
analyze the period, the linear complexity, and use known attacks to verify the security strength
of the proposed cipher. Compared with existing dual mode clock-controlled stream ciphers, the
merits of our proposed cipher are its long period, high linear complexity, low hardware complex, low
initialization clock, and simplicity in mode switching. Furthermore, the proposed cipher passes the
FIPS PUB 140-1 and SP800-22 tests, obtaining at least 97.00%.

Keywords: stream cipher; hardware security; multi-mode; clock-controlled; key-based; IoT

1. Introduction

Today, with the popularization of personal communication systems, such as cellular
phones, PDAs, notebook computers, etc., and with the rapid development of the Internet
of things (IoT), people can share information or transmit sensitive data by using these
communication systems. There are a lot of information and communication services
in the surrounding areas of human lives at present. These services are combined with
various applications, for example, voice over Internet protocols, electronic commerce,
distance learning, video conferencing, etc. These real-time streaming technologies provide
convenience in terms of people’s instant requirement for information and communication.

The IoT provides convenience in terms of information transmission, but it is unsafe
when transmitting unencrypted data via the openness of wireless communications. It is
easy to be overheard without protection on such systems. For this reason, the most effective
method is to encrypt the transmitted content to prevent the information from being directly
known by eavesdropping. Even if the transmitted content is overheard from the channel,
they will be nonsensical data. In order to achieve secure communications, cryptography is
applied to protect privacy and to avoid fraud in secure communications in the IoT.

The security of the IoT can be achieved by implementing Secure Shell (SSH) and
Transport Layer Security (TLS) protocols. However, they have heavy overheads that are
not suitable for the resource-constrained environment of the IoT [1]. There are three basic
popular communication protocols at the IoT application level; they are the CoAP (Con-
strained Application Protocol), MQTT (Message Queuing Telemetry Transport), and the
XMPP (Advanced Message Queuing Protocol). The MQTT protocol is the most widely used
protocol for the communication of these devices in IoT systems due to its low resource re-
quirements [2]. Some cryptosystems have been proposed in IoT systems that communicate
using the MQTT protocol, but they have not been widely accepted because of their perfor-
mances [3,4]. For confidentiality, the cipher of an asymmetric cryptosystem, e.g., RSA, ECC,
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etc., is not suitable for the IoT, due to the computational load. In symmetric cryptosystems,
stream ciphers outperform block ciphers because of their simple encrypting operation.

The stream cipher is a class of symmetric encryption algorithms, and it is generally
much faster than block ciphers, so stream ciphers are widely used in digital communications
and real-time transmissions. For the security demands of real-time communications, stream
ciphers are used to meet the necessary requirements [5–8]. For example, the stream cipher
A5/1 supports the confidentiality of mobile communications [9]. Similarly, in real-time
communications of the IoT, security efficiency can benefit from using stream ciphers.

At the core of stream ciphers is the keystream generator. One of the basic structures of
keystream generators is the linear feedback shift register (LFSR) [10]. For the attack of the
Berlekamp-Massey algorithm, the output of the sequences of LFSRs is straightforwardly
predictable. To resist this attack and spoil the linearity properties of LFSRs, there are three
basic schemes that can be achieved, which include: a nonlinear combining function on the
outputs of several LFSRs, a nonlinear filtering function on the contents of a single LFSR,
and using the output of one (or more) LFSRs to control the clock of one or more other LFSRs,
which are the clock-controlled LFSRs. All of these schemes require a nonlinear function to
combine the outputs of LFSRs or control the input clock for clock-controlled LFSRs [10–14].
The clock-controlled based stream cipher A5/1 uses the nonlinear majority function as the
nonlinear function to promote its security. Erguler and et al. proposed a clock-controlled
stream cipher with dual modes, and that has two different clocking mechanisms to provide
security enhancements [15].

Regarding the hardware of stream ciphers, a cipher with a multiple working nonlinear
circuit is a strategy by which to gain the security strength of the output keystream. To
further the security strength of stream ciphers, in this paper, we design a key-based multi-
mode clock-controlled stream cipher for real-time secure communications using the IoT.
The cipher is equipped with a multi cipher mode, depending on the secret key. The
different modes are shipped with different encryption circuits depending on the user’s
session key. We analyze the period, linear complexity, evaluate the randomness, and use
known attacks to verify the security strength of the cipher. From the experimental results,
the proposed cipher passes the FIPS PUB 140-1 and SP800-22 tests, attaining at least 97.00%.
The contributions of this study can be briefly stated as follows:

• The proposed scheme employs multiple working modes depending on the user’s
session key.

• The multiple working modes of the different working circuits include different nonlin-
ear selecting functions and different nonlinear output combining functions.

• All of the nonlinear selecting functions and output combining functions provide the
balance correlation probability. It prevents weakness for attackers to break through
the stream cipher.

• The proposed scheme is one of hardware security, and is easy to implement
using hardware.

This paper is organized as follows. Section 2 introduces the related research regarding
stream ciphers. Then, we present our proposed scheme, describe each component of the
proposed stream cipher, and specify the details of the design in Section 3. In Section 4, we
consider statistical properties and some attacks with respect to our design. In addition, we
present the results regarding the period and linear complexity of our scheme. Section 5
describes the test criteria and the experimental results for our proposed stream cipher. We
use the Federal Information Processing Standards Publication 140-1 (FIPS PUB 140-1) [16]
and the Special Publication 800-22 (SP800-22) [17] to perform the statistical tests for our
scheme. Finally, we provide the conclusions in Section 6.

2. Preliminaries

The basic design of a stream cipher requires a short key and expands it into a bi-
nary pseudorandom number sequence. This sequence is also called the keystream. The
keystream is XORed to the plaintext and generates the ciphertext. Similarly, the same
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keystream is used to decrypt through XORing with the cipher to recover the original plain-
text [18]. Therefore, the keystream generator plays an important role in the research of
stream ciphers. Generally speaking, the keystream generator can be composed of the finite
state machine (FSM) and the output function. Among the design of many stream ciphers,
the LFSR is the most common class of FSM due to its simplicity, speed of implementation
in hardware, and the fact that it provides sequences with good statistical properties.

2.1. Linear Feedback Shift Register

The Linear Feedback Shift Register (LFSR) can be implemented in two ways. One
is the Fibonacci structure, and the other is the Galois structure. The Fibonacci structure
of a LFSR consists of a simple shift register and additive operations. Figure 1 shows the
Fibonacci structure of a LFSR. At the time t, the LFSR of length L consists of L stages S0+t,
. . . , SL−1+t, where t ≥ 0. Each stage is a D-type flip-flop and stores one bit. The output
position of each D-type flip-flop that affects the next state is called the tap. The taps are
sequentially XORed and then fed back into the leftmost bit. The Fibonacci structure of a
LFSR can use a feedback polynomial to record the structure. We call the polynomial the
connection polynomial f (x). It is defined as follows:

f (x) = 1 +
L

∑
i=1

Cixi = 1 + C1x+C2x2 + . . . + CLxL (1)

where L is called the degree of the connection polynomial and the Ci is called the feedback
coefficient. In general, the additive operations are included in module 2. The feedback
coefficient Ci (1 ≤ i ≤ L) that is not zero is the tap of the connection polynomial. For any
feedback coefficient, Ci is either 0, meaning “no connection”, or 1, meaning it is sequentially
XORed with the other taps and then fed back into the leftmost bit. Furthermore, the
connection polynomial is called a characteristic polynomial.
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Figure 1. The Fibonacci structure of a LFSR.

The Galois configuration of the LFSR is illustrated in Figure 2. It also consists of
a shift register of length L. The Galois structure of a LFSR of length L can also use a
feedback polynomial to record the structure of the LFSR. It is defined by the characteristic
polynomial p(x):

p(x) = 1 +
L−1

∑
i=1

pixi + xL = 1 + p1x + p2x2 + · · ·+ pL−1xL−1 + xL (2)
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The Galois LFSR does not concatenate every tap to produce the new input, but each
tap is parallel to compute the new input bits. If the feedback polynomial of the LFSR is
a primitive polynomial and the initial state of the LFSR is not all zero, the period of the
output sequence of the LFSR is at most equal to 2L − 1. Such a LFSR produces a sequence
with the longest period, and we call the sequence a maximal sequence or m-sequence.

2.2. LFSR-Based Stream Cipher

In this subsection, we introduce some LFSR-based stream ciphers. The A5/1 is a
clock-controlled, LFSR-based stream cipher which is used for encrypting air transmissions
in the GSM standard. The diagram of an A5/1 stream cipher is illustrated in Figure 3. It
is composed of three LFSRs with different lengths and primitive feedback polynomials.
Each LFSR is shifted, using clock cycles that are determined by a majority function. The
major issue with A5/1 security is the short period problem. The cipher operation is based
on three LFSRs, R1, R2, and R3, of lengths 19, 22, and 23 bits, respectively. The experiment
shows that the period of A5/1 is equal to (4/3)(223 − 1) [19]. Another basic issue is the
collision problem. It means that A5/1 may result in the same keystream when the LFSR’s
different seeds are used.
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To reduce the weaknesses of A5/1, some solutions have been proposed in the literature.
Erguler and Anarim, in 2005, proposed an A5/2 algorithm that consists of four registers
and modified the clocking control mechanism to promote its security strength [20]. In 2006,
Erguler and Erguler proposed a LFSR-based CCDM (Clock-Controlled with Dual Mode)
stream cipher with a dual operating mode [15]. It is a novel clock-controlled stream cipher
with Dual Mode, which is based on irregular clocking and operates with two different
modes. The CCDM-Mode I merges eight 4 × 16 S-boxes of DES [21] for the keystream
generation, and the CCDM-Mode II operates with a mutual clock-control mechanism.
Zakaria and et al., in 2011, presented two modifications of A5/1 [22]. One is the changing
of the original primitive polynomials of LFSR in A5/1. The second modification added
two LFSRs and proposed five LFSRs in total. The scheme passed the randomness tests.
Yohana, in 2015, improved A5/1 by means of a unit delay to increase the period of the
keystream [23]. The keystream of the proposed methodology succeeded in randomness
tests. In 2019, Sadkhan and Hamza added a fourth register and applied a new filtration
function to A5/1 on each register to strengthen the original linear combination function
and XOR operation [24]. The authors implemented hardware and made the generator
more secure.

Sadkhan and Reza, in 2017, proposed a new method to investigate the best structure
for the nonlinear combining function [10]. Based on LFSR, to build a nonlinear combination
function consisting of n levels, the designers built it within the program and changed
part of the chosen nonlinear combination function every time to observe the results. The



Electronics 2023, 12, 1076 5 of 24

scheme required the support of a powerful computer. In 2021, Prajapat and et al. proposed
a security enhancement of the A5/1 stream cipher in GSM communications [14]. The
scheme reduced the non-linear combinational generator (NLFSRs), reused the 32 bits of
SRES generated by the A3 algorithm, and finally, combined the output stream with the
remaining 32-bit of CGI (Cell Global Identity). From the results of the NIST Statistical
Test, the scheme achieved enhanced security. In 2022, Kopparthi and et al. proposed a
pseudorandom number generator based on a digital piecewise linear chaotic map with
perturbation [25]. The basic algorithm for the pseudorandom number generator is based on
chaos, rather than LFSR. The scheme increases the period of random sequence and succeeds
in increasing security; its requirements in terms of hardware costs were also increased.

3. The Proposed Scheme

To promote the randomness and the chaos of the output keystream, we propose a
multi-mode keystream generator. The different working modes are dependent on the input
key. In this section, we introduce the proposed stream cipher. We apply a clock-controlled
stream cipher and propose a key-based multi-mode clock-controlled stream cipher. The
structure of the proposed cipher is based on multi-LFSR and is equipped with multiple
cipher modes to enhance security. The mode selection is dependent on the secret key
bits. For each cipher mode, the output sequences have a large period and a high linear
complexity. In the following subsections, we present our proposed scheme and describe
each component of the proposed stream cipher. Furthermore, we specify the details of
the design.

3.1. Keystream Generator

To match the AES, the proposed key-based multi-mode clock-controlled stream cipher
takes a 128-bit secret key denoted Ki, 0 ≤ i ≤ 127, and a 128-bit initialization vector denoted
IVi, 0 ≤ i ≤ 127, as its inputs. The cipher consists of four main building blocks, namely
LFSRs, a clock controller, a mode controller, and an output generator. An overview of the
blocks used in the stream cipher is illustrated in Figure 4.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 24 
 

 

Output 

Generator

Output 

Generator

Output 

Generator

Clock 

Controller

LFSRaclk

LFSRbclk

LFSRgclk

LFSRaclk

LFSRbclk

LFSRcclk

Nonlinear 

Functions

Output

Generator

Mode Controller
Clock Controller

LFSRs

 part bits of secret key

keystream

clk

clk

clk

2

 

Figure 4. The block diagram of keystream generator. 

The size of the internal state of the proposed keystream generator is 318 bits, which 

consists of six LFSRs: LFSRα, LFSRβ, LFSRγ, LFSRa, LFSRb, and LFSRc, respectively. The 

main work of the LFSRa, LFSRb, LFSRc, and output generator is to produce the keystream. 

The main work of the LFSRα, LFSRβ, LFSRγ, and the nonlinear functions is to control when 

LFSRa, LFSRb or LFSRc, will be shifted. There are two clock operation modes in the clock 

controller and four output sequence generators in the output generator. They organize 

eight cipher operation modes. The responsibility of the mode controller is the selection of 

which cipher mode will operate; where the input of the mode controller is the part of 

secret key bits. The rightmost bits of LFSRa, LFSRb, and LFSRc are inputted to the output 

generator to produce the keystream. 

3.2. The LFSRs 

The size of the internal state of the keystream generator is 318 bits, which consists of 

six LFSRs, namely LFSRα, LFSRβ and LFSRγ, LFSRa, LFSRb, and LFSRc. The underlying 

LFSRα, LFSRβ, LFSRγ, LFSRa, LFSRb, and LFSRc are six maximum-length LFSRs of lengths 

31, 17, 13, 61, 89, and 107, respectively. The primitive feedback polynomials of the registers 

are defined as follows [26]: 

LFSRα: Pα(x) = x31 + x25 + x23 + x8 + 1 (3) 

LFSRβ: Pβ(x) = x17 + x16 + x12 + x4 + 1 (4) 

LFSRγ: Pγ(x) = x13 + x8 + x5 + x3 + 1 (5) 

LFSRa: Pa(x) = x61 + x59 + x52 + x47 + x38 + x33 + 1 (6) 

LFSRb: Pb(x) = x89 + x81 + x68 + x31 + x21 + x18 + 1 (7) 

LFSRc: Pc(x) = x107 + x89 + x84 + x40 + x29 + x23 + 1 (8) 

If the length of a LFSR is L and the LFSR is using the Fibonacci structure, it must be 

repeated L times to update each content of the register during initialization. In order to 

increase the efficiency of key initialization, we select different length LFSRs instead of a 

single LFSR. We use the Galois structure of a LFSR to speed up the operation of 

initialization. 

3.3. Mode Controller 

The responsibility of the mode controller is the selection of which cipher mode will 

operate in the system. We built a mode controller module, as shown in Figure 5. There are 

five input signals and three output signals in the mode controller, where the inputs of the 

Figure 4. The block diagram of keystream generator.

The size of the internal state of the proposed keystream generator is 318 bits, which
consists of six LFSRs: LFSRα, LFSRβ, LFSRγ, LFSRa, LFSRb, and LFSRc, respectively. The
main work of the LFSRa, LFSRb, LFSRc, and output generator is to produce the keystream.
The main work of the LFSRα, LFSRβ, LFSRγ, and the nonlinear functions is to control when
LFSRa, LFSRb or LFSRc, will be shifted. There are two clock operation modes in the clock
controller and four output sequence generators in the output generator. They organize
eight cipher operation modes. The responsibility of the mode controller is the selection
of which cipher mode will operate; where the input of the mode controller is the part of
secret key bits. The rightmost bits of LFSRa, LFSRb, and LFSRc are inputted to the output
generator to produce the keystream.
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3.2. The LFSRs

The size of the internal state of the keystream generator is 318 bits, which consists of
six LFSRs, namely LFSRα, LFSRβ and LFSRγ, LFSRa, LFSRb, and LFSRc. The underlying
LFSRα, LFSRβ, LFSRγ, LFSRa, LFSRb, and LFSRc are six maximum-length LFSRs of lengths
31, 17, 13, 61, 89, and 107, respectively. The primitive feedback polynomials of the registers
are defined as follows [26]:

LFSRα: Pα(x) = x31 + x25 + x23 + x8 + 1 (3)

LFSRβ: Pβ(x) = x17 + x16 + x12 + x4 + 1 (4)

LFSRγ: Pγ(x) = x13 + x8 + x5 + x3 + 1 (5)

LFSRa: Pa(x) = x61 + x59 + x52 + x47 + x38 + x33 + 1 (6)

LFSRb: Pb(x) = x89 + x81 + x68 + x31 + x21 + x18 + 1 (7)

LFSRc: Pc(x) = x107 + x89 + x84 + x40 + x29 + x23 + 1 (8)

If the length of a LFSR is L and the LFSR is using the Fibonacci structure, it must be
repeated L times to update each content of the register during initialization. In order to
increase the efficiency of key initialization, we select different length LFSRs instead of a
single LFSR. We use the Galois structure of a LFSR to speed up the operation of initialization.

3.3. Mode Controller

The responsibility of the mode controller is the selection of which cipher mode will
operate in the system. We built a mode controller module, as shown in Figure 5. There
are five input signals and three output signals in the mode controller, where the inputs of
the mode controller are K0, K1, K2, K3, and K4 of the secret key and the outputs are m0, m1,
and m2.
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The signal m0 is taken to control which clock operation mode will be operated, and it
is generated by XORing K0, K1, K2, K3, and K4. Here, ⊕ denotes logic XOR, the Boolean
function of m0 is given by:

m0 = K0 ⊕ K1 ⊕ K2 ⊕ K3 ⊕ K4 (9)

Another two output signals, m1 and m2, of the mode controller are taken to control
which output sequence generator will operate. We use one of four quasigroups of Edon80
for a part of the mode controller. Since the four quasigroups are suitable for implementation,
no hidden weaknesses can be imposed [27]. The quasigroup is shown in Table 1. We let X
be K1K0 and let Y be K3K2. The value X defines the row r of the quasigroup, and the value
Y defines the column c. For the data on the (r, c) in Table 1, each r and c has a two-bit length,
respectively. The result of (r, c) is a two-bit length, too. Then, we take the result of (r, c) to
control which output sequence generator will operate.
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Table 1. The quasigroup table.

Nr. 61
X

0 1 2 3

Y

0 0 2 1 3

1 2 1 3 0

2 1 3 0 2

3 3 0 2 1

In the hardware implementation, to reduce the gate numbers in order to store the
quasigroup table, we use the Boolean functions and map the quasigroup table to logic [28].
Here, ⊕ denotes logic XOR and . . . denotes logic AND. The output signals m1 and m2 are
computed by the Boolean functions as follows:

m1 = K0 · K2 ⊕ K1 ⊕ K3 (10)

m2 = K0 ⊕ K2 (11)

Finally, we obtain the logic circuit to implement the mode controller. The circuit of the
mode controller is shown in Figure 6.
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3.4. Clock Controller

The main work of the LFSRa, LFSRb, LFSRc, and output generator is to produce the
keystream. The respective rightmost bits of LFSRa, LFSRb, and LFSRc are inputted into the
output generator to produce the keystream, but the respective clock pulses of these three
LFSRs are dependent on the clock controller. There are two clock operation modes in the
clock controller, which are mode 0 and mode 1. Which outputs of the two modes will be
outputted is determined according to the output signal m0 of the mode controller. If m0 = 0,
then the outputs of mode 0 are outputted. On the other hand, if m0 = 1, then the outputs of
mode 1 are outputted.

The clock controller consists of three LFSRs and some nonlinear Boolean functions.
The three LFSRs are LFSRα, LFSRβ, and LFSRγ, and the respective rightmost bits of these
LFSRs are inputted into nonlinear Boolean functions, and then the outputs of the nonlinear
Boolean functions are used to control whether LFSRa, LFSRb, or LFSRc will be shifted. It
means the clock controller controls respective clock pulses of the LFSRa, LFSRb, and LFSRc.
We describe how the clock controller controls the respective clock pulses of the LFSRa,
LFSRb, and LFSRc.

First, the respective rightmost bits of the LFSRα, LFSRβ, and LFSRγ are denoted by
α0t, β0t, and γ0t, respectively, at time t. They are inputted into the fmaj function and the fand
function, which are given by:

fmaj = (α0t· · · β0t) + (α0t· · · γ0t) + (β0t· · · γ0t) (12)
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fand = α0t· · ·β0t· · ·γ0t (13)

where, +denotes logic OR and· · ·denotes logic AND. For the mode of m0 = 0, then fmaj
function is selected. If α0t = fmaj, then LFSRa is shifted. While β0t = fmaj and γ0t = fmaj, then
LFSRb and LFSRc are shifted, respectively. Similarly, for another mode of m0 = 1, the fand
function will be selected. If α0t = fand, then LFSRa is shifted. While β0t = fand and γ0t = fand,
then LFSRb and LFSRc are shifted, respectively. According to the above, we define clkai,
clkbi, and clkci as the clocking condition of LFSRa, LFSRb, and LFSRc, respectively, where
i ∈ {0, 1}. For the mode of m0 = 0, then clka0, clkb0, and clkc0 are selected. If clka0 = 1,
then LFSRa is shifted. While clkb0 = 1 and clkc0 = 1, then LFSRb and LFSRc are shifted,
respectively. On the other hand, for the mode of m0 = 1, then clka1, clkb1, and clkc1 are
selected. If clka1 = 1, then LFSRa is shifted. While clkb1 = 1 and clkc1 = 1, then LFSRb and
LFSRc are shifted, respectively.

Next, we build two truth tables for the clocking conditions of the three LFSRs, LFSRa,
LFSRb, and LFSRc, which are shown in Tables 2 and 3. Then, we can simplify clka0, clkb0,
and clkc0 into Boolean functions for clock operation mode 0, as well as clka1, clkb1, and clkc1
for clock operation mode 1. The simplified Boolean functions of the two clock operation
modes are shown as follows:

Table 2. Clocking condition under m0 = 0.

LFSRα LFSRβ LFSRγ
fmaj

LFSRa LFSRb LFSRc

α0t β0t γ0t clka0 clkb0 clkc0

0 0 0 0 1 1 1

0 0 1 0 1 1 0

0 1 0 0 1 0 1

0 1 1 1 0 1 1

1 0 0 0 0 1 1

1 0 1 1 1 0 1

1 1 0 1 1 1 0

1 1 1 1 1 1 1

Table 3. Clocking condition under m0 = 1.

LFSRα LFSRβ LFSRγ
fand

LFSRa LFSRb LFSRc

α0t β0t γ0t clka1 clkb1 clkc1

0 0 0 0 1 1 1

0 0 1 0 1 1 0

0 1 0 0 1 0 1

0 1 1 0 1 0 0

1 0 0 0 0 1 1

1 0 1 0 0 1 0

1 1 0 0 0 0 1

1 1 1 1 1 1 1

Clock operation mode 0:

clka0 = α0tβ0t + α0tγ0t + β0tγ0t (14)

clkb0 = β0tγ0t + α0tγ0t + α0tβ0t (15)

clkc0 = β0tγ0t + α0tγ0t + α0tβ0t (16)
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Clock operation mode 1:
clka1 = α0t + β0tγ0t (17)

clkb1 = β0t + α0tγ0t (18)

clkc1 = γ0t + α0tβ0t (19)

At each clock cycle, only one of the two clock operation modes will determine whether
the LFSRa, LFSRb, or LFSRc are shifted or not, since the signal m0 is taken to switch which
outputs of clock operation mode will output. Furthermore, each rightmost bit of LFSRa,
LFSRb, and LFSRc will input to the output generator to generate the keystream.

3.5. Output Generator

The output generator takes sequence a0t, b0t, and c0t as its input, which are the respec-
tive rightmost bits of LFSRa, LFSRb, and LFSRc at time t. There are four output sequence
generators in the output generator. The sequence outputs are denoted by z0t, z1t, z2t and z3t.
According to the selected mode, the output signals m1 and m2 of the mode controller are
taken to control which output sequence generator will operate. For example, if m2 = 0 and
m1 = 0, then output sequence generator 0 (OSG0) will be operated, and so on. Table 4 lists
the operating conditions under m2 and m1.

Table 4. The operating condition under m2 and m1.

m2 m1 Operating OSGi

0 0 OSG0

0 1 OSG1

1 0 OSG2

1 1 OSG3

The output sequence generators are given as follows:
Output Sequence Generator 0 (OSG0): In this generator, we use exclusive-or operation

with a0t, b0t, and c0t to produce keystream z0t, which is given by:

z0t = a0t ⊕ b0t ⊕ c0t (20)

The output-inputs correlation probability of OSG0 is demonstrated in Table 5. All
correlations between inputs and output are both 1/2.

Table 5. Correlation probability of OSG0.

a0t b0t c0t z0t Correlation Probability

0 0 0 0

Output-Inputs:
prob(z0t = a0t) = 1/2

prob(z0t = b0t) = 1/2

prob(z0t = c0t) = 1/2

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1
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Output Sequence Generator 1 (OSG1): In this generator, we use two Dawson’s summa-
tion generators to produce the keystream. The diagram of Dawson’s summation generator
(DSG) is shown in Figure 7 and the functions are defined as follows [29]:

zj = aj ⊕ bj ⊕ cj−1 (21)

cj = bj ⊕ (aj ⊕ bj) · cj−1 (22)
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Here aj, bj, and cj−1 denote the input sequences of DSG, and cj−1 is cj delayed one
clock. The initial state of the bit, cj−1, is defined to be zero. In addition, the DSG has
high resistance against correlation attacks [29], due to all its output-inputs correlation
probabilities being 1/2 , as demonstrated in Table 6.

Table 6. Correlation probability of DSG.

aj bj cj−1 cj zj Correlation Probability

0 0 0 0 0

Output-Inputs:
prob(zj = aj) = 1/2

prob(zj = bj) = 1/2

prob(zj = cj−1) = 1/2

Output-cj:
prob(zj = cj) = 1/2

0 0 1 0 1

0 1 0 1 1

0 1 1 0 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

In Figure 1, we use two DSGs to generate keystream z1t. The diagram of OSG1 is
shown in Figure 8. The functions can be written as follows:
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DSG1:
z1t = ft ⊕ c0t ⊕ et−1 (23)

et = c0t ⊕ (ft ⊕ c0t)· · · et−1 (24)

DSG2:
ft = a0t ⊕ b0t ⊕ dt−1 (25)

dt = b0t ⊕ (a0t ⊕ b0t)· · · dt−1 (26)
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The initial state of the bits, ft−1 and et−1, are defined to be zero and the output function
of the OSG1 can be sorted as follows:

z1t = a0t ⊕ b0t ⊕ c0t ⊕ dt−1 ⊕ et−1 (27)

dt = b0t ⊕ (a0t ⊕ b0t) · dt−1 (28)

et = c0t ⊕ (a0t ⊕ b0t ⊕ c0t ⊕ dt−1)· · · et−1 (29)

We also sort the respective correlation probabilities of the output-inputs, output-dt
and output-et, of OSG1. All of them are equal to 1/2, which is demonstrated in Table 7.

Table 7. Correlation probabilities of OSG1.

a0t b0t c0t dt−1 et−1 dt et z1t Correlation Probability

0 0 0 0 0 0 0 0

Output-Inputs:
prob(z1t = a0t) = 1/2

prob(z1t = b0t) = 1/2

prob(z1t = c0t) = 1/2

prob(z1t = dt−1) = 1/2

prob(z1t = et−1) = 1/2

Output-dt:
prob(z1t = dt) = 1/2

Output-et:
prob(z1t = et) = 1/2

0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1 1 0 1 0

0 0 1 0 0 0 1 1

0 0 1 0 1 0 0 0

0 0 1 1 0 0 1 0

0 0 1 1 1 0 1 1

0 1 0 0 0 1 0 1

0 1 0 0 1 1 1 0

0 1 0 1 0 0 0 0

0 1 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 1 1 0 1 1 1 1

0 1 1 1 0 0 1 1

0 1 1 1 1 0 0 0

1 0 0 0 0 0 0 1

1 0 0 0 1 0 1 0

1 0 0 1 0 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 0 0 1 0

1 0 1 0 1 0 1 1

1 0 1 1 0 1 1 1

1 0 1 1 1 1 0 0

1 1 0 0 0 1 0 0

1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 1 1 1 0

1 1 1 0 0 1 1 1

1 1 1 0 1 1 0 0

1 1 1 1 0 1 1 0

1 1 1 1 1 1 1 1
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Output Sequence Generator 2 (OSG2): The OSG2 is shown in Figure 9. In this generator,
we build a hybrid carry bit gt and merge it with DSG to generate keystream z2t, which can
be defined as follows:

z2t = a0t ⊕ b0t ⊕ c0t ⊕ gt−1 (30)

gt = gt−1 ⊕ (a0t ⊕ gt−1 ⊕ c0t)· · · b0t (31)
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The initial state of the bits, gt−1, is defined to be zero. All of the correlation probabilities
of the output-inputs and the output-gt of OSG2 are equal to 1/2, which are demonstrated
in Table 8.

Table 8. Correlation probability of OSG2.

a0t b0t c0t gt−1 gt z2t Correlation Probability

0 0 0 0 0 0

Output-Inputs:
prob(z2t = a0t) = 1/2

prob(z2t = b0t) = 1/2

prob(z2t = c0t) = 1/2

prob(z2t = gt−1) = 1/2

Output-gt:
prob(z2t = gt) = 1/2

0 0 0 1 1 1

0 0 1 0 0 1

0 0 1 1 1 0

0 1 0 0 0 1

0 1 0 1 0 0

0 1 1 0 1 0

0 1 1 1 1 1

1 0 0 0 0 1

1 0 0 1 1 0

1 0 1 0 0 0

1 0 1 1 1 1

1 1 0 0 1 0

1 1 0 1 1 1

1 1 1 0 0 1

1 1 1 1 0 0

Output Sequence Generator 3 (OSG3): The OSG3 is shown in Figure 10. In this
generator, we establish another hybrid carry bit ht, and output functions then merge them
with DSG to generate keystream z3t; which can be defined as follows:

z3t = a0t ⊕ b0t ⊕ c0t ⊕ ht−1 (32)

ht = a0t · (b0t ⊕ c0t ⊕ ht−1) ⊕ b0t ⊕ c0t (33)
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The initial state of the bits, ht−1, is defined to be 0. The correlation probabilities of the
output-inputs and the output-ht of OSG3 are both 1/2, which are demonstrated in Table 9.

Table 9. Correlation probability of OSG3.

a0t b0t c0t ht−1 ht z3t Correlation Probability

0 0 0 0 0 0

Output-Inputs:
prob(z3t = a0t) = 1/2

prob(z3t = b0t) = 1/2

prob(z3t = c0t) = 1/2

prob(z3t = ht−1) = 1/2

Output-ht:
prob(z3t = ht) = 1/2

0 0 0 1 0 1

0 0 1 0 1 1

0 0 1 1 1 0

0 1 0 0 1 1

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 0 1

1 0 0 0 0 1

1 0 0 1 1 0

1 0 1 0 0 0

1 0 1 1 1 1

1 1 0 0 0 0

1 1 0 1 1 1

1 1 1 0 0 1

1 1 1 1 1 0

3.6. Key/IV Setup

The inputs of the keystream generator are called seeds. The requirements of these
seeds are that they must be random and unpredictable before generating the keystream.
For this reason, we must use the key initialization procedure to perform the requirement.
In this subsection, we describe the computation of the initial inner state before starting
the keystream generation. First, part bits of the secret key are collaterally loaded into
the 318-bit initial state of the cipher. Then, the remaining bits of the secret key and the
128-bit initialization vector are fed into the 318-bit initial state of the cipher using the key
initialization procedure. We generalize the Key/IV Setup into two phases, the initial filling
phase and the key initialization procedure phase. It works as follows.

3.6.1. Initial Filling Phase

The 128-bit secret key K is denoted by K = K0, . . . , K127 and the 128-bit initialization
vector IV is denoted by IV = IV0, . . . , IV127. The internal states of LFSRα, LFSRβ, and LFSRγ

are denoted by αi, βI, and γI, respectively, where:

αi, 0 ≤ i ≤ 30 (34)

βi, 0 ≤ i ≤ 16 (35)
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γi, 0 ≤ i ≤ 12 (36)

The internal states of LFSRa, LFSRb, and LFSRc are denoted by ai, bi, and ci, respec-
tively, where:

ai, 0 ≤ i ≤ 60 (37)

bi, 0 ≤ i ≤ 88 (38)

ci, 0 ≤ i ≤ 106 (39)

The initial filling of each LFSR is carried out as follows:

(a60, a59, . . . , a1, a0)← (K59, K58, . . . , K0, 1) (40)

(α30, α29, . . . , α1, α0)← (K89, K88, . . . , K60, 1) (41)

(b88, b87, . . . , b1, b0)← (K87, K86, . . . , K0, 1) (42)

(β16, β15, . . . , β1, β0)← (K105, K104, . . . , K88, 1) (43)

(c106, c105, . . . , c1, c0)← (K105, K104, . . . , K0, 1) (44)

(γ12, γ11, . . . , γ1, γ0)← (K117, K116, . . . , K106, 1) (45)

Notice that only part bits of the secret key are collaterally loaded into the 318-bit initial
state of the cipher. The 38-bit secret key and 128-bit initialization vector have not been
used yet.

3.6.2. Key Initialization Procedure Phase

After part bits of the 128-bit secret key are collaterally loaded into the 318-bit initial
state of the cipher, the remaining 38-bit secret key and the 128-bit initialization vector are
fed into the cipher using the key initialization procedure, which is described in Figure 11.
We must use 166 cycles to perform this procedure. Here, we use the parameters seedαt,
seedβt, and seedγt to denote the remaining bits of the secret key and the initialization vector,
for 0 ≤ t ≤ 165. The parameters seedαt, seedβt, and seedγt are given as follows:

(seedα165, ..., seedα0)← (IV127, ..., IV0, K127, . . . , K90) (46)

(seedβ165, ..., seedβ0)← (0, ..., 0, IV127, ..., IV0, K127, . . . , K106) (47)

(seedγ165, ..., seedγ0)← (0, ..., 0, IV127, ..., IV0, K127, . . . , K118) (48)
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During the key initialization procedure, the respective rightmost bits of LFSRa, LFSRb,
and LFSRc are still inputted to OSG1, OSG2, and OSG3. The output sequences z1t, z2t, and
z3t of OSG1, OSG2, and OSG3, respectively, are fed back and XORed with seedαt, seedβt, and
seedγt, respectively, into the leftmost bit of LFSRα, LFSRβ, and LFSRγ in parallel, where
0 ≤ t ≤ 165. Note that there is no bit of the keystream output during this initialization
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procedure, and each LFSR is clocked 166 times using the clk clock. It means that each LFSR
is clocked in the normal way by ignoring the clocking controller.

4. Security Properties

The long period, high linear complexity, and good statistical properties are three of the
basic requirements for pseudorandom binary sequences in cryptographic applications. In
this section, we consider the period, linear complexity, statistical properties, and some at-
tacks with respect to our design. Due to the proposed scheme, the multi-clocking keystream
generator and the periods of each LFSR affect each other by current states. We provide the
mathematical results regarding the period and linear complexity of our scheme.

4.1. Period

One of the important attributes to be considered for a stream cipher is the period of
the keystream. The period of a keystream s = s0, s1, s2, . . . is the smallest positive integer N
if si = si+N for all i ≥ 0. If the period of the keystream is too short, it will result in different
parts of the plaintext being encrypted in the identical bits of the keystream. The long period
can avoid the keystream being reused when encrypting long plaintexts.

In our scheme, the internal state of the proposed cipher consists of LFSRα, LFSRβ,
LFSRγ, LFSRa, LFSRb, and LFSRc, and all of these LFSRs are six maximum-length LFSRs of
lengths 31, 17, 13, 61, 89, and 107, respectively. The respective periods of LFSRα, LFSRβ,
LFSRγ, LFSRa, LFSRb, and LFSRc are denoted as Pα, Pβ, Pγ, Pa, Pb, and Pc, respectively,
and they are equal to 231 − 1, 217 − 1, 213 − 1, 261 − 1, 289 − 1, and 2107 − 1, respectively.
Notice that all of these periods are prime numbers. The main work of LFSRa, LFSRb, and
LFSRc is to produce the keystream, but their respective clock pulses are dependent on the
clock controller. The clock controller consists of LFSRα, LFSRβ, LFSRγ, and some nonlinear
Boolean functions, and its output sequences clkai, clkbi, and clkci, where i ∈ {0, 1}, are taken
to control the respective clock pulses of LFSRa, LFSRb, and LFSRc. It means the periods
of LFSRa, LFSRb, and LFSRc will be affected by the periods of clkai, clkbi, and clkci. Let us
define the periods of clkai, clkbi, and clkci as Pclkai, Pclkbi, and Pclkci, respectively. The periods
Pclkai, Pclkbi, and Pclkci can be written as [30]:

Pclkai
= lcm(Pα, Pβ, Pγ) = lcm(231 − 1, 217 − 1, 213 − 1) (49)

Pclkbi
= lcm(Pα, Pβ, Pγ) = lcm(231 − 1, 217 − 1, 213 − 1) (50)

Pclkci
= lcm(Pα, Pβ, Pγ) = lcm(231 − 1, 217 − 1, 213 − 1) (51)

where lcm(·) denotes the function of the least common multiple. Since all of the periods Pα,
Pβ, and Pγ are prime numbers, Pclkai, Pclkbi, and Pclkci can be simplified to:

Pclkai = Pclkbi = Pclkci = PαPβPγ = (231 − 1)(217 − 1)(213 − 1) ∼= 261 (52)

Next, the sequences clkai, clkbi, and clkci are taken to control the respective clock pulses
of the LFSRa, LFSRb, and LFSRc. If clkai = 1 and the clk edge trigger simultaneously occurs,
then LFSRa is shifted, and for LFSRb and LFSRc. Let us define Sa, Sb, and Sc as the number
of 1’s in the sequences clkai, clkbi, and clkci, respectively, in every period. The Ta, Tb, and Tc
represent affected periods of LFSRa, LFSRb, and LFSRc, respectively. Thus, the periods Ta,
Tb, and Tc can be written as [15]:

Ta =
Pclkai

× Pa

gcd(Sa, Pa)
(53)

Tb =
Pclkbi

× Pb

gcd(Sb, Pb)
(54)
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Tc =
Pclkci

× Pc

gcd(Sc, Pc)
(55)

Since all of the periods Pa, Pb, and Pc are prime numbers, and they are greater than Sa,
Sb, and Sc, respectively, it means gcd(Sk; Pk) = 1 for k ∈ {a; b; c}. Thus, Ta, Tb, and Tc can be
simplified to:

Ta =
Pclkai

× Pa

gcd(Sa, Pa)
∼= 261 × (261 − 1) (56)

Tb =
Pclkbi

× Pb

gcd(Sb, Pb)
∼= 261 × (289 − 1) (57)

Tc =
Pclkci

× Pc

gcd(Sc, Pc)
∼= 261 × (2107 − 1) (58)

Finally, the output generator takes the respective rightmost bits of LFSRa, LFSRb, and
LFSRc as its input to generate the keystream. The period Tz of the keystream can be written
as follows:

Tz = lcm(Ta, Tb, Tc) ∼= 2(61+61+89+107) ∼= 2318 (59)

It can be seen that, for the period of our proposed method, each cipher is high by
considering the security requirements for each cipher mode.

4.2. Linear Complexity

Any periodic sequence can be generated by a Linear Feedback Shift Register (LFSR),
since a linear recurrence (or a characteristic polynomial) can be implemented by using a
LFSR. Given a periodic sequence, the Berlekamp-Massey algorithm [31] can be used to
calculate this recurrence and linear complexity. The length of the shortest recurrence is
defined as the linear complexity of a periodic sequence.

The linear complexity is also defined as the size of the shortest LFSR, which can
reproduce the same sequence as the given sequence. If the keystream has a linear complexity
LC = n, it can be reconstructed by a LFSR after examining only 2n bits of the keystream.
Once the LFSR is generated by the attacker, they can break the stream cipher. Therefore,
the high linear complexity of the keystream is a necessary condition and very important
for the design of stream ciphers. The high linear complexity of a keystream means that it
possesses higher non-predictability.

According to the Beth-Piper stop-and-go generator and the Gollmann cascade stop-
and-go generator in [30], we can provide the lower bound of the linear complexity of our
scheme. For our scheme, we use the clock controller to control the respective clock pulses
of the LFSRa, LFSRb, and LFSRc. Their respective clock pulses are dependent on the output
sequences clkai, clkbi, and clkci of the clock controller, where i ∈ {0, 1}. We use Pclkai, Pclkbi,
and Pclkci to represent the respective periods of clkai, clkbi, and clkci. The primitive feedback
polynomials of LFSR1, LFSR2, and LFSR3 have degrees of La, Lb, and Lc, respectively. The
lower bound of the linear complexity LC of the proposed cipher can be written as follows:

LC = Pclkai
La + Pclkbi Lb + Pclkci

Lc
∼= 261 × 61 + 261 × 89 + 261 × 107
∼= 261 × 257
∼= 269

(60)

The linear complexity LC and characteristic polynomial of a keystream can be com-
puted by the Berlekamp-Massey algorithm to obtain the linear complexity LC and charac-
teristic polynomial of the keystream which costs approximately O(LC2) [32].

The requirement of the linear complexity of the stream cipher is determined by differ-
ent security levels. For example, when the computation cost of a stream cipher is required
equal to the security strength of AES, it must to be approximately equal to O(2128). For our
scheme, the linear complexity LC of the proposed stream cipher is approximately equal to
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269. According to the above, the computation cost of the proposed cipher can be written
as follows:

O(LC2) = O((269)
2
) = O(2138) > O(2128) (61)

It can be seen that the computation cost of our proposed cipher satisfies the security
strength of AES, being even stronger than AES.

4.3. Statistical Properties

Good statistical properties for randomness are one of the basic important requirements
for stream ciphers. The keystream of a good stream cipher not only has the feature of
non-predictability, but also has good statistical properties for randomness. So, to imple-
ment a stream cipher, the capability to perform statistical tests for randomness must be
incorporated. Randomness testing of random and pseudorandom number generators is
used in many cryptographic, modeling, and simulation applications. The National Institute
of Standards and Technology (NIST) has developed different criteria that may be employed
to investigate the randomness of cryptographic applications.

In order to evaluate the randomness of the proposed keystream, we use the Federal
Information Processing Standards Publication 140-1 (FIPS PUB 140-1) [16] and the Special
Publication 800-22 (SP800-22) [17] to perform the statistical tests for our scheme. They are
also issued by the NIST, where the FIPS PUB 140-1 standard is the security requirement
for cryptographic modules and the SP800-22 is a statistical test suite for random and
pseudorandom number generators for cryptographic applications.

For the FIPS PUB 140-1 standard, there are four test types in the random tests. The
specifications of the recommended tests are based on a single bit stream of 20,000 consecu-
tive output bits. To perform the FIPS PUB 140-1 tests, we sampled 100 different keystreams
which were generated by 100 random keys and 100 random initialization vectors. Each
keystream was a single bit stream of length 20,000 bits. The proposed cipher passed the
FIPS PUB 140-1 tests by a proportion of at least 97.00%.

Furthermore, for the SP800-22 statistical test suite, there are fifteen test types in the
statistical tests that were developed to test the randomness of binary sequences. These tests
focus on a variety of different types of non-randomness that could exist in a sequence. For
the SP800-22 statistical test suite, we sampled 100 different keystreams under the 100 secret
keys, and initialization vectors were randomly chosen. Each sample was 10,000,000 bits in
length. The proposed cipher passed the SP800-22 tests by a proportion of at least 98.00%,
with a significance level of 0.01.

4.4. Time-Memory-Data Tradeoff Attack

In 1980, Hellman introduced a general technique for breaking arbitrary block ciphers
called a time-memory tradeoff attack. It can also be generalized to the general problem of
inverting one-way functions. Babbage and Golić, and later, Biryukov, Shamir, and Wagner,
pointed out that a different tradeoff attack called a time-memory-data tradeoff attack is
applicable to stream ciphers. Several stream ciphers have been broken by time-memory-
data tradeoff attacks, including the famous GSM encryption scheme A5/1 [31].

The time-memory-data tradeoff attack consists of two phases; i.e., the pre-computation
phase and the online phase. In the pre-computation phase, the attacker builds large tables
relating to the behavior of the system in question. During the online phase, the attacker
obtains actual data produced from an unknown key, and his goal is to use the pre-computed
tables to find the key as quickly as possible. There are five parameters for any time-memory-
data tradeoff attack [33,34]:

- N denotes the size of the search space
- P denotes the time required for the pre-computation phase
- M denotes the size of memory used to store the pre-computed tables
- T denotes the time required for the online phase
- D denotes the amount of output data available to the attacker
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The requirement for the attack is that T and M should be smaller than N, since the sum
or maximum of T and M is usually signified by the complexity of the time-memory-data
tradeoff attack.

For the Babbage-Golić tradeoff attack described in [34], it assumes that the size of
the internal state of the stream cipher in N bits and D different keystreams of length logN
are given. The goal of this attack is to recover one of the internal states from any one of
the given keystreams. Once a state is found, the corresponding internal states are derived
from the rest of the plaintext by running the generator forwards from this known state. For
this time-memory-data tradeoff attack, the memory requirement is M = N/D. It suffices
to search the entries in the table D times and the time complexity is T = D with the pre-
computation time P = M. By ignoring some of the available data, the T can be reduced from
T towards 1, and thus, generalize the tradeoff to TM = N and P = M for any 1 ≤ T ≤ D.
T = M constitutes an attack of T = M = D = N1/2.

Another enhanced tradeoff attack, as described in [34], was presented by Biryukov
and Shamir. This attack combined the works of Hellman and Babbage-Golić to launch
a new time-memory-data tradeoff attack on steam ciphers. It assumed that the internal
state could take N different values. As with the work of Babbage-Golić, the aim of this
attack is to recover any one of the many internal states of the stream cipher for D different
keystreams that are given. In the tradeoff attack by Biryukov-Shamir, the parameters of
which satisfy the relation P = N/D and TM2D2 = N2 for 1 ≤ T ≤ D. T = M = N1/2 with
D = N1/4 constitutes an attack.

In fact, Babbage suggested that a secret key length of k bits is required and a state size
of at least 2k bits is required as a design principle of stream ciphers. Similarly, Golić stated
that a simple way of increasing security is to make the internal memory size larger.

According to the above, we know the time-memory-data tradeoff attack can be applied
when the state size of the stream cipher is too small. A necessary condition on the state
size of a stream cipher is that it has to be at least two times the secret key length. For
our scheme, the proposed stream cipher takes the 128-bit secret key. In order to avoid
time-memory-data tradeoff attacks, the size of the internal state must to be at least 256.
However, the size of the internal state of the proposed cipher is 318 bits, which means that
the size of the search space N = 2318 > 2256. This gives T = M = D = N1/2 = 2159 for the
Babbage-Golić tradeoff and T = M = N1/2 = 2159, D = N1/4 = 279.5 for the Biryukov-Shamir
tradeoff attack, respectively. The results show that they are not better than an exhaustive
key search, so the proposed stream cipher can resist against these attacks.

4.5. Correlation Immunity Properties

Correlation immunity as a measure of resistance against ciphertext-only correlation
attacks in stream ciphers was defined by Siegenthaler [35]. As shown in Figure 12, there is a
nonlinear function f with n input sequences x = {x0, x1, . . . , xn−1}. If the correlation between
output sequence z and m input sequences is statistically independent, then the function has
correlation immunity of order m, where m ≤ n. Therefore, the mutual information between
the output sequence z and any subset of m input sequences is zero.
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The m-th order correlation immune function f with n input sequences is defined
as follows:

prob[f (x) = 1|xi1 = s1, xi2 = s2, . . . , xim = sm] = prob[f (x) = 1] (62)

prob[f (x) = 0|xi1 = s1, xi2 = s2, . . . , xim = sm] = prob[f (x) = 0] (63)

where the xi1, xi2, . . . , xim denote the input variables for 0 ≤ i1 < i2 < . . . < im ≤ n − 1, and
(s1, s2, . . . , sm) ∈ {0, 1}m. If f is balanced, prob[ f (x) = 1] = prob[ f (x) = 0] = 1/2, then f is also
called the m-resilient function.

For our scheme, we proposed four output sequence generators (OSGs) to produce the
keystream, which was described in Section 3.5. The four OSGs consist of nonlinear Boolean
functions, except OSG0. All of these OSGs satisfy the properties of being balanced and
correlation immune of order one. The four OSGs, namely OSG0, OSG1, OSG2, and OSG3,
take sequence a0t, b0t, and c0t as their inputs, and their output sequences are denoted by z0t,
z1t, z2t, and z3t, respectively. All of the output-inputs correlation probabilities of each OSG
are listed as follows:

prob[z0t = a0t] = prob[z0t = b0t] = prob[z0t = c0t] = 1/2 (64)

prob[z1t = a0t] = prob[z1t = b0t] = prob[z1t = c0t] = prob[z1t = dt] = prob[z1t = et] = 1/2 (65)

prob[z2t = a0t] = prob[z2t = b0t] = prob[z2t = c0t] = prob[z2t = gt] = 1/2 (66)

prob[z3t = a0t] = prob[z3t = b0t] = prob[z3t = c0t] = prob[z3t = ht] = 1/2 (67)

where dt and et are carry bits of Dawson’s method in OSG1, gt and ht are respective hybrid
carry bits of OSG2 and OSG3. After delaying one clock, they are fed back as extra inputs of
OSG1, OSG2, and OSG3, respectively.

It is apparent that the output bit is uncorrelated to all the individual input bits for
each OSG. The proposed stream cipher is deemed secure and it can resist against some
correlation attacks.

5. Experimental Results

In this chapter, the criteria tests and experimental results are described. First, we
use the Verilog hardware description language to describe the behavior of the proposed
stream cipher. Next, the simulation results of the keystream are taken to evaluate the statis-
tical properties for randomness according to the FIPS PUB 140-1 and SP800-22 packages.
Using the 100 secret keys and with initialization vectors randomly chosen, we sampled
100 different keystreams to utilize the statistical test suite. Finally, we provide a perfor-
mance comparison between the CCDM stream ciphers.

5.1. Statistical Random Number Tests

Good statistical properties for randomness are one of the basic important requirements
for stream ciphers. Any cryptographic modules that implement a random or pseudo-
random number generator shall incorporate this capability to perform statistical tests for
randomness. The NIST has developed different criteria that may be employed to investigate
the randomness of cryptographic applications. In order to evaluate the randomness of the
proposed keystream, we use the Federal Information Processing Standards Publication 140-
1 (FIPS PUB 140-1) and the Special Publication 800-22 (SP800-22) to perform the statistical
tests for our scheme.

5.1.1. Random Test Results under FIPS PUB 140-1

As required by FIPS PUB 140-1, the proposed cipher must perform four different
test types. These tests include a monbit test, a prker test, a runs test and a long runs test.
According to the specifications of FIPS PUB 140-1, these tests were based on a stream
of 20,000 consecutive bits. To determine the randomness properties of our scheme, we
randomly chose 100 secret keys and initialization vectors, and used them to generate 100
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different keystreams for our scheme. Then, we sampled 100 different keystreams to perform
the FIPS PUB 140-1 tests, where each keystream was a single bit stream of 20,000 consecutive
bits. The test results are shown in Table 10. The proposed cipher passes the FIPS PUB 140-1
tests by a proportion of at least 97.00%.

Table 10. Random Test Results under FIPS PUB 140-1.

FIPS PUB 140-1 Tests Pass Rate under 20,000 bits/Sample

Monobit Test 100.00%

Poker Test 97.00%

Runs Test 100.00%

Long Run Test 100.00%

5.1.2. Statistical Test Results under NIST SP800-22

We sampled 100 different keystreams to perform the SP800-22 statistical test suite
with 100 secret keys and initialization vectors that were randomly chosen. Each sample
was 10,000,000 bits in length. Notice, in the cases of the Random Excursions test and the
Random Excursions variant test, the requirement for the number J must be greater than 500.
As mentioned above, the proposed cipher passed the SP800-22 test suite with a proportion
of at least 98.00%. The test results are shown in Table 11. Figure 13 is the comparison chart
of p-values between A5/1, Prajapat’s scheme [14], and the proposed scheme. The parameter
p-value is calculated during testing, which is the strength of the randomness of the dataset.
Each p-value corresponds to the probability that the bit sequence of the dataset under
testing is random. If it is equal to 1, then the bit sequence has ideal randomness. From the
figure, it can be seen that the proposed scheme made progress in the NIST statistical tests.

Table 11. Statistical Test under NIST SP800-22.

No. Statistical Tests p-Value Pass Rate Under 107 bits/Sample

1 Frequency 0.874153 100.00%

2 Block Frequency 0.934875 98.00%

3 Runs 0.938110 100.00%

4 Longest Runs of Ones 0.987412 98.00%

5 Rank 0.841558 99.00%

6 Discrete Fourier Transform 0.994201 100.00%

7 Non-Overlapping Templates Matching 0.835479 98.98%

8 Overlapping Templates Matching 0.885029 99.00%

9 Universal Statistical 0.847512 98.00%

10 Linear Complexity 0.928920 99.00%

11 Serial 0.974116 99.00%

12 Approximate Entropy 0.844743 99.00%

13 Cumulative Sums 0.841321 99.00%

14 Random Excursions 0.954667 98.63%

15 Random Excursions Variant 0.985103 99.11%
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5.2. Performance

We compare the performance of the proposed scheme against other stream ciphers in
this subsection. The CCDM [15] stream cipher is based on irregular clocking and operating
on two different modes, but it does not refer to the design of the key initialization and
the operation of mode selection. On the other hand, the proposed scheme has low key
initialization cycles and simplicity in terms of mode switching. We used the Verilog
hardware description language as our design entry to describe the behavior of the key-
based multi-mode clock-controlled stream cipher. The proposed design was synthesized
using TSMC 0.18 µm CMOS technology. After synthesis, it showed that the gate level
design contained about 5599 gates. Furthermore, our proposed scheme was allowed to run
at a working frequency up to 284 MHz. Table 12 shows the comparison results of our design
with some other stream ciphers in ASIC [14,15,36]. The results shown are under different
CMOS processes. The power cannot be reliably scaled between different processes and
libraries, but the gate count can be scaled to a 0.13 µm process for comparison. Furthermore,
the initialization cycle of our design is somewhat smaller than other ciphers. In addition,
the proposed cipher is able to run on low-end IoT devices, such as ESP32, ATmaga328,
Arduino, or Raspberry Pi IoT platforms.

Table 12. Performance comparison with some stream ciphers.

Stream
Ciphers Key (bits) Initialization

Cycle Bits/Cycle Max. Clock
Freq. (MHz) Gate Count Process (mm)

Trivium 80 1152 1 327.9 2580 0.13

Grain128 128 256 1 925.5 1857 0.13

F-FCSR-16 128 258 16 317.5 8072 0.13

Mickey128 128 IVlength + 128 + 160 1 413.2 5039 0.13

Decim128 128 1152 0.25 309.6 3819 0.13

Edon80 80 160 1 243.3 13,010 0.13

CCDM [15] 128 - 1 237.4 7486 0.19

Prajapat’s [14] 64 - 1 297.6 4871 0.16

Proposed
scheme 128 166 1 284.2 5599 0.18
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6. Conclusions

In this paper, we proposed a key-based multi-mode clock-controlled stream cipher to
enhance the security of stream ciphers. The proposed multi-mode depended on the secret
key. The different modes were shipped with different encrypting circuits depending on the
user’s session key. We also analyzed the period, linear complexity, and used known attacks
to verify the security strength of the cipher.

We presented the mathematical results regarding the period and linear complexity of
the proposed cipher. The results showed that the period of the proposed stream cipher
was enough to consider the security requirements for each cipher mode. On the other
hand, the linear complexity of the proposed stream cipher satisfied the security strength
of AES, and was even stronger than AES. For good statistical properties for randomness,
the proposed cipher passed the FIPS PUB 140-1 tests by a proportion of at least 97.00%
and passed the SP800-22 test suite by a proportion of at least 98.00%. The experimental
results showed that the proposed stream cipher possessed a considerably good randomness
property. Regarding security, the proposed cipher could resist against time-memory-data
tradeoff attacks and some correlation attacks. In terms of the confidentiality of the IoT,
the stream cipher outperformed other symmetric ciphers and asymmetric ciphers. Our
proposed stream cipher with a multiple-mode encryption scheme could be applied to the
actual IoT environment and promotes the security strength of ciphers.

LFSRs have the advantage of high operation speeds in hardware security. The eight
operation modes and the output of 1-bit per clock in the proposed scheme represent
its limitations, but these could be ingeniously extended. To elasticize the stream cipher,
the designs of an optimized structure for secure hardware circuits will be an interesting
research direction. Furthermore, the application of these circuits when merged with cellular
automata, chaos, and multi-mode operations represent potential future works.
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