
A Key Recovery Attack on the 802.11b Wired
Equivalent Privacy Protocol (WEP)

ADAM STUBBLEFIELD
Johns Hopkins University
JOHN IOANNIDIS
AT&T Labs – Research
and
AVIEL D. RUBIN
Johns Hopkins University

In this paper, we present a practical key recovery attack on WEP, the link-layer security protocol
for 802.11b wireless networks. The attack is based on a partial key exposure vulnerability in the
RC4 stream cipher discovered by Fluhrer, Mantin, and Shamir. This paper describes how to apply
this flaw to breaking WEP, our implementation of the attack, and optimizations that can be used to
reduce the number of packets required for the attack. We conclude that the 802.11b WEP standard is
completely insecure, and we provide recommendations on how this vulnerability could be mitigated
and repaired.

Categories and Subject Descriptors: E.3 [Data]: Data Encryption

General Terms: Security

Additional Key Words and Phrases: Wireless security, wired equivalent privacy

1. INTRODUCTION

Wireless networking has taken off, due in large part to the availability of the
802.11b standard. A combination of high-speed access coupled with ease of
use makes 802.11b appealing for a number of venues—office buildings, con-
ferences, and even many residences now offer 802.11b connectivity. Because
wireless networks are inherently easier for an adversary to monitor, a security
protocol called Wired Equivalent Privacy (WEP) was included as a part of the
standard.

The goal of WEP was to raise the level of security for WEP-enabled wire-
less devices to that of traditional wired networks. Data protected by WEP is

An earlier version of some portions of this paper appeared as Using the Fluhrer, Mantin, and
Shamir Attack to Break WEP [Stubblefield et al. 2002].
Author’s addresses: Adam Stubblefield, Aviel D. Rubin, John Hopkins University, 3100 Wyman Park
Building, 4th Floor, Baltimore, MD 21211; email: rubin@jhu.edu; John Ioannidis, AT&T Labs—
Research.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appear, and notice is given that
copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permision and/or a fee.
C© 2004 ACM 1094-9224/04/0500-0319 $5.00

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004, Pages 319–332.

320 • A. Stubblefield et al.

encrypted to provide confidentiality, checksummed to prevent active attackers
from modifying packets, and authenticated so that only authorized users are
provided with access. WEP was designed to be easy to implement with inexpen-
sive hardware, even in access points that must provide several simultaneous
WEP protected connections.

WEP was also designed for ease of administration. Each device using the
WEP is configured with a key that in practice usually consists of a password
or a key derived from a password. The same key is generally deployed on all
the devices that are allowed to communicate with a given network access point.
The idea is to protect the wireless communication from all devices that do not
know the key.

The remainder of this paper is organized as follows: In Section 2, we dis-
cuss related work; in Section 3, we describe the WEP algorithm; in Section 4,
we present the Fluhrer, Mantin, and Shamir. attack on RC4; in Section 5, we
describe our implementation of the attack; in Section 6, we discuss our improve-
ments to the attack; in Section 7, we discuss the issues that this attack raises;
in Section 8, we present some thoughts on how to fix WEP, and in Section 9, we
conclude.

2. RELATED WORK

Borisov et al. [2001] demonstrated some security flaws in WEP. They explained
that WEP fails to specify how initialization vectors (IVs) for RC4 are speci-
fied. Several PC cards reset IVs to zero every time they are initialized, and
then increment them by one for every use. This results in high likelihood that
keystreams will be reused, leading to simple cryptanalytic attacks against the
cipher, and decryption of message traffic. The authors verified this experimen-
tally and describe other weaknesses as well. For example, the space from which
IVs are chosen is too small, virtually guaranteeing reuse, and leading to the
same cryptanalytic attacks just described. The paper also shows that message
authentication in WEP is broken.

Newsham [2001] used this flaw in the message authentication protocol to
build an offline dictionary attack against WEP. His attack engine was able
to recover a random 40-bit key in about 210 days on a 500 MHz laptop. Some
implementations of WEP use a weak hash function to map the password entered
by the user into the actual WEP key. In this case, the key can be brute-forced
in 35 s.

Arbaugh et al. [2001] showed how to break each of the authentication modes
provided by WEP. Arbaugh [2001] also demonstrated an inductive chosen plain-
text attack against WEP traffic.

Fluhrer et al. [2001] describe a passive partial key exposure attack against
RC4. In their paper, the authors conjecture that their attack could be applied
to WEP but state: “Note that we have not attempted to attack an actual WEP
connection, and hence do not claim that WEP is actually vulnerable to this
attack.” In this paper, we show that the attack can indeed be used to break
WEP, describe the engineering hurdles that must be overcome to do so, and
present some improvements that can speed up the key recovery.

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

A Key Recovery Attack on the 802.11b Wired Equivalent Privacy Protocol (WEP) • 321

Fig. 1. The key-setup and pseudorandom byte generation algorithms for RC4.

3. OVERVIEW OF THE WEP PROTOCOL

In this section, we present an overview of the WEP protocol; for a detailed
description of WEP we refer the reader to the official 802.11 standard [L.M.S.C.
of the IEEE Computer Society 1999].

Encryption in WEP uses a secret key, k, shared between an access point and
a mobile node. To compute a WEP frame, the plaintext frame data, M , is first
concatenated with its (noncryptographic) checksum c(M), to produce M · c(M)
(where · denotes concatenation). Then, a per-packet 24-bit IV is prepended to
the secret key, k, to create the packet key, IV ·k. In the original WEP standard,
k was 56-bits. It has been extended to 128-bits. Note that the actual secret
portions of the key are only 40- and 104-bits, respectively.

The RC4 stream cipher is then initialized using this packet key, and the
output bytes of the cipher are exclusive-ored (denoted⊕) with the checksummed
plaintext to generate the ciphertext:

C = (M · c(M))⊕RC4(IV · k)

The actual WEP data is the per-packet IV prepended to this ciphertext, C.

4. PARTIAL KEY EXPOSURE ATTACK OF FLUHRER ET AL

Given many prefixes of an RC4 key, the attack of Fluhrer et al.’s efficiently
recovers the next key byte. By iterating the attack, an adversary is able to
recover a full key. In this section, we describe the attack in relation to WEP.

To begin, we describe the structure of the RC4 stream cipher (shown algo-
rithmically in Figure 1). RC4 consists of two parts, a key scheduling algorithm
(KSA) and an pseudorandom byte generator. In WEP, the KSA takes as input
the per-packet WEP key (the 24-bit IV followed by either 40- or 104-bits of se-
cret key data. The KSA uses this key to set up the RC4 state array, S, which is
a permutation of {0, . . . , 255}. The output generator then uses the state array
S to create a pseudorandom sequence.

The attack utilizes only the first byte of output from the pseudorandom se-
quence, so we focus our attention there. Since the byte generation algorithm
only executes once, we can write the equation for this first byte of output as
S[S[1] + S[S[1]]. Thus, after the key setup stage, this first byte depends on
only three values of the state array (S[1], S[S[1]], and S[S[1] + S[S[1]]). The
attack is based on our ability to derive information about the key by observing
this value. We defer the discussion of how to recover the value of this first byte
from a WEP ciphertext stream until Section 5.

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

322 • A. Stubblefield et al.

To mount the attack, we search for IVs that place the key setup algorithm
into a state that leaks information about the key. Using the terminology of
Fluhrer et al., we refer to these key-leaking cases as resolved. It is simple to
test whether a particular packet provides an IV and output byte that result in
a resolved condition, though we refer the reader to the Fluhrer et al. paper for
the conditions under which they occur.1 Each resolved packet leaks information
about only one key byte, and we must correctly guess each key byte before any
packet gives us information about a later key byte.

With WEP, when we are in a resolved state, the value of the next key byte is
(with high probability) given by the equation:

K [B] = S−1
B+2[Out]− jB+2 − SB+2[B + 3]

where B is the byte current being guessed, Out is the first output from the pseu-
dorandom number generator, and S−1 is the position in S where its argument
occurs.

In order to obtain values of S and S−1 the attacker must simulate the key
setup algorithm. He is able to do this perfectly for the first B iterations, since
he already knows the key bytes used. The equation is only correct when the
attacker’s simulation after B steps matches the final state of the true key setup
algorithm on the three positions in the state array used to output the first
pseudorandom byte. Modeling each swap in the true key setup algorithm as
random, each resolved packet gives us a 5% chance of guessing a correct key
byte and a 95% chance of guessing incorrectly. However, by looking at a large
number of these resolved cases, we can expect to see a bias toward the true key
bytes.

5. MOUNTING THE ATTACK

In implementing this attack, we had three goals. First and foremost, we wanted
to verify that the attack could work in the real world. Second, we were interested
in how cheaply and easily the attack could be launched. Lastly, we wanted to
see what improvements could be made to both the general RC4 attack and the
WEP attack in particular. In this section, we report on our success at the first
two goals, while reserving discussion about attack optimizations to Section 6.

5.1 Simulating the Attack

Before trying to break WEP, we created a simulation of the RC4 attack both to
verify our understanding of the weakness and to gather information about how
many resolved packets we could expect would be required when mounting the
actual attack. The coding of the simulated attack took under 2 h, including a
few optimizations. The simulation showed that the attack was always able to
recover the full key when given 256 probable resolved cases.2 We also observed
that although 60 resolved cases (the number recommended in the Fluhrer et al.

1It is important to use the criteria given in Section 7 rather than the criteria given in Appendix A.
The IVs listed in Appendix A are only a subset of the IVs, which can resolve. We return to this in
section 6 of this paper.
2Cases corresponding to IVs of the form (B + 3, 255, N) as in the Fluhrer et al. paper.

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

A Key Recovery Attack on the 802.11b Wired Equivalent Privacy Protocol (WEP) • 323

paper) were usually enough to determine a key byte, there were instances in
which more were required. Because at this point we had not thoroughly inves-
tigated how accurately we would be able to determine the first output byte of
the RC4 pseudorandom sequence, we also simulated the effect that sometimes
guessing wrong would have on the attack. We were pleased to see that as long
as the number of incorrect guesses was kept small, the correct key byte would
still be returned, though sometimes more resolved cases were needed.

5.2 Capturing the Packets

Surprisingly, capturing WEP encrypted packets off of our wireless network
proved to be the most time consuming part of the attack. There are a number
of commercial software programs that are able to both capture and decode
802.11 packets, such as NAI’s “Sniffer” and Wildpacket’s “AiroPeek,” though
both products cost thousands of dollars. Because we wanted to show that the
attack could be done by an adversary with limited resources, we purchased a
$100 Linksys wireless card, based on the Intersil Prism II chipset. We made
this choice because the Prism II allows much of its computation to be completed
in software and because there was a Linux driver available that could grab raw
WEP encrypted packets. Though we did not know it at the time, this chipset has
been used by others to mount dictionary and brute force attacks against WEP.3

We used both the linux-wlan-ng prism2 driver4 and a modified version of
Tim Newsham’s patch to reenable raw packet monitoring,5 to get the card work-
ing in Linux. We were then able to use a modified version of the packet sniffer
ethereal6 to capture raw WEP encrypted packets and to decode the data nec-
essary for our attack tool.

There is one problem with using this card as opposed to a more sophisticated
solution. The Prism II chipset does request a transmission time-slot even when
in monitor mode. Many inexpensive base stations do not report this, though a
software hack can allow Linux computers running as access points to register
an SNMP trap each time that a node joins or leaves the network [Hamrick
2001]. This information does not directly indicate likely attackers, but could
be combined with other information in an IDS to locate users who register
with a base station but not with whatever network level access controls exist.
Also, we know of no practical reason why this “registration” with the network
is necessary; there may even exist consumer 802.11 chipsets that support lis-
tening without registering (perhaps even the Prism II chipset in some other
undocumented mode).

Even with the hardware and software problems, from the time that we first
decided to look at this problem, it took less than a week for the card to be ordered
and shipped, the test-bed to be set up, the problems to be debugged, and a full
key to be recovered.

3See Blackhat ’01 presentation at http://www.lava.net/newsham/wlan/WEP_password_cracker.

ppt.
4Available from http://www.linux-wlan.com/.
5Available from http://www.lava.net/newsham/wlan/.
6Available from http://www.ethereal.com/.

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

324 • A. Stubblefield et al.

5.3 Mounting the Attack

The last piece in actually mounting the attack was determining the true value
of the first plaintext byte of each packet, so that we could infer the first byte of
the pseudorandom sequence from the first ciphertext byte. We originally looked
at tcpdump output of decrypted traffic (using a correctly keyed card),7 and were
planning on using packet length to differentiate between ARP and IP traffic
(both of which have well known first bytes in their headers) as these were by
far the two most common types of traffic on our network. After implementing
this, however, we discovered that the attack did not seem to work. We then tried
hand decrypting packets to determine whether tcpdump was working correctly
and discovered that an additional 802.2 encapsulation header is added for both
ARP and IP traffic.8 This discovery actually made the attack even easier, as
all IP and ARP packets would now have the same first plaintext byte (0xAA,
the SNAP designation).9 If the network in question also carries legacy IPX
traffic, the first plaintext byte will not be 0xAA for these packets. However,
as we showed in our simulation, as long as the IP and ARP packets greatly
outnumber the IPX packets, the attack is still possible. If the network carries
mostly IPX traffic, the attack should be modified to use either 0xFF or 0xE0
instead of 0xAA.

Although our actual attack used the improvements discussed in the next
section, we present an outline of how a naive attack could work here. It is in-
teresting to note that even this baseline version of the attack would still be
successful in a short period of time (a day or two at most) and with an even
smaller amount of computation when compared to the improved implementa-
tion, assuming that the wireless network in question had a reasonable amount
of traffic.

To begin, we collected a large number of packets from our wireless net-
work. To speed the process up for some of our experiments late at night when
network volume was low, we artificially increased the load on the wireless
network by ping flooding a wireless node. (We could have waited until more
traffic was created; this is not an active attack.) Because we are able to pre-
dict the value of the first byte of any plaintext, the fact that we changed the
makeup of the network traffic did not affect these experiments. In looking
at the IVs of these collected packets, we discovered that the wireless cards
use a simple counter to compute the IV, wherein the first byte is incremented
first.10

Figure 2 shows the basic attack used to recover a WEP key. In Section A.1 of
Fluhrer et al., the authors postulate that 4,000,000 packets would be sufficient
with this baseline attack; we found the number to be between 5,000,000 and

7Note that a correctly keyed card is not needed; we simply used one to design the attack.
8We eventually traced this back to RFC 1042 [Postel and Reynolds 1988].
9Some vendors, such as Cisco use a proprietary OID [Cafarelli 2001]. Fortunately, it also beings
with 0xAA.
10Other cards have been reported to choose IVs at random, to count in big endian order, or to switch
between two IVs. This last class cards are not vulnerable to the attack in this paper, although they
break badly under the attacks of Borisov et al. [2001].

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

A Key Recovery Attack on the 802.11b Wired Equivalent Privacy Protocol (WEP) • 325

Fig. 2. The basic attack on WEP. Depending on the actual key used, this attack can take between
4,000,000 and 6,000,000 packets to recover a 128-bit key. The SimulateResolved function computes
the value described in Section 7.1 of Fluhrer et al.

6,000,000 for our key. This number is still not unreasonable, as we were able
to collect that many packets in a few hours on a partially loaded network.

6. IMPROVING THE ATTACK

In this section, we discuss several modifications that can be made to improve
the performance of the key recovery attack on WEP. While not necessary for the
compromise to be effective, they can decrease both time and space requirements
for an attacker.

6.1 Testing for suitable IVs

In the baseline attack (the one described in Appendix A of Fluhrer et al.), only
IVs of a particular form are considered (those corresponding to (KeyByte+3,
0xFF, N) where KeyByte is the current KeyByte we are guessing and N is
unrestricted). However, there are other IVs that can result in a resolved state.
Testing all IVs instead of only the subset suggested by the Fluhrer et al. paper
can be done in parallel with receiving packets. This conclusion was verified by
Shamir [2001], who also noted that these packets appear more often for higher
key bytes. The algorithm used to test whether a generic IV is resolving is shown
in Figure 3.

6.2 Guessing Early Key Bytes

As the Fluhrer et al. attack works by building on previously discovered key
bytes, recovering early key bytes is critical. There are two approaches that
we tried both separately and together. The first utilized the way that the IVs
were generated, namely that we would receive packets that resolved for lots
of different key bytes before necessarily receiving enough resolving packets to

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

326 • A. Stubblefield et al.

Fig. 3. Pseudocode for determining if a particular IV is resolving. There are more resolving IVs of
unexpected forms as more key bytes are found.

predict the early key bytes.11 We would therefore use the resolving cases that
we had received to narrow down the possibilities for the early key bytes. We
were then able to test candidate keys by determining if the WEP checksum on
a decrypted packet turned out correctly.

The second approach exploited the poor key management available in WEP
implementations. Since WEP keys have to be entered manually, we assumed
that instead of giving clients a long string of hex digits, a user-memorable
passphrase would be used. After examining the test wireless cards at our dis-
posal, we determined that the user-memorable passphrase is simply used raw
as the key (i.e., the ASCII is used; no hashing is done). Although hashing does
not protect against a dictionary attack, it would have helped in this circum-
stance, as we were able to determine directly whether each key byte was likely
to be part of a user-memorable passphrase by checking whether the byte value
corresponded to an ASCII letter, number, or punctuation symbol.

This pair of optimizations turned out to provide an astounding decrease in
the number of packets required. In parallel with receiving packets (on another
machine, though this is not really necessary), we were continually attempting to
guess the key by choosing the most likely candidates based on the resolved cases
we had already gathered. In the event of “ties” for the next most likely byte, we
gave priority first to (in order): lowercase letters, uppercase letters, numbers,
symbols, and other byte values. Pseudocode for these two optimizations is shown
in Figure 4.

6.3 Special Resolved Cases

As Shamir pointed out to us, there are cases when a resolved case can provide
an even better indication as to a particular key byte. If there is a duplication
among the three values at positions S[1], S[S[1]], and S[S[1] + S[S[1]] (i.e.,
these are only two distinct values), then the probability that these positions
in the S permutation remain unchanged jumps from e−3 ≈ 5% to e−2 ≈ 13%.
We can thus treat the evidence from these cases as about three times more
convincing as a standard resolved case.

11See Figure 6 of Fluhrer et al.; resolved cases are much more likely to occur for later key bytes.

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

A Key Recovery Attack on the 802.11b Wired Equivalent Privacy Protocol (WEP) • 327

Fig. 4. The CheckChecksums function checks to see if the current key guess correctly decrypts the
current packet by computing and comparing the checksum. The SelectMaximalIndicesWithBias

function returns the most likely key byte, biasing the result toward the characters that are likely
in a human-entered password. In our implementation, LowercaseWeight > UppercaseWeight >
NumberWeight > SymbolWeight > 1.

6.4 Combining the Optimizations

Figure 5 shows the key recovery algorithm after all of the improvements
described above. The improvements drop the number of packets required from
around 5,000,000 to around 1,000,000.

7. DISCUSSION

There are many variables that can affect the performance of the key recovery
attack on WEP. In this section, we summarize the effect of some of these vari-
ables and look at how the WEP design could be slightly altered to prevent this
particular attack.

7.1 IV Selection

Since the WEP standard does not specify how IVs should be chosen, there are
a variety of IV generation in use in current 802.11 cards. The majority of cards
seem to use one of three methods: counters, random selection, or value-flipping
(i.e., switching between two IV values). This attack is possible with either of
the first two types of IV selection. Value-flipping prevents this attack at the
expense of reusing the pseudorandom stream every other packet. This is not a
reasonable trade-off.

Counter modes are the most accommodating of this attack. In these cards, the
IV is incremented with each packet sent (starting either at 0 or at some random
value when the card is powered on). With counter mode cards, an attacker is
practically guaranteed a nice distribution of resolving packets among the key
bytes. Random selection of each IV is not much better, as there are enough
expected resolved cases that although the distribution might not be quite as
good as the counter modes, it would not be much worse.

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

328 • A. Stubblefield et al.

Fig. 5. The improved attack on WEP. Depending on the actual key used, this attack can take
between 1,000,000 and 2,000,000 packets to recover a 128-bit key. The SimulateResolved function
computes the value described in Section 7.1 of Fluhrer et al., the CheckChecksums checks to see if a
key causes the checksums in the WEP packets to come out correctly, and the Resolved? predicate
checks to see if a given packet results in a resolved condition. The SelectMaximalIndicesWithBias

function corresponds to the optimization in section 6.2. The Weight function returns 3 if the resolved
case corresponds to a special resolved case as described in section 6.3, and 1 otherwise.

7.2 Key Selection

The lack of key management in WEP certainly contributes to the ease of the
key recovery attack. Most networks use a single shared key between the base
station and all mobile nodes. Besides the suite of “disgruntled ex-employee who
knows the key” style attacks, there is also the problem of distributing this key
to the users. Many sites use a human memorable password to easy this key
distribution. There is however no standard way of mapping these passwords to
a WEP key. The current solution is mapping the ASCII value directly to a key
byte. We would recommend switching to either using a secure (nonmemorable)
WEP key or having the key setup software hash the password to the key using
a cryptographic hash function. Note that neither of these solutions prevent the
attack, only make it slightly more difficult.

There do exist protocols that allow each mobile node to use a distinct WEP
key, most notably IEEE 802.1x. 802.1x can be used to set up a per-user, per-
session WEP key when a user first authenticates to the network. This com-
plicates the attack, but does not prevent it so long as the user does not rekey
often enough. We would recommend securely rekeying each user after every
approximately 10,000 packets. Note that this solution does not address other
previously discovered problems with WEP.

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

A Key Recovery Attack on the 802.11b Wired Equivalent Privacy Protocol (WEP) • 329

7.3 RC4

RC4 is an efficient stream cipher that can be used securely. The implementation
of RC4 in SSL is not affected by the Fluhrer et al. attack. The reasons are that
SSL preprocesses the encryption key and IV by hashing with both MD5 and
SHA-1 [Dierks and Allen 1999]. Thus different sessions have unrelated keys.
In addition, in SSL, RC4 state from previous packets is used in future packets,
so that the algorithm does not rekey after each packet.

A further recommendation (RSA Security Inc.’s standard recommendation)
is for applications to discard the first 256 bytes of RC4 output. This may be a
bit expensive for very small packets, but if session state is maintained across
packets, that cost is amortized.

In summary, RC4 can be used as part of a security solution. However, care
must be taken when implementing it so that key material is not leaked. One
of the risks of algorithms that have such caveats is that protocol designers
without a strong grounding in cryptography and security may not be aware of
the correct way to implement them, and this is exactly what happened in the
case of WEP.

8. REPAIRING WEP

Ultimately, WEP must be redesigned using a strong block cipher and a cryp-
tographic MAC function. However, between now and then, a temporary “best
effort” fix is desirable. In this section, we discuss the challenge of putting to-
gether a system that is as secure as possible under the limitations of previously
deployed WEP-based hardware. We address not only the attack of this paper,
but other attacks on WEP in the literature.

8.1 Confidentiality

There are two main attacks on the confidentiality of WEP encrypted packets:
the attack discussed in this paper and the IV reuse attack of Borisov et al.
[2001]. To prevent the IV reuse attack, the system must guarantee that each
IV is only used once with each key. Besides a method of rekeying after all the IVs
are exhausted, a scheme for ensuring that IVs are not used more than once by
both a base station and a mobile node is required. Two simple solutions are the
partitioning of the IV space between the two communicating nodes, and the use
of a separate key for each direction of the link.

These solutions do not, however, address the attack of this paper. To that end,
many have suggested simply ignoring the RC4 abilities of the 802.11 hardware
and preencrypting the data portion of the frame on the host operating system,
in the style of a “mini-VPN.” While this might work for a software base station
composed of a computer with an 802.11 PCI card, it would be impossible for
the many deployed hardware-based solutions. For that reason, the only cryp-
tographic algorithm available is RC4. There are two ways in which RC4 can
be used more securely. An easy (but not perfect) solution would be for all WEP
hardware to throw out the first few output bytes of the cipher stream. This
would prevent the attack of this paper, and prevent the use of other distin-
guishers for RC4. A better solution would be to instead hash the IV and the key

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

330 • A. Stubblefield et al.

together using a strong cryptographic hash function. Thus, the per-packet key
K would become

K = hash(IV · k)

where k represents the long-term WEP key. Of course, rekeying would still be
required in both of these instances to prevent the keystream reuse attacks.

If IV-mode WEP must be used for technical reasons, the best solution is to
rekey often and attempt to avoid choosing bad IVs. Unfortunately, there may
be other bad IVs beyond the ones discussed in this paper, and so this solution
should be considered temporary at best.

8.2 Integrity

As noted in Section 3, WEP’s only data integrity mechanism is a noncrypto-
graphic checksum (CRC-32) that is appended to the data and encrypted simi-
larly. As was previously shown by Borisov et al. [2001], this checksum can be
easily forged. For the same reason that RC4 cannot be replaced on existing base
stations, a strong cryptographic hash-based MAC (e.g., HMAC-SHA1) cannot
replace the CRC calculation. Fortunately, assuming that the keystream can be
secured, a cryptographic hash is not required. Under a secure pseudorandom
keystream any keyed universal hash function can serve as a MAC [Wegman
and Carter 1981; Brassard 1982]. These functions, unlike cryptographic hashes,
are relatively simple to compute and so could be added to existing base stations
through a firmware upgrade. Besides changing to a keyed hash function, the
length of the MAC would also need to be increased to prevent collisions.

8.3 Authentication

While confidentiality and integrity are sufficient conditions for WEP’s shared-
key authentication mechanism to function, a more powerful authentication
scheme is required. Most notably, the authentication mechanism needs to pro-
vide a rekeying mechanism for both the confidentiality and integrity functions.
However, just as important is the ability for the authenticated parties to nego-
tiate the “best” version of WEP that they both support. In this way, a man-in-
the-middle could not convince two nodes that supported a patched version of
WEP to use the original broken version.

9. CONCLUSIONS AND RECOMMENDATIONS

We implemented the attack described by Fluhrer et al. in several hours. It then
took a few days to figure out which tools to use and what equipment to buy
to successfully read keys off of 802.11 wireless networks. Our attack used off
of the shelf hardware and software, and the only piece we provided was the
implementation of the RC4 attack, along with some optimizations. We believe
that we have demonstrated the ultimate break of WEP, which is the recovery
of the secret key by observation of traffic.

Since the initial report of our attack appeared, others have duplicated our re-
sults. Although we did not release our code, there are now two publicly available
tools for breaking WEP keys. As always, once security attacks become known,

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

A Key Recovery Attack on the 802.11b Wired Equivalent Privacy Protocol (WEP) • 331

exploits are available to script kiddies, who do not need to understand the tech-
nical details to break systems. The two tools that we know of are Airsnort and
WEPCrack.

Given this attack, we believe that 802.11 networks should be viewed as in-
secure. We recommend the following for people using such wireless networks.

—Assume that the link layer offers no security.
—Use higher-level security mechanisms such as IPsec [Kent and Atkinson

1998] and SSH [Ylonen 1996] for security, instead of relying on WEP.
—Treat all systems that are connected via 802.11 as external. Place all access

points outside the firewall.
—Assume that anyone within physical range can communicate on the network

as a valid user. Keep in mind that an adversary may utilize a sophisticated
antenna with much longer range than found on a typical 802.11 PC card.

The experience with WEP shows that it is difficult to get security right. Flaws
at every level, including protocol design, implementation, and deployment, can
render a system completely vulnerable. Once a flawed system is popular enough
to become a target, it is usually a short time before the system is defeated in
the field.

ACKNOWLEDGMENT

We thank Bill Aiello, Steve Bellovin, Scott Fluhrer, Bob Miller, Ron Rivest, Adi
Shamir, Dave Wagner, and Dan Wallach for helpful comments and discussions.

We informed Stuart Kerry, the 802.11 Working Group Chair, that we suc-
cessfully implemented the Fluhrer et al. attack. Stuart replied that the 802.11
Working Group is in the process of revising the security, among other aspects, of
the standard and appreciates this line of work as valuable input for developing
robust technical specifications.

REFERENCES

ARBAUGH, W. A. 2001. An inductive chosen plaintext attack against wep/wep2. IEEE Document
802.11-02/230.

ARBAUGH, W. A., SHANKAR, N., AND WAN, Y. C. J. 2001. Your 802.11 wireless network has no clothes.
In IEEE International Conference on Wireless LANs and Home Networks.

BORISOV, N., GOLDBERG, I., AND WAGNER, D. 2001. Intercepting mobile communications: The inse-
curity of 802.11. In MOBICOM 2001.

BRASSARD, G. 1982. On computationally secure authentication tags requiring short secret shared
keys. In Crypto ’82. 79–86.

CAFARELLI, D. 2001. Personal communications.
DIERKS, T. AND ALLEN, C. 1999. The TLS Protocol, Version 1.0. Internet Engineering Task Force.

RFC-2246, ftp://ftp.isi.edu/in-notes/rfc2246.txt.
FLUHRER, S., MANTIN, I., AND SHAMIR, A. 2001. Weaknesses in the key scheduling algorithm of

RC4. In Eighth Annual Workshop on Selected Areas in Cryptography.
HAMRICK, M. 2001. Personal communications.
KENT, S. AND ATKINSON, R. 1998. Security architecture for the Internet protocol. Request for Com-

ments 2401, Internet Engineering Task Force (Nov.).
L. M. S. C. OF THE IEEE COMPUTER SOCIETY. 1999. Wireless LAN medium access control (MAC)

and physical layer (PHY) specifications. IEEE Standard 802.11, 1999 Edition.
NEWSHAM, T. 2001. Cracking WEP keys. Available from http://www.lava.net/wlan/.

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

332 • A. Stubblefield et al.

POSTEL, J. AND REYNOLDS, J. K. 1988. Standard for the transmission of IP data grams over IEEE
802 networks. Request for Comments 1042, Internet Engineering Task Force (Feb.).

SHAMIR, A. 2001. Personal communications.
STUBBLEFIELD, A., IOANNIDIS, J., AND RUBIN, A. D. 2002. Using the Fluhrer, Mantin, and Shamir

attack to break WEP. In Symposium on Network and Distributed System Security.
WEGMAN, M. N. AND CARTER, J. L. 1981. New hash functions and their use in authentication and

set equality. Journal of Computer System Science 22, 265–279.
YLONEN, T. 1996. SSH—secure login connections over the Internet. In USENIX Security Confer-

ence VI. 37–42.

Received May 2002; revised October 2002, March 2003, November 2003, March 2004; accepted March 2004

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.

