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Abstract: A novel block inverse Jacket transform is proposed. A cocyclic block inverse Jacket 

matrix is constructed in which the high-order cocyclic block inverse Jacket matrix can be 

decomposed into the low-order sparse cocyclic block inverse Jacket matrices with a successive 

block architecture , instead of the conventional block inverse Jacket matrix(BIJM). It is a fast 

algorithm by using recursive mode that leads to reducing computational load.  

Introduction 

The interesting orthogonal matrices, such as the element-wise or block-wise inverse Jacket matrices, 

have been developed with orthogonal transforms widely employed in images processing, coding, 

and other areas [1-3]. More details of these matrices can be referred to [4–8]. 

DefinitionⅠ: A n n×  matrix ( )n ij n nJ α ×=  is called the element-wise inverse Jacket matrix (EIJM) 

of order n  if its inverse matrix 1

nJ −  can be obtained by its element-wise inverse.  

Many interesting orthogonal matrices belong to the Jacket matrix. With the rapid technological 

development, different forms of such transforms were improved and generalized. It has been 

discovered that the newly proposed transforms have been widely used in various signal processing, 

CDMA, cooperative relay MIMO system [9–13]. 

Recently, the BIJM[ ]
n

J has been investigated while the complex unit 1(2 / )exp pπ− of the EIJM
nJ is 

substituted for a suitable matrix unit [7-8]. However, the CBIJM does not attract much attention even 

though the cocyclic matrix has been very useful for the data coding and processing [14-15]. 

DefinitionⅡ: If ς is a finite group of order γ with operation�  and C is a finite Abelian group of 

order t , a  co-cycle is a mapping : Cφ ς ς× → satisfying ( , ) ( , )a b a b cφ φ � ( , ) ( , )a b c b cφ φ= �  where 

, ,a b c ς∈  A square matrix ( )M φ  whose row a and column b can be indexed by ς with entry 

( , )a bφ ς∈ in position ( , )a b under some fixed ordering, i.e., ( , )( ) ( ( , )) a bM a b ςφ φ ∈= , is  called  a cocyclic 

matrix. If (1,1) 1φ = , then it is the normalized cocyclic matrix [14-15]. 

DefinitionⅢ: Let ( )p
i j

p p pJ ω ×=
�

, ∀ , ni j ∈ Ζ  ：= {0,1, ,  p 1}−� , be a matrix of order p , where 

exp( 12 / )pω π= −  and 
p

i j i j= ×� mod p , i.e., the  subscript p   implies modulo p−  arithmetic for 

the argument. Then the matrix pJ and its s -fold matrix of order sp

 

s

s

p p p pp

s

J J J J J⊗= = ⊗ ⊗�
�������

are 

the conventional cocyclic element inverse Jacket matrices (CEIJM), where ⊗ denotes the Kronecker 

product and p  is a prime number.  

As a generation of the Hadamard matrix, BIJM inherits the merits of the Hadamard matrix. The 

inverse transform can be easily obtained by the reciprocal relationships and the fast algorithms. 

However, versions of cocyclic block-wise inverse Jacket matrix (CBIJM) are still absent [10]. The 

purpose of this paper is to develop the CBIJM and its generalizations, instead of the CEIJM. 

This paper is organized as follows. Section Ⅱ presents a framework of the fast CBIJT. Section 

Ⅲ reports the p-order CBIJM.  Section Ⅳ discusses the multi-fold CBIJM. Finally, conclusions are 

drawn in Section Ⅴ. 
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Cocyclic Block Inverse Transforms 

Based on the one-dimensional BIJM [ ]pJ , which can be partitioned to the p p× block matrix, we can 

transform a suitable vector x into another vector y through a BIJT, i.e., [ ]py J x= . 

In order to derive the CBIJT, we denote a matrix unit byα such that p

pIα = for a given prime 

number p , where pI denotes the p p× identity matrix. As an example, letα be a square matrix of size 

2 2× defined as 

0 1

1 0
α

 
=  

 
.                                                                          (1) 

It is easy to prove that 2

2Iα = . Actually, matrixα has been employed for the existence of the 

BIJM [3]. Fortunately, it will be shown that the s -fold block Jacket matrix 
2

[ ] S

sJ α ⊗∆ is also a 

CBIJM. 

We illustrate the cocyclicity of the BIJM [ ] sp
J based on the matrix unit α of size p p× . In 

particular for the given prime number p  we define the matrix unit ,[ ]h

i j peα = , where 

,

1, for ;

0, otherwise,

p

i j

i j h
e

 = +
= 


                                                     (2) 

where
p

j h j h+ = + mod p , , , : {0,1, , 1}pi j h p∀ ∈ Ζ = −� . : { }h

pΑ α : h Ζ= ∈ forms an Abelian group with 

the matrix multiplication. 

ExampleⅠ: Let 3p = , and we have 

0 1 2

3

1 0 0 0 0 1 0 1 0

0 1 0 , 1 0 0 , 0 0 1 .

0 0 1 0 1 0 1 0 0

I α α α
     
     = = = =     
     
     

                                        (3) 

Obviously pΖ with the multiplication operation 
p

a b⋅  is a finite field of order p . For pa,x Ζ∀ ∈ , 

we define an multiplication function
af (x) over pΖ , i.e.,

a p
f (x) :  a x .= ⋅  With the aid of the 

multiplication function
af (x) , we define a block matrix of size 2p p× by concatenating p 

matrices ihα of size p p× , i p h   Z∀ ∈ , i.e., 10 1[ ] : [ , , ]phh hβ α α α −= � ,and hence 

( ) ( ) ( )10 1[ ] [ ]a p-a a
f hf h f h

aβ  : α , α , α .= �                                                      (4) 

LemmaⅠ:For block matrices[ ]αβ and[ ]bβ ,   pa, b  Z∀ ∈ ,we have T

b

, for 0;
[ ]  [ ]

0 , for 0.

p

a

p

pI a b

a b
β β

 + =
⋅ = 

+ ≠

 

Proof: If 0a b= = , the
0[ ] [ , , , ]I I Iβ = ⋅⋅ ⋅ , and hence

0[ ]β . 
0[ ] .T pIβ = If 0

p
a b+ = , , ,pa b∀ ∈ Ζ then 

for i ph∀ ∈ Ζ , ( ) ( ) ( ) 0.a i b i i i ip p p
f h f h ah bh a b h+ = + = + = Therefore, it is easy to verify 

that ( ) ( )

1

[ ] [ ] .a i b i

p
f h f hT

a b

i

pIβ β α +

=

⋅ = =∑ But if 0
p

a b+ ≠ , for 0
p

a b p< + < , { }( ) : pp
c a b c+ ∈ Ζ .p= Ζ  

Consequently, we have 
1

0

[ ] [ ] ,
p

T i

a b

i

β β α
−

=

⋅ = ∑ which can be proved to be equal to zero since 0p Iα − =  

but for .Iα ≠  

ExampleⅡ: Let us consider α  with 2p =  in (1). It is obvious that 2 Iα = is an identity matrix of 

size 2 2× . Let 0 1[ ] [ , ]β α α= , then 0 0

0

1 0 1 0
[ ] [ , ] ,

0 1 0 1
β α α

 
= =  

 
 0 1

1

1 0 0 1
[ ] [ , ]

0 1 1 0
β α α

 
= =  
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It is straightforward to show that 

0 0 1 1 2[ ] [ ] [ ] [ ] 2 .T T Iβ β β β⋅ = ⋅ =                                                                                                           (5) 

The p-order CBIJM 

In [7-8],  Lee et al . expanded the EIJM to BIJM. 

Definition Ⅳ: A  np  np× block matrix [ ]nJ =   ([ ] )ij p np npα ×  is called the BIJM of order n  if 1[ ]
n

-J =  

-11 
([ ] )

np np

T

ij
c

α
×

= , wherec is the normalized value and[ ]ij p pα × denotes a matrix unit of size p p× . 

DefinitionⅤ: For a given prime number p , let α be a p p× matrix unit such that   p Iα =  and 

0 1 1[ ] [ ] .pα , α ,  , β α −= �  Define the p -order BIJM  [ ]pJ of size 2 2 p   p× as follows 

[ ]
[ ]
[ ] ( )

( )( )

0 0 0
0

0 1 1
1

2 10 2
2

1 10 1
1

[ ] :

p

p

P

p pp
p

J

β α α α
β α α α
β α α α

β α α α

−

−

− −−
−

   
   
   
   = =   
   
   
        

�

�

�

� � � � �

�

                                            (6) 

and thus its inverse 

( )

( )

( ) ( )( )

0 0 0

110

1 2 120

1 1 10

1
[ ] :

p p

p p

p p

p

p
p

p p p

J
p

α α α

α α α

α α α

α α α

− −−

− − −−

− − − − −

 
 
 
 

=  
 
 
 
  

�

�

�

� � � �

�

                                               (7) 

Consequently, we have 
2 2

1 1[ ] [ ] [ ] [ ]p p p p p p
J J J J I− −

×
⋅ = ⋅ = . 

 

Example Ⅲ: Taking 
0[ ]β  and 1[ ]β  for 2p = , we have 

0 0

2 0 1

1 0 1 0

0 1 0 1
[ ] ,

1 0 0 1

0 1 1 0

J
α α
α α

 
    = =    
 
 

                                                 (8) 

and its inverse 

 
2

0 0

1

2 10

1 0 1 0

0 1 0 11 1
[ ] .

1 0 0 12 2

0 1 1 0

J
α α

α α
−

−

 
  
 = = 
     
 

                                          (9) 

Actually, we have 

 
0 0 0 0

21

2 2 0 1 0 1
2

0
[ ] [ ] ,

0

I
J J

I

α α α α
α α α α

−      
= =     

    
                                    (10) 

where 0 1 0α α+ = since 2 Iα = and Iα ≠ over the finite field. 

We note that the above-mentioned BIJM was first proposed by Lee and Hou [7] for the proof of 

existence of Jacket matrices over the finite field. Next, we illustrate that this BIJM is also a CBIJM 

in essence. 
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TheoremⅠ: Let
Pς = Ζ with an operation :a b =�  

p
a b+ , pa,   b∀ ∈ Ζ ,and : { : }i

pC iα= ∈ Ζ  with the 

traditional multiplication. The BIJM[ ]pJ in (6) whose rows and columns are both indexed inς under 

the increasing order (i.e., 0  1  1) p -≺ ≺ �≺ and entries ( )a, bφ in position ( )a, b is the CBIJM. 

Proof: According to the defined BIJM [ ]pJ in (6), we have ( ) p
a b

a, b :φ α
⋅

= .  For  pc ∀ ∈ Ζ , we 

have 
( ) ( )

( ) ( )   .p p p
a b a b c a b a c c

a, b a b, cφ φ α α α
⋅ + ⋅ ⋅ + + ⋅

= ⋅ =�                                                                  (11) 

On the other hand, 

( ) ( )
( ) ( )   .p p p

a b c b c a b c b c
a, b  c b, cφ φ α α α

⋅ + ⋅ ⋅ + + ⋅
= ⋅ =�                                                                 (12) 

Combining (11) and (12), we have 

( ) ( )  ( ) ( ).a, b a  b, c a, b  c b, cφ φ φ φ=� �                                                                                     (13) 

Thus the BIJM[ ]pJ is also a CBIJM. 

The Multi-fold CBIJM 

n order to derive the high-order recursive CBIJM [ ] s
p

J  for any prime number p and nonnegative 

integer s , let us introduce some lemmas [1-2]. 

Lemma Ⅱ : Let ,A,B,C D are matrices with suitable sizes. We 

have ( )  ( )  ( )  ( )A  B C  D A  C B  D⊗ ⋅ ⊗ = ⋅ ⊗ ⋅ , 1 1 1( )   ( ),( )   ( )T T TA B A   B A  B A  B− − −⊗ = ⊗ ⊗ = ⊗ . 

Theorem 2: For a given prime number p , let [ ]   [  ]p i, j pA α=  and  [ ]   [ ]p s,t p pB ,  i, j, s, t γ= ∀ ∈ Ζ , be 

two CBIJMs of order p that correspond to the matrix unitsα and γ such that p Iα = and    p Iγ = , 

respectively. Then the 2-fold Kronecker product matrix 2[ ]   [ ]  [ ]p pp
J A B= ⊗  is a 2-fold CBIJM of 

order 2p . 

Proof: Since ,[ ] [ ]p i j pA α=  and ,[ ] [ ]p s t pB γ=  are both BIJM, we have the inverse 

1 1 1 1

, ,

1 1
[ ] [ ] , [ ] [ ] .T T

p i j p p s t pA B
p p

α γ− − − −= =                                                                                              (14) 

Let 2,[ ] [ ] [ ]p p ip s jp t p
A B σ + +⊗ = , where , , ,ip s jp t i j s tσ α γ+ + = ⋅  denotes the traditional multiplication of two 

matrices. Therefore, we have the inverse matrix 2

1[ ]
p

J −
 that can be calculated directly from the block 

inverse of the original block matrix 2[ ]
p

J , i.e., 

2 2 2
,

1 1 1 1 1 1 1

, ,2 2

1 1
[ ] ([ ] [ ] ) ([ ] [ ] ) [ ] [ ] .

ip s jp t

T T

p p p p i j s tp p p
J A B A B

p p
α γ σ

+ +

− − − − − − −= ⊗ = ⊗ = ⋅ =                                        (15) 

It implies that 
2[ ]

p
J  is a block Jacket matrix. 

Next, we show that matrix
2[ ]

p
J is a CBIJM under the indexed row and column. Assume 

that[ ]pA and[ ]pB are both CBIJMs under the row and column index over pΖ , respectively 

1 2

1 2

, , ;
{

, , ;

p

p

s s sj p ps

s s sk p ps

a a a fora j

b b b forb k

∈ Ζ ∀ ∈ Ζ

∈ Ζ ∀ ∈ Ζ

≺ ≺�

≺ ≺�
                                                                                    (16) 

where { , }s r c∈ , rja  and cja  denote the thj  row and the thj  column index of block matrix [ ]pA ,
rkb  and 

ckb  denote the thk  row and the thk  column index of block matrix [ ]pB , and ≺  denotes the increasing 

order. Then for the 2p -order block matrix 2[ ]
p

J  over 2p
Ζ , the row and column index order can be 

defined as follows  
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.

;
,

,

sj si

sj sk si sh

sj si sk sh

a a
a b a b if

a a b b


 =

≺
≺

≺
                                                                                         (17) 

Also the entries of 
2[ ]

p
J  are defined on the basis of [ ]pJ  as 

2 ( , ) ( , ) ( , ).ri rh cj ck p ri cj p rh ckp
a b a b a a b bφ φ φ= ⋅ As 

for the entries ( , )p i ja aφ and ( , )p h kb bφ of [ ]pA and[ ]pB , , ,i j l pa a a∀ ∈ Ζ and , ,h k t pb b b∀ ∈ Ζ , we have  

( , ) ( , ) ( , ) ( , ),p i j p i j l p i j l p j la a a a a a a a a aφ φ φ φ=� �                                                                        (18) 

( , ) ( , ) ( , ) ( , ),p h k p h k t p h k t p k tb b b b b b b b b bφ φ φ φ=� �
                                                                         (19) 

Therefore, it can be easily verified that 

2 2 2 2( , ) ( , ) ( , ) ( , ).i h j k i h j k l t i h j k l t j k l tp p p p
a b a b a b a b a b a b a b a b a b a bφ φ φ φ=� �                                     (20) 

It shows that block matrix 2[ ]
p

J is also a CBIJM under the indexed order in (17). This completes 

the proof of this theorem. 

CorollaryⅠ: For any prime number p and non-negative integer number s , let s[ ]   [ ] s pp
J J ⊗= be an 

s -fold block matrix, i.e., [ ]   [ ]    [ ] . s p pp

s

J J J= ⊗�
�������

 Then the block matrix [ ] sp
J is a CBIJM of 

order sp . 

Consequently, the s-fold CBIJM [ ] sp
J of order sp  can be generated from the following 

factorization algorithm 

1 1

1

[ ] [ ] [ ] ( [ ] )s s s i i

s

p pp p p p
i

J J J I J I− − −

=

= ⊗ = ⊗ ⊗∏                                                                        (21) 

where 
ip

I  denotes the identity matrix of size i ip p×  and 
0 1

p
I =  for the simple description. 

Corollary Ⅱ: Based on the p-order CBIJM [ ]
p

J  for any number p , the s-fold CBIJM [ ] sp
J of 

order sp can be constructed with the recursive formula 

1

1

[ ] ( [ ] ) ,s s i i

s

pp p p
i

J I J I− −

=

= ⊗ ⊗∏                                                                                                     (22) 

where p is any prime number and s is a nonnegative integer number. 

Proof: We deploy induction on index s .If 1s = ,then it is clearly true, i.e.,
1[ ] [ ]pp

J J= In what 

follows, we assume the hypothesis is true for s.Namely, for {1,2, , }i s∀ ∈ � we have  

1

1

[ ] ( [ ] ).s s i i

s

pp p p
i

J I J I− −

=

= ⊗ ⊗∏                                                                                                     (23) 

Then we show it must therefore hold for s+1. Actually,by induction based on properties of the 

Kronecker product we have  

1 1

1

1

[ ] [ ] [ ] ([ ] ) ( [ ] ) ([ ] )( [ ] ) ( [ ] )s s s s s s s i i

s

p p p p p pp p p p p p p p
i

J J J J I I J J I I J I J I+ − −

+

=

= ⊗ = ⋅ ⊗ ⋅ = ⊗ ⊗ = ⊗ ⊗∏    (24) 

In order to show the factorization of the generalized CBIJM [ ]nJ of order sp  with any prime 

number p , we propose several construction approaches in Table 1. In this table, the second column is 

the decomposition for the numbers (order) of the CBIJM, and the third column is the construction for 

CBIJM. It shows that the large-order CBIJM can be designed on the basis of the lower order 

CBIJ [ ]pJ  with sparse matrices in the successive architecture. 
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Conclusion 

A simple method of developing the CBIJM is proposed. This method is presented for its simplicity 

and clarity, which decomposes the high-order CBIJM into multiple sparse matrices with the lower-

order CBIJMs, instead of the conventional BIJMs or EIJMs. 

Table 1  Decomposition of Order for the CBJM [ ] sp
J  

Order Decomposition CBIJM 

2 2 2=  2 2[ ] [ ]J J=  

3 3 3=  3 3[ ] [ ]J J=  

4 2
2 2 2= ×  

2

4 2[ ] [ ]J J ⊗=  

5 5 5=  5 5[ ] [ ]J J=  

7 7 7=  7 7[ ] [ ]J J=  

8 3 22 2 2= ×  
3

8 2
[ ] [ ]J J ⊗=  

9 23 3 3= ×  
2

9 3[ ] [ ]J J ⊗=  
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