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Let {�,��, � ≥ 1} be a sequence of independent and nonidentically distributed random variables.We obtain a new kind of complete
moment convergence for their sums under the Lyapunov condition. Moreover, our result extends and improves the corresponding
result of the independent and identically distributed (i.i.d.) cases.

1. Introduction and Main Result

Let {�,��, � ≥ 1} be a sequence of random variables, and�� = ∑��=1��. If for every � > 0, ∑+∞�=1 �{|��| > �} < ∞, then{�,��, � ≥ 1} is said to converge to 0 completely.
Hsu and Robbins [1] proved that if {�,��, � ≥ 1} is a

sequence of independent and identically distributed (i.i.d.)

random variables with 
�1 = �, and 
�21 < ∞, then ��/� →� completely.
Erdos [2, 3] proved that if {�,��, � ≥ 1} is a sequence of

i.i.d. random variables, then for every � > 0, ∑+∞�=1 �{|��|/� >�} < ∞ holds if and only if 
�1 = � and 
�21 < ∞.
Obviously the sum tends to in	nity as � ↓ 0, and it is

necessary to study the convergence rate in which this occurs;
Heyde [4] proved that

lim
�↓0

�2+∞∑
�=1

� (���������� ≥ ��) = 
�2, (1)

when
� = 0 and
�2 < ∞.�is research direction is known
as the precise asymptotics. For analogous results in more
general case, we refer the reader to [5–14] and the references
therein.

Recently, Liu and Lin [15] have introduced a new kind of
complete moment convergence and obtained the following
result.

�eorem A (see [15]). Suppose that {�,��, � ≥ 1} is a
sequence of independent and identically distributed (i.i.d.)
random variables. �en

lim
�↓0

1
− log �

∞∑
� =1

1
�2
 [�2�� {���������� ≥ ��}] = 2�2 (2)

holds if and only if 
�� = 0, 
[�2�] = �2, and


[�2�log+|��|] < ∞, where � ∈ � and � ≥ 1.
However, the condition of identical distribution is very

strong and rather di�cult to verify in some real cases. �e
following theorem gives a su�cient condition of complete
moment convergence for independent nonidentically dis-
tributed random variables.

�eorem 1. Let {�,��, � ≥ 1} be independent random
variables such that 
�� = 0 and 
[�2�] = �2� < ∞, � ∈ �.
Assume that there exists a constant � such that |��| ≤ ���,
a.s., where �2� = ∑��=1 �2� . Moreover, one also assumes that the
following Lyapunov condition [16, page 298] is satis
ed:

lim
�→+∞

�−2−��
�∑
	 =1


������	�����2+� = 0, (3)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 379417, 5 pages
http://dx.doi.org/10.1155/2014/379417



2 Abstract and Applied Analysis

where 0 < � ≤ 1. �en, one has

lim
�↓0

1
− log �

+∞∑
� =1

1
�
[

�2��2� �{|
�|/��≥�√�}] = 2. (4)

Remark 2. Suppose that {�,��, � ≥ 1} is a sequence
of independent and identically distributed (i.i.d.) random

variables with 
[|�2+�� |] < ∞, where 0 < � ≤ 1 is a
constant. It is easy to verify the Lyapunov condition (3) in
real applications, and so the Lyapunov condition (3) is much
weaker than the identically distributed condition. Moreover,
the Lyapunov condition (3) constrains the growth rate of
moment.

Many sequences of independent random variables satisfy
Lyapunov’s condition; here we give some examples.

Example 1. Let {�,��, � ≥ 1} be a sequence of independent
random variables satisfying 
�� = ��, Var�� = �2� , � ≥ 1,
and �2� → ∞(� → ∞). Suppose that ��, � ≥ 1 are
uniformly bounded; that is, there exists a constant " such
that |��| ≤ " for all � ≥ 1, and then we have

�∑
� =1


������ − ������2+1 ≤ 2" �∑
� =1


������ − ������2 = 2"�2�,

lim
�→+∞

�−2−1�
�∑
	 =1


������	�����2+1 ≤ lim
�→+∞

2"�2��2+1� = 2" lim
�→+∞

1
�� = 0,

(5)

which veri	es that {�,��, � ≥ 1} satis	es the Lyapunov
condition (3).

Example 2. Let {�,��, � ≥ 1} be a sequence of independent
random variables, which satis	es �(�� = 1) = #�, �(�� =0) = 1 − #�, and

#� =
{{{{{{{

1
2 , � = 2�, � ∈ �,
1
3 , � = 2� + 1, � ∈ �. (6)

By Example 1, we know that {�,��, � ≥ 1} satis	es the
Lyapunov condition (3).

Remark 3. Suppose that {�,��, � ≥ 1} is a sequence
of independent and identically distributed (i.i.d.) random

variables such that 
�� = 0, 
[�2�] = �2 for all � ≥ 1,

[|�2+�� |] < ∞, where � > 0 is a constant. �en, from
Remark 2, we know that it satis	es Lyapunov’s condition.
�erefore, by �eorem 1, we have

lim
�↓0

1
− log �

∞∑
�=1

1
�2
 [�2�� {���������� ≥ ��}] = 2�2. (7)

Obviously, this case is the result of Liu and Lin [15].�erefore,
our condition of�eorem 1 is dierent from the conditions of
�eoremA, and our result partly extends and improves those
given in Liu and Lin [15].

2. Proof of Theorem 1

In this section, we will prove �eorem 1. We 	rst present the
following two lemmas, which play a key role in the proof of
�eorem 1.

Lemma 4 (see [17]). Suppose that {�,��, � ≥ 1} are
independent random variables with 
�� = 0 and 
[�2�] =
�2� < ∞, where � ∈ �. Let �2� = ∑�	=1 �2	 , *�(-) =
�((∑�	=1�	)/�� ≤ -), andΔ �(-) = |*�(-)−Φ(-)|, whereΦ(-)
is the standard normal distribution function. If 
|�	|2+� < ∞,6 = 1, 2, . . . , �, for some 0 ≤ � ≤ 1, then for every -,

Δ � (-) ≤ 7�−2−��
�∑
	 =1


������	�����2+�(1 + |-|2+�)−1 (8)

holds.

Lemma 5 (see page 73 of [18]). Under the conditions of
Lemma 4, if |�	| ≤ ��� a.s., 6 = 1, 2, . . . , �, where � > 0, then
for every - > 0,

�(������������ ≥ -) ≤ 2 exp(− -
2� sinh(

-�
2 )) . (9)

Proof of �eorem 1. Similar to [15], we have

+∞∑
� =1

1
�
[

�2��2� � {
������������ ≥ �√�}]

= �2+∞∑
� =1

�(������������ ≥ �√�) + +∞∑
� =1

1
� ∫
+∞

�√�
2E�(������������ ≥ E)FE

:= �1 + �2.
(10)

To prove �eorem 1, we only need to study �1 and �2. We
will divide the proof into two steps.

Step 1. We 	rst prove the equality as follows:

lim
�↓0

1
− log � �2

+∞∑
�=1

�(������������ ≥ �√�) = 0. (11)

In fact, it follows from Proposition 2.1.1 of [19] that

lim
�↓0

�2+∞∑
�=1

� (|�| ≥ �√�) = 1. (12)

By (12), we obtain

lim
�↓0

1
− log � �2

+∞∑
� =1

� (|�| ≥ �√�) = 0. (13)

To establish the equality (11), from (13) we only need to prove
that

lim
�↓0

1
− log � �2

+∞∑
�=1

����������(
������������ ≥ �√�) − � (|�| ≥ �√�)��������� = 0.

(14)
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Obviously, it follows from Lemma 4 that

����������(
������������ ≥ �√�) − � (|�| ≥ �√�)���������

= 2Δ � (�√�)
≤ 27�−2−�� (1 + �����√�����2+�)−1

�∑
	 =1


������	�����2+�.
(15)

Combining (3) and (15), we get

lim
�→+∞

����������(
������������ ≥ �√�) − � (|�| ≥ �√�)��������� = 0. (16)

Since

lim
�↓0

[1/�2]∑
�=1

�2 ≤ 1, (17)

it follows from Toeplitz’s lemma (page 120 of [20]) that

lim
�↓0

�2[1/�
2]∑
� =1

����������(
������������ ≥ �√�) − � (|�| ≥ �√�]��������� = 0. (18)

By (18), we have

lim
�↓0

1
− log � �2

[1/�2]∑
� =1

����������(
������������ ≥ �√�) − � (|�| ≥ �√�]��������� = 0.

(19)

On the other hand, it follows from Lemma 5 that

�2 ∑
� ≥ [1/�2]

�(������������ ≥ �√�)

≤ 2�2 ∫+∞
1/�2

exp(−�√E2� sinh(�√E�2 ))FE

= 2�2 ∫+∞
1

exp(− K
2� sinh(

K�
2 ))

2K
�2 FE

= 4∫+∞
1

K exp (− K
2� sinh(

K�
2 )) FK.

(20)

Noting that

∫+∞
1

K exp(− K
2� sinh(

K�
2 )) FK < ∞, (21)

the inequality (20) yields

�2 ∑
�≥ [1/�2]

�(������������ ≥ �√�) < ∞. (22)

By (22), we obtain

lim
�↓0

1
− log � �2

+∞∑
[1/�2]

����������(
������������ ≥ �√�) − � (|�| ≥ �√�)��������� = 0.

(23)

Combining (19) and (23), we see that the equality (11) is
satis	ed.

Step 2. Next, we need to prove the following equality:

lim
�↓0

1
− log �

+∞∑
� =1

1
� ∫
+∞

�√�
2E�(������������ ≥ E)FE = 2. (24)

Obviously, it follows from Proposition 3.1 of [15] that

lim
�↓0

1
− log �

+∞∑
�=1

1
� ∫
+∞

�√�
2E� (|�| ≥ E) FE = 2. (25)

To establish (24), from (25) we only need to prove

lim
�↓0

1
− log �

+∞∑
�=1

1
� ∫
+∞

�√�
2E ����������(

������������ ≥ E) − � (|�| ≥ E)��������� FE = 0.
(26)

Letting - = E/√� − � and M� = (7∑�	=1 
|�	|2+�)/�2+�� ,

we apply Lemma 4 to obtain

∫+∞
�√�

2E ����������(
������������ ≥ E) − � (|�| ≥ E)��������� FE

= ∫+∞
0

2√� (- + �) ����������(
������������ ≥ √� (- + �))

−� (|�| ≥ √� (- + �)) ��������� √� F-

= 2∫+∞
0

� (- + �) 2Δ � (√� (- + �)) F-
≤ 2∫+∞
0

� (- + �) M� 1
1 + [√� (- + �)]2+� F-.

(27)

If � ≤ [1/�2], then it follows from (3) that

∫1/√�
0

� (- + �) M� 1
1 + [√� (- + �)]2+� F-

≤ ∫1/√�
0

� (- + �) M� F-

= 1
2�M�(- + �)2

�������
1/√�

0
≤ 3
2M� O→ 0 (� O→ ∞) ,

∫1
1/√�

� (- + �) M� 1
1 + [√� (- + �)]2+� F-

≤ ∫1
1/√�

�−�/2(- + �)−1−�M� F-
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≤ ∫1
1/√�

�−�/2-−1−�M� F-

= M��−�/2 [−1�-−�]
�������
1

1/√�
≤ 1
�M� O→ 0 (� O→ ∞) ,

∫+∞
1

� (- + �) 1
�1+�/2(- + �)2+� F-

= �−�/2 ∫+∞
1

(- + �)−1−� F- O→ 0 (� O→ ∞) .
(28)

Hence, by (27) and (28), we have that for � ≤ [1/�2], the
following holds:

∫+∞
�√�

2E ����������(
������������ ≥ E) − � (|�| ≥ E)��������� FE O→ 0 (� O→ ∞) .

(29)

Noting the fact that the weighted average of a sequence
that converge to 0 also converges to 0, we have

[1/�2]∑
� =1

1
� ∫
+∞

�√�
2E ����������(

������������ ≥ E) − � (|�| ≥ E)��������� FE O→ 0,
as � O→ 0,

(30)

and so

lim
�↓0

1
− log �

[1/�2]∑
�=1

1
� ∫
+∞

�√�
2E ����������(

������������ ≥ E) − � (|�| ≥ E)��������� FE
= 0.

(31)

If � ≥ [1/�2], it follows from (8) and (3) that

∫+∞
�√�

2E ����������(
������������ ≥ E) − � (|�| ≥ E)��������� FE

≤ ∫+∞
1

4E7�−2−�� (1 + |E|2+�)−1 �∑
	 =1


������	�����2+� FE

≤ 4M� ∫
+∞

1

1
E1+� FE O→ 0 (� O→ ∞) .

(32)

Obviously, by (32), we get

lim
�↓0

1
− log �

+∞∑
�= [1/�2]

1
� ∫
+∞

�√�
2E ����������(

������������ ≥ E) − � (|�| ≥ E)��������� FE
= 0.

(33)

Combining (31) and (33), we have

lim
�↓0

1
− log �

+∞∑
� =1

1
� ∫
+∞

�√�
2E ����������(

������������ ≥ E) − � (|�| ≥ E)��������� FE = 0,
(34)

which implies that (24) is satis	ed.

�erefore, from (11) and (34), we see that (4) is true. �is
completes the proof of �eorem 1.
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