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Abstract

Wireless sensor network (WSN) in the Internet of Things consists of a large number of nodes. The proposal of

compressive sensing technology provides a novel way for data aggregation in WSN. Based on the clustering structure

of WSN, a kind of effective data aggregating method based on compressive sensing is proposed in this paper. The

aggregating process is divided into two parts: in the cluster, the sink node sets the corresponding seed vector based

on the distribution of network and then sends it to each cluster head. Cluster head can generate corresponding own

random spacing sparse matrix based on its received seed vector and collect data through compressive

sensing technology. Among clusters, clusters forward measurement values to the sink node along multi-hop routing

tree. Performance analysis and comparison with the relative methods show that our method is effective and superior

to other methods regardless of intra-cluster or inter-cluster on the total energy consumption of network.
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1 Introduction
Data aggregating is an effective strategy to control en-

ergy consumption because the number of transmissions

can be reduced after aggregation. Reference [1–4] strives

for energy balancing to make the network lifetime max-

imum. The unbalanced consumption of energy is harm-

ful to network safety and health [5–9]. If the sensor

nodes of wireless sensor networks (WSNs) spend their

energy in a relatively balanced way, the connectivity

among sensor nodes and the sink nodes can be kept for

a longer time, making the network segmentation to be

postponed. Avalanched quantities of tiny sensor nodes

establish WSNs in the Internet of Things. These nodes

can monitor all kinds of object information around them

in real-time. Since the energy of these sensor nodes is

usually very limited, how to ensure complete data aggre-

gating with the minimum energy consumption of nodes

has been a very critical issue in WSNs [10–12].

In order to remove redundant portions of the collected

data, and control the number of data nodes in WSNs,

which can save the energy consumption of nodes, re-

cently, many scholars proposed a compressive sensing

(CS) technology, which can collect and reconstruct sig-

nal with high probability through sampling points less

than the Nyquist sampling theorem [13–18]. According

to the sparsity of the signal, compressive sensing tech-

nology can decrease the original signal from high dimen-

sional to low dimensional on the nodes. It needn't

aggregate the signal and recover it with high probability

on the sink node. The proposal of compressive sensing

has good performance on image processing and other

applications [19–27].

Without using compressive sensing in data aggregation,

nodes near the leaves forward a small amount of packets,

but those which are close to the sink node need to for-

ward a large number of packets [28–30]. With using com-

pressive sensing in data aggregating, each node simply

forwards M packets, so the total transmission number of

the network with N nodes is MN. However, transmission

quantity is still large. References [6–10] proposed a hybrid

protocol. In this protocol, nodes near the leaves forward

original data without using compressive sensing, and

those which are close to the sink node use compres-

sive sensing technology to transmit data. References
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[31–35] applied hybrid compressive sensing to the

data aggregating and proposed a minimum energy

aggregation tree. The previous work directly applies

compressive sensing method to the route tree. Since

clustering method has many advantages over the routing

tree [36–40], compressive sensing method on clustering

network is applied. Compared with routing tree data ag-

gregating methods, clustering algorithm generally has a

better communication load balance [41, 42]. In addition,

previous works ignore the distribution of location infor-

mation and node distribution, which can contribute that

data aggregating consumes less energy in WSNs of the

Internet of Things [43–47].

References [13, 14] proposed Toeplitz matrix and proved

that it meets the restricted isometry property (RIP). Since

the correlation of data collected in a single cluster is rela-

tively large, the sparse matrix to the process of compressive

sensing can be used. It can minimize the number of

independent random variables, which can reduce the com-

plexity of compressive sensing process, and improve the

calculation speed in the meantime.

The literature [14–18] proposed Toeplitz random meas-

urement matrix and proved it. The literature [17–26]

proposed quasi-Toeplitz matrix, semi-Hadamard matrix,

and chaos-Toeplitz matrix and proved that they met the

condition of the RIP. Based on the former researches,

some scholars [27–35] proposed random spacing sparse

Toeplitz matrix optimized by singular value decompos-

ition (SVD) and apply it in wireless sensor networks.

According to random space sparse matrix based on the

Toeplitz matrix, the vector T1 = [ϕ1, ϕ2,…, ϕN, ϕN + 1,…,

ϕN +M − 1] contains all the elements of a Toeplitz matrix.

They sparse T1 with space △ = 2, the value of its element

ϕi (i ∈Λ, Λ is ⌈(N +M − 1)/△⌉ indexes randomly selected

from 1~N +M − 1) is subject to independent and identi-

cally distributed, and the other elements are set to 0.

Finally, the sparse vector is used to construct random

spacing sparse Toeplitz matrix:

ϕiþ1; jþ1 ¼ ϕi; j ð1Þ

The Gaussian random matrix requires MN-indepen-

dent random elements, the general Toeplitz matrix only

needs M+N − 1, and the random space sparse Toeplitz

matrix needs only ⌈(N +M − 1)/Δ⌉|Δ = 2, …, 16 independ-

ent random elements, so it is possible to further reduce

complexity.

The innovation or contribution of this paper is as fol-

lows: based on the clustering structure of WSNs, a new

data aggregating method based on sparse hybrid com-

pressive sensing is proposed The aggregating process is

divided into two parts: in the cluster, the sink node

sets the corresponding seed vector based on the distri-

bution of network and then sends it to each cluster

head. Cluster head can generate corresponding own

random spacing sparse matrix based on its received

seed vector and collect data through compressive

sensing technology. Among clusters, clusters forward

measurement values to the sink node along the

multi-hop routing tree which we built before. Per-

formance analysis and comparison of the experimental

results with the relative methods show that our

method is effective and superior to other methods re-

gardless of intra-cluster or inter-cluster on the total

energy consumption of network and the lifetime of

network.

2 Modeling based on hybrid compressive sensing
for WSN
In the data aggregating process, first of all, the network

is clustered. Each cluster has its cluster head, one sample

is shown in Fig. 1. The measurement matrix of the entire

network is generated by sink nodes according to the

sparse seed vector and sends the sparse seed vector to

each cluster head. So, the measurement matrix can be

divided into many sub-matrices; each sub-matrix corre-

sponds to a cluster. ϕH i represents the ith sub-matrix, CHi

represents its cluster head, and xH i represents data vector

of this cluster. CHican calculate the measurement values

ϕH ixH i of received data xH i based on its sub-matrix. When

CHi generates its Mi predicted values, it forwards data to

the sink node along the backbone tree which connects

clustered heads to the sink node.

Assume that all of the nodes are divided into four

clusters (because the 5 or 6 or 7 or 8 or other clusters

are the same as that of four clusters, we select four clus-

ters as an example), which are connected through a

Fig. 1 Sample of network clustering
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backbone aggregation tree. Data vector x can be represented

by ½xH1 xH2 xH3 xH4 �T . Matrix ϕ can be represented by

ϕH1 ϕH2 ϕH3 ϕH4
� �

. Generally, those assumptions

mentioned in this paper are realistic, and their implica-

tions tell us that the truth is from the real scenarios of

the applications, and the results can be tested the cases

of the applications.

y ¼ ϕx ¼ ϕH1 ϕH2 ϕH3 ϕH4
� �

xH1

xH2

xH3

xH4

0

B

B

@

1

C

C

A

¼
X

4

i¼1

ϕH ixH i

ð2Þ

As shown in Formula (2), the predicted coefficient of

measurement matrix is the sum of all the measured co-

efficients in the cluster. Therefore, in each round, the

cluster head generates predicted coefficients; all cluster

heads forward the received predicted coefficients to the

sink node. When the sink node collected M rounds pre-

dicted value, it can recover the original data.

We define the compressive ratio as ρ =M/N, which

means that the ratio is between the measurement value M

in the process of compressive sensing and the length N of

collected signal. It describes the compression efficiency of

the entire network.

We define the relative reconstruction error as ε ¼ kd−d
Λ

k
2

2

kdk22
,

i.e., the ratio between the absolute error and the true value,

where d is the true distance value of a certain node i and its

cluster head node and d
Λ

is the measurement distance value

of a certain node i and its cluster head node.

3 Data aggregating method based on
compressive sensing in WSNs
Although compressive sensing technology can effectively re-

duce the energy consumption of each node in the network,

it is directly related to the measurement value M in com-

pressive sensing. When the value of M is large, the energy

consumption of nodes remains high. To solve this problem,

a novel hybrid compressive sensing data aggregating method

is proposed, which mainly consists of four parts: network

clustering, building the appropriate inter-cluster routing

tree, compressive sensing data aggregating in clusters, and

cluster head transmitting data to the sink node. How to con-

struct the routing tree and evolve the process of compressive

sensing in clusters is shown below.

3.1 Network model

We make the following assumptions in the network

(generally, those assumptions are realistic, and their im-

plications tell us that the truth is from the real scenarios

of the applications):

1) N nodes randomly distribute in a circular

perception area (the radius is L); the sink node is

at the center of the sensing area (as shown in

Fig. 1).

2) The sink node has enough data space and the

ability of process.

3) The initial energy and the transmission rate of each

sensor node are the same.

4) Nodes can know its own location information

using the relative locating technology.

Lemma 1: Suppose that nodes in the wireless

sensor network are distributed randomly, data aggre-

gating in the cluster uses sparse matrices. If the clus-

ter head is at the center of this cluster, then nodes

consume least energy for each measurement value ag-

gregating process.

Proof Assume that the jth cluster consists of mj

nodes; the sparse ratio of the measurement matrix in

the process of compressive sensing is s. In each ag-

gregating process, the average number m
0
j of nodes

which involves in the aggregation of measurement

values is:

m
0

j ¼
X

m j

i¼1

s� 1 ¼ m js ð3Þ

Obviously, only m
0
j nodes need to forward their cor-

responding weights for each time. Therefore, cluster

head node receivesm
0
j packets. So, at every measure-

ment, the average energy consumption in the jth

cluster is:

�E
j
intra ¼

X

m
0
j

i¼1

Ei
Tx k;E dið Þð Þ þm

0

jERx kð Þ

¼ k
X

m
0
j

i¼1

Eele þ εampE d2
i

� �� �

þm
0

jkEele

¼ 2m
0

jkEele þ kεamp

X

m
0
j

i¼1

E d2
i

� �

ð4Þ

where Ei
Txðk;EðdiÞÞ represents the energy consump-

tion consumed by the ith node when forwarding k

bit data to its cluster head. E(di) represents the

distance expectations from the ith node to its clus-

ter head. As shown in the formula above, the aver-

age energy consumption is decided by Eðd2
i Þ .

Suppose that the cluster is square and its side

length is b and the cluster head’s coordinate (x0,

y0). We can use f(x, y) to represent the probability

density function of the distance between child

nodes to the cluster head:
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f x; yð Þ ¼
1

b2
x∈ −

b

2
;
b

2

� �

; y∈ −
b

2
;
b

2

� �

0 other

8

<

:

ð5Þ

then

E d2
i

� �

¼ E x−x0ð Þ2 þ y−y0ð Þ2
� �

¼
Z b

2

−b
2

Z b
2

−b
2

1

b2
x−x0ð Þ2 þ y−y0ð Þ2

� �

dxdy

¼ b2

6
þ x20 þ y20
� �

≥
b2

6

ð6Þ

is true if and only if x0 = y0 = 0, i.e., the cluster head node

is at the center area of the cluster.

Assuming that the network is divided into Nc

non-overlapping clusters, that means Nc nodes are

selected as the cluster heads; the other nodes connect to

the cluster head near to them.

We also assume that the node can adjust their own en-

ergy levels based on real transmission distance. Thus, the

energy consumption from node ni to node nj is Pij ¼ dα
ij .

The parameter α depends on the characteristics of the

channel, which usually take between 2 and 4 as mentioned

by References [13, 14]. Here, we choose α = 2, which is

realistic for a typical WSN deployment [13–16]. Eventu-

ally, we use the normalized reconstruction error as the CS

signal reconstruction error.

3.2 Establishment of inter-cluster routing tree

Hops are forwarded from current cluster head to other

cluster head (NoH), i.e., the node determines the value

based on its own communication radius and the distri-

bution of cluster heads in the network.

Lemma 2: Suppose that cluster heads forward measure-

ment values along the inter-cluster multi-hop shortest

routing tree, so the energy consumption of inter-cluster

will reach to the minimum value.

Proof The cluster head will get h − 1 data packets at each

time collecting measurement values, and the definition of

the energy consumption of inter-cluster is as follows:

Einter ¼
X

h

i¼1

Ei
Tx k; dið Þ þ h−1ð ÞERx kð Þ

¼ k
X

h

i¼1

Eele þ εampd
2
i

� �

þ h−1ð ÞkEele

¼ 2h−1ð ÞkEele þ kεamp

X

h

i¼1

d2
i

ð7Þ

where di represents the transmission distance of the ith

data packet. The formula above shows that if h and k are

constant, the final result is decided by
Ph

i¼1 d
2
i .

We propose an iterative algorithm to build distributed

inter-cluster routing. Assuming that all cluster heads

have the same transmission radius (R). Within the com-

munication radius, cluster heads can communicate with

each other. All cluster heads broadcast the hops from

themselves to the sink node to their neighbors. The NoH

of cluster head which contains the sink node in their

communication radius is set as 1 at the first time of iter-

ating. At the next iteration, these cluster heads broadcast

their NoH to their neighbors and set the NoH of those

cluster head nodes without NoH to be 2. After a series

of iterations, it keeps choosing routing path until no

cluster head is left. The algorithm can be abbreviated as

the following steps:

3.3 Intra-cluster data aggregating based on compressive

sensing

After building inter-cluster routing tree, we use com-

pressive sensing technology to collect data in clusters.

Since the data correlation of intra-cluster node is rela-

tively large, we can reduce the measurement values by

using random space sparse matrix. In traditional data

aggregation methods based on compressive sensing, the

measurement matrix required for compressive sensing

process is generated by the cluster head. When data is

collected, the cluster head needs to forward both data

and measurement matrix to the sink node. Because the

random space sparse matrix can be directly generated by

the sink node by using a sparse seed vector, each cluster

head can generate its corresponding sub-matrix by using

the seed vector provided by the sink node. The steps of

the method are as follows:
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Step 1: The sink node forwards the seed vector

U(ui),{i = 1,2,…, N} with sparse space △ to

every cluster head. Each cluster head

determinating its position in the seed vector

depends on its position on the backbone

tree.

Step 2: Start from its position in the seed vector, the

ithcluster head node traverses forward Ni values

depends on the number of its intra-cluster

nodes Ni. Then, the cluster head gets its own

new sparse seed vector and eventually generates

its corresponding sub-matrix Mi ×Ni.

Step 3: Non-CH (cluster head, CH) nodes forward their

nodes to CH; CHs calculate the received data as

Mi measurement values by using the formula

yi = φixi.

Step 4: CHs forward measurement values to the sink

node along the generated forwarding path.

Step 5: The sink node generates the whole

measurement matrix based on the whole seed

vector U(ui),{i = 1,2,…, N} and recovers the

original data depends on received data y

= [y1,y2,…,yNc] by using CS reconstruction

algorithm.

4 Analysis of energy consumption in WSN
As stated in the above sections, non-CH nodes send their

readings to their cluster heads. The energy consumption

of intra-cluster defines as Pintra-cluster. In the next step, the

cluster heads get their corresponding measurement values

(yi = φixi) based on intra-cluster node data and then send

measurement values to the sink node. The energy con-

sumption of intra-cluster node represents as PtoBS, and

total energy consumption is expressed as follows:

Ptotal ¼ Pintra‐cluster þ PtoBSð Þ ð8Þ

1) Analysis of Pintra-cluster

We assume that WSN is divided into Nc clusters evenly,

each cluster has the same number of nodes N/Nc, including

a cluster head and N/Nc − 1 non-CH nodes. Then,

Pintra‐cluster ¼ N c
N

N c

−1

� �

E rα½ � ð9Þ

where r is a random variable, which corresponds to

the distance between a common node and its cluster

head; α is the path loss exponent. In this paper, we set it

as 2, so we can calculate the expectation E[r2]:

E r2
� �

¼ ∬ x2 þ y2
� �

ρ x; yð Þdxdy ¼ ∬ r
02ρ r

0
; θ

� 	

r
0
dr

0
dθ

ð10Þ

where ρ(r,θ) represents the distribution of nodes. We also

assume that each cluster is a circular area of R ¼ L=
ffiffiffiffiffiffi

N c

p

radius; the density of nodes in all clusters is distributed

evenly. Therefore,

E r2
� �

¼ 1

πL2=N c

� �

Z 2π

θ¼0

Z R

r
0¼0

r
03dr

0
dθ ¼ L2

2N c

ð11Þ

Correspondingly,

Pintra‐cluster ¼
N

N c

−1

� �

L2

2
ð12Þ

2) Analysis of PtoBS

We define the energy consumption of inter-cluster

transmission as follows:

PtoBS ¼
X

N c

i¼1

NoH ið Þ � R2 �M ið Þ ð13Þ

where M(i) is the number of measurement values of the

ith cluster; R2 is the energy consumption on each hop. In

the case of the analysis, we assume that all cluster sizes

are equal. According to the literature [18], the number

of measurement values required for each cluster is

linearly proportional to the number of nodes in each

cluster. Therefore, Eq. (12) can be rewritten as follows:

PtoBS ¼ R2 � M

N c

X

N c

i¼1

NoH ið Þ ð14Þ

As aforementioned, M represents the total number of

measured values required in the network. Nc is the num-

ber of clusters. Formula (14) can be rewritten as follows:

PtoBS ¼ NoHave � R2 �M ð15Þ

where NoHave is the average number of hops.

3) Analysis of communication radius of cluster head

Communication radius of cluster head is closely related

to the network energy consumption. In each routing path,

the number of hops is closely related to the communication

radius. If R is increased, the cluster head can forward data

to more cluster heads, which means that the total number

of hops will change with the communication radius R. In

Figs. 2 and 3, we construct a network of 2000 nodes. The

network is clustered by using a common method such as
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K-means or LEACH. We change different communication

radius R = {10, 12, 14, 16, 18, 20} in order to change the

number of clusters in the network. As shown in

Figs. 2 and 3, the total hops will change after increas-

ing or decreasing of radius R correspondingly. Generally,

the units of the communication radius R used to measure

the quantities are specified meter as m or the times of m,

so we ignore the unit description for the following figures.

Figure 2 shows the comparison of the total hop change

in the network when changing the communication range

of the cluster head. Figure 3 shows the comparison of

the total energy consumption of the network when

changing the communication range of the cluster head.

The figures above (a) uses K-means before data aggre-

gating and (b) uses LEACH before data aggregating.

5 Description of the algorithm
Theorem 1 Assuming that wireless sensor network is

clustering uniformly, the intra-cluster collect data by

using compressive sensing technology, sparse matrix is

Fig. 2 Comparison of the total hops change in the network

Fig. 3 Comparison of the total energy consumption of network
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selected as the measurement matrix, cluster head node is

at the center of cluster, and inter-cluster forwards data

along the shortest multi-hop routing tree. Then every

time in the data aggregating, the total energy consump-

tion of network is minimum.

Proof From the previous Lemma 1 and Lemma 2, the

mean value of energy consumption in the wireless sen-

sor network is as follows:

Etotal hð Þ ¼
X

h

i¼1

�E
i

intra þ Einter ¼ kEele 2þ εampb
2

6

� �

X

h

i¼1

m
0

i

þ 2h−1ð ÞkEele þ kεamp

X

h

i¼1

d2
i

ð16Þ

where m
0
i represents the average number of nodes within

ith cluster the first time to participate in a single meas-

urement. In the case of uniform clustering, m
0
i ¼ m

0
j and

d2
i ¼ d2

j ði; j ¼ 1; 2;…; h; i≠ jÞ then
P

i¼1

h

m
0
i and

Ph
i¼1 d

2
i

reach the minimum. So, �EtotalðhÞ reaches the minimum.

This section presents a kind of data aggregating algo-

rithm based on hybrid compressive sensing, which is dif-

ferent from the traditional hybrid compressive sensing

data aggregation. The measurement matrix required for

every cluster is generated by seed vector provided by the

sink node; because all of the intra-cluster nodes have the

same calculation process, the entire network has bal-

anced energy consumption. The complete algorithm is

described as follows:

1) The network is clustered by using conventional

clustering methods, such as LEACH and K-means.

2) The aforementioned method is used to construct

the inter-cluster multi-hop shortest routing tree

between cluster heads and the sink node. Each

cluster head can get its own NoH. As seen in

Formula (13), if M and Nc are certain, the energy

consumption of inter-cluster is only associated with

NoH.

3) The sink node generates a corresponding sparse

seed vector U(ui),{i = 1,2,…, N} according to the

number of nodes in the network and send it to each

cluster head.

4) Each cluster head (assuming that ith cluster head)

using the received seed vector generates its

measurement matrix Mi × Ni according to its

location and the number of nodes in it.

5) In the cluster, data is collected by using

compressive sensing technology, then we can get

M measurement values of the corresponding

cluster head.

6) Cluster heads forward M measurement values to

the sink node along the inter-cluster multi-hop

shortest routing tree. Based on Theorem 1, the

total energy consumption of network during the

data acquisition is minimum, so as to achieve the

best performance; otherwise, we use machine

learning approach to reconstruct signal and

then ensure that the total energy consumption

is minimum. Detailed machine learning approach

can be found in our relative research works [7–11],

because of the length limit of the paper, we ignore

the detailed description.

7) Since the measurement matrix used in each cluster

is generated by the partial seed sparse vector

U(ui),{i = 1,2,…, N}, so the sink node may also

generate a total block matrix as the recovery

matrix. The sink node recovers the original data by

using corresponding reconstruction algorithm.

Because the random space sparse matrix can be dy-

namically generated by a series of seed vectors, the

measurement matrix required for the whole network can

be determined by the sink node. On one hand, com-

pared with the Gaussian random matrix, it reduces the

number of independent variables; on the other hand, it

avoids the problem that nodes cannot save the dynamic

measurement matrix while routing path changes in the

process of conventional hybrid compressive sensing.

6 Results and discussions
This section provides some simulations and evaluations

of this proposed data aggregating method.

6.1 Performance of data aggregating based on random

space sparse compressive sensing

We always assess the performance of methods by using the

amount of data packet transmission collected by nodes in

the network; the space here is △ = 2. We compare six

schemes: (a) K-means clustering scheme based on random

space sparse measurement matrix, (b) LEACH clustering

scheme based on random space sparse measurement

matrix, (c) K-means clustering scheme based on Gaussian

measurement matrix, (d) LEACH clustering scheme based

on Gaussian measurement matrix, (e) K-means clustering

scheme without compressive sensing, and (f) LEACH clus-

tering scheme without compressive sensing. The number of

nodes is increased from 500 to 1500, the transmission ra-

dius nodes is 10, and the compressive ratio is ρ =M/N.

Figure 4 shows the comparison of data packet trans-

mission of various programs when the compressive ratio

is ρ = 0.2. Figure 5 shows the comparison of data packet

transmission of various programs when the compressive

ratio is ρ = 0.1. The two values of the compressive ratio

ρ are used, which are ρ = 0.1 and ρ = 0.2; what value of ρ
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would be a realistic one will be based on the require-

ments of the realistic applications, if the high ratio is

needed, then selecting high ratio, such as ρ = 0.2, which

is related to the crucial importance and know the im-

portance of the results.

Figure 6 shows the comparison of the tendency of the

network lifecycle changes with the number of nodes

when the compressive ratio is ρ = 0.1. Figure 7 shows the

comparison of the tendency of the network lifecycle

changes with the number of nodes when the compres-

sive ratio is ρ = 0.2. It can be seen from the figures that

the use of compressive sensing obviously prolongs the

network’s lifecycle, while compared to the Gaussian ran-

dom matrix, random space sparse matrix collects less

data packets, thereby further increases the number of

rounds of the network.

6.2 Simulation and analysis of energy consumption in

network

We also deploy 2000 nodes, and L is 100. Firstly, the

network is clustered by K-means or LEACH, then we get

Nc clusters. We use our CS data aggregating method and

calculate the energy consumption of the entire network.

The sink node is set at the center of sensing field. Given

Fig. 4 Comparison of data packet transmission of various programs

Fig. 5 Comparison of data packet transmission of various programs
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the number of measurements M = 500, in order to meet

the target error 0.1, we change the number of cluster

head of the network by changing the transmission radius

of nodes. We use the transmission radius R = [50, 30, 25,

22, 18, 14, 11] to represent the number of the cluster

head Nc = [10, 50, 100, 200, 300, 400, 500].

First, the energy consumption of intra-cluster is simu-

lated. We select random space sparse matrix and Gauss-

ian matrix to do the comparison, and we also choose the

different random space △. As shown in Figs. 8 and 9 ((a)

represents as the program using K-means and random

space sparse matrix, (b) as the program using LEACH

and random space sparse matrix, (c) as the program

using K-means and Gaussian random matrix, and (d) as

the program using LEACH and Gaussian random

matrix), they represent the total energy consumption of

intra-cluster including cluster head. If the number of

cluster increases, then the energy consumption of

intra-cluster decreases. At this time, the transmission of

data packet of inter-cluster consumes much energy. As

Fig. 6 Comparison of tendency of the network lifecycle changes with the number of nodes

Fig. 7 Comparison of tendency of the network lifecycle changes with the number of nodes
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can be seen from the figures, the random space sparse

matrix consumes less than the Gaussian matrix due to a

large number of zero element.

With the increase of the number of cluster heads,

we represent (a) as the program using K-means and

random space sparse matrix with △ = 2, (b) as the

program using LEACH and random space sparse

matrix with △ = 2, (c) as the program using K-means

and Gaussian random matrix, and (d) as the program

using LEACH and Gaussian random matrix.

In addition, with the increase of the number of clus-

ters, we represent (a) as the program using K-means and

random space sparse matrix with △ = 4, (b) as the pro-

gram using LEACH and random space sparse matrix

Fig. 8 Comparison of change of the energy consumption of intra-cluster

Fig. 9 Comparison of change of the energy consumption of intra-cluster
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with △ = 4, (c) as the program using K-means and Gauss-

ian random matrix, and (d) as the program using

LEACH and Gaussian random matrix.

Figure 10 shows that the entire energy consumption of

inter-cluster is decreased with the increasing of the number

of clusters. We represent (a) as uniform clustering, (b) as

LEACH, and (c) as K-means.

Figure 11 shows the trend of the total energy con-

sumption of the network. It can be seen from the figure

that the use of inter-cluster multi-hop routing signifi-

cantly reduces the total energy consumption of the net-

work when there are too many clusters. We represent

(a) as the use of inter-cluster multi-hop routing and

K-means, (b) as the use of inter-cluster multi-hop

Fig. 10 Comparison of change of the energy consumption of inter-cluster

Fig. 11 Comparison of the total energy consumption of network

Zhang et al. EURASIP Journal on Wireless Communications and Networking  (2018) 2018:159 Page 11 of 15



routing and LEACH, (c) as the only use of K-means, and

(d) as the only use of LEACH.

In addition, we do the comparison experiments on the

total consumption of network of WSN with the relative

methods [19–27]. When we consider the total consump-

tion of network, an abnormal situation occurs (in Fig. 12,

the abnormal situation regarding new nodes added to

the network in the actual applications because of the dy-

namic change of the network topology, such as some

nodes go into the relative clusters or some nodes leave

the relative clusters, the implication is that the WSN is

self-organized based on the requirements of the relative

applications), which has added new nodes in the data

collection process. In order to consider the worst case,

we assume that new nodes are added at the front end of

the network. Fifty new nodes are joined in the network

every 2 cycles. From the results of Fig. 12 (in Fig. 12, we

represent (c) as the method of Reference [19], we

Fig. 12 Comparison of the energy consumption of network

Fig. 13 Comparison of lifetime of network under different data collection methods
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represent (b) as the method of Reference [20], we repre-

sent (a) as the method of this paper), we can see that

our method reduces the total energy consumption of

network than that of other methods regardless of

intra-cluster or inter-cluster.

Figure 13 shows the comparison of lifetime of network

under different data collection methods. In Fig. 13, we

represent (c) as the method of Reference [21], we repre-

sent (b) as the method of Reference [23], and we repre-

sent (a) as the method of this paper. From the results of

Fig. 13, we can see that our method prolongs the lifetime

of network than that of other methods.

The algorithm can be described as intra-cluster

method based on existing methods and the inter-cluster

aggregation based on minimum consumption. The com-

mon problem in clustering networks which is the energy

balancing during the head selection is well considered

by the machine learning process.

The WSNs will inevitably use clustering when the

node number is large. It is not a fair comparison be-

tween the cluster and non-cluster structure in

large-scale networks, so we adopt the overhead of nor-

malized network transmission based on the relative

weight.

In order to compare our work with other clustering

methods and including the machine learning process,

the cost of the algorithm (the bandwidth, energy con-

sumption caused by the extra communication) is consid-

ered on the performance analysis as Fig. 14 ((a) as the

method of this paper, (b) as the method of Reference

[23], (c) as the method of Reference [21], and (d) as the

method of Reference [24]).

From Fig. 14, we can see that optimized compressive sens-

ing data collection program reduces the overhead of normal-

ized network transmission than the un-optimized program.

7 Conclusions
A kind of effective data aggregating method based on

compressive sensing in WSN is proposed. The method

can effectively reduce the energy consumption of the

network. The sink node forwards sparse seed to cluster

heads. Within a cluster, the cluster head generates its re-

quired measurement matrix according to the received

sparse seed and then produces the corresponding meas-

urement values by using random space sparse compres-

sive sensing. Cluster heads forward measurement values

to the sink node along the inter-cluster multi-hop rout-

ing tree from one cluster to another. The sink node re-

constructs the original signal by using the corresponding

compressive sensing reconstruction algorithm. We

analyze the energy consumption of the algorithm in the

network, the relationship between the size of cluster

head and the energy consumption of inter-cluster, and

the relationship between the size of cluster head and the

energy consumption of network. The experimental re-

sults show that this method can effectively reduce the

energy consumption of the network.
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